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Abstract— Deep learning (DL) has been demonstrated to
be a valuable tool for analyzing signals such as sounds and
images, thanks to its capabilities of automatically extracting
relevant patterns as well as its end-to-end training properties.
When applied to tabular structured data, DL has exhibited
some performance limitations compared to shallow learning
techniques. This work presents a novel technique for tabular
data called adaptive multiscale attention deep neural network
architecture (also named excited attention). By exploiting parallel
multilevel feature weighting, the adaptive multiscale attention
can successfully learn the feature attention and thus achieve high
levels of F1-score on seven different classification tasks (on small,
medium, large, and very large datasets) and low mean absolute
errors on four regression tasks of different size. In addition,
adaptive multiscale attention provides four levels of explainability
(i.e., comprehension of its learning process and therefore of its
outcomes): 1) calculates attention weights to determine which
layers are most important for given classes; 2) shows each
feature’s attention across all instances; 3) understands learned
feature attention for each class to explore feature attention and
behavior for specific classes; and 4) finds nonlinear correlations
between co-behaving features to reduce dataset dimensionality
and improve interpretability. These interpretability levels, in turn,
allow for employing adaptive multiscale attention as a useful tool
for feature ranking and feature selection.

Index Terms— Adaptive multiscale attention, attention mecha-
nism, deep learning (DL), excited attention, explainable artificial
intelligence (AI), machine learning, squeeze and excitation (SE),
tabular data.

I. INTRODUCTION

IN THE last decade, deep neural networks have revolu-
tionized the way machines learn, delivering high-accuracy

results on several different tasks such as object recognition,
image classification, natural language processing, audio clas-
sification, and much more [1]. In practice, deep learning (DL)
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has achieved outstanding results on unstructured data [2]. Also,
there is an increasing need, in complex tasks, of merging
various types of signals, such as video, image, sound, and
tabular data, all together. An example of this multimodal
learning can be referred to the medical field, where, for
instance, computer-aided tomography (CT) is merged with
medical records (i.e., tabular data) to improve the quality of
acute stroke prediction [3]. A classic approach would consider
the fusion at the decision level of different approaches (e.g.,
DL solutions for images and decision trees for tabular data);
on the other hand, DL solutions also in the tabular data
field would open the possibility to inspect multimodal DL
integrated solution: each part of the multimodal architecture
would be a neural network trained with gradient descent in
an end-to-end fashion. In this direction, it must be considered
that, in the last years, some attempts have been made to apply
DL techniques to tabular data, i.e., data composed by samples
(instances): Google’s TabNet is an example [4]. Apart from
this, the most popular techniques are based on ensembles
of decision trees [5]: these techniques have been shown to
provide good levels of accuracy even on datasets of limited
size [6], [7]. Additionally, they usually have the intrinsic capa-
bility of approximating hyperplane boundaries [4]. Finally,
these techniques come with a certain degree of interpretability:
it is possible to compute post hoc feature ranking and accord-
ingly to understand which features contributed the most to a
particular task [8]. In general, tree-based techniques such as
Random Forests [6], Catboost [9], Adaboost [10], and Gradient
Boost [7], [11] do not allow an end-to-end training out of
the box. So that, the challenge of this work has been to
propose a DL architecture to process tabular data and able
to exhibit the state-of-the-art performance while providing an
explainability of the observed results. Moreover, the end-to-
end training process would allow that all the modules of the
learning algorithm would be optimized in terms of a specific
outcome [12], [13], [14]. This would open new and unexplored
integration of different types of data [12], [15]. It is essential
to underline that gradient-based optimization usually requires
a high amount of data (not always available). A partial solution
to this problem could be the use of an attention mechanism
acting as a weighting function on the inputs. In this way, only
features containing most of the information for the needed task
would be used [16]. To date, it is believed that the unsuccess of
DL models on tabular data is due to various factors affecting
tabular data such as: data quality; the presence of missing
values and strong outliers; the lack of spatial dependencies
among features, invalidating the use of inductive bias and thus
of the algorithms designed to exploit it (e.g., convolutional
neural networks); the choice of preprocessing technique to
handle categorical variables; and deep neural network models
sensitivity to small data perturbations [17]. On the other hand,
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it has been proved that deep neural networks for unstructured
data are robust to noisy data and, in practice, they generalize
well on a variety of problems [18]. A way to assess the
ability of a machine learning algorithms to generalize in an
unsupervised learning context is by calculating the maximum
mean discrepancy (MMD) [19]. MMD serves as a distance
metric that evaluates the difference between two probability
distributions. It helps quantify the change in distributions
between training and testing sets. This information can then
be used to identify the approach that best generalizes to new,
unseen distributions, typically resulting in higher accuracy
as the distribution shift increases. An alternative approach
involves visually examining the distribution of training and
testing data by reducing the dimensionality and subsequently
plotting the data distributions for both sets [20], [21], [22].
If the density estimations of the two sets exhibit considerable
differences, the top-performing algorithm will likely be the
one that generalizes more effectively. Assessing the overlap
between training and testing data distributions can help gauge
their similarity. A high degree of overlap suggests good gener-
alization since the model is learning features relevant to both
sets. On the other hand, low overlap may indicate overfitting
or the learning of overly specific features from the training
set. The visual examination of data distributions serves as a
valuable supplement to evaluation metrics, providing an intu-
itive understanding of the model’s ability to generalize. This
insight can help pinpoint areas or features where the model
faces challenges in generalization, thus informing potential
improvements to the model’s architecture or training process.

In this regard, the regularization techniques and variants of
gradient descent algorithms lead to generalization [18], [23]
because of the way the loss surface is shaped during training
can affect the generalization capabilities of the model. The
mentioned standard ensemble learning techniques (which are
the state-of-the-art on tabular data) do not exhibit this behavior.
In practice, for multimodal problems, where some input is
tabular, some other parts can be made of various types of
signals such as image, video, or audio, DL is the appropriate
technique to use because of the gradient descent optimization
across the various modalities. Of course, the tabular part
should be processed by a proper neural network such as the
architecture here proposed. In this light, this work introduces
the adaptive multiscale attention mechanism (also named
excited attention) as a way of increasing the generalizability
of deep neural network for tabular data. Adaptive multiscale
attention is inspired by the intuition of the excitation module in
the squeeze and excitation (SE) networks. Indeed, this module
can learn a multilevel latent-space representation of the data at
different resolutions. This technique had great success when
employed for computer vision applications where it is used
for automatically selecting relevant feature-maps channel-
wise [24]. In other words, adaptive multiscale attention learns
at the same time various levels of compression and latent-space
data representation used to weight features. In this work,
these levels are merged in four possible configurable ways
and a novel attention mechanism, called trainable attention,
is then added to optimize the selection of relevant features. The
so-called trainable attention mechanism learns the attention
weights of the final features and filters the input values
accordingly. It is designed to be robust on strong outliers and
to reduce sensitivity to small data perturbations while ensuring
high generalization capabilities. The main contribution of the
adaptive multiscale attention network is that it provides a

method for learning feature attention weights and correlations
from both local and global perspectives in a scalable way.
Specifically, the adaptive multiscale attention network uses a
parallel execution of excitation layers with increasing squeeze
ratios, which allows for the learning of compressed represen-
tations of feature weights. These compressed representations
are then used to weigh the attention of features from a local
perspective.

