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Real-World Light Field Image Super-Resolution
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Abstract— Recent years have witnessed the great advances of
deep neural networks (DNNs) in light field (LF) image super-
resolution (SR). However, existing DNN-based LF image SR
methods are developed on a single fixed degradation (e.g., bicubic
downsampling), and thus cannot be applied to super-resolve real
LF images with diverse degradation. In this article, we propose
a simple yet effective method for real-world LF image SR.
In our method, a practical LF degradation model is developed
to formulate the degradation process of real LF images. Then,
a convolutional neural network is designed to incorporate the
degradation prior into the SR process. By training on LF images
using our formulated degradation, our network can learn to
modulate different degradation while incorporating both spatial
and angular information in LF images. Extensive experiments
on both synthetically degraded and real-world LF images
demonstrate the effectiveness of our method. Compared with
existing state-of-the-art single and LF image SR methods, our
method achieves superior SR performance under a wide range
of degradation, and generalizes better to real LF images. Codes
and models are available at https://yingqianwang.github.io/LF-
DMnet/.

Index Terms— Degradation modulation, dynamic convolution,
image super-resolution (SR), light field (LF).

I. INTRODUCTION

L IGHT field (LF) cameras record both intensity and
direction of light rays, and enable many applications such

as refocusing [1], depth estimation [2], [3], [4], and view
rendering [5], [6], [7]. Since high-resolution (HR) LF images
are beneficial to various applications but are generally obtained
at an expensive cost, it is necessary to reconstruct HR LF
images from low-resolution (LR) LF images, i.e., to achieve
LF image super-resolution (SR).

In the past decade, deep neural networks (DNNs) have
been successfully applied to LF image SR and achieved
significant progress [8], [9], [10], [11], [12]. In the area of
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Fig. 1. Visual results achieved by DASR [31], DistgSSR [27], and our method
on real LF images for 4 × SR. Scenes ISO_Chart from the EPFL dataset [32]
and general_11 from the STFlytro dataset [33] are used for comparison.

LF image SR, many networks [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30] were developed to improve SR accuracy. However,
real-world LF image SR has remained under investigated
due to the following two reasons. First, it is challenging
to develop an LF image SR model that can handle real-
world degradation. Real-world LF images suffer from diverse
degradation which varies with both imaging devices (e.g.,
Lytro or RayTrix cameras) and shot conditions (e.g., scene
depth, focal length, and illuminance). However, existing LF
image SR methods focus on the design of network architecture,
and develop models on the simple bicubic downsampling
degradation. Consequently, these methods suffer a notable
performance drop when applied to real LF images. Second,
it is challenging to simultaneously utilize the degradation
information while incorporating the complementary angular
information. Existing methods generally achieve real-world SR
on single images (i.e., ignore the view-wise correlation), and
thus cannot achieve satisfactory performance on LF image SR.

In this article, we propose a simple yet effective method for
real-world LF image SR. In our method, we first formulate
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a practical degradation model to approximate the degradation
process of real LF images, and then develop a convolutional
neural network to super-resolve LF images with diverse and
real degradation. To incorporate the degradation prior into
the SR process, we design a degradation-modulating convo-
lution (DM-Conv) whose weights are dynamically generated
according to the degradation representation. By integrating the
proposed DM-Conv with the disentangling mechanism [27],
our network (namely, LF-DMnet) can well incorporate spatial
and angular information under diverse degradation. As shown
in Fig. 1, compared with DistgSSR [27] and DASR [31], our
method achieves better performance on real LF images and
generates images with more clear details and fewer artifacts.

The contributions of this work are summarized as follows.
1) We propose a practical LF degradation model to handle

the real-world LF image SR problem. Different from
existing works which focus on the advanced network
designs, we first address the importance of degradation
formulation and modulation in LF image SR.

2) We propose a degradation-modulating network (i.e., LF-
DMnet) to incorporate the degradation prior into the SR
process. Extensive ablation studies and model analyses
validate the effectiveness of our degradation modulation
mechanism.

3) Our method achieves state-of-the-art SR performance
on both synthetic and real-world degradation, which not
only provides a simple yet strong baseline, but also takes
a step toward practical real-world LF image SR.

The rest of this article is organized as follows. In Section II,
we briefly review the related works. In Section III, we describe
our degradation model for LF image SR. In Section IV,
we introduce the details and design thoughts of our LF-DMnet.
Experimental results are presented in Section V. Finally,
we conclude this article in Section VI.

II. RELATED WORK

In this section, we briefly review several major works for
DNN-based single image SR and LF image SR.

A. Single Image Super-Resolution

The goal of single image SR is to reconstruct an
HR image from its LR version. According to different
degradation settings, existing single image SR methods can
be roughly categorized to single degradation-based methods
and multidegradation-based methods.

Early works on DNN-based single image SR are generally
developed on a single and fixed degradation (e.g., bicubic
downsampling). Dong et al. [34] first applied convolution
neural networks to image SR and developed a three-layer
network named SRCNN. Although SRCNN is shallow and
lightweight, it outperforms many traditional SR methods [35],
[36], [37], [38]. Since then, deep networks have dominated
the SR area and achieved continuously improved accuracy
with large models and complex architectures. Kim et al. [39]
applied global residual learning strategy to image SR and
developed a 20-layer network called VDSR. Lim et al. [40]
proposed an enhanced deep SR (EDSR) network by using

both global and local residual connections. Zhang et al. [41]
combined residual learning with dense connection to build
a residual dense network with more than 100 layers.
Subsequently, Zhang et al. [42] developed a very deep network
in a residual-in-residual architecture to achieve competitive SR
accuracy. More recently, attention mechanism [43], [44], [45]
and Transformer architectures [46], [47] have been extensively
studied to achieve state-of-the-art SR performance.

