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On Model of Recurrent Neural Network on a Time
Scale: Exponential Convergence and

Stability Research
Vasyl Martsenyuk , Marcin Bernas , and Aleksandra Klos-Witkowska

Abstract— The majority of the results on modeling recurrent
neural networks (RNNs) are obtained using delayed differential
equations, which imply continuous time representation. On the
other hand, these models must be discrete in time, given their
practical implementation in computer systems, requiring their
versatile utilization across arbitrary time scales. Hence, the goal
of this research is to model and investigate the architecture
design of a delayed RNN using delayed differential equations
on a time scale. Internal memory can be utilized to describe
the calculation of the future states using discrete and distributed
delays, which is a representation of the deep learning architecture
for artificial RNNs. We focus on qualitative behavior and stability
study of the system. Special attention is paid to taking into
account the effect of the time-scale parameters on neural network
dynamics. Here, we delve into the exploration of exponential
stability in RNN models on a time scale that incorporates
multiple discrete and distributed delays. Two approaches for
constructing exponential estimates, including the Hilger and the
usual exponential functions, are considered and compared. The
Lyapunov–Krasovskii (L–K) functional method is employed to
study stability on a time scale in both cases. The established
stability criteria, resulting in an exponential-like estimate, utilizes
a tuple of positive definite matrices, decay rate, and graininess
of the time scale. The models of RNNs for the two-neuron
network with four discrete and distributed delays, as well as
the ring lattice delayed network of seven identical neurons, are
numerically investigated. The results indicate how the time scale
(graininess) and model characteristics (weights) influence the
qualitative behavior, leading to a transition from stable focus
to quasiperiodic limit cycles.

Index Terms— Delayed dynamic system, exponential stability,
Hilger function, recurrent neural network (RNN), time scale.

NOMENCLATURE

T Time scale, i.e., a subset of real
numbers.

R Real numbers.
σ(t) Forward jump operator.
ρ(t) Backward jump operator.
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µ(t) Graininess function.
x(t) ∈ Rn State vector.
A Diagonal matrix with positive

entries.
Wx,y Synaptic connection weight

matrices.
g(x(t)) Nondecreasing activation function.
hk(t), τm(t) Delays (“controllable memory”).
φ(s) Initial state of RNN model.
u(t) Input signal vector.
ep(t, s) Hilger exponential function for

regressive function p(t).
ex Classic exponential function.

I. INTRODUCTION

RECURRENT neural networks (RNNs) are at the heart
of today’s deep machine learning (DL) research topics.

In particular, recurrent neural systems with LSTM and GRU
facilitated the development of machine learning models for
problems like image identification with captioning, language
processing, and interpretation. These models are presented
in [1], which makes use of ordinary differential equations.
As they model the memory inside the organized units, their
research must be connected to the equations with time delays.
The RNN definition was formally inferred from differential
equations in [2]. In literature, two general types of delays are
researched [3], [4], i.e., discrete delays and distributed delays.

A. Stability

One of the goals of RNN research is to find a stable
neural network and, therefore, obtain predictable results.
Zhang et al. [5] presents a review concerning the stability
of RNNs based on delayed differential equations. It was
shown that the most commonly used stability criteria up-to-
date were obtained using the Lyapunov–Krasovskii (L–K)
theory. In [5] and [6], authors show how L–K functionals
should be constructed (with an estimation of its derivatives).
Nevertheless, this research considered one delay mostly.
Additionally, research shows that neural networks with time
delays can exhibit chaotic attractors and periodic oscillations
[7] which should be taken under consideration. The most of
research focuses on using L–K functionals which are called
the direct method; stability conditions are presented in terms
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of solutions of linear-matrix inequalities (LMIs). Additionally,
in [8] and [9], an indirect method for exponential stability
research—not using L–K functionals and resulting in some
scalar quasipolynomial inequalities was introduced. The
technique has been applied to discrete and distributed delays
also. The survey [10] highlights that existing stability criteria
are conservative and should be further developed to account
for multiple delays. Authors in previous work [11] developed
a technique to optimize such stability conditions for L–K
functionals. They constructed the L–K functional including
the classic exponential function which allowed us to obtain
stability conditions in the form of LMI for cases with multiple
discrete and distributed delays. That functional will be used as
a prototype for the given work when considering time scales.

B. Time Scales
It is a modern approach [12] in the field of dynamical

systems that allows us to effectively incorporate the results
obtained for differential equations, i.e., systems with contin-
uous time, to systems with discrete time, such as based on
difference equations. This approach is extremely important
for models of RNNs, as it allows us to extend the results
obtained based on traditional models with continuous time,
to the case of discrete-time, which corresponds to the software
implementation of predictive algorithms for RNNs. Moreover,
some important results on the qualitative analysis of models of
RNNs can be summarized in the case of general time scales,
which will be the subject of this work. In contrast to the
existing results on direct stability methods for RNN, this article
extends them to the time scale. The approach combines the
advantages of differential and difference equations. It allows us
to transition from a continuous time scale to a discrete one by
utilizing the granularity operator µ(t). For continuous cases,
µ(t) approaches 0, while for discrete cases take other positive
values. The numerical examples illustrate how the granularity
influences the appearance of bifurcations (Hopf).

C. Motivation
The article was inspired by the idea to close the models of

dynamical systems to RNNs with the purpose of their stability
investigation. When solving machine learning problems with
the help of RNNs, like regression or classification, we are
interested in stable solutions of RNNs, whereas, unstable
solutions can deliver error outputs for predicting or classifying.
In turn, the stability of the solution is affected by RNN
parameters (weights, biases, and initial conditions). Moreover,
stability can also be numerically characterized by exponential
decay rate. The bigger the decay rate, the faster the model
tends to the correct result of predicting or classifying. Provided
that weights and biases have been determined by training
algorithms like backpropagation through time, however, initial
conditions of the model’s internal state can affect the stability.
Stability theory is well developed for continuous-time systems
because the entire power of calculus can be applied. Trying
to cover the models of RNNs acting in discrete time, with the
same tools, we apply the formalism of time scales, aimed for
studying hybrid systems.

The method will be described in the following sections.
Section II presents the proposed model in reference to
the state-of-the-art approaches. Section III presents the two
approaches for stability estimation using time scales, followed
by examples presented in Section IV. Section V presents the
discussion of the proposed model. Finally, in Section VI, the
conclusions, limitations, and further research directions are
given.

II. PROPOSED MODEL

The main idea of this research is to incorporate time
scales [12] to RNN, which allows to treat systems with
continuous time as systems with discrete time. Here, our
reasoning concerning dynamic systems on time scales is based
on the definitions from the work [12]. Namely, we consider
time scale T as a subset of real numbers R. Hence, R and
integers Z are examples of time scales.

Remark 1: For any t ∈ T, we introduce the following
denotions for forward jump operator σ(t) := infs∈T{s : s > t},
backward jump operator ρ(t) := sups∈T{s : s < t}, graininess
function µ(t) := σ(t) − t .

Hereinafter, the notions of left dense, right dense, left
scattered, and right scattered elements from T are used. Let

Tk
:=

{
T\m, if T has a maximal left scattered element m
T, otherwise.

For any function f : T → R the delta derivative at instance
t ∈ Tk , f 1(t), is as follows:

∥ f (σ (t)) − f (s) − f 1(t)(σ (t) − s)∥ ≤ ϵ∥σ(t) − s∥

for some ϵ > 0 and neighborhood U ⊂ T of t .
When considering the delay differential equations on time

scales, two approaches describing the delays t − τ(t), t ∈ Tk

are used [12]. The first one requires that the delay function is
mapping time scale Tk on itself, i.e., t − τ(t) : Tk

→ Tk [13].
The second one is using a jump operator of a special kind.
Following the work [14], we introduce the forward semijump
operator:

σ̂ (t) := inf
s∈T

{s : s ≥ t}.

