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The Deep Promotion Time Cure Model
Victor Medina-Olivares , Stefan Lessmann , and Nadja Klein

Abstract— We propose a novel method for predicting time-to-
event data in the presence of cure fractions based on flexible
survival models integrated into a deep neural network (DNN)
framework. Our approach allows for nonlinear relationships
and high-dimensional interactions between covariates and sur-
vival and is suitable for large-scale applications. To ensure the
identifiability of the overall predictor formed of an additive
decomposition of interpretable linear and nonlinear effects and
potential higher-dimensional interactions captured through a
DNN, we employ an orthogonalization layer. We demonstrate
the usefulness and computational efficiency of our method via
simulations and apply it to a large portfolio of U.S. mortgage
loans. Here, we find not only a better predictive performance
of our framework but also a more realistic picture of covariate
effects.

Index Terms— Credit risk, cure models, deep learning (DL),
interpretability, survival analysis.

I. INTRODUCTION

LENDERS employ mathematical models to assist
decision-making by estimating each customer’s

probability of a credit event. These models, known as
credit scoring systems, were initially developed to predict the
probability of default for specific products. Over time, the
use and purpose of these systems have become more diverse
and aligned with the lender’s strategic goals. Moreover, new
computational advancements and the pursuit of better models
have urged research on deep-learning (DL) approaches
in this field. Gunnarsson et al. [1], conducting a study
comparing DL algorithms and their practicality in credit
scoring, find that while tree-based ensemble methods are
still favored, DL approaches have potential, for example,
in handling less traditional data sources. Meanwhile,
Stevenson et al. [2] reveal the merit of DL for predicting
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default in small businesses using text data. In another study
by Korangi et al. [3], transformer models were employed
to process time-varying covariates, such as accounting
metrics from the balance sheet, to predict the bankruptcy of
middle-capitalization companies, showing better performance
than traditional models. These findings are part of the recent
evidence suggesting that DL techniques are promising to
improve credit scoring systems and expand the range of data
types that can be leveraged in this field.

Until now, most applied DL models to credit risk have
focused on classification tasks, where a predefined perfor-
mance period of a binary decision is established. A different
route is that of survival analysis for building scoring systems
but is less explored in the DL context [4]. Here, the outcome
of interest is the time until an event occurs. One challenge
in survival analysis is to reliably describe the distribution of
survival times, trying to convey, for example, if all subjects
are prone to the event of interest. In credit risk modeling,
it is, however, natural to expect that some borrowers will
never experience the event, resulting in heavy censoring at
the end of the study [5]. In this situation, cure rate models are
preferred [6], which extend survival models by including a
latent cure fraction. The advantage is that these models allow
us to separate the factors that influence the probability of the
event occurrence from those that affect its timing.

Another challenge is understanding how the subject-specific
features (or covariate effects) relate to survival times. To this
end, two main classes of cure models exist: the mixture cure
model (MCM) [7] and the promotion time cure model (PTCM)
[8], [9]. Although the MCM has been extensively studied in
the credit risk literature (see Table I), the PTCM, introduced
in the late 1990s, has gone practically under the radar and is
the focus of this article.

The MCM assumes a binary response variable in the
population that describes those cured and those susceptible
to the event. This approach has been broadly developed in
parametric, semi-parametric, and nonparametric formulations,
and to handle continuous, discrete, and longitudinal data
(see [10] for a comprehensive review). In contrast, the PTCM,
which originates from cancer studies, assumes each subject
has unobserved competing risk factors, such as cancer cells.
In this situation, a cured patient will have zero cancer cells,
while a susceptible patient’s event will occur when the first
cell develops into a palpable cancer mass. Although initially
conceived for tumors, its statistical principles apply to broader
contexts. For example, in credit-related applications, compet-
ing risk factors include causes for borrower default, such
as job loss, inability to work, strategic default, and failed
businesses [11].
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Addressing existing challenges, we make three signifi-
cant contributions in this manuscript: two methodological
and one empirical. From a methodological standpoint, first,
we reformulate the PTCM using a deep neural network (DNN)
architecture. We label our approach Deep-PTCM.

The second methodological contribution allows the decom-
position of the predictor into linear and nonlinear components,
with the latter estimated through a DNN. This separation
aims to facilitate the interpretation of covariate effects, a com-
mon criticism when applying DL approaches. However, it is
known that a neural network (NN) can approximate any
continuous function [12], in particular, a linear one. Hence,
to avoid identifiability issues, we follow [13] and add an
orthogonalization layer. This layer projects the output of the
nonlinear component onto the orthogonal complement of the
linear one, achieved through a QR decomposition. This greatly
enhances interpretability. The novelty of our approach lies in
its capability to account for the censoring of certain subjects.

From an empirical perspective and to the best of our
knowledge, this is the first study to apply such a general and
flexible framework of PTCMs in the credit risk context. First,
most of the cure models studied in credit scoring belong to
the class of MCMs, leaving the PTCM relatively unexplored.
However, we do not find any solid justification in the literature
for choosing MCM over PTCM, and its preference may
be due to its popularity. Second, none of the cure models,
regardless of the class selected, allow for complex and often
more realistic nonlinear relationships and interactions between
covariates and survival. As we show later, this assumption
limits the predictive power, an essential aspect of credit risk
management [14]. Concretely, we build a cure model to predict
the time to default in a large U.S. mortgage portfolio. We show
that the Deep-PTCM significantly outperforms the standard
PTCM in calibration and discrimination.