Although the aforementioned methods have achieved
continuously improved SR performance, they are designed
for a single fixed degradation (e.g., bicubic downsampling)
and will suffer from a significant performance drop when
the degradation differs from the assumed one. Consequently,
many methods have been proposed to achieve image SR
with multiple various degradation [48]. Zhang et al. [49]
proposed an SRMD network where the degradation map was
concatenated with the LR image as the input of the DNN.
Subsequently, Xu et al. [50] applied dynamic convolutions
to achieve better SR performance than SRMD. In [51],
an unfolding SR network was developed to handle different
degradation by alternately solving a data subproblem and a
prior subproblem. Gu et al. [52] proposed an iterative kernel
correction method (namely, IKC) to correct the estimated
degradation by observing previous SR results. More recently,
Wang et al. [31] achieved degradation representation learning
in a contrastive manner and developed a degradation-aware SR
network named DASR for real-world single image SR.

B. LF Image Super-Resolution

The goal of LF image SR is to super-resolve each
subaperture image (SAI) of an LF. A straightforward scheme
to achieve LF image SR is applying single image SR
methods to each SAI independently. However, this scheme
cannot achieve a good performance since the complementary
angular information among different views is not considered.
Consequently, existing LF image SR methods focus on
designing advanced network architectures to fully use both
spatial and angular information.

Yoon et al. [13] proposed the first DNN-based method
called LFCNN to enhance both spatial and angular resolution
of an LF. In their method, SAIs are first super-resolved
using SRCNN [34], and then finetuned in pairs or quads to
incorporate angular information. Wang et al. [15] proposed a
bidirectional recurrent network for LF image SR, in which the
angular information in adjacent horizontal and vertical views
was incorporated in a recurrent manner. Zhang et al. [19]
proposed a multibranch residual network to incorporate the
multidirectional epipolar geometry prior for LF image SR.
In their subsequent work MEG-Net [23], the SR performance
was further improved by applying 3-D convolutions to SAI
stacks of different angular directions. Jin et al. [20] developed
an all-to-one method for LF image SR, and performed
structural consistency regularization to preserve the LF
parallax structure. Wang et al. [21] developed an LF-InterNet
to repetitively interact spatial and angular information for LF
image SR, and then generalized the spatial-angular interaction
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Fig. 2. Illustration of the camera imaging process. (a) Camera imaging model. (b) Image on the sensors.

mechanism to the disentangling mechanism [27] to achieve
state-of-the-art SR accuracy.

More recently, Wang et al. [22] used deformable con-
volutions [53], [54] to address the disparity problem in
LF image SR. Cheng et al. [24] proposed a zero-shot
learning scheme to handle the domain gap among different
LF datasets. Liang et al. [29] proposed a Transformer-based
LF image SR network, in which a spatial Transformer and
an angular Transformer were designed to model long range
spatial dependencies and angular correlation, respectively.
Wang et al. [28] proposed a detail-preserving Transformer
to exploit nonlocal context information and preserve details
for LF image SR. Heber et al. [30] investigated the nonlocal
spatial-angular correlations in LF image SR, and developed
a Transformer-based network called EPIT to achieve state-of-
the-art SR performance.

Although remarkable progress have been achieved in LF
image SR, existing methods only focus on the advanced
network design but ignored the generalization capability to
real-world degradation. In this article, we handle the real-
world LF image SR problem by formulating a practical LF
degradation model and designing a degradation-modulating
network.

III. LF IMAGE DEGRADATION FORMULATION

In this section, we formulate a general and practical degra-
dation model for real-world LF image SR. In Section III-A,
we analyze the camera imaging process and derive the image
degradation model. In Section III-B, we extend the degradation
model to 4-D LF images to build the LF image degradation
model, and discuss its key components. In Section III-C,
we compare the differences between our method and existing
SR methods.

A. Degradation Formulation

In this section, we first formulate the camera imaging
process considering three key factors including point spread
function (PSF), sensor sampling, and additional noise. Then,
we derive the image degradation model based on the
formulated camera imaging process.

Fig. 2 shows a toy example of the camera imaging process,
in which the light rays are first projected onto the sensor plane
[as shown in Fig. 2(a)], and then sampled by the sensor units
[as shown in Fig. 2(b)]. Let Ireal : (x, y) → R be the real
image (a 2-D continuous function) on the sensor plane, kpsf
be the PSF of the camera imaging system,1 Iideal : (x, y) →

R be the “ideal” image (a 2-D continuous function) without
considering the point spread process. According to the camera
imaging process, the “real” image is obtained by convolving
the “ideal” image with the PSF, i.e.,

Ireal(x, y) =

∫
+∞

−∞

∫
+∞

−∞

kpsf(u, v)

· Iideal(x − u, y − v) dudv (1)

which can be denoted as

Ireal = Iideal ⊗ kpsf (2)

where ⊗ represents the convolution operation. Assume that
the size of each sensor unit is ϵ × ϵ, the sampling process on
the sensor unit (h, w) can be formulated as

ILR(h, w) =

∫ h+
ϵ
2

h−
ϵ
2

∫ w+
ϵ
2

w−
ϵ
2

Ireal(x, y)dxdy +N (h, w) (3)

where ILR ∈ RH×W is the output of the sensor (i.e., a digital
image). Here, we introduce [·]ϵ to denote the sampling process
with a sampling grid of ϵ × ϵ. Then, (3) can be rewritten as

ILR = [Ireal]ϵ +N (4)

where N ∈ RH×W represents random noise in the imaging
process.