Note that σ̂ (t) ≤ σ(t).
Here, the system with several discrete and distributed

time-varying delays on a time scale t ∈ Tk is the foundation
of our study of the RNN model

x1(t) = −Ax(t) +

r1∑
k=1

W1,k g
(
x(σ̂ (t − hk(t)))

)
+

r2∑
m=1

W2,m

∫ t

t−τm (t)
g
(
x(σ̂ (θ))

)
1(θ) (1)

where x(t) ∈ Rn is the state vector, A = diag(a1, a2, . . . , an)

is a diagonal matrix with positive entries ai > 0. For the
i th neuron, 1/ai can be interpreted as the activity decay
constant (or time constant). W1,k = (w

1,k
i j )n×n , k = 1, r1,

W2,m = (w
2,m
i j )n×n , m = 1, r2 are the synaptic connection

weight matrices. The entries of W1,k and W2,m may be pos-
itive (excitatory synapses) or negative (inhibitory synapses).
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g(x(t)) = [g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]⊤ ∈ Rn is the
nondecreasing activation function, which belongs to sector
nonlinear function class defined by

g j (0) = 0 and 0 ≤
g j (ξ1) − g j (ξ2)

ξ1 − ξ2
≤ l j , l j > 0 (2)

ξ1, ξ2 ∈ R, ξ1 ̸= ξ2, j ∈ 1, n and x ≡ 0 is a fixed point
of (1).1 We let L = diag(l1, l2, . . . , ln) is a diagonal matrix
with positive entries l j > 0.

The system (1) contains discrete and distributed time-
varying delays, which are, respectively, characterized by the
second and third terms.

The discrete system delays are represented by the bounded
lambda differentiable functions hk(t) if

0 ≤ hk(t) ≤ hM,k

and

h1
k (t) ≤ hD,k < 1 (3)

k = 1, r1, t > 0. If prior states of neurons only have an effect
on output at specific time intervals, delays hk(t) and τm(t) have
a physical meaning as “controllable memory.” For discrete
delays, the boundaries on the delay and its delta derivative
are hM,k and hD,k .

The distributed delays of the system are represented by the
bounded functions τm(t) such that 0 ≤ τm(t) ≤ τM,m , m =

1, r2.
The delays in axonal signal transmission are represented

by the limited functions hk(t) and τm(t). When calculating
the upper right delta derivative of the L–K functional, the
condition (3) for the delta derivative h1

k (t) will be used (see,
for instance, [15]).

We will consider the class of rd-continuous functions, Crd,
which contains the functions that are continuous at right-dense
points in Tk and their left-side limits exist at left-dense points
in Tk .

It is presummated that system (1) initial states are

x(s) = φ(s), s ∈ [−τM , 0] ∩ Tk

τM := max
{
hM,k, k = 1, r1, τM,m, m = 1, r2

}
(4)

where φ(s) ∈ C([−τM , 0], Rn) is continuous.
In the work [16], there were obtained the general existence

and stability results for functional differential equations utiliz-
ing the induction principle and Gronwall’s inequality on time
scales. For the right-hand side of the system, they imply right
dense continuity in t , continuity in phase coordinates, and
local Lipshitz conditions. When using them for any φ(s) ∈

C([−τM , 0], Rn
], it can be assumed that there exists a certain

trajectory of the (1) starting from φ according to (2).
In this case, we make use of the Hopfield neural network,

which includes a diagonal matrix A with positive elements and
makes the neuron’s self-connection appear. The neuron’s next
state is dependent on its current state and results in all neurons

1The proposed method of stability investigation can be applied for any
steady-state u⋆ (not only trivial) of the nonlinear system u1(t) = f (u(t))
on a time scale, i.e., f (u⋆) = 0. Without loss of generality, using linear
transformation x(t) = u(t) − u⋆, this problem can be reduced to studying the
stability of trivial solution for the system x1(t) = f (x(t) + u⋆).

eventually. In the stability analysis of continuous-time RNNs,
such a diagonal matrix is typically connected [5]. On the other
hand, if we used any matrix A, we would accept that a neuron’s
next state is dependent on both its current state and the states of
all other neurons, meaning that all neurons’ internal states are
visible from the outside. It refutes the idea that, for instance,
the hidden state vector (also known as the output vector) is
visible in the case of the LSTM unit.

Following work [2], we may explain the model (1) from the
standpoint of signal processing, leading us to canonical and
noncanonical RNNs. The state signal vector x(t), the readout
signal vector g(x(t)), which may be a twisted version of the
state signal vector, and the bias parameters are specifically
mentioned without loss of generality because they can be used
in the transformations leading to the homogeneous system (1).
One-to-many RNN design is modeled by taking the initial
state φ(s), s ∈ [−τM , 0] ∩ Tk into consideration as an input
signal. In a more typical many-to-many instance, the input
signal vector u(t), t ∈ Tk can be used as an input sequence
while the RNN is working.

It makes sense to take into account continuous-time equa-
tions that describe the functioning of RNNs even if RNNs
can really be described using difference equations. This is
because differential equations allow us to more fully grasp and
describe the dynamic processes that take place. Additionally,
the requirements for the stability of RNNs can be explicitly
obtained with the aid of differential equations. When designing
RNNs, this is crucial. A thorough analysis of the research
on continuous-time RNNs with a focus on the stability of
Hopfield and Cohen–Grossberg neural networks can be found
in the study [5].

Also take note that by discretizing the models based on
differential equations, the matching RNNs can be constructed.
As a result, work [2] illustrates how to build an RNN of the
LSTM type by first starting with the relevant model based
on differential equations with delay and then moving on to
discretize the so-called canonical RNN.

RNN models have been studied since Hopfield’s ground-
breaking work in the 1980s [17], which represented each
neuron as a linear circuit made up of a resistor and a capacitor.
When exploring the models of RNNs in the class of delayed
differential equations, two techniques can be distinguished.
The first method entails investigating local stability by com-
paring it to the linearized system [18], [19], [20], [21]. The
Hopf bifurcation conditions were discovered in [21] and [22].
L–K functionals are used in the second approach (known
as the direct Lyapunov’s method) [15]. It enables us to get
constructively stability criteria, which are expressed as LMIs.
The parameters of L–K functionals can be modified to improve
these stability conditions.

When investigating RNN models, exponential estimates
of the solutions are critical since they reveal the rate of
convergence of calculations when recognizing input data. The
indirect method was established in previous publications [8],
[9], allowing us to acquire exponential estimates in some
typical scenarios of RNN models. The numerical solution
of the quasipolynomial problem is the result. It offers us a
clear value for exponential decay, which, however, cannot be
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improved because it does not allow for optimization. In order
to address this problem, in [11], we developed an optimization
strategy based on the direct method for L–K functionals of
the peculiar form. On an arbitrary time scale T, Lyapunov
functions of this type will be applied in the given work.

III. EXPONENTIAL ESTIMATES

We denote by �n ⊂ Rn×n a set of symmetric positively
definite matrices. Below, we show that it is a convex cone.