Overall, our Deep-PTCM has the following highly relevant
advantages over existing competitors.

1) It generalizes the standard PTCM, which assumes linear
dependency in its predictor. This can be seen as a
one-layer NN with one unit.

2) It provides more flexibility than traditional estimation
pipelines by replacing data preprocessing and feature
engineering with a differentiable loss function estimated
via gradient descent. That facilitates the model to handle
structured and unstructured data such as text and images,
broadening its applicability.

3) The employed orthogonalization cell gives access
to directly interpretable linear and nonlinear effects,
whereas the additional high-order interactions ensure
high predictive power.

4) It is scalable since all model parameters are integrated
into an end-to-end DNN, making the estimation proce-
dure computationally efficient and easily parallelizable
(GPUs/TPUs).

5) Its implementation uses the TensorFlow framework,
making it easy to accommodate all layers, optimizers,
and features available there.

In particular, 2)–5) provide comparative advantages over
recent efforts from medical research by Xie and Yu [15].

The authors propose a PTCM with a DNN component and
show it can increase the model’s performance compared
with nonparametric approaches with splines. However, this
is the only work in this respect, indicating that the interface
of PTCMs and DNNs is an underexplored area from both
a modeling and an application perspective. An example is
the estimation procedure, carried out iteratively using the
expectation-maximization (EM) algorithm introduced by [16],
where the DNN is optimized at each maximization step. That
results in a computationally inefficient procedure that limits
the approach’s materiality in increasingly prevalent big data
environments. Through a simulation study, we demonstrate
that Deep-PTCM scales better than the approach proposed
in [15]. This improvement allows us to estimate the model on
a training set with approximately 150k borrowers, the largest
in this context (see Table I), in a few minutes rather than hours.

The article is structured as follows: Section II summa-
rizes relevant literature. Section III outlines the PTCM, its
reformulation in an end-to-end DNN framework, and efficient
estimation for large datasets. Section IV details performance
metrics for cure model evaluation. Section V includes two
simulation studies: one comparing our approach to Xie and
Yu [15], and the second examining the Deep-PTCM’s recovery
of linear effects with the orthogonalization step. Section VI
presents our credit risk study, and Section VII concludes.

II. RELATED WORK

Although the contributions presented have the potential for
applications beyond the credit-related context, the motivation
for this work arises from the importance of credit-scoring
models in a predominantly data-driven industry and the lack
of studies combining cure models and DL.

Most of the cure models applied so far belong to the
class of MCMs. Tong et al. [17] introduce the MCM and
compare its performance to the logistic regression and the
Cox Proportional Hazard model (Cox PH), noting the ability
to distinguish among borrowers’ susceptibility is appealing
for risk management. Similarly, Dirick et al. [18] compare the
performance of different survival approaches in ten datasets.
They find comparable performance between the MCM, Cox
PH, and accelerated failure time models, with a promising
economic performance by the MCM.

Moreover, Louzada et al. [19] demonstrate that the flexibil-
ity of the MCM allows modeling survival data even when
the proportional hazard assumption is not satisfied. Extensions
to include exogenous time-varying covariates can be found
in [20], from a discrete-time perspective, and in [5], for the
continuous-time one. Furthermore, Zhang et al. [21] introduce
a new MCM to allow the noncured borrowers to be susceptible
to a subset of risks instead of all of them as it is commonly
assumed in competing risk settings.

While much of the literature focuses on the MCM, some
work, all from the same group, have studied the PTCM.
Namely, in [22], a PTCM is applied to relate the intensity
of default and recovery rates in a Brazilian loan portfolio.
This study, however, does not include covariates in the model.
In addition, in [11], different activation mechanisms of the
PTCM are analyzed. A bivariate survival process is considered
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TABLE I
LIST OF REFERENCES IN THE CREDIT RISK LITERATURE WITH CURE MODELS. T|N|X REFER TO THE MAXIMUM PERFORMANCE

PERIODS (MONTHS), THE SAMPLE SIZE, AND THE NUMBER OF COVARIATES (BEFORE PREPROCESSING)

in [23], and de Oliveira Jr et al. [24] extend it to account for
events in time zero. More recently, Toledo et al. [25], using a
baseline risk function following a Gompertz distribution, also
allow events at time zero with fractions incorporating covariate
effects.

Table I compares relevant approaches to cure models
applied in credit risk. Except for [26], which incorporates
random forests in the incidence model and linear effects
in the latency model, all other contributions, whether based
on MCMs or PTCMs, assume linear covariate effects—an
assumption often deemed unrealistic and overly simplistic.
Additionally, in the context of cure rate models incorpo-
rating nonlinear effects, traditional nonparametric methods
like smoothing splines struggle with high-dimensional interac-
tions [15]. The Deep-PTCM addresses these limitations as it
not only captures complex covariate effects but is also scalable
by leveraging the flexibility of DL.

