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Dynamic Programming
Bo Zhao , Senior Member, IEEE, Shunchao Zhang , and Derong Liu , Fellow, IEEE

Abstract— In this article, a novel self-triggered approximate
optimal neuro-control scheme is presented for nonlinear systems
by utilizing adaptive dynamic programming (ADP). According
to the Bellman principle of optimality, the cost function of the
general nonlinear system is approximated by building a critic
neural network with a nested updating weight vector. Thus,
the Hamilton–Jacobi–Bellman equation is solved to indirectly
obtain the approximate optimal neuro-control input. In order
to reduce the computation, the communication bandwidth, and
the energy consumption, an appropriate self-triggering condition
is designed as an alternative way to predict the updating time
instants of the approximate optimal neuro-control policy. On the
basis of Lyapunov’s direct method, the stability of the closed-loop
nonlinear system is analyzed and guaranteed to be uniformly
ultimately bounded. Simulation results of two practical systems
illustrate the present ADP-based self-triggered approximate opti-
mal neuro-control scheme to be reasonable and effective.

Index Terms— Adaptive dynamic programming (ADP), neural
networks (NNs), optimal control, reinforcement learning, self-
triggered control.

I. INTRODUCTION

IN THE modern control framework, the control performance
greatly depends on the communication networks, which

transmits a large amount of data among controllers, sensors,
and actuators. Especially, when a system structure grows
its size and complexity, the deployment cost is increased
accordingly. Therefore, in order to ensure both the system
stability and the control performance, there exists a strong
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desire for controlled systems to not only provide an adequate
level of control performance but also reduce resource and
energy consumption.

Much effort has been made on developing optimal con-
trol methods to achieve adequate control level for nonlinear
systems with different scenarios. It is worth pointing out
that dynamic programming [1], which has been paid great
attention by many researchers, is regarded as a classical and
effective tool to obtain optimal control solutions of nonlinear
systems. Furthermore, to avoid its “curse of dimensional-
ity” that occurs in systems with the increasing structural
complexity, adaptive dynamic programming (ADP), which is
assisted by neural networks (NNs) or fuzzy logic systems,
has been developed by Werbos [2] in the 1970s. During the
last several decades, ADP-based optimal [3], [4], [5] and
suboptimal [6] control approaches have received great success
in tackling the control problems of continuous-time (CT) or
discrete-time (DT) nonlinear systems with uncertainties or
external disturbances [7], [8], input or output constraints [9],
time-delay [10] and failures [11] to solve trajectory track-
ing [12], [13], zero-sum or nonzero-sum games [14], and so
on. Moreover, some attempts have been made to implement the
ADP-based control strategies to practical systems, such as res-
idential energy scheduling [15], induction motor driving [16],
power systems [17], microgrid energy management [18], near
space vehicles [19], robot systems [12], and active suspension
systems [20].

In order to reduce resource and energy consumption,
ADP-based feedback control policies have been developed
from periodic to aperiodic schedule, i.e., from time-triggered
to event-triggered control strategy. Distinguished from the
time-triggered control framework, the event-triggered control
method [12], [21] is responsive and generates sensor sam-
pling and control action as long as the system state diverges
more than a certain threshold determined by the developed
appropriate event-triggering condition, that is to say, the data
transmission among the controllers, the sensors, and the actu-
ators is greatly reduced to save the computational burden, the
communication bandwidth, and the energy consumption.

Although the event-triggered control offers clear superi-
ority to the periodic control, it is worth emphasizing that
the triggering condition is continuously monitored based on
current measurements from a hardware device. It implies that
full-state information should be assumed to be available, but
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this assumption is always violated in most practical situa-
tions. Some beneficial attempts, which combine the event-
and self-triggered mechanisms, have been made for different
types of plants. