This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Closed-Form Gaussian Spread Estimation for Small
and Large Support Vector Classification

Diego Isla-Cernadas, Manuel Fernandez-Delgado™, Eva Cernadas™, Manisha S. Sirsat™,

Haitham Maarouf",

Abstract— The support vector machine (SVM) with Gaussian
kernel often achieves state-of-the-art performance in classification
problems, but requires the tuning of the kernel spread. Most
optimization methods for spread tuning require training, being
slow and not suited for large-scale datasets. We formulate an
analytic expression to calculate, directly from data without
iterative search, the spread minimizing the difference between
Gaussian and ideal kernel matrices. The proposed direct
gamma tuning (DGT) equals the performance of and is one
to two orders of magnitude faster than the state-of-the art
approaches on 30 small datasets. Combined with random
sampling of training patterns, it also runs on large classification
problems. Our method is very efficient in experiments with
20 large datasets up to 31 million of patterns, it is faster
and performs significantly better than linear SVM, and it is
also faster than iterative minimization. Code is available upon
paper acceptance from this link: http://persoal.citius.usc.es/
manuel.fernandez.delgado/papers/dgt/index.html and from
CodeOcean: https://codeocean.com/capsule/4271163/tree/v1.

Index Terms— Classification, efficient computing, large-scale
datasets, model selection, radial basis kernel, support vector
machine (SVM).

I. INTRODUCTION

HE support vector machine (SVM) is a popular classifier

that can use several kinds of kernels, being the radial
basis function (RBF) very used because of its good behavior
in terms of performance [1]. A major configuration issue for
the SVM is the tuning of its hyperparameters: regularization
or penalty (A\) and spread (o) of the RBF kernel, which has
a specially strong influence on performance. Its tuning has
been largely studied in the literature and it will be the focus
of this article. Often, o is selected by searching the value
that maximizes the SVM performance from a collection of
values (grid-search (GS) approach), thus requiring to train
and test the SVM for each o value. This also happens with
random search [2], although the number of values tested is

Manuscript received 14 February 2023; revised 3 October
2023 and 12 December 2023; accepted 12 March 2024. This work
was supported in part by the Conselleria de Educacién, Universidade
e Formacion Profesional under Grant ED431G-2019/04 and in part by the
European Regional Development Fund (ERDF), through the Centro Singular
de Investigaciéon en Tecnoloxias Intelixentes da Universidade de Santiago
de Compostela (CiTIUS) as a Research Center of the Galician University
System. (Corresponding author: Manuel Ferndndez-Delgado.)

Diego Isla-Cernadas, Manuel Fernandez-Delgado, Eva Cernadas, Haitham
Maarouf, and Senén Barro are with the Centro Singular de Inves-
tigacion en Tecnoloxias Intelixentes da USC (CiTIUS), University of
Santiago de Compostela, 15782 Santiago de Compostela, Spain (e-mail:
manuel.fernandez.delgado @usc.es).

Manisha S. Sirsat is with the Department of Data Management and Risk
Analysis, InnovPlantProtect, 7350-478 Elvds, Portugal.

Digital Object Identifier 10.1109/TNNLS.2024.3377370

and Senén Barro

reduced with possible performance loss. Alternative model
selection criteria for the SVM were compared in [3] on
physiological data, including distance between two classes
and expected square distance ratio. Other in-sample statistical
approaches were also proposed for model selection and error
estimation [4].

Among optimization methods, genetic algorithms (GAs)
were used in [5] updating the strategy parameters and the
values of A and o with the covariance data matrix to
maximize the average test accuracy of several SVMs. The
method was applied only on small datasets up to 768 pat-
terns and 13 features because SVM training and covariance
matrix calculation were slow. Both the hyperparameters were
also selected using particle swarm optimization (PSO) in
the modeling of Iju deposit mineralization and alteration
zones [6], and using dynamic PSO [7] on 14 datasets up
to 7000 training patterns, outperforming GS, standard, and
chained PSO.

Penalty and spread were also selected using differential
evolution [8] to maximize the accuracy on four datasets up
to 11692 patterns. Multiobjective adaptive differential evo-
lution [9] was proposed to minimize the number of support
vectors and maximize the generalization capacity in SVM
model selection with RBF, polynomial, and Hermite kernels,
being validated on 11 datasets up to 4435 patterns. The Bat
algorithm [10], inspired in swarm intelligence, outperformed
GA and PSO on nine small datasets up to 958 patterns,
minimizing the classification error and avoiding the fall into
local minima. Tharwat and Gabel [11] combined the social
ski driver algorithm and synthetic minority oversampling tech-
nique (SMOTE) to select A\ and o maximizing sensitivity.
The method outperformed GS and PSO over eight small
unbalanced datasets up to 336 patterns and 11 features. Glas-
machers and Igel [12] developed a model selection method
for 1-norm soft-margin SVM using gradient ascent on a
likelihood function of A and o based on logistic regression,
being validated on 28 datasets up to 5000 patterns. The spread
was also selected [13] by maximizing the margin in the feature
space, while regularization is calculated analytically using
the jackknife estimate of perturbations in the eigenvalues of
the kernel matrix. The experiments included 24 datasets up
to 7400 patterns. Model selection for multiclass SVM was
studied [14] using spherical and elliptical RBF kernels and two
criteria that redefine the SVM radius-margin bound in terms
of class separability. The method was validated on 13 datasets
up to 6435 patterns, where it spent 232 s using spatial GRBF
kernel (dag) and criterion II.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5483-9424
https://orcid.org/0000-0002-1562-2553
https://orcid.org/0000-0002-5696-3602
https://orcid.org/0000-0001-5370-9740
https://orcid.org/0000-0001-6035-540X

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Several approaches calculate the spread directly from data.
Xu et al. [15] formulated a direct formula to set o using
local and global distances, thus requiring to sort the distances
between training patterns randomly selected. The method
was validated on 13 datasets up to 7400 patterns. Varewick
and Martens [16] calculated o using a simple analytical
formula of the input dimensionality and the class dispersion,
without any SVM train or test, evaluating its method on
17 datasets up to 8124 patterns. Several alternative ways to
calculate o based on local features, such as soft k-nearest-
neighbor, nearest enemy, and redundant fast clustering esti-
mations [17], were compared with tenfold GS on six datasets
up to 7400 patterns.

Liu and Xu [18] selected o maximizing (resp. min-
imizing) simultaneously between-class (resp. within-class)
separability, measured by the cosine similarity in the ker-
nel space. The method used eight small datasets up to
400 patterns. Afterward, Liu et al. [19] proposed an analyt-
ical formula valid when the within-class mean distance is
below the between-class mean distance, using 17 classification
datasets up to 141691 patterns spending 43.4 s. The random
RBF kernel SVM [20] used a modified RBF kernel with
random-generated parameters that maximized the SVM accu-
racy on 18 datasets up to 32561 patterns. Menezes et al. [21]
selected o by maximizing a dissimilarity function between
two classes based on an RBF-based kernel density estima-
tion (KDE). This method was efficient and outperformed GS
on a collection of 18 small datasets up to 3210 patterns.