The adaptive multiscale attention network also uses a train-
able attention layer (TrA Layer) that learns to weigh features
and correlations from a global perspective. This is achieved
by training an f × f weighting matrix in an end-to-end fashion
using a gradient descent algorithm. The resulting weights are
then used to compute the dot product of the normalized input
representation and the sigmoid of the weighting matrix.

Overall, the adaptive multiscale attention network provides
a method for learning interpretable feature attention weights
and correlations in a scalable way that is suitable for tabular
datasets. This is a novel contribution that is not addressed by
many existing methods and has the potential to improve the
performance of machine learning models on tabular datasets.

Of particular interests related to the work here proposed,
are the works in [25] and [26], where the authors propose
a multilocal channel excitation (MCE) block to investigate
channel context by discovering the semantic relationships
between feature maps of multiple local channels. The con-
cept of multiscale learning with attention has been already
proposed in various articles, but mostly related to image
recognition. Specifically, in [27], the multiscale visual-attribute
co-attention (mVACA) improves the categorization of unseen
classes by linking multiscale visual and semantic variables
utilizing hybrid visual attention in zero-shot image recog-
nition. Always for image recognition, Li et al. [28] have
developed a novel dual-channel spatial, spectral and multiscale
attention convolutional long short-term memory neural net-
work (A3 CLNN) model to effectively integrate hyperspectral
images and LiDAR data for enhanced remote sensing data
analysis using multiscale attention mechanisms as well as
various attention mechanism for feature integration. To tackle
the problem of semantic segmentation in computer vision,
Shi et al. [29] Fare clic o toccare qui per immettere il
testo. proposed a lightweight multiscale-feature-fusion net-
work (LMFFNet) for real-time semantic segmentation that
balances accuracy with parameter efficiency.

The main contributions of the architecture proposed in this
work can be summarized as follows.

1) It achieves the state-of-the-art accuracies on several
different small-, medium-, and large-size datasets for
both classification and regression problems.

2) It shows good generalization capabilities while using
multidimensional scaling and kernel density estimation
plot among train and test sets for any problem. The
resulting plots are shown in Appendixes A and B. Partic-
ularly, adaptive multiscale attention performs better than
other techniques with problems that show a noticeable
difference in density distributions between the train and
the test sets. Therefore, it appears to be a powerful
technique in terms of generalization power.

3) Given a fixed architectural design, the only hyperparam-
eter to setup is the type of merging layer. In the current
implementation, the merging layer can be one of the
following: concatenate, add, average, or multiply.
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4) No preprocessing and dimensionality reduction pipeline
is needed.

5) It adds four levels of interpretability: a) excitation layer
interpretability: calculates attention weights to determine
which layers are most important for given classes; b)
global magnitude feature attention: shows each fea-
ture’s attention across all instances; c) global feature
attention per class and behavior analysis: understands
learned feature attention for each class to explore feature
attention and behavior for specific classes; and d) nonlin-
ear Spearman correlation among learned features: finds
nonlinear correlations between co-behaving features to
reduce dataset dimensionality and improve interpretabil-
ity. It is important to highlight that feature weighting
is not computed post hoc, thus concretely representing
the feature attention given by the network during the
training phase. Thus, the network learns how to pay
attention to some features with respect to others. This
learned correlation allows adaptive multiscale attention
to be used as a feature selection technique.

The work is organized as follows. Section II reviews the state-
of-the-art techniques for tabular data. Section III-A reviews
the background in attention mechanisms, while Section III-B
presents the adaptive multiscale attention network. Section IV
describes the interpretability of adaptive multiscale attention.
Section V sketches the experimental setup and datasets used.
Results and discussion are provided in Section VI. The dis-
cussion on the interpretability of the results of the adaptive
multiscale attention is provided in Section VII. Section VIII
shows conclusions and future research directions.

II. RELATED WORK

The state-of-the-art machine learning techniques on tabular
data can be based on an ensemble of decision trees or on
standalone solutions. Among the ensemble of tree-based mod-
els, one of the top-performing algorithms is extreme gradient
boosting (XGBoost): it is an optimized distributed gradient
boosting [30]. In the gradient boosting framework, trees are
built sequentially so that each subsequent tree aims to mini-
mize the residual error of the previous ones. In other words,
each tree learns from its predecessors and updates the residual
errors. XGBoost enhances the gradient-boosting framework
through system optimizations and algorithmic improvements.
In particular, XGBoost applies the following optimizations.

1) Parallelization: The algorithm addresses the process of
sequential construction of trees using a parallel imple-
mentation. There are two loops working in parallel: the
first one enumerates the leaf nodes of a tree and the
second one calculates its characteristics.

2) Hardware Optimization: The algorithm is designed for
efficient hardware usage. The cache allocates internal
buffers in each thread to store the gradient statistics.
Additional enhancements, such as out-of-core process-
ing, optimize the available disk space by handling large
data frames that do not fit in memory.

3) Tree Trimming: The algorithm trims unnecessary trees
“backward,” thus reducing computational overhead with-
out worsening the performance of the model.

Algorithmic improvements have been also proposed.
1) Regularization: A penalization of more complex models

by the employment of least absolute shrinkage and
selection operator (LASSO) and ridge regularization to
avoid overfitting [31].

2) Missing Value Handling: The model can learn about
the lack of missing values and shape them efficiently
by automatically learning the best direction to take for
each split based on the available values. XGBoost uses
a technique called “sparse-aware” split finding to handle
missing values efficiently.

3) Cross-Validation: The algorithm performs a validation of
the results at each iteration to verify their acceptability.

XGBoost works well on small data, data with subgroups,
big data, and complex data. However, it does not perform at
its best on sparse data; very distributed data can also create
problems. Anyway, it outperforms many supervised learning
algorithms. Similar to Random Forest, it lacks end-to-end
training along with all its properties.

Decision forests, like XGBoost, similar to an end-to-end
fashion, can process raw data and predict labels without
preprocessing or feature engineering. However, their sequen-
tial training process, involving adding trees and optimizing
hyperparameters, makes them harder to fine-tune. The adap-
tive multiscale attention model, a deep neural network,
simultaneously learns feature representations and predictions,
optimizing all parameters jointly for better performance.
Despite this, decision forests remain effective for many tasks,
and the proposed model is not meant to replace them entirely.

Another state-of-the-art technique belonging to the ensem-
ble of decision trees category is CatBoost [9]. It is an algorithm
designed by Yandex with the purpose of effectively managing
categorical features without having to rely on procedures like
encoding results in a high-dimensional space. One of the
possible approaches to managing categorical features without
encoding is computing label-dependent statistics, such as
replacing a value with the average of the labels having that
value for each categorical feature.

In order to overcome this problem, a part of the dataset
should be used to compute these statistics, but this would result
in a reduction of the data available for training and validation.
CatBoost addresses this issue by performing a permutation of
the entire dataset and, for each row, by calculating the mean
with respect to the instances preceding it. The algorithm is
a special case of the gradient boosting decision tree (GBDT)
[7] algorithm, as it natively supports ordered and categorical
variables. Some disadvantages are as follows.