1) Convexity holds as for arbitrary P1 ∈ �n , P2 ∈ �n ,
x ∈ Rn , and ξ ∈ [0, 1] we get x⊤(ξ P1 + (1 − ξ)P2)x =

ξ x⊤ P1x + (1 − ξ)x⊤ P2x > 0.
2) Since for any P ∈ �n , x ∈ Rn , and η > 0 we get

ηx⊤ Px > 0, the set is cone.
We denote �̄1

n := {P ∈ �n : ∥P∥ ≤ 1} as the part of �n

enclosed within the unit sphere.
For arbitrary P ∈ �n , let ∥P∥ be its Frobenius norm.
Lemma 1: Given matrix U ∈ �n , constant β > 0, β ∈ T,

vector function u : [0, β] → Rn , it holds β∫
0

u⊤(s)1(s)

U

 β∫
0

u(s)1(s)

 ≤ β

β∫
0

u⊤(s)Uu(s)1(s)

with the corresponding requirements of integrability
Proof: We can see that the block matrix[

u⊤(s)Uu(s) u⊤(s)
u(s) U−1

]
, 0 ≤ s ≤ β

is positive semidefinite using Schur’s complement. We get the
positive semidefinite matrix

∫ β

0
u⊤(s)Uu(s)1(s)

∫ β

0
u⊤(s)1(s)∫ β

0
u(s)1(s) βU−1


by integrating on a time scale from 0 to β and applying
the features of integration on time scale [23]. The proof is
completed using Schur’s complement.

Lemma 2 [24]: Given real matrices W1, W2, and W3, W3 ∈

�n with proper dimensions and a constant β > 0, it holds

W ⊤

1 W2 + W ⊤

2 W1 ≤ βW ⊤

1 W3W1 + β−1W ⊤

2 W −1
3 W2.

Lemma 3 (Leibniz Integral Rule on Time Scales [25]): If f ,
f 1 are continuous, and u, v : T → T are delta differentiable
functions, then the following formula holds for any t ∈ Tk :[∫ v(t)

u(t)
f (t, s)1(s)

]1

=

∫ v(t)

u(t)
f 1(t, s)1(s)

+ v1(t) f (σ (t), v(t))

− u1(t) f (σ (t), u(t)).

It is worth noting that the σ (Remark 1) was used to change
the continuous time to time scale—to make the value discrete.
Here, we define the main notions for the trivial solution of (1)
related to the unique equilibrium point. The stability notions
from [16] will be used.

Definition 1: If for every solution x(t) of (1)–(4) we get
x(t) → 0 as t → ∞, t ∈ T, then the trivial solution of (1) is
called globally asymptotically stable.

A. Exponential Estimate: Hilger Function

When regarding the exponential stability on a time scale,
they consider two approaches. The first one is introducing
the Hilger function, a special function with properties like
exponential function, but based on a time scale. The second
one is using the traditional exponential function but applying
the time scale calculus.

Hilger function is related to the notion of regressive
functions.

Definition 2: A function p(t) : T → R is called regressive,
if 1 + µ(t)p(t) ̸= 0 at t ∈ T.

First, we will use exponential function for regressive func-
tion p(t) ∈ Crd on time scale T introduced by Hilger in [26]
as follows:

ep(t, s) := exp
(∫ t

s
ζµ(u)(p(u))1(u)

)
, s, t ∈ T

where

ζµ(u)(p(u)) :=


1

µ(u)
log(1 + µ(u)p(u)), µ(u) ̸= 0

p(u), µ(u) = 0.

To differ ep(t, s) from the exponential function on R,
we will call it as Hilger exponential function or Hilger
function.

Further, we will also use the denotation ep(t) ≡ ep(t, 0) for
simplicity.

Remark 2: It can be shown that if p, µ are constants, then
for T = Z, we get ep(t, s) = (1 + pµ)(t−s)/µ. Moreover,
if T = R, then ep(t, s) = ep(t−s), which could be obtained
tending µ → 0 at the expression for Z.

Hilger functions constitute the Abelian group for regressive
functions with the addition operation ⊕ as follows:

p ⊕ q := p + q + µpq

and additive inverse ⊖

⊖p := −
p

1 + µp
.

Such operations allowed us to obtain a few basic properties
of the Hilger function like the exponential function ( [27, Th.
3.1]), which will be used further.

Definition 3: The trivial solution of (1) is called globally
Hilger-exponentially stable (GHE-stable), if there exist con-
stants α > 0, K > 0, and T > 0 such that every solution x(t)
to (1)–(4) it holds ∥x(t)∥ ≤ K e⊖α(t, 0) for all t > T , t ∈ T.

Here, we exploit the following L–K functional, which was
proposed in [11] and [15], but here we upgrade it considering
multiple delays and Hilger exponential function for time scale

V [xt (·)]

= eα⊕α(t)x⊤(t)Px(t)

+

r1∑
k=1

∫ t

t−hk (t)
eα⊕α(σ̂ (s))g⊤(x(σ̂ (s)))Qk g(x(σ̂ (s)))1(s)

+

r2∑
m=1

τM,m
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×

0∫
−τM,m

t∫
t+θ

eα⊕α(σ̂ (s))g⊤(x(σ̂ (s)))Sm g(x(σ̂ (s)))1(s)1(θ)

(5)

where unknown constant α > 0 and matrices P , Qk , k = 1, r1,
Sm , m = 1, r2 belong to �n . We apply denotation xt (·) :=

{x(σ̂ (t + θ))|θ ∈ [−τM , 0]} ∈ C[−τM , 0] of the element of
the solution of (1).

In the sequel, we will use the following notion of the func-
tional’s derivative as a development of the definition from [16]
for Lyapunov functions under Razumikhin’s condition.

Definition 4: Given a functional V ∈ Crd([−τM , 0], Rn),
the upper right-hand delta derivative of V with respect to
system x1(t) = f (xt ) is defined by

D+V 1
[xt (·)]

=


V (σ (t), x(σ (t))) − V (x(t))

µ(t)
, σ (t) > t

lim sup
s→t+

V (x(t)+(s − t) f (xt )) − V (t, x(t))
s − t

, σ (t) = t

where Crd([−τM , 0], Rn) is the space of rd-continuous in t ,
and continuous in x ∈ C([−τM , 0], Rn).

The next result will be formulated in terms of LMI with
respect to matrix

0H
=

[
0H

11 0H
12

0H
21 0H

22

]
∈ R2n×2n, ξ(t)=

(
x(t), x(σ (t))

)⊤

∈R2n

where

0H
11 = −(α ⊕ α)P − eα⊕α(µ(t))

{[
−A⊤ P − P A

+ µ(t)A⊤ P A
]
+

r1∑
k=1

{
eα⊕α(hM,k)(1 − hD,k)

−1

× (I − µ(t)A⊤)PW1,k Q−1
k W ⊤

1,k P(I − µ(t)A)

+ L Qk L} +

r2∑
m=1

{
τ 2

M,m L Sm L + eα⊕α(τM,m)

× (I − µ(t)A⊤)PW2,m S−1
m W ⊤

2,m P(I − µ(t)A)

}}
0H

12 = eα⊕α(µ(t))(µ−1(t)I − A)P

0H
21 = eα⊕α(µ(t))P(µ−1(t)I − A)

0H
22 = −

eα⊕α(µ(t))
µ(t)

P. (6)

Note that hereinafter in case µ(t) = 0, one should consider
the limit values of the corresponding expressions.

We see that 0H
∈ �2n if and only if the Schur complement

of 0H in 0H
22 0H/0H

22 := 0H
11 − 0H

12(0
H
22)

−10H
21 ∈ �n .

In further reasonings, we will use the definitions and general
stability results for delayed systems on time scales from [14].

Assumption 1: Let for time scale T, there exist constant
α > 0 and matrices P , Qk , k = 1, r1, Sm , m = 1, r2,
which belong to relint(�̄1

n), such that
1) eα(t) > 0, t ∈ Tk .
2) 0H

11 −0H
12(0

H
22)

−10H
21 belong to �n for any µ(t), t ∈ Tk .