In a previous work [22], we proposed the ideal kernel
tuning (IKT), where o minimizes the difference between RBF
and ideal kernel matrices. On 37 datasets up to 1 million
of patterns, IKT achieved lower time (up to 384 s) and
memory requirements, with performance similar to GS, KDE,
GA, Bayesian search, and PSO. Starting from this idea, this
article derives an efficient closed-form expression for the
inverse y of spread that minimizes the previous difference,
extending it to datasets much larger than the ones in previous
approaches. Sections II and III describe the proposed methods
and experimental results, respectively, while Section I'V reports
the conclusions of the current study.

II. MATERIALS AND METHODS

The ideal kernel J for a classification problem [22] is a
function defined as J(x,y) = 1 when x and y share the
class label, and J(x,y) = O otherwise. Let {xn}fl\':1 be the
set of training patterns, ¢, be the class label of x,, with
¢, € {l,...,C}, and C be the number of classes. The ideal
kernel matrix J, that is squared of order N, has elements
{Jum} _, defined as Ju = J(Xy, %) = 1 when ¢, = ¢
and J,, = J(X,,X,,) = 0 otherwise. To achieve a good
performance in classification problems, a kernel should be so
similar as possible to the ideal kernel. Specifically, an RBF
kernel

_ _ 2
K(x.y.0) = exp(M) (1)

202

is expected to provide the best performance when o minimizes
the difference between the RBF and ideal kernels, which can

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

be evaluated as the mean square difference D (o) between their
respective matrices

| NN)
D@) =22 2 [Km(©@) = Jul. @
n=1 m=n+1

Here, K,,,(0) = K(X;, X,;,, o) and the sum is over m > n
because K,,, = 1 and K,,,, = K, being M = N(N — 1)/2
the number of terms in the sum. Our strategy in previous
works [22], [23] was to calculate D(o) for several o val-
ues and to select ¢ minimizing D(c). In the following,
we develop a method to estimate o directly from the training

set {X,, ¢, }_,. We define
Qum = 1%y = Xn|*, Kun(y) =" (3)

V= 207

Thus, y is the inverse of double squared kernel spread o,
while d,,,, is minus the squared distance between x,, and X,,.
The values {dnm}flvm=1 compose the N x N-order distance
matrix D. The difference D(y) is

1
D(y) = o7 D (% = Jun)’. “)

Deriving D(y), using that K/, (y) = €”%"d,,, and equaling
to zero, we achieve
dD 2
i — Yum _ Y dpm —
5 =M D Jam)&” " dyy = 0.)

nm

This equation does not allow to calculate an analytic solu-
tion for y, but an estimation might be achieved by supposing
that all the distances d,,, are equal to their expected or mean
value, denoted by d

1
Ay =d = M %dpq 6)

where the sum over p, g has the same limits as previously
with n, m. Using this hypothesis, (5) becomes

Z(eyd — Jum)e’d =0 — 7! Z 1= z Jum (1)

nm nm

where we divided by e’4d. Note that an 1 = M. Besides,
> m Jum is the number of pairs of patterns (n,m) where

cpn=cp. For k = 1,...,C, the class k with N; training
patterns has N (N, — 1)/2 pairs, so that
1 E
— 2 J—
% Jam = 5 ;‘(Nk No) ®)

and (7) becomes

Me’! = (N} — Np).)

| =
M-

~
Il

1
Substituting d from (6), the estimated value of y is

C
1
—In| — > (N} - N,
o[z 20w
11v71 N ’
MZ Z |Xn_Xm|2
n=1 m=n+1

V= (10)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ISLA-CERNADAS et al.: CLOSED-FORM GAUSSIAN SPREAD ESTIMATION

Dataset voting

D(v), D,(v), Kappa

20 -18 16 14 12 -10 8 6 4 -2 0 2 4 6 8 10 12 14 16 18 20
| &
og,,(Y)

Fig. 1. Values of D, D,, and kappa varying y from 2720 to 220, with the true
and estimated y values minimizing D and Ds (square and circle, respectively)
in dataset voting.

Theorem 1: The function D(y) in (4) has a minimum at
the value of y calculated by (10) under hypothesis in (6).
Proof: The function D(y) has a minimum for y in (10)
if D”(y) > 0. This second derivative is
da’D 2
—— = — > Qe — dyy €). 11
iy >) (11)

nm

Using that d,,, = d and y = (In p)/d, so that e’ = p and

e?’? = p?, we achieve
d*D 2 5 5
2= I Z(ZP d"—pJumd”)
dy M~

2 2 2 2 2 42
:M(szd —pd ZJnm)=2pd >0 (12)

nm

where we used that >°, 1 =M and), Jun = Mp. O

Note that class populations N; in (10) require the class
labels that define the classification problem, being therefore
necessary to calculate the optimal y. Using d defined by (6)
instead of d,,, transforms D(y) in (4) to

% > (e - Jam): =4 p(1—2e7) (13)

nm

Dy(y) =

where p = (1/M) >, Jam- It follows that D,(y) = 0 and
Dy(y) = p(1 — p) for y = (Inp)/d as in (10). Note that
D) =1— p and D(00) = p. Fig. 1 shows in this case for
dataset voting that D(y) and D,(y) are very similar and
their minima are very near. Thus, although the distances {d,,,}
are not equal to their mean d, the deviation is somehow
compensated and the value of y that minimizes D(y) can
be calculated as if {d,,,} were equal to their mean. Besides,
both the minima are located at the maximum of performance
on the validation set, measured by the Cohen kappa statistic,
so that minimizing D or D, also maximizes performance.
The proposed method to estimate y has been named direct
gamma tuning (DGT). Algorithm 1 describes DGT for small
datasets (DGS), that trains the SVM using the y calculated
using (10) by procedure gamma (algorithm 2) on the whole
training set {X,, c,}"

n=1"

Algorithm 1 DGT, Small Datasets.

1 Algorithm: S=DGS({x,, c,}"_,, \)

n=1°

Data: {x,, c,}"_,: training patterns and class labels
cn €{1,...,C}; X: regularization parameter.

Result: S: trained SVM.

2 y <gamma({x,, ¢,}_,) #procedure gamma in alg. 2

3 § < SVMTrain({x,, cn}fl\’:],)\,y)

Algorithm 2 Calculation of y.

1 Algorithm: y=gamma({wy, bh}f:])

Data: {w,,, bh}lez training patterns and class labels
byefl,...,C}hL
Result: y: inverse of double squared kernel spread o.