In recent years, numerous DL methods for survival analysis
without a cure fraction have emerged, leveraging the benefits
of NNs while building upon established statistical approaches.
Notably, [27] introduces a Cox PH model parameterized by an
NN. While excelling at handling complex data representations,
it remains constrained to the Cox PH structure. A more
recent development is DeepHit [28] and its extension to
handle time-varying covariates [29]. This model discretizes the
survival timeline and directly learns first-hitting times among
competing risks without assuming the underlying stochastic
process. However, its architecture confines the prediction of
failure times to a fixed-size discrete set, potentially impractical
for scenarios with extended survival horizons. These represent

some of the most impactful efforts, and for a more compre-
hensive study, refer to [30]. Despite not addressing the cure
context, these advancements underscore the significance of
exploring DL in time-to-event prediction.

III. METHODOLOGY

In this section, we briefly review the PTCM in Section III-A,
while Sections III-B and III-C detail the Deep-PTCM and an
efficient estimation algorithm using existing DL libraries. This
allows the framework to be applied to large and unstructured
datasets.

Throughout, consider a population of N subjects (i =

1, . . . , N ) with covariate vectors xi ∈ Rq . The time to
event and right-censoring times for subject i are denoted
by T ∗

i and Ci , respectively. The observed event time is
Ti = min{Ci , T ∗

i }. Let ti represent the realization of Ti ,
and δi be the event indicator (1 if the event occurs at time
ti , and 0 otherwise). Population-level notation is represented
by X = (x1, . . . , xN )⊤ ∈ RN×q , t = (t1, . . . , tN )⊤, and
δ = (δ1, . . . , δN )⊤.

A. Promotion Time Cure Model

The PTCM assumes that subject i has Ki unobserved
competing risk factors, each of which can lead to the occur-
rence of the event. Furthermore, it is assumed that Ki is
Poisson-distributed with mean θ(xi ) > 0. The cured subjects
are those for whom Ki = 0. Denote by Yik , k = 1, . . . , Ki , the
random time for the kth risk factor. Given Ki , the variables
Yik are assumed to be mutually independent, independent
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of Ki , and distributed with cumulative distribution function
(cdf) F(t). Then, T ∗

i is defined as the time elapsed until the
first unobserved competing risk factor is triggered, that is,
T ∗

i = min{Yi1, . . . , Yi Ki }, such that

Sp(t; xi )

= P(no event by time t; xi )

= P(Ki = 0; xi ) + P(Yi1 > t, . . . , Yi Ki > t, Ki ≥ 1; xi )

= exp(−θ(xi )) +

∞∑
j=1

[(1 − F(t))θ(xi )]
j

j !
exp(−θ(xi ))

= exp(−θ(xi )F(t)). (1)

The cure fraction is limt→∞ Sp(t; xi ) = exp(−θ(xi )). Note
that, since limt→∞ Sp(t; xi ) can be positive, Sp is not a proper
survival function. We deliberately call it the survival function
of the population and add the subindex p to differentiate it
from S(t) = 1 − F(t), the (proper) survival function of the
risk factors.

The traditional PTCM relates θ to a linear predictor of
the covariates, that is, η(xi ) = w⊤xi + b, through θ(xi ) =

exp(η(xi )), where w ∈ R
q is the vector of regression coeffi-

cients, and b ∈ R is the intercept [35]. The hazard function
of the population is then h p(t; xi ) = exp(w⊤xi + b) f (t),
with f (t) = dF(t)/dt . Since the hazard function preserves
proportionality, the PTCM is also known as the proportional
hazard cure model [36].

The PTCM has been studied and extended in several
directions in the statistical community. For example, an EM
algorithm to estimate the model with missing covariates [16],
extensions to handle interval-censored data [37] and to
include random effects [38], or categorical time-varying
covariates [39], latent risk classes [40], and longitudinal
covariates [41] have been developed. While the linear relation-
ship between covariates and survival in the PTCM facilitates
interpretation, it also restricts the regression predictor consid-
erably. Nonparametric approaches have recently been explored
to relax the linearity assumption, in particular, to model uni-
variate covariate effects by including smoothing splines [42],
[43]. Still, these methods do not account for higher-order
covariate interactions and struggle to handle large-scale appli-
cations. These limitations motivate the Deep-PTCM presented
next.

B. Deep-PTCM

We redefine the PTCM as an end-to-end DNN architecture,
which we denote by Deep-PTCM. This approach lets us
consider not only linear and nonlinear relationships but also
high-dimensional interactions between covariates and survival.

1) Predictor Structure: In the Deep-PTCM, the predictor
η : R

q
→ R is a general continuous function rather than a

linear combination of the covariates xi . Specifically, we pro-
ceed similar to [15] and model η through a DNN. According
to the universal approximation theorem [12], we know that an
NN, under certain conditions, can approximate any continu-
ous function. Moreover, the linear specification described in
Section III-A, η(xi ) = w⊤xi + b, can also be parameterized
with an NN consisting of a single layer with one neuron.

Fig. 1. Generic representation of the Deep-PTCM architecture.

Therefore, the Deep-PTCM subsumes the traditional PTCM
as a special case.

2) Identifiability via Orthogonalization: The Deep-PTCM
is designed to be flexible enough to represent complex covari-
ate relationships and handle unstructured data, such as images
or text. However, there are situations where the goal is to
identify whether the predictor η exhibits structured linear
effects for ease of interpretation. To achieve this, we enable
the framework to estimate η as an identifiable sum of linear
(ηlin) and nonlinear (ηnon) predictor components, where the
latter may also comprise DNN structures.