The conditions of positivity of the Hilger function were
presented in work [27].

Theorem 1: Let system (1) satisfies the Assumption 1.
Then, the trivial solution of (1) is globally asymptotically
stable.

Proof: Consider functional

V1[xt (·)] = eα⊕α(t)x⊤(t)Px(t).

Estimating the right upper delta derivative of V1, we get

D+V 1
1 [xt (·)]

= (α ⊕ α)eα⊕α(t)x⊤(t)Px(t)

+ eα⊕α(σ (t))
{

x⊤ Px(t)
}1

= (α ⊕ α)eα⊕α(t)x⊤(t)Px(t)

+ eα⊕α(σ (t))
{

x⊤1(t)Px(t) + x⊤(σ (t))Px1(t)
}

= (α ⊕ α)eα⊕α(t)x⊤(t)Px(t)

+ eα⊕α(σ (t))

{
− x⊤(t)A⊤ Px(t)

+

r1∑
k=1

g⊤
(
x(σ̂ (t − hk(t)))

)
W ⊤

1,k Px(t)

+

r2∑
m=1

∫ t

t−τm (t)
g⊤
(
x(σ̂ (θ))

)
1(θ)W ⊤

2,m Px(t)

− x⊤(σ (t))P Ax(t)

+ x⊤(σ (t))P
r1∑

k=1

W1,k g
(
x(σ̂ (t − hk(t)))

)
+ x⊤(σ (t))P

r2∑
m=1

W2,m

∫ t

t−τm (t)
g
(
x(σ̂ (θ))

)
1(θ)

}
. (7)

Since

x(σ (t)) = x(t) + µ(t)x1(t) (8)

we get

D+V 1
1 [xt (·)]

= (α ⊕ α)eα⊕α(t)x⊤(t)Px(t)

+ eα⊕α(t + µ(t))

{
− x⊤(t)A⊤ Px(t)

+

r1∑
k=1

g⊤(x(σ̂ (t − hk(t))))W ⊤

1,k Px(t)

+

r2∑
m=1

∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))1(θ)W ⊤

2,m Px(t)

+

[
x⊤(t) − x⊤(t)µ(t)A⊤

+

r1∑
k=1

g⊤(x(σ̂ (t − hk(t))))µ(t)W ⊤

1,k

+

r2∑
m=1

∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))1(θ)µ(t)W ⊤

2,m

]

×

[
−P Ax(t) + P

r1∑
k=1

W1,k g(x(σ̂ (t − hk(t))))
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+ P
r2∑

m=1

W2,m

∫ t

t−τm (t)
g(x(σ̂ (θ)))1(θ)

]}
. (9)

Now, we can rewrite (9) as follows2:

D+V 1
1 [xt (·)]

= (α ⊕ α)eα⊕α(t)x⊤(t)Px(t) + eα⊕α(t + µ(t))

×

{
x⊤(t)

[
− A⊤ P−P A + µ(t)A⊤ P A

]
x(t)

+

[
r1∑

k=1

g⊤(x(σ̂ (t − hk(t))))W ⊤

1,k P(I − µ(t)A)x(t)

+ x⊤(t)(I − µ(t)A⊤)P
r1∑

k=1

W1,k g(x(σ̂ (t − hk(t))))

]

+

[
r2∑

m=1

∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))1(θ)W ⊤

2,m P(I − µ(t)A)x(t)

+ x⊤(t)(I − µ(t)A⊤)

× P
r2∑

m=1

W2,m

∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))1(θ)

]

+

[
r1∑

k=1

g⊤(x(σ̂ (t − hk(t))))W ⊤

1,k

+

r2∑
m=1

∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))1(θ)W ⊤

2,m

]
µ(t)P

×

[
r1∑

k=1

W1,k g(x(σ̂ (t − hk(t))))

+

r2∑
m=1

W2,m

∫ t

t−τm (t)
g(x(σ̂ (θ)))1(θ)

]}
. (10)

Further, we estimate counterparts of (10) with the help of
Lemma 2 in the following manner:
r1∑

k=1

{
g⊤(x(σ̂ (t − hk(t))))W ⊤

1,k P(I − µ(t)A)x(t)

+ x⊤(t)(I − µ(t)A⊤)PW1,k g(x(σ̂ (t − hk(t))))
}

=

r1∑
k=1

{[
e⊖α(hM,k)(1 − hD,k)

1/2g⊤(x(σ̂ (t − hk(t))))
]

×
[
eα(hM,k)(1 − hD,k)

−1/2W ⊤

1,k P(I − µ(t)A)x(t)
]

+
[
eα(hM,k)(1 − hD,k)

−1/2x⊤(t)(I − µ(t)A⊤)PW1,k
]

×
[
e⊖α(hM,k)(1 − hD,k)

1/2g(x(σ̂ (t − hk(t))))
]}

≤

r1∑
k=1

{
[eα⊕α(hM,k)(1 − hD,k)

−1

×x⊤(t)(I − µ(t)A⊤)PW1,k Q−1
k W ⊤

1,k P(I − µ(t)A)x(t)

+ [e⊖α⊖α(hM,k)(1 − hD,k)

×g⊤(x(σ̂ (t − hk(t))))Qk g(x(σ̂ (t − hk(t))))
}

(11)

and
r2∑

m=1

{∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))1(θ)W ⊤

2,m P(I − µ(t)A)x(t)

2 I denotes n × n-identity matrix.

+ x⊤(t)(I − µ(t)A⊤)PW2,m

∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))1(θ)

}
=

r2∑
m=1

{[
e⊖α(τM,m)

∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))1(θ)

]
×
[
eα(τM,m)W ⊤

2,m P(I − µ(t)A)x(t)
]

+
[
eα(τM,m)x⊤(t)(I − µ(t)A⊤)PW2,m

]
×

[∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))1(θ)e⊖α(τM,m)

]}
≤

r2∑
m=1

{
e⊖α⊖α(τM,m)

(∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))1(θ)

)
× Sm

(∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))1(θ)

)
+ eα⊕α(τM,m)x⊤(t)(I − µ(t)A⊤)

× PW2,m S−1
m W ⊤

2,m P(I − µ(t)A)x(t)
}

≤

r2∑
m=1

{
τM,me⊖α⊖α(τM,m)

∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))

× Sm g(x(σ̂ (θ)))1(θ)

+ eα⊕α(τM,m)x⊤(t)(I − µ(t)A⊤)PW2,m S−1
m W ⊤

2,m

×P(I − µ(t)A)x(t)
}
. (12)

Note that for the last inequality, Lemma 1 has been used.
Further, we also use the identity

r1∑
k=1

W1,k g(x(σ̂ (t − hk(t))))

+

r2∑
m=1

W2,m

∫ t

t−τm (t)
g(x(σ̂ (θ)))1(θ)

≡ x1(t) + Ax(t) = µ−1x(σ (t)) − (µ−1 I − A)x(t) (13)

which follows from the system equation (1) and the expres-
sion (8) for lambda derivative.