H-1 H
H(H—l). -1 5
ZMET’LZ(_V}Z_; §l|wh_wm|

H ¢ 1 C
3 IN, <« Z 1 ;p(—WZ(NkZ—Nk)
h=1,b,=k k=1 k=1
i"(37)
4 y=—-Inl—
V=" u

When the number N of training patterns is high, the
calculation of distances {dnm}flvz_ll’;iv:n_l becomes expensive.
Besides, the SVM cannot be trained on the whole dataset.
The approach proposed in [23] by the fast support vector
classifier (FSVC) for large datasets is to use a reduced set
of 100 prototypes of each class instead of the whole training
set. This low number of prototypes is because the method
requires to calculate the distances between these prototypes
and the training patterns, which is slow when many prototypes
are used. This article is focused on the standard SVM instead
of FSVC, and the SVM performance might be very poor
using so few training patterns. In addition, a large number of
prototypes would slow down the distance computation, so we
propose to replace prototypes by training patterns randomly
selected, i.e., to perform a random sampling on the training set,
for the distance calculation. This sampling must be performed
by keeping the relative class populations in the original set.

The number L < N of patterns to be selected for SVM
training is very important: low values might reduce perfor-
mance, and high values slow down the training and may lead
to memory failures. Larger datasets require larger training
sets, so L must be increasing with N as, e.g., L = aN
with o < 1. To avoid errors in SVM training for high N,
an upper bounded L is required for L. The values of « and
Ly should be carefully set to achieve a good tradeoff between
performance and speed. The upper panel of Fig. 2 reports
kappa versus time when L raises from 1000 to N (from left
to right in each line) for several large datasets used in the
experimental work (Section III-B). The time raises with L
because the training is slower. Kappa raises slowly in some
datasets (magic, letter, adult, and shuttle) and faster
in others with larger datasets (chess, wisdm, and 1 jcnnl).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Kappa vs. time varying L

100 F EB—a
e L]
.® ®- -
& ©
o
o 2
80 - 3
Lo~
S ®
[= 4
o _» Q/
g [E
< o
60 -
i A
K A ~a
—8— magic P
- @ letter ‘4*/,’ i A
chess AT g
- adult « J
40 | |~ shuttle 3
- © - wisdm
o jjennt
10° 10 102 10%
Time (s) log. scale
Kappa vs. LIN
100 |- |~ magic 5
© - letter Y
---®
chess -
—A- adult @- - 0T -
—5— shuttle = o
- &~ wisdm -
80 | [~e~ iiennt © 4
27
< o -
s & m——a—a
© m
g [e
8
X K
60 -
& A
§ AT
i -
— A
. A AT
oLk
a
40 - @

102 107! 10
LIN, log. scale

Fig. 2. Upper panel: kappa versus time (log. scale) of several large datasets
varying L from 1000 to N from left to right. Lower panel: kappa versus L/N
(log. scale) for the same datasets.

The lower panel of Fig. 2 shows plots of kappa versus L/N.
In datasets where kappa raises slowly and in ijcnnl, L/N
about 0.5 or even lower already provides a good performance.
In the second group of datasets, larger L/N values are
required to achieve performance near the highest available
(for L/N — 1). Therefore, to achieve a tradeoff between per-
formance and speed, we propose to use o = 0.5, although in
some datasets (e.g., chess and wisdm) the performance may
be suboptimal. To set the upper bound L for L, the capability
of SVM to train with large datasets must be considered.
Datasets with hundreds or thousands of inputs can be discarded
for RBF SVM, which does not outperform and is slower than
linear SVM. With less than 200 inputs, the SVM is able to
train with 10 000-20 000 training patterns, so we propose to
set Lo = 20000 patterns. Finally, L is calculated as

L =min(Lo, leN]), «=0.5,Lo=20,000. (14

Equation (10) requires the distance matrix D, which is of
size L. The computation of D, of complexity O(L?), might
be too slow, so that a smaller size U < L was used instead.
To evaluate the influence of U on performance and speed,
Fig. 3 shows kappa versus time for the datasets in Fig. 2
varying U from 500 to 5000 with step 500 from left to
right points in each line. The time raises with U, but kappa
remains fairly insensitive, so y can be accurately estimated
using a smaller distance matrix. Specifically, we propose to

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Kappa vs. time varying U

100 —8— magic
EE—0 - @ letter
chess
bid had A adult
9 ~E shuttle | |
- & wisdm
©- ijcnn1
@0
80
S
o
g
g 7 a=m =
60 -
o
50 Py

40 I
30 40 50
Time (s) log. scale

Fig. 3. Kappa versus time in several large datasets varying U
from 500 to 5000 with step 500 from left to right.

Algorithm 3 DGT, Large Datasets.
1 Algorithm: S=DGL({x,, ¢,}"_,,)

n=1°

Data: {x,, c,}"_,: training patterns and class labels
cn €{1,...,C}; A: regularization parameter.
Result: S: trained SVM.
2 Ly <-20,000; o < 0.5; L < min(Lg, [aN])
3 U «<1,000; r < |L/U]
4 # R(A, L) < random sampling of L items from A
5 {z, CIZ}[L=1 <~ R({x,, Cn},l:/:ls L)

6 y <—gamma({z, q,}le’r) #procedure gamma, alg. 2
7 § < SVMTrain({z;, g/}, \,7)

use U = 1000 patterns. Algorithm 3 describes the whole DGT
procedure for large datasets (DGL), which: selects a random
sample R of size L of the whole training set, keeping the rel-
ative class populations; calls procedure gamma (algorithm 2)
passing only U of these L patterns in line 6, where / runs
from 1 to L with step » = |L/U]; and trains SVM on the L
training patterns.

III. RESULTS AND DISCUSSION

The proposed methods DGS and DGL were used to calcu-
late y and train the SVM. The experiments were performed in
a desktop computer with 8 Intel® Core!i7-9700K processors
at 3.60 GHz, equipped with 64-GB RAM under operative
system Linux Kubuntu 20.04. The methodology was four fold
cross-validation (CV), using two folds to train the SVM, one
for validation (in hyperparameter tuning) and the remaining
fold for test. The classification performance was measured
using the kappa statistic. The SVM implementation was
LibSVM [24], accessed from its Octave binding.2 The datasets
were selected from the UCI [25] and Kaggle® repositories.