In image SR task, it is expected to reconstruct (or estimate)
the ideal image function Iideal from the observed LR image
ILR. Since continuous 2-D image function needs to be
presented via a digital image, we further introduce HR image
IHR ∈ RαH×αW to quantize Iideal, i.e.,

IHR = [Iideal] ϵ
α

(5)

where α is defined as the upsampling factor. From (5), we can
consider that the HR image is obtained by sampling the

1According to the signal processing theory, PSF can be considered as the
unit impulse response of the camera imaging system.
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ideal image Iideal with smaller interval (ϵ/α) × (ϵ/α). Here,
we introduce a downsampling operator (·)↓α

to build the
relationship between LR image and its HR version, i.e.,

[I]ϵ =

(
[I] ϵ

α

)
↓α

, I = Iideal or Ireal. (6)

Substitute (2) and (6) into (4), we can obtain

ILR =

([
Iideal ⊗ kpsf

]
ϵ
α

)
↓α

+N . (7)

According to the commutative law of convolution and
sampling (see Appendix2 for prove), there is[

Iideal ⊗ kpsf
]

ϵ
α

= [Iideal] ϵ
α

⊗ kpsf. (8)

When we substitute (8) into (7), we can obtain the image
degradation model as

ILR = (IHR ⊗ k)↓α
+N . (9)

The above degradation model can be considered as a process
in which the real observed LR image is obtained by blurring,
downsampling and adding noise on the HR image. In
Section III-B, we will apply the degradation model to 4-D
LFs to formulate our LF image degradation model.

B. LF Image Degradation Model

We use the two-plane model [55] to parameterize 4-D
LF as L ∈ RU×V ×H×W , where U and V represent angular
dimensions, H and W represent spatial dimensions. Since
this article focuses on enhancing the spatial resolution of LFs,
we use the SAI representation in [27] to describe our method.
That is, an LF can be considered as a U × V array of SAIs,
and each SAI has a spatial size of H × W .

Here, we extend our degradation model [i.e., (9)] to 4-D
LFs and build the LF image degradation model as

I lr
u,v =

(
Ihr

u,v ⊗ ku,v

)
↓α +Nu,v (10)

where I lr
u,v ∈ RH×W×3 denotes the input LR SAI of view

(u, v), and Ihr
u,v ∈ RαH×αW×3 denotes the corresponding HR

SAI. ku,v ∈ R21×21 and Nu,v ∈ RH×W×3 represent the blur
kernel and additional noise of view (u, v), respectively. In the
following text, we introduce the details of the three key
components (i.e., blur kernel, noise, and downsamping) of our
LF image degradation model.

1) Blur Kernel: We follow existing works [49], [52] to
use the isotropic Gaussian kernel parameterized by kernel
width to synthesize blurring LF images. Note that, although
anisotropic kernels (e.g., anisotropic Gaussian blur and motion
blur) are also used in recent single image SR methods [31],
[51], [56], [57], [58] for degradation modeling, we do not
consider these blur kernels in our method because under
LF structures, the rotation angle of the anisotropic Gaussian
kernel and the trajectory of the motion blur of each SAI
should be different but correlated. The formulation of these
anisotropic blur kernels depends on the 6-D pose changing of
LF cameras, and belongs to the LF deblurring task [59], [60],
[61]. As demonstrated in Section V-B2, based on the isotropic
Gaussian blur assumption, our method can achieve promising
SR performance on real LF images.

2https://yingqianwang.github.io/LF-DMnet/Appendix.pdf

2) Noise: Real-world LF images (especially those captured
by Lytro cameras) generally have large noise. Directly super-
resolving noisy LF images without performing noise reduction
can result in visually unpleasant artifacts (see Section V-D2).
In this article, we consider the simple channel-independent
additive white Gaussian noise in our degradation process. Each
element in the noise tensor N ∈ RH×W×3 is a random variable
with a mean value of 0 and an adjustable standard deviation
(i.e., noise level). It is demonstrated in Section V-D2 that,
when the noise term is considered in our degradation model,
the super-resolved images are more smooth and clean with
less noise residual and ringing artifacts.

3) Downsampling: We adopt the widely used bicubic
downsampling approach in our method. In this way, our
degradation model can be degeneralized to a standard bicubic
downsampling degradation when the kernel width and noise
level equal to zero. Note that, different from blur kernel
and noise level which can vary in the training phase, the
downsampling approach is assumed to be fixed.

C. Comparison to Existing Works

1) Compared to Existing LF Image SR Methods: Compared
to existing LF image SR methods [19], [20], [21], [22], [23],
[27], [28], [29] which use the bicubic downsampling approach
to produce LR LF images, our method adopts a more practical
degradation model [i.e., (10)] since the blur kernel and noise
level in our model can be adjusted in the training phase to
enlarge the degradation space. It is shown in Section V-B2
that our LF-DMnet trained with this degradation model can
achieve promising SR performance on real LF images, which
demonstrates that our proposed degradation model can well
cover the real-world degradation of LF images.

2) Compared to More Complex Synthetic Degradation: It
is also worth noting that several recent works for single image
SR [62], [63] designed very complex degradation models to
train deep networks for real-world SR. In these methods,
various kinds of blur, noise, and downsampling schemes were
considered, and the order of these degradation elements (also
including JPEG compression) were randomly shuffled to cover
as much real-world degradation as possible. Although these
methods [62], [63] achieve favorable visual performance on
real-world images, we do not consider designing such a
complex degradation model in this article because of the
following three reasons. First, single images are generally
captured by various cameras and transmitted multiple times
on internet, and thus go through complex and high-order
degradation [63]. In contrast, LF images are captured by a few
kinds of imaging devices (e.g., Lytro or RayTrix), and saved to
specific file formats that do not go through JPEG compression.
Consequently, the degradation space of LF images is smaller
than that of single images. Second, abundant high-quality HR
images and diverse scenarios are required to train a network
to fit such complex degradation. Networks in [62] and [63]
were trained on multiple large-scale single image datasets [64],
[65], [66], [67] with thousands of high-quality HR images.
In contrast, publicly available high-quality LF datasets are
limited in amount, spatial resolution, and scene diversity.
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Fig. 3. Overview of our LF-DMnet. (a) Overall architecture. (b) KPE module. (c) DM-block.