Combining (10) with inequalities (11) and (12), and expres-
sion (13), we get

D+V 1
1 [xt (·)]

≤ (α ⊕ α)eα⊕α(t)x⊤(t)Px(t)

+ eα⊕α(t+µ(t))

{
x⊤(t)

[
− A⊤ P−P A+µ(t)A⊤ P A

]
x(t)

+

r1∑
k=1

{
[eα⊕α(hM,k)(1 − hD,k)

−1
× x⊤(t)

× (I − µ(t)A⊤)PW1,k Q−1
k W ⊤

1,k P(I − µ(t)A)x(t)

+ e⊖α⊖α(hM,k)(1 − hD,k)g⊤(x(σ̂ (t − hk(t))))

× Qk g(x(σ̂ (t − hk(t))))
}

+

r2∑
m=1

{
τM,me⊖α⊖α(τM,m)

×

∫ t

t−τm (t)
g⊤(x(σ̂ (θ)))Sm g(x(σ̂ (θ)))1(θ)

+ eα⊕α(τM,m)x⊤(t)(I − µ(t)A⊤)
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× PW2,m S−1
m W ⊤

2,m P(I − µ(t)A)x(t)
}

+

[
µ−1x⊤(σ (t)) − (µ−1 I − A)x⊤(t)

]
µ(t)P

×

[
µ−1x(σ (t)) − (µ−1 I − A)x(t)

]}
. (14)

Introduce the following functionals:

V2[xt (·)] =

r1∑
k=1

∫ t

t−hk (t)
eα⊕α(σ̂ (s))

× g⊤(x(σ̂ (s)))Qk g(x(σ̂ (s)))1(s)

V3[xt (·)] =

r2∑
m=1

τM,m

∫ 0

−τM,m

∫ t

t+θ

eα⊕α(σ̂ (s))

× g⊤(x(σ̂ (s)))Sm g(x(σ̂ (s)))1(s)1(θ),

V [xt (·)] =

3∑
i=1

Vi [xt (·)].

Applying Lemma 3, we have

D+V 1
2 [xt (·)]

=

r1∑
k=1

[
eα⊕α(t + µ(t))

× g⊤(x(σ̂ (t)))Qk g(x(σ̂ (t)))

− eα⊕α(t − hk(t) + µ(t − hk(t))(1 − hD,k)

×g⊤(x(σ̂ (t − hk(t))))Qk g(x(σ̂ (t − hk(t))))
]

D+V 1
3 [xt (·)]

=

r2∑
m=1

τM,m

∫ 0

−τM,m

[
eα⊕α(t + µ(t))

×g⊤(x(σ̂ (t)))Sm g(x(σ̂ (t)))

− eα⊕α(t + θ + µ(t + θ))g⊤(x(σ̂ (t + θ)))Sm

×g(x(σ̂ (t + θ)))
]
1(θ)

≤

r2∑
m=1

{
τ 2

M,meα⊕α(t + µ(t))g⊤(x(σ̂ (t)))Sm g(x(σ̂ (t)))

− τM,meα⊕α(t + µ(t))e⊖α⊕(⊖α)(τM,m)

×

∫ 0

−τM,m

g⊤(x(σ̂ (θ)))Sm g(x(σ̂ (θ)))1(θ)

}
.

Finally, we get

D+V 1
[xt (·)] ≤ (α ⊕ α)eα⊕α(t)x⊤(t)Px(t)

+ eα⊕α(t + µ(t))
{

x⊤(t)
[

− A⊤ P−P A + µ(t)A⊤ P A
]
x(t)

+

r1∑
k=1

{eα⊕α(hM,k)(1 − hD,k)
−1x⊤(t)(I − µ(t)A⊤)

×PW1,k Q−1
k W ⊤

1,k P(I − µ(t)A)x(t)

+ g⊤(x(σ̂ (t)))Qk g(x(σ̂ (t)))}

+

r2∑
m=1

{τ 2
M,m g⊤(x(σ̂ (t)))Sm g(x(σ̂ (t)))

+ eα⊕α(τM,m)x⊤(t)(I − µ(t)A⊤)PW2,m S−1
m W ⊤

2,m P

×(I − µ(t)A)x(t)}

+

[
µ−1(t)x⊤(σ (t)) − (µ−1(t)I − A)x⊤(t)

]
×µ(t)P

[
µ−1(t)x(σ (t)) − (µ−1(t)I − A)x(t)

]}
≤ eα⊕α(t)

{
x⊤(t)

{
(α ⊕ α)P + eα⊕α(µ(t))

{[
− A⊤ P − P A

+ µ(t)A⊤ P A
]

+

r1∑
k=1

{eα⊕α(hM,k)(1 − hD,k)
−1(I − µ(t)A⊤)

×PW1,k Q−1
k W ⊤

1,k P(I − µ(t)A)

+ L Qk L} +

r2∑
m=1

{τ 2
M,m L Sm L

+ eα⊕α(τM,m)(I − µ(t)A⊤)PW2,m S−1
m W ⊤

2,m

×P(I − µ(t)A)}
}

x(t) + eα⊕α(µ(t))
[
µ−1(t)x⊤(σ (t))

− (µ−1(t)I − A)x⊤(t)
]
µ(t)P

[
µ−1(t)x(σ (t)) − (µ−1(t)I

− A)x(t)
]}}

= −eα⊕α(t)ξ⊤(t)0Hξ(t). (15)

We see that right-hand side of (6) is negative definite (i.e.,
0H

∈ �2n) if and only if the Schur complement of 0H in 0H
22

0H/0H
22 := 0H

11 − 0H
12(0

H
22)

−10H
21 ∈ �n [28].

Applying stability result from [14, Th. 4.1], we conclude
that the system (1) is globally asymptotically stable.

Corollary 1: The trivial solution of (1) is GHE-stable as
long as Assumption 1 holds, i.e.,

∥x(t)∥ ≤ γ H (α)|φ|τM e⊖α(t), t ∈ Tk (16)

where

γ H (α)

:=
1

λ
1/2
min(P)

(
λmax(P)

+

r1∑
k=1

λmax(Qk)l2
max

∫ 0

−hM,k

eα⊕α(s)1(s)

+

r2∑
m=1

τM,mλmax(L Sm L)

∫ 0

−τM,m

∫ 0

θ

eα⊕α(s)1(s)1(θ)

)1/2

.

λmin(·) and λmax(·) are minimal and maximal eigenvalues
of the matrix. Here, we use denotions of ∥·∥ as Euclidean
norm in Rn and |x(·)|τM := sups∈[−τM ,0] ∥x(s)∥ as the uniform
convergence norm in C[τM , 0].

Proof: From Theorem 2, it follows that V [xt (·)] ≤

V [φ(·)]. Hence, we get

λmin(P)∥x(t)∥2
≤ e⊖α⊖α(t)V [xt (·)] ≤ e⊖α⊖α(t)V [φ(·)]

≤ e⊖α⊖α(t)

(
φ⊤(0)Pφ(0)

+

r1∑
k=1

∫ 0

−hM,k

eα⊕α(s)g⊤(φ(s))Qk g(φ(s))1(s)

+

r2∑
m=1

τM,m

∫ 0

−τM,m

∫ 0

θ

eα⊕α(s)g⊤(φ(s))Sm g(φ(s))1(s)1(θ)

)

≤ e⊖α⊖α(t)

(
λmax(P) +

r1∑
k=1

λmax(Qk)l2
max

∫ 0

−hM,k

eα⊕α(s)1(s)
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+

r2∑
m=1

τM,mλmax(L Sm L)

∫ 0

−τM,m

∫ 0

θ

eα⊕α(s)1(s)1(θ)

)
|φ|

2
τM

.

Finally, it yields

∥x(t)∥2
≤ e⊖α⊖α(t)(γ H (α))2

|φ|
2
τM

.

Remark 3: The unique advantage of the result in Theorem 1
is in GAS conditions formulated for the model (1) on time
scale using the Hilger function. Similar to the results in
the case of differential equations model, the conditions are
presented in the form of linear matrix inequality (6) involving
time scale graininess and Hilger function operations. Earlier,
there was a series of the results for RNN models in the form of
delayed differential equations in the form of LMIs [2]. Here,
contrary to the previous works, the LMI-like GAS conditions
can be applied for the general discrete time (including discrete
time). Moreover, an estimate for GHE-stability has been
obtained.