A. Small Datasets

A first group of experiments were run over a collec-
tion of 30 datasets of small size (Table I), with less

" Trademarked.
Zhttp://www.octave.org (May, 2022).
3https://www.kaggle.com

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ISLA-CERNADAS et al.: CLOSED-FORM GAUSSIAN SPREAD ESTIMATION

TABLE I

LI1ST OF SMALL DATASETS (Q <15000) WITH THEIR NUMBERS
OF TOTAL (Q) AND TRAINING (N) PATTERNS,
INPUTS (1), AND CLASSES (C)

Original name Brief name Q N I C
Promoter gene promoter 106 56 57 2
Breast tissue tissue 106 58 9 6
Hepatitis hepatitis 155 78 19 2
Wine quality wine 178 90 13 3
Sonar, mines rocks sonar 208 106 60 2
Seeds seeds 210 108 7 3
Heart heart 270 136 28 2
Tonosphere ion 351 178 33 2
Dermatology derm 366 186 130 6
Monks-2 monks 432 236 17 2
Congress. voting voting 435 218 16 2
Breast cancer Wisc. wdbc 569 286 30 2
Synthetic control synthetic 600 300 60 6
Australian credit australian 690 346 43 2
Pima diabetes pima 768 384 8 2
Energy efficiency energy 768 386 8 3
Audit audit 776 390 25 2
Vehicle silhouettes vehicle 846 426 18 4
Annealing annealing 898 450 54 5
Tic-tac-toe tic 958 480 27 2
Mammographic mgraph 961 482 5 2
German credit german 1,000 500 65 2
Isolet isolet 1,559 780 617 26
Image segment. imseg 2,310 1,162 18 7
Abalone abalone 4,177 2,090 8 3
Landsat satellite sat 6,435 3,222 36 6
Musk musk 6,598 3,302 166 2
Handwritten USPS usps 9,298 4,650 256 2
Electrical Grid grid 10,000 5,000 13 2
Nursery nursery 12,958 6,480 27 4

than 15000 patterns. The y of SVM was estimated: 1) using
DGS; 2) using GS, with values in the set ' = {2/}?°
and 3) selecting the value in I' that minimizes D(y) in (4),
named D-minimization for small datasets (DMS), equivalent
to IKT [22]. The regularization A was always tuned in the set
{2'})2 . to maximize kappa on the validation set.

The hypothesis in (6) is evaluated in Table II by compar-
ing y, D(y), and kappa on the validation set achieved by DGS
and DMS. For most datasets, DGS achieves y very near to
the right value selected by DMS (column 3), with an average
difference (last row, column 4) of 0.037. The difference in
D(y) between DGS and DMS (column 7) is also very low,
0.012 on average. The kappa values of DGS and DMS in
columns 8 and 9 are also very similar in all the datasets, with
an average difference of 0.8%, so the difference in y between
DGS and DMS does not reduce very much the SVM validation
performance.

Table III reports the kappa and times (in s excluding A
tuning) spent by DGS, GS, and DMS on test sets. The kappa of
DGS is very similar to GS and DMS in all the cases, achieving
the best result in seven of them. In the last line, the average
kappa of DGS (79.7%) is only 0.6 and 1 point below GS
and DMS (80.3% and 80.7%, respectively). Columns 5 and 6
report the average time (77, in s) per fold spent by DGS or

TABLE I

VALUES OF y AND D(y), ABSOLUTE DIFFERENCES, AND KAPPA
VALUES ON THE VALIDATION SETS ACHIEVED By
DGS AND DMS ON THE SMALL DATASETS

Y D(v) Kappa (%)
Dataset DGS DMS |Diff| |DGS DMS |Diff| | DGS DMS
promoter 0.005 0.004 0.001 | 0.24 0.25 0.004 | 57.1 57.1
tissue 0.101 0.500 0.399 | 0.21 0.14 0.068 | 57.7 622
hepatitis 0.038 0.031 0.007 | 0.23 0.23 0.002 | 28.3 283
wine 0.041 0.062 0.021 | 0.15 0.15 0.001 | 100.0 100.0
sonar 0.006 0.008 0.002 | 0.27 0.27 0.006| 62.0 62.0
seeds 0.078 0.125 0.047 | 0.14 0.12 0.021| 97.2 972
heart 0.039 0.031 0.007 | 0.23 0.24 0.007 | 789 789
imseg 0.056 0.125 0.069 | 0.13 0.09 0.043| 94.0 952
ion 0.034 0.031 0.003|0.24 0.24 0.002| 87.4 95.1
derm 0.052 0.062 0.010| 0.13 0.13 0.002| 97.3 97.3
monks 0.093 0.125 0.032 | 025 0.26 0.009 | 100.0 100.0
voting 0.083 0.125 0.042 | 0.18 0.19 0.007 | 942 942
wdbc 0.011 0.016 0.005|0.26 0.26 0.006| 94.0 94.0
synthetic 0.082 0.125 0.043 | 0.11 0.09 0.018 | 98.4 98.4
australian 0.033 0.031 0.002 | 0.25 0.26 0.003 | 64.4 65.5
pima 0.038 0.031 0.007 | 0.25 0.26 0.005| 43.6 43.6
energy 0.061 0.062 0.001|0.17 0.17 0.001| 88.2 90.8
audit 0.000 0.000 0.000 | 0.40 0.36 0.034| 839 839
vehicle ~ 0.039 0.125 0.086| 0.24 0.21 0.030| 743 77.5
annealing 0.028 0.031 0.004 | 0.25 0.25 0.002| 934 93.4
tic 0.052 0.062 0.011|0.25 0.26 0.004| 98.2 982
mgraph 0.065 0.125 0.060 | 0.26 0.25 0.004| 65.0 66.6
german 0.017 0.016 0.002 | 0.25 0.25 0.001 | 44.2 442
isolet 0.003 0.004 0.001 | 0.03 0.03 0.001| 93.6 93.6
abalone 0.067 0.250 0.183 | 0.30 0.27 0.027 | 31.3 31.4
sat 0.023 0.062 0.039 | 0.15 0.10 0.044| 87.2 89.6
musk 0.005 0.004 0.001|0.21 0.21 0.002| 97.9 979
grid 0.024 0.031 0.007 | 0.23 0.24 0.006 | 98.1 98.1
usps 0.000 0.000 0.000|0.13 0.13 0.000| 96.4 97.0
nursery 0.109 0.125 0.016 | 0.21 0.21 0.001 | 100.0 100.0
Average — — 0037 — — 0.012] 80.2 81.0

DMS to calculate y. The values of DMS are one to three
orders of magnitude higher than DGS. Column 6 of the last
line reports the average of 71(DMS)/ T1(DGS), being the latter
one order of magnitude (16.3 times) faster than the former.
This is expectable because DGS calculates y using (10).
Although this requires to calculate the distances between
the N training patterns, they must also be calculated for
DMS, which additionally requires to repeat the calculation
of D(y) for the 41 values of y in the set I'. This ratio
raises very fast with the dataset size, with values above 20
in the 11 last datasets. The time 75 (columns 7 and 8
in Table III) is the average total execution time per fold for
DGS and GS. The last line of column 8§ reports that DGS is
one order of magnitude (10.9 times on average) faster than GS,
reaching ratios 7,(GS)/T,(DGS) about 20—40 in the last
datasets.