1) It needs to build deep decision trees in order to seek
dependence when features have high cardinality.

2) It does not work for unknown category values, which in
turn means that these cannot be inferred.

Among techniques making use of an ensemble of decision
trees but also based on deep neural networks, it is possible to
find neural oblivious decision tree ensembles (NODE) [15].
NODE is built on top of equal-depth oblivious differentiable
decision trees. The differentiable property of the decision trees
integrated into the NODE algorithm allows the model to be
trained end-to-end, and thus, errors can be backpropagated
through the differentiable trees using gradient descent. It uses
the same splitting function for all nodes at the same level
making computation high parallelizable. It uses the EntMax
transformation [32] being based on decision trees, and it is
not necessary to employ any kind of data preprocessing to
handle categorical variables.

TabNet [4] is a deep neural network for tabular data; it was
designed to learn in a similar way to decision tree-based mod-
els with the goal of earning the same benefits: interpretability
and sparse feature selection. It uses multiheaded attention in
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a sequential way to select features to rely on at each decision
step. This multistep learning enables high interpretability and
lower error costs. The feature selection is performed depending
on the instances, i.e., it can vary because of the specific input
instance. It has several advantages, such as integrating multiple
data types like images or tabular data, and it supports end-to-
end training along with all its desirable properties. One of
the main drawbacks is the huge amount of data required for
the learning process, which is, by the way, one of the biggest
limitations of the multiheaded attention model. Thus, TabNet
is not designed to work with small or medium-sized datasets.

Another deep neural network architecture, which is built
to imitate the GBDT-like models (XGBoost and CatBoost),
is Net-DNF [33]. The key insight about Net-DNF is that
every decision tree is a Boolean formula in disjunctive normal
form. In Net-DNF, hard Boolean formulas are replaced with
differentiable and fuzzy versions of them. The final archi-
tecture is built on the innovative disjunctive normal neural
form (DNNF) block containing a multilayer perceptron (MLP)
and one DNNF layer composed of a soft version of binary
conjunctions over a differential version of AND and OR gates.
The model is an ensemble of DNNF blocks.

Among classical methods for tabular data not involving an
ensemble of trees, there are feed forward neural networks, also
known as MLP networks, and support vector machines (SVM).

In this work, the following approaches have been considered
and tested for comparison aims:

1) tree-based:
a) decision tree;
b) random forests;
c) XGBoost;
d) catboost.

2) non-tree-based:
a) TabNet;
b) MLP;
c) SVM.

The choice of these techniques has been driven by the follow-
ing reasons.

1) The high performance generally observed (i.e., these are,
in general, the best-performing ones).

2) Their large use in many relevant tasks (i.e., these are the
most used).

3) The presence of a stable and tested implementation or
package (for replication aims).

III. ADAPTIVE MULTISCALE ATTENTION

A. Attention Mechanisms—Background
A relevant part of the method proposed here is based on

the attention mechanism. An attention mechanism consists of
weighting the inputs (of a neural network) in such a way as to
highlight relevant information during the time or among the
available samples. Attention layers are generally used between
input and output elements (general attention) [34] or only by
focusing on the layer’s inputs (self-attention) [35].

General attention emphasizes the importance of certain fea-
tures or channels in a model’s output. The adaptive multiscale
attention enhances this concept by learning attention weights
using various excitation blocks with differing compression
ratios. SE [24] attention recalibrates feature responses in mod-
els by capturing interdependencies between channels, differing
from adaptive multiscale attention which focuses on feature-
wise importance using a trainable matrix. Self-attention [36],

Fig. 1. Adaptive multiscale attention network.

predominantly used in natural language processing, deter-
mines attention based on input similarities, contrasting with
adaptive multiscale attention that centers on featurewise impor-
tance. Spatial attention [37] models relationships between
spatial locations in images or feature maps, diverging from
the feature-centric focus of adaptive multiscale attention.
Temporal attention [38], suitable for sequence-to-sequence
models, emphasizes the relationships between sequence time
steps, while adaptive multiscale attention hinges on feature
significance. Multihead attention, linked to the Transformer
architecture [36], calculates several attention scores con-
currently, as opposed to adaptive multiscale attention that
computes a single set of featurewise attention scores. Graph
attention network (GAT) [14], tailored for graph data, con-
centrates on connections between graph nodes, in contrast
to the feature-focused of the adaptive multiscale attention.
In essence, while other attention mechanisms, including self-
attention, spatial attention, temporal attention, and GAT, model
relationships among input elements, spatial points, time steps,
or graph nodes, respectively; adaptive multiscale attention
distinctively emphasizes feature wise importance within one
layer.

B. Adaptive Multiscale Attention
Adaptive multiscale attention is a deep neural network

composed of several parallel excitation layers and a TrA
Layer. The adaptive multiscale attention network is depicted in
Fig. 1: it is based on the intuition of the parallel execution of
excitation layers with an increasing squeeze ratio. This parallel
execution can allow learning n compressed representation of
features weights having

n= max
(

2,
√

f
)

(1)

being f the number of features (columns) of the tabular
dataset. This ensures a sublinear network growth.

The excitation layer is depicted in Fig. 2. As it is possible
to observe, it is composed of a dense layer with a number of
neurons equal to f ∗r , where r is the squeeze ratio having r∈M
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Fig. 2. Excitation layer.

and M is the set of n evenly spaced real numbers containing
values in the range [(1/n), 1], one for each parallel excitation
layer.

The squeeze ratio r is used to create a nonlinear compressed
embedding space of the original feature space. The size of this
embedding space is varying, allowing it to capture information
at varying expressive power.

Computing parallel attention scores at varied compression
ratios enhances a model’s adaptability and expressive capacity.
Specifically, this approach facilitates the following.

1) Multiscale Feature Learning: Different compression
ratios enable the model to discern features at multi-
ple granularities. Lower ratios emphasize detailed local
features, while higher ratios capture broader, abstract
characteristics, leading to a holistic data comprehension.

2) Enhanced Adaptability: It exhibits improved adaptability
to diverse datasets and tasks by capturing both intricate
details and abstract notions.

3) Augmented Expressive Capacity: It amplifies the model’s
capability to comprehend intricate relationships, thereby
boosting performance and representation learning.

4) Robustness: Attention scores at multiple scales render
the model resilient to data noise and variations, as it
leverages various abstraction levels, minimizing sensi-
tivity to minor data perturbations.

This dense layer is followed by an exponential linear unit
(ELU) [39], [40], activation function, and another dense layer
having the number of neurons equal to f and a sigmoid
activation function.

The SE paper uses a sigmoid nonlinearity for computing
attention scores due to its ability to produce outputs in the [1,
0] range, smoothness, and differentiability. Attention scores
are used as weights for rescaling feature maps, requiring values
in this range. Sigmoid’s properties, such as bounded output,
smoothness, interpretability, and saturation, make it suitable
for attention mechanisms. In contrast, activation functions like
rectified linear unit (ReLU) and its variants are not ideal for
this purpose because their outputs are not constrained between
[1, 0], which is necessary for generating attention weights.