B. Exponential Estimate: Classic Exponential Function

The second approach means using the classic exponential
function ex in the case of time scale. When getting stability
condition, we will apply the expression for delta derivative of
classic exponential function at constant p as follows [29]:(

ept
)1

=
epµ(t)

− 1
µ(t)

ept . (17)

Remark 4: Note that in (17), if substituting a value µ(t) =

0 into an expression gives 0/0, the expression has an actual
finite value pept and ’one should use limits to determine it’
[29].

Definition 5: The trivial solution of (1) is called globally
exponentially stable (GE-stable), if there exist constants α > 0,
K > 0, and T > 0 such that every solution x(t) to (1)–(4) it
holds ∥x(t)∥ ≤ K e−αt for all t > T , t ∈ T

This part of the work exploits -L–K functional based on
classic exponential function on a time scale

V [xt (·)]

= e2αt x⊤(t)Px(t)

+

r1∑
k=1

∫ t

t−hk (t)
e2ασ̂ (s)g⊤(x(σ̂ (s)))Qk g(x(σ̂ (s)))1(s)

+

r2∑
m=1

τM,m

×

0∫
−τM,m

t∫
t+θ

e2ασ̂ (s)g⊤(x(σ̂ (s)))Sm g(x(σ̂ (s)))1(s)1(θ)

(18)

where unknown constant α > 0 and matrices P , Qk , k = 1, r1,
Sm , m = 1, r2 belong to �n .

The corresponding result will be formulated with the respect
to matrix

0c
=

[
0c

11 0c
12

0c
21 0c

22

]
∈ R2n×2n, ξ(t)=

(
x(t), x(σ (t))

)⊤

∈ R2n

where

0c
11 =

1 − e2αµ(t)

µ(t)
P − e2αµ(t)

{[
− A⊤ P−P A+µ(t)A⊤ P A

]
+

r1∑
k=1

{
e2αhM,k (1 − hD,k)

−1(I − µ(t)A⊤)

×PW1,k Q−1
k W ⊤

1,k P(I − µ(t)A) + L Qk L
}

+

r2∑
m=1

{
τ 2

M,m L Sm L + e2ατM,m (I − µ(t)A⊤)

× PW2,m S−1
m W ⊤

2,m P(I − µ(t)A)}
}

0c
12 = e2αµ(t)(µ−1(t)I − A)P

0c
21 = e2αµ(t) P(µ−1(t)I − A)

0c
22 = −

e2αµ(t)

µ(t)
P. (19)

We see that 0c
∈ �2n if and only if the Schur complement

of 0c in 0c
22 0c/0c

22 := 0c
11 − 0c

12(0
c
22)

−10c
21 ∈ �n .

Assumption 2: Let there exist constant α > 0 and matrices
P , Qk , k = 1, r1, Sm , m = 1, r2, which belong to relint(�̄1

n),
such that the 0c

11 − 0c
12(0

−1
22c)0c

21 belong to �n for any µ(t),
t ∈ Tk .

Theorem 2: We assume that system (1) satisfies the
Assumption 2. Then, the trivial solution of (1) is globally
asymptotically stable.

Proof: We exploit the functional determined in (18).
The complete proof corresponds to the steps of the proof of
Theorem 1.

Corollary 2: Provided that the Assumption 2 holds, the
trivial solution of (1) is GE-stable as follows:

∥x(t)∥ ≤ γ c(α)|φ|τM e−αt , t ∈ Tk (20)

where

γ c(α) := λ
−1/2
min (P)

(
λmax(P)

+

r1∑
k=1

λmax(Qk)l2
max

1 − e−2αhM,k

2α

+

r2∑
m=1

τM,mλmax(L Sm L)
2ατM,m − 1+e−2ατM,m

4α2

)1/2

lmax := max{l1, . . . , ln}.

Proof: The proof agrees with the corresponding result in
the case of R presented in the work [11], applying it for the
calculus on time scale T. Namely, we note that the inequality

2ατM,m + e−2ατM,m ≥ 1

enables us that the square root expression in γ c(α) is nonneg-
ative for α > 0. From Theorem 2 it follows that V [xt (·)] ≤

V [φ(·)]. Hence, we get

λmin(P)∥x(t)∥2

≤ e−2αt V [xt (·)] ≤ e−2αt V [φ(·)]

≤ e−2αt
(
φ⊤(0)Pφ(0)
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TABLE I
PHASE PLOTS OF x1 VERSUS x2 AT b = c = −0.4 AND DIFFERENT VALUES OF GRAININESS µ ∈ (0, 1]. PHASE PLOTS ARE CHANGING FROM STABLE

FOCUS (FOR µ ≤ 0.988). AT µ ≈ 0.989 HOPF BIFURCATION ARISES AND LIMIT CYCLES ARE OBSERVED

+

r1∑
k=1

∫ 0

−hM,k

e2αs g⊤(φ(s))Qk g(φ(s))1(s)

+

r2∑
m=1

τM,m

∫ 0

−τM,m

∫ 0

θ

e2αs g⊤(φ(s))Sm g(φ(s))1(s)1(θ)
)

≤ e−2αt
(
λmax(P) +

r1∑
k=1

λmax(Qk)l2
max

∫ 0

−hM,k

e2αs1(s)

+

r2∑
m=1

τM,mλmax(L Sm L)

∫ 0

−τM,m

∫ 0

θ

e2αs1(s)1(θ)
)
|φ|

2
τM

= e−2αt
(
λmax(P) +

r1∑
k=1

λmax(Qk)l2
max

1 − e−2αhM,k

2α

+

r2∑
m=1

τM,mλmax(L Sm L)
2ατM,m − 1 + e−2ατM,m

4α2

)
|φ|

2
τM

.

Finally, it yields

∥x(t)∥2
≤ e−2αt (γ c(α))2

|φ|
2
τM

.

Exponential estimate (20) is fitting at whole to one obtained
in the work [11] in the case of R time scale. The only
difference is the Assumption 2 considered in the case of
time scale T, which meanwhile includes the graininess
function µ(t).

Remark 5: The unique advantage of the results in
Theorem 2 is in GAS conditions formulated for model (1)
on a time scale using classic exponential function and pre-
sented in form of LMIs (19). Contrary to Theorem 1, the

stability conditions have clear representations in elementary
mathematical functions. Moreover, estimates for GE-stability
can be obtained.

IV. EXPERIMENTAL STUDY

A. Two-Neuron Model

Here, we consider the two-neuron model offered in [22,
p.808] for the discrete delays. In the work [9], this model was
extended to the case of both discrete and distributed delays.
Here, we extend it to the time scale T. Thus, we consider the
system (1) with the parameters n = 2, r1 = r2 = 4

A =

[
1 0
0 1

]
, W1,1 =

[
b 0
0 0

]
, W1,2 =

[
0 b
0 0

]
W1,3 =

[
0 0
b 0

]
, W1,4 =

[
0 0
0 b

]
, W2,1 =

[
c 0
0 0

]
W2,2 =

[
0 c
0 0

]
, W2,3 =

[
0 0
c 0

]
, W2,4 =

[
0 0
0 c

]
(21)

where b and c are some constants, τ1 = 13π/12, τ2 = 11π/12,
τ3 = 7π/12, τ4 = 5π/12.

In the work [22], in the case of R time scale, there were
obtained some stability conditions for the two-neuron system
with discrete delays and parameters (21). Namely, it was
proved that in the case of b ∈ (−(1/2), (1/2)), the equilibrium
state is locally asymptotically stable independently on delays.
Moreover, when analyzing the qualitative behavior of the
system with respect to parameter b, an infinite sequence of
bk values was constructed, causing Hopf bifurcation.
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Fig. 1. Bifurcation diagrams for the value of x1 with respect to the constant
value of µ ∈ (0, 1] in the cases of mixed (top) and discrete (bottom) delays.