Drawing inspiration from the orthogonalization procedure
introduced in [13], we ensure empirical identifiability of η =

(η(x1), . . . , η(xN ))⊤ in the Deep-PTCM by computing orthog-
onal projection matrices P and P⊥

∈ R
N×N , such that ηlin

=

Pη and ηnon
= P⊥η.). The projection matrices are obtained

through a QR decomposition of X̃ = [1N , X], where 1N is
an N -dimensional vector of ones. In other words, X̃ = QR,
where Q and R are N × N orthonormal and upper-triangular
matrices, respectively. The resulting projection matrices are
then given by P = QQ⊤ and P⊥

= IN×N − QQ⊤, where
IN×N is the N -dimensional identity matrix.

3) Architecture: Fig. 1 illustrates the core concept behind
the Deep-PTCM architecture. The DNN block takes the covari-
ates X as inputs, allowing us to tailor the architecture to the
specific nature of the data. For instance, when dealing with
unstructured data like images, convolutional NNs [44], [45]
may be incorporated into this block. The output then proceeds
to the Orthogonalization layer. Here, η is built by the
sum of a linear predictor and the appropriate projection of
the DNN block output into the orthogonal complement of that
linear predictor (e.g., a subset of covariates). If no specific
separation is required, the whole predictor η can also be
estimated without this decomposition, such that P⊥

= IN×N .
The Endpoint Layer takes the inputs t, δ, and η and

passes them into the loss function, which in the Deep-PCTM
is the negative log-likelihood, as introduced in (2). In addition,
the Endpoint Layer specifies the cdf F , which is required
to calculate the loss, with common choices in the PTCM
context being the Weibull or piecewise exponential functions.
Following the approach outlined in [15] and [16], we opt for

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



MEDINA-OLIVARES et al.: DEEP PROMOTION TIME CURE MODEL 5

the latter in Section III-C, but other specifications can be easily
accommodated.

4) Illustration: For illustrative purposes, let us consider a
DNN specified as a fully connected feedforward NN (FNN)
with L hidden layers. Specifically, suppose that layer l (l =

1, . . . , L) has nl neurons, hence the output of the lth layer,
g(l)

: R
nl−1 → R

nl (n0 = q), follows:

g(l)(z) =

[
g(l)

1 (z), . . . , g(l)
nl

(z)
]⊤

with g(l)
m (z) = a(l)(w(l)⊤

m z+b(l)
m ), m = 1, . . . , nl , a(l)

: R → R

is the activation function for the lth layer, w(l)
m ∈ R

nl−1 are
the weights associated with the mth neuron of the lth layer,
b(l)

m ∈ R is the corresponding intercept, and z = g(l−1)(z)
is the output of the (l − 1)th layer (g(0)(z) = X). Many
activation functions have been proposed (see [46], Ch. 5.1.2).
One popular choice is the rectified linear unit (ReLU) [47],
which is defined as a(x) = max(0, x).

Therefore, when an FNN is considered in the DNN block,
its output is a vector η̃ ∈ R

nL formed by the composition of
the L hidden layers, that is, η̃(xi ) = (g(L)

◦· · ·◦g(2)
◦g(1))(xi ).

Moreover, if no orthogonalization is performed, η(xi ) is sim-
ply computed through a final linear layer, that is, η(xi ) =

w(L+1)⊤η̃(xi )+b(L+1). On the other hand, if orthogonalization
is carried out for all covariates, then

η = Xwlin
+ blin

1N + P⊥

 η̃(x1)
⊤

...

η̃(xN )⊤

w(L+1)

where wlin
∈ R

q and blin
∈ R are, respectively, the vector of

linear coefficients and the intercept.

C. Estimation of the Deep-PTCM

1) Training: Traditionally, estimation in the PTCM is car-
ried out using the EM algorithm, where the number of risk
factors Ki for subject i is treated as missing data [16].
As we illustrate in Section V, however, this approach does
not scale well when considering NNs and large datasets.
To overcome this computational limitation, we present an end-
to-end framework to estimate both the predictor η and the
parameters associated with F through a DNN optimization
problem. For that, first, note that the log-likelihood is

l(η, F) =

N∑
i=1

δi log(h p(ti ; xi )) + log(Sp(ti ; xi ))

=

N∑
i=1

δi [η(xi ) + log( f (ti ))] − exp(η(xi ))F(ti ). (2)

Considering F as a piecewise exponential function, we par-
tition the length of the study in J intervals according to the
distribution of the events, that is, u0 = 0 < u1 < · · · < u J

with u J > maxi∈{1,...,N } ti . In each interval (u j−1, u j ], the
hazard function of the competing risk factors is assumed to
be constant. Denote these constants by λ j , j = 1, . . . , J .
Thus, for t ∈ (u j−1, u j ], F and f can be expressed as
F(t) = 1 − exp[−λ j (t − u j−1) −

∑ j−1
s=1 λs(us − us−1)] and

f (t) = λ j exp[−λ j (t − u j−1) −
∑ j−1

s=1 λs(us − us−1)].

We train this model efficiently using backpropagation [44].
This process includes: 1) initializing the weights of the
network randomly; 2) feeding the input data through the
Deep-PTCM architecture in Fig. 1 and evaluating the loss; and
3) adjusting the weights to minimize the loss in Equation (2)
by backpropagation. Steps 2) and 3) are repeated by feeding
the input data through the network, calculating the loss, and
adjusting the weights until the loss in a validation set is
minimized.