The choice of ELU activation function instead of stan-
dard ReLU activation is about its properties of avoiding the
dead ReLU problem and its capability of producing negative
weights and thus activation when calculating the gradient
instead of sharply cutting them. Specifically, in the context
of the adaptive multiscale attention model, the ELU activation
function offers benefits like smoothness, stability, and faster
convergence. Smoothness helps with gradient-based optimiza-
tion and attention distribution. Stability results from a balance
between positive and negative output values, making the
attention mechanism less sensitive to small input perturbations.
Faster convergence compared to ReLU can improve training
efficiency. However, it is crucial to experiment with different
activation functions to find the best fit for a specific problem
or dataset.

Each excitation layer is used to weigh the compressed
representation of original features with respect to the goal task.

Formally

s = ϕ(W2δ(W1z)) (2)

where z is the input, δ is the ELU function [39], [40],
W1 ∈ R( f ∗r)x f , W 2 ∈ R f x( f ∗r), and ϕ is the sigmoid activation
function.

The interesting concept behind this architecture is that the
parallel execution of excitation layers with different compres-
sion ratios r would allow the network to learn multilevel
(multiscale) feature embeddings with a varying embedding
space. This varying embedding space allows capturing nonlin-
ear feature attention weights at different scales with varying
expressive power. The expressive power can be defined as
the capability of the network to learn meaningful feature
correlations. After the computation of the parallel excitation
blocks, a tensor S is obtained as follows:

S = [s1 . . . , sn], S∈R f xn (3)

containing feature weighting at varying compression ratios.
This allows to weigh features’ attention from a local perspec-
tive.

Successively, all the si are merged according to four dif-
ferent and alternative ways: concatenation, sum, average, and
Hadamard product as in the following equation, where ⊙

is the concatenation operator. In the current implementation,
there are four ways of merging information, these are the
hyperparameters of adaptive multiscale attention model. New
ways of merging layer can also be proposed in future works:

Wl =



[
s1 ⊙ s2, . . . , sn−1 ⊙ sn

]
Concatenate

n∑
i=1

si Sum

1
n

∑
n
i=1si Average∏

n
i=2si−1 ∗ si Hadamard Product.

(4)

The idea of using different attention heads, like in trans-
formers, will also be explored in a future work. The main
reason for not using multiple attention heads in the excitation
block is to keep the design simple and computationally effi-
cient. The primary goal of the excitation block is to provide a
lightweight attention mechanism that can be easily integrated
into existing architectures, such as the one here provided, with
minimal computational and memory overhead.

The merged representation Wl is then normalized using
layer normalization [41] where merged activations from the
previous layer are normalized by subtracting the mean activa-
tion across the layer and dividing by the standard deviation.
The normalization procedure is repeated after multiplying the
merged representation with the input using the Hadamard
product.

By applying the normalization layer after multiplying the
inputs and attention weights, the excitation block can focus
on learning the relative attention weights of the features
without being affected by the scale of that features. The
subsequent normalization layer then ensures that the output
feature maps are on the same scale as the input feature maps,
allowing for better learning in the subsequent layers. Thus, the
normalization layer is applied after the multiplication of inputs
and attention weights in the excitation blocks to maintain the
scale of the output feature maps and to allow the attention
mechanism to focus on learning featurewise dependencies
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without being influenced by the initial scale of the feature
maps.

Let kWlz be the output of the last layer normalization in
Fig. 1; this initial feature weighting mechanism is called
“normalized attention.”

In normalized attention, it is possible to observe the weight-
ing of each feature with respect to the various compression
ratios.

The TrA Layer is composed of an f ∗ f trainable matrix wt
(weighting matrix) that is initialized as shown in the following
equation:

wt = I ∗ τ (5)

being I ∈ R f x f the identity matrix and τ a constant. In this
work, τ is 0.1 (empirically determined and adopted as a
default value). Successively, the matrix wt is trained: a gra-
dient descent algorithm trained in an end-to-end fashion can
change wt values in order to reduce the error. This allows to
automatically weigh features and correlations from a global
perspective.

Thus, the learning process is performed as in the following
equation:

TrA = kWlz ×ϕ(wt ).. (6)

TrA is the dot product of kWlz with the sigmoid of wt . The
sigmoid function is used to control the values of wt matrix
squashing them into [1, 0] range, thus avoiding gradient
exploding and vanishing problems in subsequent layers.

The specific TrA design offers several advantages, including
controlled attention weights, trainability, feature selection and
emphasis, flexibility, and interpretability. The sigmoid function
helps regulate attention weights, preventing gradient issues.
The TrA mechanism is trainable, allowing the model to learn
important features and adjust weights. It also emphasizes
important features while suppressing less relevant ones. TrA
can be easily integrated into various DL architectures, and its
attention weights offer some interpretability. While not optimal
for all situations, TrA’s simplicity and adaptability make it an
attractive choice for incorporating attention into DL models.

This concludes the adaptive multiscale attention mechanism.
The output of the TrA Layer is passed to two dense layers
with the number of neurons equal to the number of features
f and the ELU activation function to perform the nonlinear
learning as shown in (7). This last output, called u, is then
passed to flatten function F f that collapses the u tensor into
a 1-D vector. Sequentially, its output is passed to a dense
layer with softmax activation function γ for classification
purposes or to a linear activation function φ for regression
tasks, as shown in the following equations:

u = δ
(
W jδ(WkTrA)

)
(7)

v =

{
γ
(
Wt F f (u)

)
, if classification

φ
(
Wt F f (u)

)
, if regression.

(8)

IV. INTERPRETABILITY OF ADAPTIVE MULTISCALE
ATTENTION

Understanding the processes behind the decisions made by
an artificial intelligence system is an increasingly essential
issue.

It is important to state that, in general, a deep neural
network’ internal mechanisms cannot be easily interpreted
because the behavior of the network with respect to an input

Fig. 3. Plot of learned feature attention with respect to each excitation layer
and class (0, 1).

is determined by nonlinear interactions among neurons and
firing schemes learned during training. The adaptive mul-
tiscale attention mechanism proposed here is engineered to
be a semitransparent box model which does not require any
external optimization or approximation module to provide an
explanation of its predictions: the output of each excitation
layer is simply the nonlinear weighting of the original input
features.

This is different from saliency maps [42] and activation
maximization techniques [43], because, opposed to activa-
tion maximization, there is no gradient descent optimization
nor activation maximization computation. Differently from
saliency maps, no filter and no spatial relationship (as in the
case of pixels) is present. It is just the plot of the output of
the network cut at a certain point solicited by a given input
instance.

The adaptive multiscale attention mechanism aims to
improve the interpretability of deep neural networks by pro-
viding insights into the attention mechanism and relationships
of input features. It does so through the following levels.

1) Interpretability of Excitation Layers: By calculating the
attention weight of each excitation layer concerning
different classes, the mechanism offers insights into
which layers are more important for specific classes.

2) Global Magnitude Feature Attention: This metric reveals
the overall attention of each feature across all instances.
It is computed as the mean of the absolute values
obtained by soliciting the adaptive multiscale attention
network.

3) Global Feature Attention Concerning the Class and
Behavior Analysis: This level of interpretability shows
the learned feature attention with respect to each class,
allowing you to analyze feature attention and behavior
for specific classes.