B. Large Datasets

Experiments were also conducted on a collection of 20 large
datasets (more than 15000 training patterns, Table IV) up to
31 million of patterns and 122 inputs. Our method DGL was
compared to the ones below.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE III

KAPPA (IN %) AND TIMES Ti, T» (IN s, SEE TEXT FOR DETAILS)
OF SVM USsSING DGS, GS, AND DMS ON THE TEST SETS FOR
SMALL DATASETS. BEST KAPPA VALUES ARE IN BOLD

Kappa (%) Ty Ts
Dataset DGS GS DMS | DGS DMS | DGS GS
promoter 59.1 502 64.1 | 0.0101 0.006 | 0.027 0.03
tissue 504 557 60.6 | 0.0004 0.003 | 0.004 0.03
hepatitis 31,5 354 341 |0.0004 0.006 | 0.005 0.04
wine 97.5 983 97.5 | 0.0005 0.007 | 0.005 0.04
sonar 66.0 722 739 |0.0030 0.012 | 0.020 0.08
seeds 87.8 91.2 89.2 | 0.0007 0.010 | 0.005 0.04
heart 69.9 67.7 71.3 | 0.0031 0.019 | 0.012 0.09
imseg 96.1 962 96.2 | 0.0886 2.054 | 0.199 2.68
ion 83.8 87.6 83.1 | 0.0043 0.031 | 0.020 0.12
derm 96.2 955 959 |0.0040 0.030 | 0.055 0.47
monks 100.0 100.0 100.0 | 0.0042 0.044 | 0.037 0.36
voting 89.4 83.0 83.0 | 0.0043 0.071 | 0.015 0.14
wdbc 87.1 88.7 85.6 | 0.0060 0.073 | 0.031 0.22
synthetic 98.2 964 99.2 | 0.0066 0.093 | 0.059 0.52
australian 71.1 684 71.3 | 0.0078 0.118 | 0.045 0.45
pima 446 46.0 455 | 0.0085 0.164 | 0.051 0.38
energy 91.1 927 91.1 | 0.0135 0.154 | 0.039 0.36
audit 84.6 87.1 89.7 | 0.0065 0.129 | 0.033 0.42
vehicle 783 762 74.1 | 0.0155 0.194 | 0.057 0.55
annealing 96.7 975 983 | 0.0117 0.293 | 0.064 1.01
tic 963 979 956 | 0.0128 0.271 | 0.071 0.99
mgraph 63.3 654 67.3 | 0.0131 0.292 | 0.156 1.20
german 419 422 41.8 | 0.0147 0.346 | 0.073 0.72
isolet 945 947 925 | 0.0436 0.888 | 3.544 33.04
abalone 335 325 329 | 04177 8.735 | 13476 16.39
sat 89.1 90.2 89.7 | 0.8454 21.025| 1.642 29.54
musk 99.1 99.1 99.0 | 0.9003 22.004 | 3.465 72.11
grid 98.0 994 97.6 |2.0299 49.801 | 2.597 26.78
usps 962 969 962 | 1.8367 43.289 | 5.752 255.58
nursery 100.0 100.0 100.0 | 3.2652 80.506 | 8.215 160.11
Average 79.7 803 80.7 — 16.3 — 10.9

1) Minimization of D(y) for large datasets, named DML,
with y € I, equivalent to IKT with random sampling
of L training patterns, see (14) with « = 0.5 and L
= 20000, and a reduced distance matrix of size U =
1000.

2) Linear kernel SVM (LSVM), implemented by the Lib-
linear library [26], because RBF kernel SVM cannot
be executed on such large datasets. The regularization
parameter A was not tuned, given the dataset size, but
set to 100, a value widely used in the literature.

All the experiments used the same seed for the random
number generator to guarantee the reproducibility of the
results. To evaluate whether the initialization of the random
number generator during the training set sampling influences
performance of DGL, Table V reports the mean and standard
deviations of the kappa achieved by DGL on the first seven
large datasets using 20 different random seeds. The deviations
are very low compared with the mean kappa values. This
means that performance is very similar in all the cases, and
that influence of randomness on performance is not significant.

Table VI reports kappa and times 77 and 7, of DGL, DML,
and LSVM, and time 73 required only by the disk reading,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE IV
LIST OF LARGE DATASETS (Q >15000 PATTERNS) SORTED BY Q -

Original name Brief name Q N I C

19,020 9,510 10 2

Magic gamma magic

Letter recogn. letter 20,000 10,018 16 26
Shuttle shuttle 58,000 43,483 9 5
Chess(rook-pawn) chess 28,056 14,044 40 18
TJCNN 2001 ijennl 141,691 70,848 22 2
Adult(census) adult 48,842 24422 105 2
Wisdm wisdm 73,803 55,380 92 18
Connect-4 conn-4 67,557 33,782 126 3
Poker hand poker 1,025,010 512,506 10 2
Covertype covtype 581,012 435,768 54 7
Record linkage record 5,749,132 4,311,846 11 2
SUSY susy 5,000,000 3,750,000 18 2
KDD Cup 1999 kddcup 4,000,000 3,638,724 122 23
Wesad wesad 31,470,603 23,602,947 8 4
Hepmass hepmass 10,500,000 7,000,000 28 2
Higgs higgs 11,000,000 8,249,997 28 2
Heter. activ. har 29,097,887 21,823,410 14 6
Human activ. human 13,956,557 10,467,372 36 42
Detection IoT baiot 7,062,606 5,296,869 115 11
Kitsune netw. kitsune 21,017,597 8,646,375 115 2
TABLE V