2) Prediction: Once the network is optimized, its estimated
weights can be used for prediction. Specifically, with the
trained DNN block, we can infer the predictor η for new
data. Additionally, we can retrieve the weights associated with
the cdf F from the Endpoint Layer block and create
quantities of interest, such as Sp and S.1

3) Implementation: We created a Python package,
deepcure, for the estimation of the Deep-PTCM, which is
available on GitHub.2 The implementation uses TensorFlow,
allowing for seamless integration of all available optimizers
and additional features provided by the framework.

IV. PERFORMANCE METRICS

In the empirical study presented in Section VI, we eval-
uate the performance of the models under two metrics. The
area under the receiver operating characteristic curve (AUC)
for cure proportions, which measures how well the model
distinguishes between cured and noncured subjects, and the
integrated Brier score (IBS), which measures the calibration
throughout the whole study period. We review these metrics
in the following.

A. AUC for Cure Proportions (AUCcure)

The AUC [48] is commonly used in survival analysis to
evaluate the performance of a corresponding model. However,
the classical formulation does not take cure proportions into
account. The receiver operating characteristic curve can be
regarded as the curve formed by the true positive rate (TPR)
and the false positive rate (FPR) for all cut-off points c in
[0, 1]. Asano et al. [49] propose the imputation-based AUC
for MCMs, and [15] extend it to the PTCM. This version of the
AUC evaluates the TPR and FPR concerning the probability of
being cured. Denote the estimated long-term survival probabil-
ity as π̂(xi ) := limt→∞ Ŝ p(t; xi ) = exp(− exp(η̂(xi ))), where
η̂(·) is the point estimate of η(·). Therefore, the estimates of
TPRs and FPRs, for a given cut-off point c are given by

T̂PR(c) =

∑N
i=1 1(π̂(xi ) ≤ c) · (1 − π̂(xi ))∑N

i=1(1 − π̂(xi ))

F̂PR(c) =

∑N
i=1 1(π̂(xi ) ≤ c) · π̂(xi )∑N

i=1 π̂(xi )

where 1(A) = 1 if A is true and zero otherwise. AUCcure is
calculated using trapezoidal integration over c ∈ [0, 1].

1We also provide examples of how this is implemented in the GitHub
repository.

2https://github.com/vhmedina/deepcure
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TABLE II
SIMULATION RESULTS FOR ALL N AND SCENARIOS 1–3 BASED ON R = 100 INDEPENDENT REPLICATIONS

TABLE III
SIMULATION RESULTS FOR ALL N AND SCENARIO 4 BASED ON R = 100 INDEPENDENT REPLICATIONS WITHOUT (DEEP-PTCM)

AND WITH (DEEP-PTCM-ORT) ORTHOGONALIZATION

B. Integrated BS

The Brier score (BS) [50] corresponds to the mean squared
error of the predicted probabilities for binary classification.
In the survival context, we can estimate whether a sub-
ject survives longer or not at a specific time t . Moreover,
Graf et al. [51] introduced a generalization of the BS to handle
censoring. This is the version that we use and is specified as

B̂S(t) =
1
N

N∑
i=1

[
Ŝ p(t; xi )

2
1(ti ≤ t, δi = 1)

Ĝ(ti )

+
(1 − Ŝ p(t; xi ))

2
1(ti > t)

Ĝ(t)

]
where Ĝ(·) is the Kaplan–Meier estimator of the censoring
survival function. By integrating the time-dependent BS over
time, we obtain the IBS [51].

V. SIMULATION STUDY

The purpose of this section is threefold. First, we illustrate
how the proposed estimation framework scales efficiently to
accommodate large sample sizes, commonly seen in the credit
context. Second, by using simulation setups identical to those
in [15], we show the computational advantages of estimating
the model through an end-to-end trained DNN architecture,
as opposed to iteratively optimizing the DNN in the maximiza-
tion step of the EM algorithm. Finally and third, we analyze
how the orthogonalization procedure can recover the structured
linear predictor without compromising performance compared
to the setting without orthogonalization.

A. Simulation Design

We study three sample sizes N ∈ {50 000, 100 000, and
150 000} subjects. The sample sizes from the works presented
in Table I have, on average, ∼30 000 subjects, with a maxi-
mum N of 80 641. Therefore, we consider 50 000 as a relevant
starting sample size in this context and scale it to 150 000,
which is roughly the size of our dataset in Section VI (and
the largest we are aware of).

We evaluate four simulated scenarios: three presented
in [15] and a fourth in which we added a linear component to
study the orthogonalization feature. All scenarios are described
in detail in Section A of the Supplementary Material.

B. Summary of Results

Table II shows the comparison between the EM implemen-
tation (EM-PTCM) and the Deep-PTCM for each combination
of sample size (N ) and the first three scenarios. The
column Time is the average time in minutes needed to
estimate the model for the corresponding setting. More-
over, the columns 1S, 1Sp, and 1η show the mean
square difference between the true and estimated quan-
tities S, Sp, and η, respectively. That is, for example,
1S = (1/(R · N ))

∑R
r=1

∑N
i=1(Ŝ(r)(ti ; xi ) − S(r)(ti ; xi ))

2,
where Ŝ(r)(·) and S(r)(·) are, respectively, the estimated and the
true survival function for replication r . The other cases follow
analogously. These metrics are evaluated on R = 100 holdout
datasets with the same data generation process but different
random seeds.