Consequently, it is difficult for an LF image SR network
to learn such complex degradation with insufficient training
samples. Third, as the first work to address LF image SR with
multiple degradation, we aim to demonstrate the importance
of degradation modulation to LF image SR, and propose a
simple yet effective solution to this problem. Consequently,
we do not make our degradation model over-complex.

IV. NETWORK ARCHITECTURE

A. Overview

Based on the degradation model in (10), we develop a
degradation-modulating network (LF-DMnet) that can super-
resolve LF images with various degradation. An overview
of our LF-DMnet is shown in Fig. 3(a). Given an array
of LR SAIs and their corresponding degradation (i.e.,
kernel width and noise level of each view), our LF-
DMnet sequentially performs kernel prior embedding (KPE),
degradation-modulated feature extraction, and upsampling.
Following [27], we build our network by cascading four
residual groups. In each residual group, a degradation-
modulating block (DM-Block) is designed to process features
according to the degradation, and four disentangling blocks
(Distg-Blocks) are used to achieve spatial-angular information
incorporation. The final output of our network is an array
of HR LF images. Note that, since most LF image SR
methods [16], [19], [20], [21], [22], [27], [29] use SAIs
distributed in a square array as their inputs, in this article,
we follow these methods and set U = V = A, where
A denotes the angular resolution. In the following sections,
we will introduce the details of our network design.

B. Kernel Prior Embedding

Handling image SR with multidegradation is more challeng-
ing than handling that with bicubic downsampling only, since
the solution space of the former one is much larger than the
latter one. In such case, incorporating kernel priors into the
SR process can constrain the solution space to a mainfold and

thus reduce the ill-posedness of the SR process [56]. Since
only isotropic Gaussian kernel (with different kernel widths)
is considered in our method, we designed a KPE module to
fully incorporate the kernel prior into the SR process.

In the KPE module, the isotropic Gaussian kernel
k ∈ R21×21 is first reconstructed according to the input
kernel width (i.e., the only undetermined coefficient). The
reconstructed kernel is then stretched into a 1-D tensor
vk ∈ R441×1 and fed to a multilayer perception (MLP) unit
with five fully connected (FC) layers to learn the internal
characteristics. The output of the MLP is a compact blur
representation with reduced dimensionality, i.e., vblur ∈ R15×1.
Finally, the generated blur representation is concatenated with
the noise level to produce the final degradation representation
vdg ∈ R16×1. It is demonstrated in Section V-C that the
proposed KPE module is beneficial to the SR performance.

C. Degradation-Modulating Block

DM-Block is designed to process image features based
on the given degradation. To achieve this goal, a simple
and straightforward scheme is to concatenate degradation
representation with image features and fuse them via convo-
lutions [49], [50]. However, as demonstrated in several recent
works [31], [52], directly convolving image features with
degradation representations can cause interference since there
is a domain gap between these two kinds of representations.
Motivated by the fact that images with different degradation
are generated by convolving the original high-quality image
using isotropic Gaussian kernel with different kernel widths,
in this article, we design a DM-Conv whose kernels are
dynamically generated according to the input degradation
representation.

Specifically, in each DM-Block, the degradation representa-
tion vdg is first fed to two FC layers to produce a convolutional
kernel w (with a size of 3 × 3 × 64 in this article). Then,
the input feature Finput is processed with DM-Conv (using
w) and another 1 × 1 convolution to generate F spa

mod. Note
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Fig. 4. Architecture of our modified Distg-Block.

that, we follow [31] to design our DM-Conv as a depth-
wise dynamic convolution, and use a channel attention layer
to reweight the output features based on the statistics of
both image feature (produced by performing average pooling
on F spa

mod) and degradation representation. Specifically, the
degradation representation vdg is passed to another two FC
layers and a Sigmoid activation layer to generate channel-
wise modulation coefficients, which are then used to rescale
different channels of F spa

mod, resulting in Fmod. Finally, Fmod
is summed up with Finput and F spa

mod to produce the output of
our DM-Block. It is demonstrated in Section V-C that our
method benefits from DM-Conv and degradation-modulating
channel attention, and can well handle LF images with various
degradation.

D. Disentangling Block

Although the proposed DM-Block can handle input images
with various degradation, it processes the image features of
different views separately without considering the interview
correlation. Since information both within a single view and
among different views is beneficial to the performance of LF
image SR, in this article, we modify the Distg-Block [27] to
incorporate multidimensional information for LF image SR.

Different from the Distg-Block in [27] where a series of
specifically designed convolutions (i.e., spatial, angular, and
epipolar feature extractors) are applied to a single macropixel
image (MacPI) feature, in this article, we organize LF features
into different shapes and apply plain convolutions to the
reshaped features. Our modified approach is equivalent to the
original design but is more simple and generic. Specifically,
considering both batch and channel dimensions, the input
feature of our Distg-Block can be denoted by F6−D

in ∈

RB×U×V ×C×H×W , where B, C , H , and W represent batch,
channel, height, and width, respectively, and U = V = A
represent angular resolution. As shown in Fig. 4, our Distg-
Block has a spatial branch, an angular branch and two EPI
branches (i.e., horizontal and vertical). In each branch, the
input feature is reshaped into a 4-D feature and then convolved
by several 2-D convolutions to achieve intra and interview
information incorporation.