MEAN AND STANDARD DEVIATION OF KAPPA (IN %) ACHIEVED BY DGL
OVER 20 DIFFERENT RANDOM SEEDS ON SOME LARGE DATASETS

Kappa (%) | magic letter chess adult shuttle wisdm ijennl

Mean 70.1 954 741 525 99.7 70.7 87.0

Std. Dev. 021 0.13 024 020 0.05 0.11 0.18
TABLE VI

KAPPA (IN %), TIMES T} AND T, (IN s) OF DGL, LSVM, AND DML,
AND DATASET READ TIME T3 IN THE LARGE DATASETS

Kappa (%) T Ts Ty
Dataset DGL LSVM DML | DGL DML | DGL LSVM
magic 700 525 69.8 |0.022 0.9 1.4 1.0 0.2
letter 954 529 953 (0.045 0.8 2.0 43 0.3
shuttle 99.7 468 99.6 |0.030 14 1.1 34 0.6
chess 740 269 74.0 |0.042 0.7 124 3.0 0.6
ijennl 87.0 220 869 [0.030 2.9 7.7 15.8 34
adult 520 55.6 509 [0.028 14 | 749 26.4 5.8
wisdm 70.8 25.0 74.5|0.038 0.7 787 2278 7.2
conn-4 608 444 60.7 [0.025 0.6 | 2352 18.6 4.1
poker 221 0.1 219 [0.025 9.6 | 128.6 19.9 11.1
covtype 622 527 63.0 [0.026 4.3 | 1045 1309 19.1
record 959 1.8 956 [0.027 98.1 | 822 4573 | 709
susy 58.6 543 58.0 [0.039 48.1 | 403.7 439.7 96.9
kddcup 92.6 927 92.6 |0.031 17.3 | 2154 1455.7 | 207.3
wesad 208 -2.2 17.2 [0.030 212.7| 474.7 13334 | 243.6
hepmass 66.8 67.2 65.5 [0.050 O91.1 |1078.7 435.7 | 3143
higgs 341 — 33.1 [0.030 89.6 | 1930.2 — 3284
har 9.8 — 13.0 | 0.048 82.4 |2304.6 — 4489
human 167 23.6 16.7 |0.044 0.8 |[5113.3 8195.0 | 662.5
baiot 858 -82 26.6 [0.061 9.8 |1774.0 39722.0| 726.2
kitsune 774 — 76.7 | 0.024 286.7 | 2793.0 — 2167.5
Average 62.6 358 596 | — 9072 — 32
p-value — 0.0032 0.7

on the large datasets. In 12 of 20 datasets, DGL achieves
the best kappa, being globally higher than DML and much
higher than LSVM, which runs out-of-memory in three cases.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ISLA-CERNADAS et al.: CLOSED-FORM GAUSSIAN SPREAD ESTIMATION

Time spent by y tuning

102 £ o 0-0-9

S
e
L 3

Time (s) log. scale
=
>

7 _/'/'"_\/HH\FA*W. |

S T S T T S S SO S S S|
A o wel o g€ At e N 0% et ot =) <
o O xe® \e\‘f\\,«ﬁ @ ,bd\‘a‘\\;\\\,\gx\zo&" QO\@ K,’o:‘:ﬁ(\o“" AN

102 I S S S
R O 20 e
W e e

Fig. 4. Time spent by DGL and DML to find y for large datasets.

On average, the kappa of DGL (62.6%) is 27 and 3 points
higher than LSVM and DML, respectively. Thus, direct cal-
culation of y (10) combined to random sampling seems to
be effective performing the RBF tuning for the SVM on
large datasets. According to a Wilcoxon rank-sum test, the
difference between DGL and LSVM is statistically significant
(p = 0.0032), while the difference between DGL and DML
is not statistically significant (p = 0.7).

Considering the time 7) spent to calculate y (columns 5
and 6), DGL is much faster (907 times, almost three orders)
than DML. The difference between their times raises with the
dataset size, from one to even three to four orders, so direct
calculation of y in DGL really allows a large time saving
compared with DML. Considering the total execution time 7>
(columns 7 and 8), DGL is faster than LSVM in 10 of
17 datasets where LSVM does not fail, and on average DGL
is 3.3 times faster than LSVM, despite that LSVM uses linear
kernel and is designed for large datasets. Note also that in the
largest datasets, the ratio T,(LSVM)/ T>(DGL) is much higher
than 3.3, e.g., 22.4 in baiot. The time 73 required by file
reading is near 7, for DGL in some datasets, e.g., in record,
kddcup, baiot, and kitsune, so the execution of DGL is
very fast and most of the time is spent just in data reading.

Fig. 4 shows plots of the time spent by DGL and DML
to calculate and search, respectively, y on the large datasets.
DML is much slower than DGL because it requires to calcu-
late D(y) for the 41 values in the collection {Zi}%ozo. Besides,
the difference between their times raises from left to right
starting in one order of magnitude up to three to four orders
for the largest datasets, so DGL allows a large time saving
compared with DML.

Fig. 5 shows plots of the times spent in the large datasets
by the four stages of DGL: random sampling of training
patterns, y tuning using (10), training, and test of the SVM.
The sampling, train, and test times raise with the dataset size
from left to right, although the train times oscillating strongly
due to SVM training may be faster or slower depending on
the complexity of the training set. However, the tuning time is
very stable and remains constant with the dataset size, being
much slower than the times of the other stages.

Times spent by each stage of DGL

e s e e e e e e e s T
T Random sampling A
S ¥ tuning ! G
0k SVM train e |
- A- SVMtest A m

Time (s.) log. scale
T
[}

100 A

o
=N o o\ /\\),,,éwa
& o g~ Sy \8/ b

s o o e
MO W et N e o O B A et o .od
@O e oo \g\.—,c:\ &oﬂ‘)&o s

: . .
09 028 (08 50t oBP &
§ X 7 @20 e e

‘
5
RS

Fig. 5. Time spent by DGL in each stage.

C. Comparison With Existing Approaches

Compared with the methods evaluated in [22], the average
performance of DGS or DGL over the datasets also used in the
current work (78.3%) is similar to IKT (78.6%), KDE (78.1%),
genetic (79.7%), PSO (78.4%), and Bayesian (80%). IKT
spends 384 s in its largest training set (ijcnnl, Table III
in [22]), while DGL spends only 7.7 s (7, in Table VI).
DGL is faster than IKT due to: 1) the closed-form expression
in (10), faster than iterative minimization and not limited to
a predefined collection of y values; and 2) use of random
sampling instead of class prototypes in IKT. Thus, DGL comes
up to training sets of 8 million of patterns (kitsune), being
a step ahead to extend the standard SVM for large-scale
datasets. The FSVC [23] achieves kappa of 27.9% and 59.8%
spending 6015 and 599 s in datasets kit sune and hepmass,
respectively, while DGL achieves 77.4% and 66.8% spending
2793 and 1078 s, so DGL outperforms FSVC and is faster
in the first case. The indefinite core vector machine [27]
achieves kappa4 of 28.5%, 59.2%, and 73% with times 115.26,
170.36, and 88.0 s in datasets magic, nursery, and grid,
respectively, while DGL achieves 70%, 100%, and 98% with
times 1.4, 8.21, and 2.59 s in the same datasets, so DGL
outperforms ICVM and is much faster.