For each metric, the best-performing method is shown in
bold. We observe that the mean square differences, for Sp and
η, are generally lower for Deep-PTCM than for EM-PTCM.
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Fig. 2. Linear coefficients estimated by the Deep-PTCM with orthogonal-
ization (Deep-PTCM-Ort).

In the case of S, this difference is not so clear. Nevertheless,
since both implementations are meant to estimate the same
model, it is not surprising that these results are indeed com-
parable. The great advantage, however, is that the Deep-PTCM
is significantly faster than the EM implementation (more than
100 times for some cases) without compromising accuracy.

To demonstrate the benefits of orthogonalization, we create
a fourth setting with η = ηlin

+ ηnon in which ηlin
= blin

+

wlin
1 x1 + wlin

2 x2 + wlin
3 x3 and ηnon is the one defined in Sce-

nario 2. Table III summarizes the results from 100 independent
replications comparing the Deep-PTCM and its version with
orthogonalization. We note that, in general, the performance of
both models is similar concerning the mean square differences.
Moreover, Fig. 2 depicts the 2.5%–97.5% range of the esti-
mations of blin, wlin

1 , wlin
2 and wlin

3 across the 100 replications.
We observe a suitable recovery of the true parameter values
(dashed vertical lines), especially when increasing the sample
size. The Deep-PTCM would not allow us to extract and
interpret these coefficients directly.

VI. APPLICATION

A. Data

We analyze the publicly available single-family loan-level
dataset from Freddie Mac.3 The dataset contains loan-level
origination and monthly performance for fixed-rate U.S. mort-
gages and is periodically updated. The event of interest is
credit default, defined as the time when the loan is 90 or
more days past due. “Cure,” in this context, represents
accounts assumed to be nonsusceptible to default. If the
account defaults, we know it is susceptible, whereas when
it is censored, the account may or may not be susceptible
to default. Censoring includes events such as refinancing or
early full repayment. One future research avenue beyond the
scope of this work is to explicitly incorporate these and other
credit-related events by generalizing the modeling approach to
handle multivariate survival data [52].

The training set contains 149 561 loans granted between
2009 and 2011. The test set includes 49 888 loans granted
in 2013. The monitoring periods for both sets date from
loan origination to December 2021. Fig. 3 shows the default
events of the training set over duration and calendar time. The

3http://www.freddiemac.com/research/datasets/sf_loanlevel_dataset.page

Fig. 3. Single-family loan-level dataset from Freddie Mac. Left: Distribution
of default events versus duration. Right: Ratio between the number of default
events and borrowers at risk over calendar time. The blue solid line is the
moving average for a six-month window.

data include eleven categorical and eight numerical variables.
Tables I and II in the Supplementary Material describe the
categorical and the numerical variables, respectively.

Some categorical variables present high cardinality, which
can be challenging from an estimation perspective (poor gen-
eralization and high resource usage [53]). Common practice
is to either drop these variables, thus discarding valuable
information or to transform the attributes into numerical
representations, such as target encoding [54]. To compare
different preprocessing practices for these variables when
estimating the standard PTCM, we employ target encoding,
one-hot encoding, and principal component analysis (PCA) for
dimensionality reduction. When estimating the Deep-PTCM,
we only use one-hot encoding, arguing that the DNN should
be able to generalize well without further preprocessing steps.
The dimension of the feature space after encoding is 921.
We normalize all numerical variables to make the training
procedure more efficient.

B. Network Architecture and Training

For the given data, we employ an FNN as DNN block (see
Fig. 1). This architecture is commonly used in tabular data
settings, proving effective for capturing intricate relationships
within features. Notably, the FNN is typically not specified
with numerous hidden networks for tabular data, potentially
making the term “deep” excessive in this context. Despite its
application in predicting the time to default in a mortgage
portfolio, it is crucial to highlight that the Deep-PTCM imple-
mentation, based on TensorFlow, facilitates the easy adaptation
of any architecture for diverse applications.

To train the network, the architecture of the FNN needs to be
tuned to achieve high prediction accuracy. This includes defin-
ing the number of layers, the number of units for each layer,
the activation functions, and which optimization algorithm
to use. These hyperparameters are not learned during back-
propagation and must be set manually. Hyperparameters can
significantly impact the performance of the model, and several
tuning strategies have been proposed [55]. We use the random
search strategy commonly employed in DL [56]. We then
chose the combination of hyperparameters that accomplished
the minimum average loss in three execution runs per trial
with independent random initializations. Running each trial
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Fig. 4. Left: Kaplan–Meier curve. Right: Survival function of the risk factors
S(t) (dashed). The blue-shaded curves are those obtained by 500 bootstrap
samples with replacement.

multiple times means avoiding making the final decision
strictly dependent on the initial random values.

In addition, to prevent overfitting when training each trial,
we use early stopping. We set a maximum number of epochs
and a “patience” parameter, which is the number of epochs
to wait before deciding to stop the training process. During
training, we monitor the model performance on a hold-out
or validation set not used in the optimization. If the model
performance on the validation set does not improve for a
certain number of epochs (the patience parameter), then the
training is stopped.