By adopting Distg-Blocks, our method can incorporate the
beneficial spatial and angular information from the input LF to
achieve state-of-the-art SR performance. The effectiveness of
the Distg-Block for multidegraded LF image SR is validated
in Section V-C.

E. Discussion on the Nonblind SR Setting

Recent single image SR methods [31], [52], [56], [57]
generally adopt the blind SR settings, i.e., the “groundtruth”
degradation is unknown for the SR networks. That is because,
compared to nonblind SR methods [49], [50], [51], [58] where
the degradation is also required as the input, blind SR is more
practical since the real-world degradation is generally difficult
to obtain.

However, in this article, we adopt the nonblind SR settings
as in [49], and take both degraded LF images and their
degradation (blur kernel width and noise level) as inputs of
our network. Reasons are in three folds. First, performing
nonblind SR helps us to better investigate the impact of input
degradation to the SR performance, which has not been studied
in LF image SR. Since the kernel width and noise level
are independently fed to our network, performing nonblind
SR can help us decouple different degradation elements and
investigate their influence, respectively, as demonstrated in
Section V-D. Second, performing nonblind SR helps us to
explore the upper bound of blind SR because the groundtruth
degradation information can be used as an accurate prior in
nonblind SR. As the first work to achieve LF image SR with
multidegradation, one of the major contributions of this article
is to break the limitation of single fixed degradation and show
the great potential and practical values of multidegraded LF
image SR. To this end, nonblind SR is purer and more suitable
than blind SR. Third, since the proposed degradation model
has only two underdetermined coefficients, we can easily find
a proper input degradation by observing the super-resolved
images to correct the input degradation, or adopting a grid
search strategy [49] to traverse kernel widths and noise levels
in a reasonable range, as described in Section V-D2.

V. EXPERIMENTS

In this section, we first introduce the datasets and
implementation details, then compare our network to several
state-of-the-art SR methods. Finally, we conduct ablation
studies to investigate our design choices and further analyze
the impact of the input kernel widths and noise levels.

A. Datasets and Implementation Details

Our method was trained and validated on synthetically
degraded LFs generated according to (10), and further
tested on real LFs captured by Lytro Illum and Raytrix
cameras. For training and validation, three public LF datasets
including HCInew [68], HCIold [69], and STFgantry [70]
were adopted. The division of training and validation set
was kept identical to that in [22], [27], [28], [29]. To test
the generalization capability of our method to real-world
degradation, three public LF datasets (i.e., EPFL [32],
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TABLE I

PSNR AND SSIM RESULTS ACHIEVED BY DIFFERENT METHODS ON THE HCINEW [68], HCIOLD [69], AND STFGANTRY [70] DATASETS UNDER
SYNTHETIC DEGRADATION (WITH DIFFERENT BLUR KERNEL WIDTHS AND NOISE LEVELS) FOR 4 × SR. NOTE THAT, THE DEGRADATION

DEGENERATES TO THE BICUBIC DOWNSAMPLING DEGRADATION WHEN KERNEL WIDTH AND NOISE LEVEL EQUAL TO 0. BEST RESULTS
ARE IN BOLD FACES AND THE SECOND BEST RESULTS ARE UNDERLINED

INRIA [71], and STFlytro [33]) developed with Lytro cameras
and a dataset [72] developed with a Raytrix camera were used
as our test sets. Totally 39, 8, and 26 scenes were used for
training, validation, and test in this article, respectively.

The LFs in the HCInew [68], HCIold [69], STFgantry [70],
EPFL [32], INRIA [71], and STFlytro [33] datasets have
an angular resolution of 9 × 9, and the LFs in the Raytrix
dataset [72] have an angular resolution of 5 × 5. For LFs
with an angular resolution of 9 × 9, we followed the existing
works [21], [22], [27], [28], [29] to use the central 5 × 5
SAIs in our experiments. In the training phase, we cropped
HR SAIs into patches of size 152 × 152 with a stride of 32,
and used the proposed degradation model to synthesize LR
SAI patches of size 38 × 38.3 We followed [31], [52] to set
the window size of the isotropic Gaussian kernel to 21 × 21,
and followed [49] to randomly sample the kernel width and
noise level from range [0, 4] and [0, 75], respectively. Note
that, to avoid boundary effect caused by Gaussian filtering,
only central 128 × 128 region of the HR patches and their
corresponding 32 × 32 LR patches were used for training.
We performed random horizontal flipping, vertical flipping,

3Following [62], [63], we only consider 4 × SR in this article.

90◦ rotation, and RGB channel shuffling to augment the
training data by 48×. Note that, the spatial and angular
dimension need to be flipped or rotated jointly to maintain
LF structures.

Our network was trained using the L1 loss and optimized
using the Adam method [73] with β1 = 0.9, β2 = 0.999 and a
batch size of 8. Our LF-DMnet was implemented in PyTorch
on a PC with two NVidia RTX 2080Ti GPUs. The learning
rate was initially set to 2 × 10−4 and decreased by a factor
of 0.5 for every 3 × 104 iterations. The training was stopped
after 105 iterations.

Following [31], [49], [52], we used PSNR and SSIM
calculated on the RGB channel images as quantitative metrics
for validation. To obtain the metric score (e.g., PSNR) for a
dataset with M scenes (each scene has an angular resolution
of A × A), we first calculated the metric on A × A SAIs on
each scene separately, then obtained the score for each scene
by averaging its A2 scores, and finally obtained the score for
this dataset by averaging the scores of all M scenes.

B. Comparisons With State-of-the-Art Methods

In this section, we compare our method to the following
state-of-the-art SR methods.
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Fig. 5. Visual results achieved by different methods on synthetically degraded LFs (kernel width = 1.5, noise level = 15) for 4 × SR. The super-resolved
center view images and horizontal EPIs are shown. The PSNR and SSIM scores on the presented scenes are reported below the zoom-in regions.