Table VII shows comparison of the test error and execu-
tion time 7, (or 77 when asterisk is present), of DGS (or
DGL with), and several related approaches referenced in
Section I on common datasets. Note that the experimental
methodology can be different to the current one, which
may lead to differences in performance. In general, DGS
achieves a test error similar to the competing approaches,
outperforming them in 13 of 26 datasets. Besides, DGS is
much faster, and the differences reach often several orders
of magnitude. In dataset ion, the Bat algorithm [10] spends
645.3 s while DGS spends 0.02 s, a large difference even
considering the difference in computing power since 2017.
In adult, dynamic PSO [7] achieved 15.55% error using
tenfold CV spending 5287 s, while DGL achieves 20.44%
using fourfold CV in 74.9 s. The DGS also compares well to

“https://www.techfak.uni-bielefeld.de/~fschleif/software.xhtml

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE VII

TEST ERROR (IN %) AND TIME 7> (* MEANS T}) oF DGS (" MEANS DGL)
AND OTHER APPROACHES IN THE LITERATURE

Approach DGS
Approach Dataset Error(%) 1> Error(%) 1>
Tharwat [10] |ion 2.1 645.3 7.1 0.02
Kapp [7] adult 1555 5287 | 20441 74.97
sat 8.06 6,355 8.8 1.64
Varewyck [16] | sat 8.19 77.47 8.8 1.64
Liu [18] ion 4.77 0.3* 7.1 0.004*
Liu [19] ijennl 1.83 43.46* | 2.48f 2.9%T
Xu [15] imseg 5.55 4.9 33 0.199
adult 1495 639.24 | 20441 74.9
ijennl 1.21 501.52 | 2.48% 7.7%
Lazaro [17] imseg 2.16 0.68* 33 0.089*
pima 2442 0.09* 23.7 0.009*
Zhang [8] imseg 2.88 155.35 33 0.199
Ding [20] australian 31.9 11.83 14.5 0.045
(RRBF) heart 22.25 1.33 14.8 0.012
ion 791 2.86 7.1 0.02
Chang [13] heart 23.3 0.1 14.8 0.012
(DML+M+IC) | ion 6.3 04 7.1 0.02
sonar 15.3 0.3 16.8 0.02
vehicle 234 1.4 16.3 0.057
voting 38.3 0.3 5.1 0.015
wdbc 4.0 0.7 6.0 0.031
wine 2.5 0.1 1.7 0.005
Wang [14] derm 3.53 44.56 3.0 0.055
(Criterion TI, vehicle 24.11 95.71 16.3 0.057
Elips. GRBE, | sat 9.85 962.87 8.8 1.64
dag) usps 4.93 - 0.6 5.752

nearest enemy [17], calculating y about ten times faster with
similar error. Differential evolution [8] is almost three orders
slower than DGS (155.35 versus 0.199 s), and the random
RBF SVM [20] gets more error than DGS being two orders
slower. Overall, DGS and DGL are between one and three
orders faster than the existing approaches with performances
similar to or higher than the state-of-the-art, confirming the
value of DGT.

IV. CONCLUSION

We propose a method to calculate the inverse y of the
double squared RBF kernel spread o for the SVM directly
from training data in classification problems. The DGT for
small (DGS) or large (DGL) datasets uses a closed-form
expression that only requires the average distance between
training patterns. This expression is an approximated ana-
Iytical solution for the minimization of the mean squared
difference D(y) between the RBF and ideal kernel matrices.
It avoids to repeat the calculation of D(y) for different y
values, as in our previous approach IKT [22], being two
orders of magnitude faster with similar performance. In a
collection of 30 small size datasets, the SVM with y tuned by
DGS is very efficient, one order of magnitude faster than GS
and D-minimization (DMS), equivalent to IKT, and achieves
kappa (79.5% on average) virtually equal to DMS and GS
(80.4% and 80.1%, respectively). In large datasets, both the
calculation of the distances between patterns required by
the y estimation and SVM training become slow, so DGL

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

performs a random sampling of the training set both for
distance calculation and SVM training. The experiments prove
that a small distance matrix, with a low number of randomly
sampled training patterns, is enough for an accurate estimation
of y. The performance of DGL (62.6%) on 20 large-scale
datasets up to 31 million of patterns clearly outperforms the
linear kernel SVM (35.8%), which fails in the largest datasets,
with statistical significance. Besides, DGL also outperforms
D-minimization (DML), equivalent to IKT with random sam-
pling, which achieves kappa of 59.6%. On average, DGL is
907 times (two to three orders) faster than DML and even three
times faster than LSVM, which is specially suited for large
datasets. These results prove that the proposed analytical for-
mula for y always achieves the optimal value and, combined
with random sampling of the training set, allows to extend
the SVM with RBF kernel to arbitrary large classification
problems. Future work includes to generalize the proposed
method to other nonlinear kernels, such as polynomial or
sigmoid, with one or even two tunable parameters.

REFERENCES

[1] M. M. Ferndndez-Delgado, E. Cernadas, S. Barro, and D. Amorim,
“Do we need hundreds of classifiers to solve real world classification
problems?” J. Mach. Learn. Res., vol. 15, pp. 3133-3181, Jan. 2014.

[2] J. Bergstra and Y. Bengio, “Random search for hyper-parameter opti-
mization,” J. Mach. Learn. Res., vol. 13, pp. 281-305, Feb. 2012.

[3] M. Choi and J. J. Jeong, “Comparison of selection criteria for model
selection of support vector machine on physiological data with inter-
subject variance,” Appl. Sci., vol. 12, no. 3, p. 1749, Feb. 2022.

[4] D. Anguita, A. Ghio, L. Oneto, and S. Ridella, “In-sample and out-
of-sample model selection and error estimation for support vector
machines,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 9,
pp. 1390-1406, Sep. 2012.

[5] F. Friedrichs and C. Igel, “Evolutionary tuning of multiple SVM
parameters,” Neurocomputing, vol. 64, pp. 107-117, Mar. 2005.

[6] M. Abbaszadeh, S. Soltani-Mohammadi, and A. N. Ahmed, “Opti-
mization of support vector machine parameters in modeling of Iju
deposit mineralization and alteration zones using particle swarm opti-
mization algorithm and grid search method,” Comput. Geosci., vol. 165,
Aug. 2022, Art. no. 105140.

[71 M. N. Kapp, R. Sabourin, and P. Maupin, “A dynamic model selection
strategy for support vector machine classifiers,” Appl. Soft Comput.,
vol. 12, no. 8, pp. 2550-2565, Aug. 2012.

[8] J. Zhang, A. Niu, K. Li, and G. Irwing, “Model selection in SVMs using
differential evolution,” in Proc. World Congr. Int. Fed. Automat. Control,
2011, pp. 14717-14722.

[9] C. E. D. S. Santos, R. C. Sampaio, L. D. S. Coelho, G. A. Bestard,
and C. H. Llanos, “Multi-objective adaptive differential evolution for
SVM/SVR hyperparameters selection,” Pattern Recognit., vol. 110,
Feb. 2021, Art. no. 107649.

[10] A. Tharwat, A. E. Hassanien, and B. E. Elnaghi, “A BA-based algorithm
for parameter optimization of support vector machine,” Pattern Recognit.
Lett., vol. 93, pp. 13-22, Jul. 2017.

[11] A. Tharwat and T. Gabel, “Parameters optimization of support vector
machines for imbalanced data using social ski driver algorithm,” Neural
Comput. Appl., vol. 32, no. 11, pp. 6925-6938, Jun. 2020.