After hyperparameter tuning, the resulting network archi-
tecture for the DNN block of the Deep-PTCM has three layers
(two hidden plus the output layer). The first two hidden layers
have 512 units, ReLU activation functions, and a dropout rate
of 0.2. The output layer, representing the predictor η, has one
unit and a linear activation function. The best optimization
algorithm was found to be (stochastic gradient descent (SGD);
see [46], Ch. 12.4) with a learning rate schedule that follows
the inverse time decay with an initial rate of 0.01, a decay
rate of 0.75, and 100 decay steps. The final model is retrained
using the entire training set (see Table III in the Supplemen-
tary Material for further details on the search space of the
hyperparameters).

C. Results

Fig. 4 illustrates the Kaplan–Meier curve for the whole
population (left) and the estimated survival function S(t) =

1 − F(t) of the risk factors (right). The transparent curves
represent 500 estimations of the survival function based on
resampling with replacement. The interpretation of S(t) is
sometimes mistakenly considered as the survival function of
noncured subjects (e.g., [15]). But since F(t) is the cdf
of the risk factors, and the time to the event is when the
first one is triggered, S(t) represents an upper bound of the
survival function of the susceptible individuals [57]. Therefore,
since the Kaplan–Meier estimator does not control for cured
and noncured subjects, it calculates, for instance, that the
probability of default, or “not surviving,” would be ∼5% after
ten years of payments. However, the Deep-PTCM estimates

TABLE IV
AUCCURE AND IBS RESULTS EVALUATED IN THE TEST SET

that if the subject belonged to the susceptible population, the
probability of default would not be lower than ∼35%.

Studying the predictive power of credit scoring models is
relevant from the perspective of credit risk management [14].
In particular, we are interested in how the Deep-PTCM
performs compared to the traditional PTCM and what gains
the Deep-PTCM offers. To this end, we consider five mod-
els. The first three correspond to different versions of the
PTCM with linear effects in the predictor, where the pre-
processing technique of the features gives the distinction.
The first one employs one-hot encoding (PTCM), the sec-
ond target encoding (ENC-PTCM), and the third PCA for
dimensionality reduction (PCA-PTCM). The purpose is to
apply, on the one hand, the standard practices when modeling
in the presence of high-cardinality categorical variables and,
on the other, to make the comparison to the deep version
more comprehensive. The other two models, Deep-PTCM and
Deep-PTCM-Ort, correspond to the deep approach where the
difference is that the latter applies orthogonalization.

Table IV depicts the results obtained on the test dataset
for the performance metrics described in Section IV. The
numbers in parenthesis are the standard deviations obtained
from 100 bootstrap samples of the same size as the origi-
nal data. We notice that among the three PTCMs, the best
discrimination, as measured by AUCcure, is obtained by the
version with one-hot encoding (PTCM). In terms of cali-
bration, as measured by IBS, the PCA-PTCM showed the
minimum among the three, but the difference is not sig-
nificant. Moreover, compared to the deep versions, neither
of the three PTCMs with linear predictors performed better
in discrimination. Between the two deep versions, we note
orthogonalization does not improve predictive performance for
this case study. However, interpretability gains are, of course,
always present. The best results for discrimination and calibra-
tion are accomplished by Deep-PTCM, showing an AUCcure
of 0.88, compared to 0.85 from PTCM, and an IBS of 0.022,
compared to 0.023 from PCA-PTCM.

For completeness, we also compare the Deep-PTCM with
noncure survival methods, including the traditional benchmark
Cox PH [58] and two DL-based models DeepSurv [27] and
DeepHit [28]. Our approach demonstrates competitive results
across performance metrics, even when not considering the
model’s ability to distinguish between cure and noncure sub-
jects. Refer to Section F of the Supplementary Material for
detailed results.

To illustrate the nonlinear effects of the numerical covariates
on the survival in the best performing model Deep-PTCM,
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Fig. 5. Comparison of the effect of numerical covariates on the predictor η

for four cure models.

we emulate fictional borrowers with all covariates centered on
their base values except the one in question and plot the effect
as a function of this variable. Results for the three numerical
covariates are presented in Fig. 5, where for comparison,
we also add the linear estimates from the PTCM, the ENC-
PTCM, and the PCA-PTCM. One can first notice that the
deep version measures nonlinear relationships between some
covariates and the predictor. Two remarkable examples are the
combined loan-to-value ratio cltv and the borrower’s external
credit score fico. Both covariates have shown conforming signs
in the credit risk literature when linearity is assumed [59],
[60]. Greater values of cltv are associated with a greater risk
of default, and greater fico values are associated with lower
risk. We show the same trend but in a nonlinear way.

In the cltv case, we observe that the Deep-PTCM, like the
PTCM, reckon similar risk increments between 50 and 120.
However, for values lower than 50 or above 120, the risk
estimated by the deep version is lower. For fico, we observe
that the effect between 550 and 750 calculated by Deep-PTCM
is more significant than the one shown by PTCM. Yet, if the
score assigned by the credit bureau is higher than ∼750 (good
creditworthiness), the risk measured by the deep version starts
to go down comparatively.

In addition, we note that there are covariates, such as the
interest rate int_rt, where both the PTCM and the Deep-PTCM,
estimate a linear relationship, despite the fact the last one is
not restricted to do so. The effects of the other numerical
covariates are in the Supplementary Material.