4) Nonlinear Spearman Correlation Among Learned Fea-
tures: This step helps identify nonlinear correlations
among features that tend to co-behave, providing valu-
able information for reducing dataset dimensionality and
increasing interpretability.

Overall, the adaptive multiscale attention mechanism strives
to provide an interpretable understanding of the neural
network’s internal processes, focusing on feature attention,
correlations, and behavior analysis. While it may not provide
complete transparency, it offers semitransparent model than
traditional deep neural networks. Sections IV-A–IV-D report
the description of the interpretability of the levels cited above.
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A. Interpretability of the Excitation Layers
The attention weight of each excitation layer is computed

with respect to the classes: it simply consists of the sum of the
feature weights per class, computed for each excitation layer
when providing as input the whole test set and their ground
trough labels as in the following equation:

Wexc, j =



n∑
k=1

∑a0

i=1
φ(Sk(Ji )), if labelJi = 0

n∑
k=1

∑a1

i=1
φ(Sk(Ji )), if labelJi = 1

...
n∑

k=1

∑aT

i=1
φ(Sk(Ji )), if labelJi = T

(9)

where Wexc is the output weight matrix for the n excitation
layers, A = [a0, a1, . . . , at ] are the total number of instances
belonging to each class from 0 to T . Ji is the i th instance
input, φ is the trained adaptive multiscale attention network
output cut at the specific nth excitation layer S = [S1 . . . Sn]

shown in (3).
Equation (9) computes the attention weights of each excita-

tion layer with respect to the different classes. Specifically, for
each class (denoted by T in the equation), the feature weights
for each instance in the test set are summed up across all
excitation layers, resulting in a single weight value for that
class. The output of this computation is a weight matrix Wexc,
where each row represents an excitation layer and each column
represents a class. The resulting values in each cell of the
matrix represent the attention weights of that excitation layer
for the corresponding class.

To give an example, suppose there are three excitation
layers and four classes. Wexc would be a 3 × 4 matrix, with
each row representing an excitation layer and each column
representing a class. The values in each cell of the matrix
would represent the attention weight of that excitation layer
for the corresponding class.

For instance, if the value in the cell at row 1 (representing
the first excitation layer) and column 2 (representing the
second class) is 0.8, this would indicate that the first excitation
layer is particularly important for class 2, while the values
in other cells may indicate different levels of attention for
different layers and classes. The pictorial result is represented
in Fig. 3.

B. Global Magnitude Feature Attention
The global feature attention is given in the following

equation:

ϱ =
1
k

k∑
i=1

|φ(Wlz(Ji ))| (10)

where Ji is i th input instance, k is the total number of
instances, φ is the trained neural network, and let Wlz be the
output of the Hadamard product between the output of the first
layer normalization and the input feature vector.

In other words, it is computed as the mean of the absolute
values obtained by the attention weights of the adaptive multi-
scale attention network, which in turn is cut at the Hadamard
product in Fig. 1. The absolute value is relevant because the

Fig. 4. Ranking of learned global feature attention.

attention weights are calculated globally and not with respect
to a specific class; thus, if an attention weight provides strong
negative values for a specific class on specific features, this
implies that these features are very sensitive (even if associated
with a negative elicitation) for the global task.

In the context of this article, an attention weight refers to
the process of passing the input instances through the adaptive
multiscale attention network and extracting the corresponding
weights at a specific layer. The weights represent the learned
attention of the input features for the given task. In the case of
the adaptive multiscale attention network, the attention weights
extracted at each layer can be used to analyze the learned
feature representations and guide the selection of optimal
compression ratios for each layer.

The result of this computation is presented in Fig. 4.

C. Global Feature Attention With Respect to the Class and
Behavior Analysis

The learned feature attention with respect to each class Wimp
is evaluated according to the following equation:

Wimp =



1
a0

a0∑
i=1

|φ(Wlz(Ji ))|, if label(Ji ) is 0

...

1
aT

aT∑
i=1

|φ(Wlz(Ji ))|, if label(Ji ) isT

(11)

where A = [a0, a1, . . . , aT ] are the total number of instances
belonging to each class from 0 to T .

In other words, Wimp is the average of absolute values of
the attention weights.

This equation represents behavior in direction and magni-
tude of attention with respect to the input and the respective
class. A pictorial representation is depicted in Figs. 5 and 6 for,
respectively, class 0 and class 1. Thanks to (11), it is possible
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Fig. 5. Is the average of attention weights from the output of the Hadamard
product layer with respect to class 0 (benignant).

to visualize features that tend to co-behave. This leads to the
fourth analysis: nonlinear feature correlations.

D. Nonlinear Spearman Correlation Among Learned
Features

The motivation for analyzing nonlinear Spearman correla-
tion among learned features lies in addressing the “curse of
dimensionality” problem [51] and increasing interpretability.
By identifying pairs of features that tend to co-behave and
removing one of them, while keeping the most important one,
it is possible to reduce the dimensionality of the dataset, which
in turn simplifies the problem and improves the interpretability
of the results. This analysis also serves as an important tool for
post hoc examination of correlations between variables, which
is useful in a scenario of causal learning of effects directly
from the data. Nonetheless, this is an important tool for an “a
posteriori” analysis of correlations between variables, which
is useful in a scenario of causal learning of effects directly
from the data.

The Spearman correlation is a statistical measure of the
magnitude of a monotonic relationship between paired data.
This correlation metric has been considered here because
it tends to model monotonic relationships of variables that
change together but are not necessary at the same rate.
In this case, it is not possible to guarantee the same rate
of change between features, thus the choice of Spearman’s
correlation [52].

Let us consider

W sT
=

[
φ
(
Wlz

(
J T

0

))
, . . . , φ

(
Wlz

(
J T

i

))]
(12)

where W sT is the vector of weights extracted by the network φ
at the layer Wlz with respect to the i th input instance Ji
belonging to class T and ρ is the Spearman correlation. The
correlation matrix Wspear is computed as in the following
equation on all the weights presented in (12):

Wspear =
1
T

T∑
k=0

∣∣ρ(
W sT

k

)∣∣ (13)

where T is the total number of classes.
Weights are extracted from the trained adaptive multiscale

attention network model cut at the Hadamard product layer by
passing test instances with respect to each class. Its nonlinear
nature is due to the fact that attention weights are learned in a
nonlinear way; thus, they represent the nonlinear co-behavior
of features. The absolute value of the Spearman correlation is
then kept into consideration; therefore, the final value ranges
between 0 (no correlation or co-movement) and 1 (maximum
correlation or perfect co-movement, even if opposite). The
mean of the absolute correlation among all classes is finally
computed: it represents the nonlinear correlation among fea-
tures that tend to co-behave in both the same and the opposite
direction.

V. EXPERIMENTAL SETUP

Experiments have been performed on 11 different datasets,
seven used for classification tasks and four for regression tasks
with various sizes ranging from small, medium, large, and very
large, as shown in Table I.

The following datasets have been used for the classification
task.

1) UCI Arrhythmia [44]:
The dataset includes 452 patients with 279 fea-
tures, including width, height, age, and gender, plus
feature-engineered data from ECG. There are 16 classes,
where all classes different from class 1 (normal) are
reported to have an abnormal ECG pattern.