[12] T. Glasmachers and C. Igel, “Maximum likelihood model selection
for 1-norm soft margin SVMs with multiple parameters,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 32, no. 8, pp. 1522-1528, Aug. 2010.

[13] C.-C. Chang and S.-H. Chou, “Tuning of the hyperparameters for
L2-loss SVMs with the RBF kernel by the maximum-margin princi-
ple and the jackknife technique,” Pattern Recognit., vol. 48, no. 12,
pp- 3983-3992, Dec. 2015.

[14] L. Wang, P. Xue, and K. L. Chan, “Two criteria for model selection in
multiclass support vector machines,” IEEE Trans. Syst., Man, Cybern., B,
Cybern., vol. 38, no. 6, pp. 1432-1448, Dec. 2008.

[15] Z. Xu, M. Dai, and D. Meng, “Fast and efficient strategies for model
selection of Gaussian support vector machine,” IEEE Trans. Syst., Man,
Cybern., B, Cybern., vol. 39, no. 5, pp. 1292-1307, Oct. 2009.

This article has been accepted for inclusion in a future issue of this journal

ISLA-CERNADAS et al.: CLOSED-FORM GAUSSIAN SPREAD ESTIMATION

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

M. Varewyck and J.-P. Martens, “A practical approach to model selection
for support vector machines with a Gaussian kernel,” IEEE Trans. Syst.,
Man, Cybern., B, Cybern., vol. 41, no. 2, pp. 330-340, Apr. 2011.

M. Lazaro-Gredilla, V. Goémez-Verdejo, and E. Parrado-Hernandez,
“Low-cost model selection for SVMs using local features,” Eng. Appl.
Artif. Intell., vol. 25, no. 6, pp. 1203-1211, Sep. 2012.

Z. Liu and H. Xu, “Kernel parameter selection for support vector
machine classification,” J. Algorithms Comput. Technol., vol. 8, no. 2,
pp. 163-177, Jun. 2014.

Z. Liu, M. Zuo, X. Zhao, and H. Xu, “An analytical approach to fast
parameter selection of Gaussian RBF kernel for support vector machine,”
J. Inf. Sci. Eng., vol. 31, no. 2, pp. 691-710, 2015.

X. Ding, J. Liu, F. Yang, and J. Cao, “Random radial basis function
kernel-based support vector machine,” J. Franklin Inst., vol. 358, no. 18,
pp. 10121-10140, Dec. 2021.

M. V. F. Menezes, L. C. B. Torres, and A. P. Braga, “Width optimization
of RBF kernels for binary classification of support vector machines:
A density estimation-based approach,” Pattern Recognit. Lett., vol. 128,
pp. 1-7, Dec. 2019.

Z. Akram-Ali-Hammouri, M. Fernindez-Delgado, A. Albtoush,
E. Cernadas, and S. Barro, “Ideal kernel tuning: Fast and scalable selec-
tion of the radial basis kernel spread for support vector classification,”
Neurocomputing, vol. 489, pp. 1-8, Jun. 2022.

Z. Akram-Ali-Hammouri, M. Ferndndez-Delgado, E. Cernadas, and
S. Barro, “Fast support vector classification for large-scale problems,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 6184-6195,
Oct. 2022.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp. 1-27,
Apr. 2011.

D. Dua and C. Graff. (2017). UCI Machine Learning Repository.
[Online]. Available: http://archive.ics.uci.edu/ml

R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin,
“LIBLINEAR: A library for large linear classification,” J. Mach. Learn.
Res., vol. 9, pp. 1871-1874, Jun. 2008.

F.-M. Schleif and P. Tino, “Indefinite core vector machine,” Pattern
Recognit., vol. 71, pp. 187-195, Nov. 2017.

Diego Isla-Cernadas was born in A Coruiia, Spain,
in 1981. He received the B.S. degree from the
Polithecnic University of Valencia, Valencia, Spain,
in 2011, and the M.S. degree in automatic and elec-
tronic engineering from the Polithecnic University of
Madrid, Madrid, Spain, in 2018. He is currently pur-
suing the Ph.D. degree in machine learning, neural
networks, and classification with the Centro Singu-
lar de Investigacion en Tecnoloxias Intelixentes da
USC (CiTIUS), Santiago de Compostela, Spain.

Manuel Fernandez-Delgado received the B.S.
degree in physics and the Ph.D. degree in computer
science from the University of Santiago de Com-
postela (USC), Santiago, Spain, in 1994 and 1999,
respectively.

He is a Lecturer of computer science and
researcher at Centro Singular de Investigacion en
Tecnoloxias Intelixentes da USC (CiTIUS), Santiago
de Compostela, Spain, with a focus on neural com-
putation, machine learning, and pattern recognition
of the CiTIUS.

. Content is final as presented, with the exception of pagination.

Eva Cernadas was born in A Corufia, Spain,
in 1969. She received the B.S. and Ph.D. degrees
in physics from the University of Santiago de Com-
postela (USC), Santiago, Spain, in 1992 and 1997,
respectively.

She is a Lecturer of computer science and
researcher at Centro Singular de Investigacion en
Tecnoloxias Intelixentes da USC (CiTIUS), Santiago
de Compostela, Spain, with a focus on computer
vision and machine learning, specially in food tech-
nology, medical, and biological domains.

Manisha S. Sirsat received the Ph.D. degree in
computer science from the University of Santiago
de Compostela (USC), Santiago, Spain, in 2017.

She is a Senior Researcher of machine learning
at the InnovPlantProtect, Elvds, Portugal. Her main
research area includes implementing artificial intelli-
gence for solving agriculture problems, and thus she
has applied classification and regression methods to
a wide variety of applications in agriculture.

Haitham Maarouf received the Ph.D. degree
(Hons.) in computer science from the University
of Santiago de Compostela (USC), Santiago, Spain,
in 2018.

He is a Post-Doctoral Researcher at Centro
Singular de Investigacién en Tecnoloxias Intelix-
entes da USC (CITIUS), Santiago de Compostela,
Spain, and a Researcher and System Analyst at
Plexus Tech, Santiago de Compostela. His research
interests include artificial intelligence, data sci-
ence, machine learning, knowledge representation,
biomedical ontologies, and terminologies.

Senén Barro was born in As Pontes de Garcia
Rodriguez, Spain, in 1962. He received the B.S.
and Ph.D. degrees in physics from the University
of Santiago de Compostela (USC), Santiago, Spain,
in 1985 and 1988, respectively.

He is a Full Professor of Computer Science at USC
in 1995. From 2002 to 2010, he was the Rector
at USC. He is currently the Scientific Director of
the Centro Singular de Investigacién en Tecnoloxias
Intelixentes da USC (CiTIUS), Santiago de Com-
postela, Spain. He has authored seven books and
more than 300 scientific papers in these fields.