Conducting numerical analysis of this example on the time
series T with µ(t) ≡ µ > 0 as a constant, we observe fas-
cinating insights. In particular, when considering small values
of µ, the system’s behavior aligns closely with the findings
in [22] for R (i.e., when µ ≡ 0). This intriguing connection
leads us to explore further and gain valuable insights.

Notably, we find that for specific values of b = c ∈

(−(1/2), (1/2)), the qualitative behavior of the system exhibits
characteristics of a stable focus. The stability of this focus
is apparent for certain small values of µ, as depicted in
the phase plots presented in Table I. These plots provide a
visual representation of the system’s dynamics in the x1 and
x2 planes, highlighting its fascinating behavior in response to
varying µ.

However, as we increase the graininess of the system,
a remarkable transition occurs. The behavior transforms from
that of a stable focus to the formation of limit cycles. This
phenomenon reflects the system’s sensitivity to changes in the
parameter µ and showcases the dynamic richness that emerges
when exploring different levels of granularity.

In summary, the numerical analysis of this example pre-
sented in Table I for time scale T with µ(t) ≡ µ > 0 as a
constant yields valuable insights into the system’s behavior.
The connection to previous research in R and the observed
transitions from stable focus to limit cycles for varying µ

emphasize the need for a thorough investigation of parameter
sensitivity and granularity effects. These findings serve as a

Fig. 2. Bifurcation diagrams for the value of x2 with respect to the constant
value of µ ∈ (0, 1] in the cases of mixed (top) and discrete (bottom) delays.

stepping stone for future research in time-scale analysis and
offer valuable contributions to the broader field of dynamical
systems theory.

Note that in the case of exceptionally discrete delays (i.e.,
c = 0), only stable focuses are observed for µ ∈ (0, 1].

The next research delves into the cases that lie outside the
range of b = c ∈ (−(1/2), (1/2)), which were the subject
of numerical investigation in [30] using the time scale R.
Specifically, we focus on the case when b = c = −1.41. The
primary objective of this study is to gain a comprehensive
understanding of how the qualitative behavior of the system
is influenced by the parameter µ.

To embark on this investigation, we employ bifurcation plots
(depicted in Figs. 1 and 2) to visually observe the system’s
behavior for varying values of µ. Remarkably, for small µ,
the bifurcation plots reveal the presence of stable focuses in
the system. This finding aligns with our previous observations
for b = c ∈ (−(1/2), (1/2)) and underscores the significance
of µ as a key parameter governing the system’s dynamics.

As we increase the graininess µ, the system’s behavior
undergoes fascinating transformations. The bifurcation plots
show a sequential transition between different types of attrac-
tors, each characterized by unique dynamic properties. To gain
deeper insights into these transformations, Table II provides
a comprehensive summary of the observed phase plots for
varying values of µ. These plots allow us to visualize the
evolution of the system’s behavior and discern critical points
of transition.
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TABLE II
PHASE PLOTS OF x1 VERSUS x2 AT b = c = −1.41 AT DIFFERENT VALUES OF GRAININESS µ ∈ (0, 1]. PHASE PLOTS ARE CHANGING, STARTING FROM

THE LIMIT CYCLE AND TRANSITING TO THE SERIES OF “STRANGE” ATTRACTORS

By elucidating the impact of graininess on the system’s
qualitative behavior, this study opens up new avenues for
future research. Investigating other parameter values beyond
b = c = −1.41 and exploring how they interact with µ could
reveal additional intriguing phenomena and provide a more
complete understanding of the system’s dynamics.

B. Ring Lattice of Identical Neurons With Delayed Coupling

The next study is based on the model of the work [31] where
the ring lattice of n identical neurons was investigated in the
case of time scale R. Here, we extend it to the time scale T
given by the constant graininess µ as in the previous example.
Following [31], we consider the case of n = 7 identical
neurons joined into the ring. Hence, the target system has the
form

x1
i (t) = −xi (t) + δg(xi+1(σ̂ (t − τ))), t ∈ T, i(mod 7)

where δ ∈ R is some constant, which can be presented in
matrix form as follows:

x1(t) = −I x(t) + Wg(x(σ̂ (t − τ))), t ∈ T, x(t) ∈ R7

(22)

where I ∈ R7×7 is identity matrix and

W =



0 δ 0 0 0 0 0
0 0 δ 0 0 0 0
0 0 0 δ 0 0 0
0 0 0 0 δ 0 0
0 0 0 0 0 δ 0
0 0 0 0 0 0 δ

δ 0 0 0 0 0 0


.

The main result of [31] for the model (22) in the case of
time scale R states that the rest state is stable if δ ∈ [−1, 1]

and unstable if δ ∈ (−∞, sec(6π/7)) ∪ (1, ∞) for all τ ≥ 0.
In this analysis, we aim to explore the stability result

of (22) numerically, focusing on the time scale T with a fixed
graininess parameter µ. To investigate the effect of increasing
graininess on the system’s behavior, we set τ = 2 and observed
how the system responded.

As anticipated, for very small values of µ, the stabil-
ity features of (22) closely resemble those observed in R.
Specifically, the system exhibits stable behavior within the
interval δ ∈ (−1, 1) and becomes unstable outside this range,
as illustrated in Fig. 3.

However, it is worth noting a remarkable finding when δ

reaches the absolute value of 1. Contrary to the stable rest
state observed in R, the system displays a limit cycle behavior,
as depicted in Fig. 4. This significant departure from the
behavior at smaller µ values showcases the system’s sensitivity
to graininess and highlights the critical role that this parameter
plays in governing the system’s dynamics.

Our numerical analysis provides valuable insights into
the system’s response to varying graininess, emphasizing the
importance of considering the effects of µ when studying the
stability of (22). The transition from stable behavior to limit
cycles as µ reaches µ = 1 indicates a critical threshold beyond
which the system’s dynamics undergo significant changes.

In our continued investigation, we turn our attention to
solutions lying outside the stability region of δ. Specifically,
we set δ = −1.5 and studied the system’s qualitative behavior
in this regime. To gain a comprehensive understanding of the
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Fig. 3. Solutions of (22) for very small µ. The initial conditions are x = (0.3, 0.5, −0.5, 1.0, 0.3, 0.5, −0.5)⊤ at t ∈ [−τ, 0]∩T. The behavior changes from
(a) and (b) stable focus to (c) unstable solution.

Fig. 4. Stable limit cycle for small graininess µ appearing at the boundary
of the stability region of δ.

Fig. 5. Bifurcation plot of the solution x1 of (22) at τ = 2, δ = −1.5 for
bifurcating parameter µ.

system’s dynamics, we utilize a bifurcation plot, as illustrated
in Fig. 5.

The bifurcation plot provides a holistic view of the system’s
behavior for varying values of µ. Notably, we observe stable
focus behavior for certain values of µ, where the system settles
into a stable state over time. However, for other values of

graininess, we encounter the emergence of limited periodic and
quasiperiodic cycles, indicating a more complex and dynamic
behavior of the system.

To provide a more detailed insight into the observed limit
cycles, we present specific examples of these cycles for differ-
ent values of graininess in Fig. 6. These visual representations
enable us to explore the evolution and characteristics of the
system as µ varies, offering valuable information about the
impact of graininess on the system’s attractors.