1) DistgSSR [27] and LFT [29]: Two top-performing
LF image SR methods developed on the bicubic
downsampling degradation.

2) SRMD [49]: A popular nonblind single image SR
method developed on isotropic Gaussian blur and
Gaussian noise degradation.

3) DASR [31]: A state-of-the-art blind single image SR
method developed on anisotropic Gaussian blur and
Gaussian noise degradation.

4) BSRGAN [62] and Real-ESRGAN [63]: Two recent
real-world single image SR methods developed on the
complex synthetic degradation.

Besides the aforementioned compared methods, we also
include bicubic upsampling method to produce baseline
results.

1) Results on Synthetically Degraded LFs: Table I shows
the quantitative PSNR and SSIM results achieved by different
methods under synthetic degradation with different blur and
noise levels. It can be observed that DistgSSR and LFT
produce the top-2 highest PSNR and SSIM results under the
bicubic downsampling degradation (i.e., kernel width = 0,
noise level = 0), but suffer from significant performance drop
when the kernel width and noise level are larger than zero.
This demonstrates that existing LF image SR methods trained
on the noise-free bicubic downsampling degradation cannot
generalize well to other degradation.

SRMD and DASR achieves much better performance than
DistgSSR and LFT on blurry and noisy scenes since these two
methods are designed for multidegraded image SR. Note that,
SRMD is benefited from the input ground-truth degradation
and thus slightly outperforms DASR. It can be also observed
that the PSNR and SSIM values produced by BSRNet and
Real-ESRNet are lower than SRMD and DASR. That is
because, the degradation space in BSRNet and Real-ESRNet

are much larger, so that the capability of these two methods
in handling specific degradation is less powerful. It is worth
noting that these single image SR methods only use spatial
context information within single views for SR but overlook
the correlations among different views, resulting in inferior
SR performance and the angular inconsistency issue (see
Section V-B3).

Compared to these state-of-the-art single and LF image
SR methods, our LF-DMnet can simultaneously incorporate
the complementary angular information and adapt to different
degradation, and thus achieves the best PSNR and SSIM
results on both in-distribution degradation and out-of-
distribution (e.g., kernel width = 4.5 or noise level = 90)
degradation except for the noise-free bicubic downsampling
one. The benefits of angular information and degradation
adaption are further analyzed in Section V-C. Fig. 5 shows the
visual results produced by different methods with blur kernel
width and noise level being set to 1.5 and 15, respectively.
It can be observed that our LF-DMnet can recover faithful
details from the blurry and noisy input LFs.

2) Results on Real LFs: We test the practical values of
different SR methods by directly applying them to LFs
captured by Lytro and Raytrix cameras. Since the groundtruth
HR images of the input LFs are unavailable, we compare the
visual results produced by different methods in Figs. 6 and 7.
It can be observed that the image quality of the input LFs
is low since the bicubically upsampled images are blurry
and noisy. DistgSSR and LFT augment the input noise and
produce results with artifacts (see Fig. 6) or blurring details
(see Fig. 7). This demonstrates that methods developed on the
fixed bicubic downsampling degradation cannot handle real-
world degradation and thus have limited practical values.

Although SRMD, DASR, BSRGAN, and Real-ESRGAN
are specifically designed to handle image SR with multiple
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Fig. 6. Visual results achieved by different methods on real LFs captured by Lytro Illum cameras for 4 × SR. Scenes Hublais from the INRIA dataset [71]
and general_11 from the STFlytro dataset [33] are used as example scenes for comparison. The super-resolved center view images and horizontal EPIs are
shown. For SRMD and our method, the input blur kernel width and noise level are set to 2 and 30, respectively. Groundtruth HR images are unavailable in
this case.

Fig. 7. Visual results achieved by different methods on real LFs captured by a Raytrix camera for 4 × SR. Scenes boxer from the dataset in [72] is used as
an example scene for comparison. The super-resolved center view images and horizontal EPIs are shown. For SRMD and our method, the input blur kernel
width and noise level are set to 4 and 60, respectively. Ground-truth HR images are unavailable in this case.

degradation, these methods do not consider interview
correlation and ignore the beneficial angular information.
Consequently, these single image SR methods suffer
from noise residual (e.g., see the results of DASR in
Figs. 6 and 7), oversmoothness (e.g., see the results of SRMD
in Figs. 6 and 7), and angular inconsistency (e.g., see the
results of BSRGAN and Real-ESRGAN in Fig. 7) issues.

Compared to existing methods, our method achieves the best
SR performance on real LFs, i.e., the results produced by our
method have finer details (e.g., the words and characters in
scene general_11) and less artifacts. This demonstrates that

our network trained on the proposed degradation model can
effectively handle real LF image SR problem. Readers are
referred to the videos4 to view more visual SR results on real
LFs.

3) Angular Consistency: Since LF image SR methods are
required to preserve the LF parallax structure and generate
angular-consistent HR LF images, we evaluate the angular
consistency of different SR methods by visualizing their EPI
slices. As shown below the zoom-in regions in Figs. 5–7,

4https://github.com/YingqianWang/LF-DMnet/blob/main/demo_videos.md
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TABLE II
COMPARISONS OF THE NUMBER OF PARAMETERS (#PARAM.), FLOPS,

AND RUNNING TIME FOR 4 × SR. NOTE THAT, FLOPS AND
RUNNING TIME ARE CALCULATED ON AN INPUT LF WITH AN

ANGULAR RESOLUTION OF 5 × 5 AND A SPATIAL RESOLUTION
OF 32 × 32. PSNR AND SSIM SCORES ARE AVERAGED

OVER NINE DEGRADATION (Kernel Width = (0, 1.5, 3),
Noise Level = (0, 15, 50)) IN TABLE I. BEST RESULTS

ARE IN BOLD FACES

our LF-DMnet can generate more straight and clear line
patterns than other SR methods on both synthetic and real-
world degradation, which demonstrates that the LF parallax
structure is well preserved by our method. Readers can refer
to this video5 for a visual comparison of angular consistency.