2) UCI Winsconsin Breast Cancer Diagnostic [45]:
The dataset contains 569 instances with 32 features
computed from digitized images of a fine needle aspirate
of a breast mass. Features describe various characteris-
tics of the cell nuclei that are present in the extracted
image. It is a binary classification problem (malignant
and benignant).

3) UCI Cervical Cancer [46]:
The dataset is composed of 72 instances and
19 attributes regarding cervical cancer behavior risk and
two classes: 1 if the patient has cancer, 0 if not.

4) UCI Diabetic Retinopathy Debrecen [47]:
The dataset contains 1151 instances and 20 features.
Features are extracted from the Messidor image that is
set to predict whether an image contains signs of diabetic
retinopathy or not, as specified in [47].

5) UCI Heart Disease [48]:
The dataset contains 303 instances and 14 features care-
fully selected by relevant works from a set of 75 features
as in [57], [58], [59], and [60]. There are five classes,
class 0 means normal, while all other numbers from 1–4
mean the presence of different heart diseases.

6) Click-through rate prediction of advertising when a
query is given. It was retrieved from KDD Cup 2012
(Track 2) [49].
A fundamental technology behind search advertising is
the click-through rate prediction of advertising banners
since ads are ranked and priced with respect to the
amount of clicks they receive. The data are derived from
real session logs from Tencent’s search engine known as
soso.com. The problem is to predict if an advertisement
will be clicked or not. This dataset is a subset of
the original dataset and contains 1 000 000 instances
balanced 500 000 positive class and 500 000 negative
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Fig. 6. Nonlinear features correlation matrix.

TABLE I
DATASETS USED FOR THE EXPERIMENTS

class with 12 features. The majority of instances are
identifiers that are one-hot encoded. The target variable
(click) is binary; thus, only two classes are identified.

7) Higgs Boson [50]:
The goal of this dataset is to distinguish between a signal
process that produces Higgs bosons and a background
process that does not. The dataset is composed of 11
000 000 instances and 28 numerical features. This is a
binary classification problem.

Concerning the regression task, the following datasets have
been considered.

1) UCI Echocardiogram [53]:
The goal of this dataset is to predict the number of
months a patient survived since all patients had heart
attacks at different times. The dataset consists of only
132 instances and 13 numerical features.

2) Bike Sharing Hourly [54]:
The dataset contains the hourly count of rental bikes
retrieved between 2011 and 2012 in the Capital
bike share system with the corresponding seasonal
and weather information. The dataset is composed
of 17 289 instances and 16 features. The goal

is to predict the count of total rental bikes for
each day.

3) Year Prediction Million Song Dataset [55]:
The dataset contains 515 345 instances with 90 numer-
ical features. The goal is to predict the year of a
song, given its audio features. Songs are mostly western
commercial tracks ranging from 1922 to 2011 with
a peak in the 2000s. In order to avoid the producer
effect, which means that different songs from the same
producer fall in both train and test, the training and
testing split originally suggested were respected: 463
715 instances were used in the training set and 51 630 in
the test set.

4) Yahoo Learning to Rank [56]:
This dataset is large. It is composed of 19 944 queries
and 473 134 documents. Each query-document pair
consists of 519 features. The label denotes the relevancy
of each query-document pair. The goal is to predict its
relevance ranging from 0 (irrelevant) to 4 (very relevant).

Datasets have been selected with the idea of reporting
different algorithms’ accuracies and errors with respect to the
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number of instances and the number of features, thus the
intrinsic complexity of the dataset.

Table I summarizes the datasets details. Some of them, such
as the click-through rate prediction, have mainly identifiers
that are one-hot encoded, creating a very large number of
dimensions and thus a very sparse dataset. The idea is to
stress the algorithms from various points of view: capabilities
of managing large sparse datasets, the capability of approx-
imating hyperplane boundaries with highly nonlinear data,
continuous or discontinuous function approximation (such as
in the case of learning to rank regression problems), and
generalization power on limited size datasets.

For each dataset, all categorical variables were one-hot
encoded; numerical variables were used without any prepro-
cessing technique. Datasets were standardized with z-score
normalization prior to the training process in order to use stan-
dard algorithms such as MLP and SVM. Training, validation,
and test sets were used for all algorithms in exactly the same
conditions. Regarding different approaches here considered for
comparison aims, in the following implementation/parameters,
details are reported. SVM adopts radial basis function (RBF)
kernel with γ equal to (1/ f ), where f is the number of fea-
tures. Random Forest is configured to use 100 trees and “gini”
index. XGBoost is configured with a max depth preprun-
ing parameter equal to 6 and a learning rate equal to 0.3,
as suggested by the authors of the algorithm [30]. CatBoost
is set up without any hyperparameter tuning or selection
and with default parameters. TabNet’s attention embed-
ding width and width of decision precision are both equal
to 8 [4].

The feed-forward neural network (called MLP) is configured
with one single hidden layer having the number of neurons
equal to f ∗ 0.8, being f the number of features; the max
number of training epochs is equal to 150 and ReLU as the
activation function, with Adam optimizer [61].

Regarding the adaptive multiscale attention, the merge func-
tion is one of the hyperparameters of the model, but it is not
the only one. There are several other hyperparameters and
design choices that can impact the model’s performance, such
as the choice of activation functions, the depth of the network,
the number of neurons in each layer, the weight initialization,
the regularization techniques, as well as the learning rate and
optimization algorithms.

Anyway, while designing and training a DL model, it is
possible to keep all the hyperparameters and design choices
fixed, instead of tuning them. In this scenario, after a lot of
trial and error, we chose to adopt a fixed architecture. The
selected architecture achieved the lowest generalization error
on different tasks. Thus, in the selected architecture, we fixed
the number of layers, number of neurons in each layer,
and activation functions. Also, weight initialization methods,
learning rate, optimization algorithm, and batch size are kept
fixed. These trial and error were performed on the large click
through rate problem using 30% of the dataset as a statistically
significant portion of the dataset. Additionally, it allowed us to
change the hyperparameters of the network in a timely manner.
Once the hyperparameters are found, they are kept fixed for all
tests and all datasets. The hyperparameters are the following.

The used weight initializations are He initialization [62] for
excitation layers and a matrix of zeros for the TrA Layer. The
learning rate starts at 0.01 and decays exponentially by a factor
of 0.9 every 50 steps. The batch size is 128 and the number
of epochs is 150.

VI. RESULTS AND DISCUSSION

All tests were run on exactly the same conditions and
data using tenfold cross-validation. The F1-weighted score has
been used to summarize the results because the majority of
considered datasets are strongly unbalanced. F1-score is the
harmonic mean between precision and recall; moreover, the
weighted F1-score gives balanced attention (weight) to classes
represented by a lower number of instances.

The F1-weighted score applied to classification problems is
represented in Table II; the results are computed by averaging
F1-weighted scores over ten different runs. It can be observed
that the adaptive multiscale attention with the “Add” operator
as well as with the “Hadamard Multiplicator” operator are
among the top-performing algorithms. In particular, the adap-
tive multiscale attention with the “Add” operator outperforms
all the other algorithms at four small classification problems:
the Diabetic Retinopathy, Arrhythmia dataset, the Winsconsin
Breast Cancer dataset, and Cervical Cancer dataset. Instead,
the adaptive multiscale attention with the “Hadamard Multipli-
cator” operator outperforms all the other algorithms on three
datasets, one small, the University of California, Irvine (UCI)
heart disease, and two large datasets, namely, the click-through
rate and the Higgs boson datasets. On average, the next most
performing algorithms are the CatBoost and the XGBoost
ones, with a top performance at two tasks out of 7.