V. DISCUSSION

A significant outcome of the construction of the exponential
estimates of the delayed RNN model is the generalization of
the result obtained in previous work [11] in the case of time
scales. By analyzing the obtained LMIs in Assumptions 1
and 2, we observe that setting µ(t) ≡ 0, returns the result
in the form of the mentioned above LMI for T = R, i.e.,
if µ(t) ≡ 0. Therefore, the exponential estimates of the
delayed RNN on the time scale entirely fit the case of the
RNN model in the form of delayed differential equations. That
is, here, we were able to summarize the known results in the
case of general time scales, which gives promising prospects
in the case of qualitative research.

Special attention should be paid to analyzing the estimates
for GE- and GHE-stabilities. The following result shows the
comparison of the Hilger function with the exponential one.

Lemma 4: For time scale T and any constant p > 0 such
that 1 + µ(t) ̸= 0 for t ∈ Tk it holds

ep(t, s) < ep(t−s), if µ(t) ̸= 0, t ∈ T (23)

and

ep(t, s) = ep(t−s), if µ(t) ≡ 0, t ∈ T. (24)

Proof: In case if µ(t) ̸= 0, t ∈ T, we need to show that

e
∫ t

s
log(1+µ(u)p)

µ(u)
1(u)

< ep(t−s)

which can be transformed to

log(1 + µ(u)p)

µ(u)p
< 1, u ∈ [s, t].

The last inequality can be evidenced when studying the
decreasing function f (x) := log(1 + x)/x . Moreover, the
equality (24) follows from f (0) = 1.
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Fig. 6. Limit cycles constructed on x1 versus x2 phase plane at different values of graininess µ for the model (22) at τ = 2.

From (23), it follows that for arbitrary time scale T Hilger
function, gives us more accurate estimate of exponential con-
vergence as compared with the classical exponent. Moreover,
such estimates reach each other for R.

Analyzing the form of matrix inequalities for the exponen-
tial estimate, we see that as the graininess of the time scale
increases, the positive definiteness of the corresponding matri-
ces requires a decrease in the value of the exponential decay
rate α. Hence, we also conclude that the matrix inequalities
in Assumption 1, which lead to exponential stability, will be
primarily satisfied for smaller values of the graininess of the
time scale. This conclusion is also consistent with a numerical
experiment, in which an exponential decay was demonstrated
for small values of µ in the case of values of b and c within a
given bounded interval, using bifurcation diagrams and phase
portraits.

The matrix inequality in Assumption 1 is a nonlinear
one with respect to the matrices P , Qk , k = 1, r1, Sm ,
m = 1, r2, constant α, and graininess µ. The search for
such unknown matrices and parameters that would guarantee
positive definiteness of matrix 0 is reduced to the problem of
nonlinear optimization. For example, you can choose λmin(0)

as an objective function to maximize the minimum eigenvalue
of matrix 0. Undoubtedly, such a problem requires further
in-depth study. In the work [11], a method based on a gener-
alized subgradient was proposed for optimizing the estimate
in the case of delayed differential equations.

Note that in the case of time scale R, the optimization
problem mentioned above was the problem of convex pro-
gramming which simplifies significantly the development of
the numerical method. Unfortunately, convex programming
cannot be applied in the case of arbitrary time scales due to
the nonlinear dependence of 0 on P , Qk , Sm , α, and µ.

The influence of distributed delay on the qualitative behav-
ior of the model should be considered separately. For instance,

in the example of a two-neuron model when µ = 0.4,
it was shown that taking into account the distributed delays
leads to Hopf bifurcation relative to the graininess parameter.
Specifically, in the case of only discrete delays, stable nodes
were observed only. However, with the addition of distributed
delays and an increase in the graininess of its time scale, Hopf
bifurcation occurs, leading to the appearance of limit cycles.
In summary, we can conclude that the inclusion of distributed
delays in the model affects the stability characteristics and
alters the qualitative behavior of trajectories.

In the example of a ring lattice neural network, we have
numerically investigated the model (22) consisting of seven
identical neurons on the time scale T with a constant graininess
µ at different parameter values. Naturally, such research can be
extended for an arbitrary number of neurons n. As mentioned
in [31], the parity of the number n significantly affects the
stability region in the case of R, and this effect should also
be studied on the time scale.

As a result of the numerical study, a series of ’strange
attractors’ was obtained for both examples. In reality, they
are quasiperiodic solutions, and the transition to chaos while
changing the graininess of the time scale T should be demon-
strated by computing numerical characteristics of nonlinear
dynamics for the corresponding time series.

In the presented examples, we considered only the case with
uniform time scales for constant values of graininess µ(t) ≡

µ. At the same time, the results of the work on the conditions
of stability and exponential evaluation can be applied to an
arbitrary, including nonuniform, time scale T. Undoubtedly,
additional conditions must be imposed on the scale in order
for the solutions of the corresponding matrix inequalities in
Assumption 1 to exist. Such tasks should be the basis for
further research.

Special attention should be paid to the periodicity
(quasiperiodicity) on time scale T. More precise consideration
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requires the notion of a periodic time scale T with period
σ 2(T ) if t + σ 2(T ) ∈ T for any t ∈ T, which was introduced,
e.g., in [32, Definition 2.9]. In the given work, we investigated
numerically the uniform time scales only, which are periodic
ones.

Finally, we should bear in mind the accuracy of numerical
calculation. Since we considered numerically uniform time
scales with µ(t) ̸= 0 only, we have used differences instead
of delta derivatives. Even in these simplified cases, taking
into account the accuracy for qualitative research of dynamic
systems with the help of numerical characteristics (like bifur-
cation plots) is of importance, never saying in case of an
arbitrary T. Hence, obtaining analytical results like exponential
estimates gives us an effective criterion for the qualitative
behavior of the model of delayed RNN on a time scale.

VI. CONCLUSION

The findings of this work, which present an approach to
nonlinear numerical analysis of the neural network model
and a method for generating an exponential estimation of the
solution, can be applied in the qualitative study of RNNs for
various time scales. To verify the requirement of exponential
stability, the weights of the neural network discovered during
the training stage, as well as the memory parameters deter-
mined by the RNN unit, can be employed.

The obtained exponential estimate will indicate the rate
of convergence of the RNN at the prediction stage. It is
evident that the practical utilization of the results of this
work, on real RNNs, requires a detailed description of the
equations of the RNN unit. These equations are, by their
nature, difference equations with delay. The studies presented
in this work, based on time scales, allow us to apply the
general results of modeling based on differential equations to
this specific example, which will be the focus of our further
research.

The biggest advantage of work is the proposed time scales
involvement into the model, which allows us to treat systems
both with continuous and discrete time. The novelty lies in
using a similar L–K functional (“in the form”) to one that
was applied for RNN on the delayed differential model on R
but including integration on a time scale. Moreover, we leave
the classic exponential function. The key point when using the
classic exponential function on a time scale is using (17) for
lambda-differentiation.

The main disadvantages of the proposed method are related
to computational complexity issues. Both (6) and (19) include
graininess µ(t), which, in case of time-varying, should be
calculated for each t ∈ T. That is GAS-conditions can
be in fact applied for time scales with constant graininess,
e.g., N, Z. On the other hand, checking (6) and (19) is of
great computational complexity (especially for large n). The
choice of initial approximations for solving LMIs, which are
optimization problems indeed, is crucial. The usage of Hilger
functions leading to (6) can be approved for the simplest
time scales, whereas it complicates the numerical problems
significantly for arbitrary ones.

The study outlines best practices for RNN analytics in AI
solutions, which are based on modeling time-scaled delayed

dynamical systems. It was completed as part of the FAAI
project [33], which focuses on building skills for producing
AI solutions for real-world applications. Working with RNN
on time scales would be a great way to gain experience with
cutting-edge Big Data and machine learning technology.
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