4) Efficiency: We compare our LF-DMnet to existing SR
methods in terms of the number of parameters, FLOPs, and
running time. As shown in Table II, our LF-DMnet has a
moderate model size which is slightly larger than DistgSSR
due to the additional KPE branch and the DM-Blocks. Note
that, these additional 0.27M parameters only result in a 0.52G
and 0.002 s increase in FLOPs and running time, respectively.
Compared to DASR, BSRNet (i.e., BSRGAN), and Real-
ESRNet (i.e., Real-ESRGAN), our method has significantly
smaller model size, lower FLOPs, and shorter running time.
These results demonstrate the efficiency of our method.

C. Ablation Study

In this section, we investigate the effectiveness of our
proposed modules and design choices by comparing our LF-
DMnet with the following variants.

1) Model 1: We introduce a baseline model by removing
the DM-Block and the angular and EPI branches in
the Distg-Block. Consequently, this variant is equivalent
to a plain single image SR network that neither
performs degradation modulation nor incorporates
angular information. Note that, we increase the number
of convolution layers in this variant to make its model
size not smaller than our LF-DMnet.

2) Model 2: We investigate the effectiveness of our
DM-Conv by replacing it with a depth-wise 3 × 3 con-
volution and a vanilla 3 × 3 convolution. Distg-Block
is maintained in this variant to incorporate angular
information. Note that, the KPE module is also removed
since vanilla convolutions do not take degradation as
their input. This variant can be considered as an LF
image SR method without degradation modulation (e.g.,
DistgSSR) retrained on our proposed degradation model.

3) Model 3: In this variant, we remove the angular and
EPI branches in the Distg-Block and adopt the same

5https://wyqdatabase.s3.us-west-1.amazonaws.com/LF-DMnet.mp4

strategy as in Model 1 to make the model size of
this variant not smaller than our LF-DMnet. Since
this model only incorporates intraview information to
achieve degradation-modulated SR, it can be considered
as a nonblind single image SR method, and the benefits
of the angular information to real-world LF image SR
can be validated.

4) Model 4: We modify the KPE module in this variant to
investigate the effectiveness of KPE. Specifically, we do
not perform isotropic Gaussian kernel reconstruction
but directly fed the blur kernel width to a five-layer
MLP to generate the blur degradation representation.
Consequently, the isotropic Gaussian kernel prior cannot
be incorporated by this variant.

5) Model 5: In this variant, we remove the degradation-
modulating channel attention layer (i.e., DM-CA) from
the DM-Block to investigate the benefits of channel-wise
degradation modulation.

1) Degradation-Modulating Convolution: As the core com-
ponent of our LF-DMnet, DM-Conv can adapt image features
to the given degradation and thus enhances the capability to
handle different degradation. As shown in Table III, without
using DM-Conv, Model 2 suffers from a 1.61 dB decrease in
average PSNR as compared to LF-DMnet. This is because,
different degradation have different spatial characteristics (as
analyzed in Section IV-C) and cannot be well handled via fixed
convolution kernels. In contrast, our DM-Conv dynamically
generates convolutional kernels conditioned on the input
degradation to recover the degraded image features, and thus
achieves higher PSNR values on a wide range of synthetic
degradation. Moreover, we visualize the kernels of our DM-
Convs (averaged along the channel dimension) with different
input blur and noise levels. As shown in Fig. 8, all the four
DM-Convs learn different kernel patterns for different input
degradation, and the kernel intensity also varies at different
network stages. The above quantitative and visualization
results demonstrate the effectiveness of our DM-Conv.

2) Angular Information: The major difference between our
LF-DMnet and nonblind single image SR methods (e.g.,
SRMD) is the incorporation of the angular information.
As shown in Table III, when the angular information is not
used (i.e., Model 3), the average PSNR value suffers a 2.25 dB
drop. This performance gap is also consistent with the gap
between SRMD and our method in Table II. This clearly
demonstrates that the complementary interview correlation is
crucial for real-world LF image SR.

3) Kernel Prior Embedding: It can be observed in Table III
that Model 4 without KPE suffers a 0.22 dB decrease in
PSNR as compared to our LF-DMnet, and the PSNR drop is
more significant on noise-free scenes. That is because, without
KPE, our network has to search for the best degradation
kernel to recover the degraded image features. Since we adopt
the isotropic Gaussian kernel as the blur kernel for synthetic
degradation, KPE can help our network to reduce the searching
space and thus facilitates our network to learn more accurate
kernel representations.

4) Degradation-Modulating Channel Attention: As shown
in Table III, when the degradation-modulating channel
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TABLE III
PSNR VALUES ACHIEVED BY LF-DMNET AND ITS VARIANTS FOR 4 × SR. HERE, WE REPORT THE NUMBER OF PARAMETERS

(#PARAMS.), FLOPS, AND RUNNING TIME OF EACH MODEL FOR EFFICIENCY EVALUATION

Fig. 8. Kernel visualization of our DM-Convs with different input blur and noise levels. (a) DA-Conv 1. (b) DA-Conv 2. (c) DA-Conv 3. (d) DA-Conv 4.

attention is removed, Model 5 suffers a 0.20 dB decrease in
average PSNR as compared to LF-DMnet. This demonstrates
the effectiveness of channel-wise degradation modulation.
Since our DM-Conv can only adapt to different degradation
in the spatial dimension, DM-CA can be used as a
complementary part of DM-Conv to enhance its degradation
adaptation capability. It is also worth noting that our DM-CA
only introduces 0.01 M increase in model size, 2 ms increase in
running time, and negligible increase in FLOPs. These results
demonstrate the high efficiency of our model design.