However, the Deep-PTCM can reveal not only the nonlinear-
ities of single covariate effects but also potential interactions.
To illustrate this, Fig. 6 visualizes a slice of the bivariate
interaction of the pair int_rt-fico and int_rt-cltv. We observe
that the effect of int_rt for values of fico less than 600 does
not change substantially. Similarly, we see that for loans with
interest rates close to 6%, the effect of cltv is maintained for
values greater than 80. The traditional PTCM cannot provide
this information.

Overall, we conclude that the Deep-PTCM can recover the
simpler embedded PTCM without requiring this (often too
restrictive) assumption to be made in advance.

The estimates for the linear effects further support this
conclusion. For the variables cltv, fico, and int_rt, these
are 0.30/0.26, −0.41/−0.52, and 0.39/0.38 for the PTCM

Fig. 6. Bivariate interactions slices of the predictor η for covariates int_rt-fico
(left) and int_rt-cltv (right).

and Deep-PTCM-Ort models, respectively (see Supplementary
Material for more details). However, the increased flexibility
of Deep-PTCM-Ort comes at the cost of having more unknown
parameters and, therefore, greater parameter uncertainty. Nev-
ertheless, given the slightly better prediction performance of
Deep-PTCM and our simulations, which demonstrate that
uncertainty can be significantly reduced with more data,
we believe our approach makes a valuable and innovative
contribution to future large-scale credit risk applications.

VII. CONCLUSION

Survival models are a class of supervised learning mod-
els that integrate elements of conventional classification and
regression to predict the time until subjects experience an
event of interest while accounting for censoring. Recent work
proposes approaches for DL-based time-to-event modeling
and evidences the effectiveness of such models [4], [27],
[28]. However, survival models assume that all subjects are,
sooner or later, prone to the event. There are applications,
such as mortgage default prediction, where it is noticeable
that some individuals never experience the event. Under these
circumstances, cure rate models are preferable. The literature
on credit risk modeling with cure fractions mostly considers
the MCM approach (see Table I), whereas another class of
models, the PTCM, has not received the same level of attention
in this context.

We introduce Deep-PTCM, a novel method for predict-
ing time-to-event data in the presence of cure fractions
based on an end-to-end DL framework. Via simulations,
we demonstrate the scalability of our method compared to an
existing DL-based cure model that employs the EM algorithm,
reducing, in some cases, the average training time to the one-
hundredth part. In addition, we show that the Deep-PTCM can
significantly improve discrimination and calibration metrics
compared to the standard PTCM when predicting the time to
default in a large U.S. mortgage portfolio. Finally, we explore
how the DNN flexibility accounts for the effects of the covari-
ates on the predictor, observing, first, its ability to correctly
detect present deviations from linearity in the predictor as
assumed by the classic PTCM and, second, to recover it if
the evidence supports it.

Our work contributes to the discourse on when and how
to use DL in the context of time-to-event modeling by
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extending its applicability to scenarios where the assumption
of universal susceptibility is implausible, providing evidence
of DL’s superior performance and scalability compared to
non-DL approaches. To achieve this, we cast the PTCM into
an end-to-end DL framework that simultaneously estimates
covariate effects and survival distribution parameters. This
allows us to account for complex and often more realis-
tic nonlinear relationships between covariates and survival.
Moreover, it also facilitates computationally efficient model
estimation through leveraging parallel computing. Therefore,
the Deep-PTCM scales well to large datasets, such as the
ones often seen in credit risk applications. Beyond scalability,
the Deep-PTCM also offers more flexibility than traditional
estimation pipelines by replacing data preprocessing and fea-
ture engineering with a differentiable loss function estimated
via gradient descent. This facilitates the model to process
structured and unstructured data (such as text and images) and
provides a more powerful approach to handle high cardinal
categorical variables. All these features further broaden the
applicability of the Deep-PTCM and, by extension, DL.

A commonly voiced criticism is that DL models are opaque
and do not reveal insights into the model-induced feature-
to-target relationship. This opaqueness has led to calls for
abandoning DL altogether in high-stake settings [61], high-
lighting the importance of interpretability in model selection.
We aim to provide an accurate and transparent framework,
enabling decision-makers to make informed decisions without
imposing restrictive linearity assumptions a priori, while main-
taining interpretability akin to simple linear models. To achieve
this, we follow an “interpretability-by-design” approach and
incorporate an orthogonalization layer into the Deep-PTCM
architecture. This design gives access to directly interpretable
linear and nonlinear effects while leveraging the benefits of DL
to accommodate additional high-order interactions and ensure
high predictive power.

Despite focusing on one specific use case, credit risk
modeling, in this article, we emphasize that the statistical
and computational properties of the Deep-PTCM ensure broad
applicability in modeling time-to-event data in other fields.
Our DL-based approach is particularly relevant in the pres-
ence of censoring and cure fractions, aiming to enhance
predictive performance by exploiting DL’s advantages in data
representation, accommodating nonlinear covariate effects, and
extracting interpretable components—all in a computationally
efficient manner. Lastly, the lack of robust, ready-to-use soft-
ware can hinder the adoption of novel DL-based approaches.
By leveraging the TensorFlow library and providing a Python
package, deepcure, we empower researchers and practition-
ers to implement the Deep-PTCM, explore its value across
different domains, thereby advancing our understanding of
when to use DL and how to unlock its potential to create
value.
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