Random forests exhibit an average performance, while SVM
RBF, decision tree, MLP, and TabNet perform below the
average in all datasets. The standard deviation of F1-scores in
Table II implies that TabNet has the highest standard deviation
of scores, whereas adaptive multiscale attention mechanisms
generally deliver very stable results with respect to different
runs of the tenfold cross-validation. This is an important
result achieved by the proposed architecture because neural
networks are known to be very sensitive to randomness both
with data and with initialization conditions, thus delivering
different results for each run. The standard deviation in Table II
shows that the adaptive multiscale attention (especially the one
with “Hadamard Multiplicator” operator) seems to converge
to a stable solution with a sufficient number of runs, despite
the randomness in the data and the layer’s initializations.
In conclusion, adaptive multiscale attention with “Hadamard
Multiplicator” operator seems to be a good solution for both
small, medium, and large datasets on classification problems.
This is achieved with a significant degree of generalization
with respect to the size of the datasets, dispelling the false
myth of DL requiring a large amount of data. Indeed, the
goal of DL is to find correlations among features, with
those correlations being usually found when large amounts
of data are provided. In this case, however, correlations are
evaluated by the mechanisms of parallel attention, which
intuitively encodes the feature selection phase. This phase is
absent in almost all the other algorithms, apart from TabNet.
The automatic-weighted feature selection phase (included in
the proposed architecture thanks to the end-to-end training)
increases the accuracies and ensures a generalization power
with respect to different dataset sizes.

Concerning the regression problems with results presented
in Table III, it is possible to observe that the adaptive
multiscale attention with “Concatenation” operator and with
“Average” operator as merging layer are among the best-
performing algorithms. Even in this case, the algorithms
were robust with respect to different dataset sizes, thus
confirming the intuition of the feature weighting encoding.
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TABLE II
F1-WEIGHTED AVERAGE SCORES (± STANDARD DEVIATION)

TABLE III
MAE AVERAGE SCORES (± STANDARD DEVIATION)

Considering the related standard deviations, as reported in
Table III, it is possible to observe that adaptive multi-
scale attention algorithms have higher standard deviations for
regression problems. Thus, they end up with fewer stable
results if compared to those from the classification problems.
Anyway, the standard deviation is in line with the other
algorithms.

In order to stress the generalization capabilities of the pro-
posed approach, two different solutions have been identified.
The first solution makes use of the MMD [19]. MMD is a
distance metric that measures the discrepancy between two
probability distributions. In this case, MMD has been used to
compare the distributions of the training and testing sets of
each dataset.

In practice, MMD is calculated by computing the dis-
tance between the means of the feature representations of
the training and testing sets in a reproducing kernel Hilbert
space (RKHS). The feature representations are obtained by
passing the data through a kernel function that maps the data
into a higher dimensional space, where linear separation is
possible.

MMD can be used to detect distribution shift between
the training and testing sets. By measuring the discrepancy
between the distributions of the training and testing sets,
MMD can provide insights into the nature of the shift and
help improve the generalization performance of the model.
Figs. A and B in Appendix A shows the MMD value and the
ranking (based on the F1-score) from bottom (first ranked high
F1-score) to lowest ranked (top) for all classification problems
(Fig. A) and all regression problems (Fig. B).

These values are averaged because tenfold cross-validation
was performed.

As it is possible to observe from Fig. A in Appendix
A, the adaptive multiscale attention is the set of techniques
achieving the largest F1-score with higher MMD value for
classification problems and lower mean absolute error (MAE)
with high MMD for regression problems as in Fig. B. As a
confirm, in a second solution aimed at demonstrating the
generalization capabilities of the proposed approach, it has
been used 2-D multidimensional scaling [63], to reduce the
dimensionality of training and test sets of each problem. Then,
kernel density estimation [64] has been applied independently
on each problem train and test sets. This procedure has been
repeated several times and its results analyzed. The plotted
results are shown in Appendix B. Analyzing the number
of distributions, their geometry, and orientation in the space
in problems such as UCI heart dataset, click-through rate,
and bike sharing, it was found a different number of modes
between train and test data distribution between train and test
sets; very different distribution’ geometry; and for diabetic
retinopathy and heart disease even different orientation in
space. For these problems, the adaptive multiscale atten-
tion outperformed other techniques, such as XGBoost, while
producing comparable results on others that do not specifically
exhibit visible differences in data distributions. These findings
are of paramount attention because they show that, for diffi-
cult problems with quantitatively different data distributions
between train and test sets, the adaptive multiscale attention
generalizes better on unknown distributions. Table IV reports
the training time of the different approaches. Infinity means
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that after ten days of training, no result was provided, and thus,
the algorithm training was canceled. The adaptive multiscale
attention approaches always have a larger training time with
respect to all other algorithms on small problems, but when it
comes to large and very large datasets, SVM with RBF, as well
as TabNet have a much larger training time. In fact, SVM
was unable to converge on Higgs Boson dataset, and on the
same dataset, TabNet took over the double of computation time
with respect to adaptive multiscale attention. Thus, adaptive
multiscale attention can be useful for creating very accurate
interpretable models on very large datasets. Additionally,
adaptive multiscale attention can leverage the execution time
expense with generalization capabilities and higher accuracies
on average.

For ablation studies, Tables V and VI show, respectively, the
F1 average score and MAE of the architecture of adaptive mul-
tiscale attention with and without excitation layers and without
TrA Layer. Tables V and VI show that for the classification
problems, there is a sensible decrease in accuracies when the
trainable attention is removed as well as excitation layers.
When both are removed, the accuracies drop significantly. This
means that the synergic integration of excitation layers with
the trainable attention led to the jump in accuracies. This
result is much more visible in regression problems, where
on certain very large problems such as Yahoo learning to
rank, removing both trainable attention and excitation layer
resulted in generating a much larger error in magnitude than
the proposed architecture. Even just removing the excitation
layers resulted in a decrease in accuracy for classification
problems and an increase in error for regression problems.
One of the limitations of this study is the number of variations
of the proposed architecture, especially for what concerns the
merging layers. This is a limitation but it allows the scientific
community to investigate and find novel merging solutions that
may even perform better than actual solutions.

As represented in Tables II and III, adaptive multiscale
attention is not the best algorithm for all the datasets. In facts,
different algorithms happen to perform best on different
datasets. Adaptive multiscale attention, in general, shows inter-
esting generalizations and explainable properties that, in our
opinion, should be looked for when choosing which algorithm
to apply.