D. Degradation Mismatch Analyses

In this section, we first analyze the performance variation of
our method with mismatched input and groundtruth synthetic
degradation. Then, we apply our LF-DMnet to real LF images
and analyze its SR performance with various input blur kernel
widths and noise levels.

1) Synthetic Degradation: Since our LF-DMnet is a
nonblind SR method, it requires to take the blur kernel and
noise level as its input. In the aforementioned experiments
with synthetic degradation, we directly use the groundtruth
degradation as the input degradation of our network.
To investigate the performance of our method when the
input degradation mismatches with the groundtruth one,
we conduct the following experiments. First, we investigate
the performance variation of our LF-DMnet with mismatched
blur kernel widths by traversing the groundtruth kernel width
Bgt and the input kernel width Bin from 0 to 3 with a step
of 0.3. Fig. 9(a)–(d) visualizes the PSNR values achieved
by our method (averaged on the validation scenes) under
four different noise levels (i.e., Ngt = 0, 15, 30, 50). Second,
we investigate the performance variation of our LF-DMnet
with mismatched noise levels by traversing the groundtruth

noise level Ngt and the input noise level Nin from 0 to 50 with
a step of 5. Fig. 9(e)–(h) visualizes the PSNR values achieved
by our method (averaged on the validation scenes) under four
different blur kernel widths (i.e., Bgt = 0, 1, 2, 3). Third,
we investigate the performance variation of our LF-DMnet
with simultaneously mismatched blur kernel and noise level
by traversing the input blur kernel width Bin (from 0 to 3 with
a step of 0.3) and the input noise level Nin (from 0 to 50 with
a step of 5). Fig. 9(i)–(l) visualizes the PSNR values achieved
by our method (averaged on the validation scenes) under
four representative degradation settings including (Bgt, Ngt) =

(0, 0), (3, 0), (1.5, 15), and (0, 30).
From Fig. 9, we can draw the following conclusions.
1) Best SR performance can be achieved when the input

degradation matches the groundtruth one.
2) The performance variation caused by blur mismatch is

more significant than that caused by noise mismatch.
3) When Bin ̸= Bgt, Bin > Bgt leads to much more

significant performance degradation than Bin < Bgt.
4) As the noise level increases, the PSNR variation caused

by the blur kernel mismatch is reduced.
2) Real-World Degradation: To investigate the influence of

the input kernel widths and noise levels to the SR performance
under real-world degradation, we directly apply our LF-DMnet
to the LFs captured by Lytro and Raytrix cameras, and traverse
the input blur kernel width (from 0 to 3 with a step of 1)
and the input noise level (from 0 to 60 with a step of 15).
Since both the groundtruth HR images and their degradation
are unavailable, we evaluate the performance of our method by
visually comparing its SR results. Fig. 10 shows the 4 × SR
results achieved by our method with varied input degradation,
from which we can obtain the following conclusions.

1) A large input kernel width can enhance the local contrast
and sharpens edges and textures, but an over-large
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Fig. 9. Visualization of the performance variation of our method with mismatched degradation. (a)–(d) PSNR values achieved with mismatched blur kernel
widths under different noise levels. (e)–(h) PSNR values achieved with mismatched noise level under different blurs. (i)–(l) PSNR values achieved with
simultaneously mismatched blurs and noise levels under four representative degradation settings (marked by white cross).

Fig. 10. Visual results achieved by our method on real LF images with different blur kernel width and noise levels. Three scenes from the EPFL [32],
STFlytro [33], and Raytrix [72] datasets are used as examples for illustration. (a) EPFL_ISO_Chart. (b) STFlytro_general_11. (c) Raytrix_boxer.

kernel width introduces ringing artifacts to the result
images.

2) A large input noise level can enhance the local
smoothness and helps to alleviate the artifacts, but an
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over-large input noise level makes the result images
blurring.

3) Our LF-DMnet can achieve better SR performance on
Lytro LFs by setting kernel width and noise level
to 2 and 30, respectively, and can achieve better SR
performance on Raytrix LFs by setting kernel width and
noise level to 4 and 60, respectively.

Readers can further refer to our interactive online demo6 to
view the influence of input degradation to the SR results.

VI. CONCLUSION AND DISCUSSION

In this article, we achieve real-world LF image SR via
degradation modulation. We developed an LF degradation
model based on the camera imaging process, and proposed
an LF-DMnet that can modulate degradation priors into the
SR process. Experimental results show that our method can
produce visually pleasant and angular consistent SR results on
real-world LF images. Through extensive ablation studies and
model analyses, we validated the effectiveness of our designs
and obtained a series of insightful observations.

It is worth noting that, although our LF-DMnet achieves
significantly improved performance than existing methods on
real-world LF image SR, it is sensitive to the input degradation
and requires accurate degradation estimation. When the input
blur kernel widths and noise levels mismatch with the real
ones, our method will produce images with artifacts or
oversmoothness. Moreover, due to the nonblind setting in our
method, when applying our method to a novel LF camera with
unknown degradation, we need to first “measure” the PSF and
the noise level of this camera, which is user-unfriendly and
not practical enough. In the future, we will study the more
challenging blind LF image SR problem, and try to design a
more practical method for real-world LF image SR. We believe
that our LF-DMnet will serve as a fundamental work and can
inspire more researchers to focus on real-world LF image SR.
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