VII. INTERPRETABILITY OF RESULTS

A. Interpretability
The discussion reported in this section is only referred

to experiments performed on the Winsconsin Breast Cancer
dataset for the sake of readability. According to the inter-
pretability of elements that the excitation layer considers
important as the input changes, Fig. 3 shows the sum over all
excitation layers (with varying compression ratio per excitation
layers) of the learned weights associated with each feature
with respect to the predicted class (refer to excitation layer in
Fig. 1) as in (9). Here, it is possible to observe that the feature
symmetry_mean is the most discriminant for classifying breast
cancer as malignant. While compactness_se has a relative high
importance in classifying the instance as benignant. The global
feature attention, evaluated as in (10), is reported in pictorial
terms in Fig. 4. It can be observed that as previously stated
“symmetry_mean” is the most important feature while the
identifier of each instance is the least relevant feature as it
could be easily hypothesized.

Concerning the feature attention behavior with respect to
the class, refer (11), its pictorial representation is reported in
Fig. 5 which shows how the network behaves in direction
and magnitude of attention weights with respect to the input
and the respective class. This allows understanding, for each
class, what are the most important features and their attention
weights direction.

It is interesting to see how sensitive the model is with
respect to the prediction of malignant class on the “tex-
ture_mean” feature as well as “symmetry_mean.”

The information provided from an attention weights point
of view is the same as in Fig. 4, but it adds the direction
of how the weights Wlz behaves with respect to the current
instance Ji . Thanks to this novel information, it is possible to
visualize features that tend to co-behave.

Concerning the last analysis, related to the inspection of the
nonlinear correlation among features that tend to co-behave in
both the same and the opposite direction, the resulting correla-
tion matrix is presented in (13), and its pictorial representation
is shown in Fig. 6. In the specific case of the Wisconsin
Breast Cancer dataset, it can be observed that “area_mean”
and “perimeter_worst” features tend to co-behave: they have
a large correlation coefficient, as well as “radius_worst” and
“perimeter_worst.”

B. Example of the Use of Explainability Results

Explainability can be useful not only to understand the
behavior of the model but also to refine results and to
engineer new systems. A simple example is the one related
to the feature selection process that can be built upon the
feature ranking provided by the adaptive multiscale attention
network (see Fig. 4). In this case, the performance provided
by these features can be compared with those provided by
other standard approaches. To this aim, four different linear
SVM models with default parameters have been trained with
a tenfold cross-validation technique on the Wisconsin Breast
Cancer dataset. Each SVM has been trained with the top
three ranked features provided by different methods here
considered:

1) adaptive multiscale attention—add: “symmetry_mean,”
“area_se,” and “textrue_worst.”

2) random forest: “radius_worst,” “concave points_worst,”
and “perimeter_worst.”

3) CatBoost: “Concave points_worst,” “area_worst,” and
“texture_worst.”

4) XGBoost: “perimeter_worst,” “concave points_worst,”
and “radius_worst.”

Results are reported in Table VII.
Features selected by the adaptive multiscale attention with

Add operator can outperform all the others in terms of F1.
In addition, its standard deviation (among different runs)
is sensibly lower than all the others, which implies higher
reliability and robustness.

The top three features selected by adaptive multiscale
attention achieved the highest F1-score on this dataset in
general, even when compared with F1-scores in Table II,
which means that all other features do not contribute to
increase the performance. Thus, adaptive multiscale attention
was able to select the right top three features that saturate the
average reachable accuracy on this dataset.
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TABLE IV
AVERAGE EXECUTION TIME (IN S) ON CLASSIFICATION ALGORITHMS

TABLE V
ABLATION STUDY 1: F1 AVERAGE SCORES (± STANDARD DEVIATION), W MEANS WITH, W/O MEANS WITHOUT, EA MEANS ADAPTIVE MULTISCALE

ATTENTION, AND TRA MEANS TRAINABLE ATTENTION

TABLE VI
ABLATION STUDY 2: MAE AVERAGE SCORES (± STANDARD DEVIATION), W MEANS WITH, W/O MEANS WITHOUT, EA MEANS ADAPTIVE

MULTISCALE ATTENTION, AND TRA MEANS TRAINABLE ATTENTION

TABLE VII
F1-SCORES OF SVM TRAINED ON TOP THREE FEATURES EXTRACTED

FROM DIFFERENT ALGORITHMS

VIII. CONCLUSION

In this work, the adaptive multiscale attention deep neu-
ral network architecture is proposed as a novel technique
to be used with tabular data. Adaptive multiscale attention
was capable of successfully learning features’ attention and
thus achieving high levels of F1-scores by exploiting paral-
lel multilevel feature weighting, assembly, and recalibration.
These results were achieved for classification tasks on seven
different datasets of small, medium, large, and very large

sizes. Adaptive multiscale attention also provided low MAE
scores on four regression tasks of different sizes. In addition,
their computation time is higher with respect to all the other
techniques on small and medium-sized datasets, but it tends
to be lower than SVM and TabNet on very large datasets.

By using multidimensional scaling for nonlinear dimension-
ality reduction in conjunction with kernel density estimation,
it has been shown that the problems on which adaptive
multiscale attention performs better than the other techniques
are also the problems that show a noticeable but visible
difference in the density distributions between the train and
test sets showing, thus, that adaptive multiscale attention is
a powerful technique capable of good generalization power.
In addition, other benefits are the high accuracy, the low
number of hyperparameters to setup, several options of
interpretability, no preprocessing, and dimensionality reduc-
tion pipeline needed.

In general, adaptive multiscale attention provided high gen-
eralization capabilities with respect to the size of the dataset
and the type of problem (regression or classification) with a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

low standard deviation of results from different folds when
trained in tenfold validation. This shows the robustness of the
proposed algorithm.

In addition, the adaptive multiscale attention here proposed
has been able to provide four levels of explainability: 1)
interpretability of excitation layers: gives insights into which
layers are more pivotal for specific classes by calculating the
attention weight of each excitation layer; 2) global magni-
tude feature attention: reveals the overall attention of each
feature across all instances. Computed as the mean of the
absolute values obtained from the network; 3) global feature
attention concerning class and behavior analysis: provides an
understanding of the learned feature attention with respect
to each class, allowing a deeper analysis of feature attention
and behavior for particular classes; and 4) nonlinear spear-
man correlation among learned features: identifies nonlinear
correlations among features that co-behave, giving valuable
information for dataset dimensionality reduction and increas-
ing interpretability. Feature weighting was not computed post
hoc; thus, it concretely represented the feature attention given
by the network while training. Thanks to these interpretability
levels, it is possible to successfully use adaptive multiscale
attention as a technique for feature selection and both to
increase accuracy and to get important insights about the
dataset at hand.

The potential limitations of the study on the adaptive multi-
scale attention network for tabular data include the following.

1) Data Availability: The need for large amounts of data for
gradient-based optimization may limit its performance
on smaller datasets.

2) Data Quality Challenges: Handling missing values, out-
liers, and inconsistencies in tabular data are still in
charge of the researcher.

3) Computational Complexity: Despite the sublinear
growth, the network may require significant computa-
tional resources for training and optimization.

4) Generalizability: The network’s performance on a wide
range of real-world tabular datasets with unique or
challenging characteristics remains to be evaluated.

5) Architecture Variability: The large number of variations
of the proposed architecture may lead to different results.

In future research, adaptive multiscale attention will be applied
to other tabular datasets with a focus on health datasets
for the purpose of Public Administration application and a
novel merging layer can be defined. In addition, its nature of
being explainable will be stressed and explored: various other
correlations can be applied for analyzing feature co-behavior.
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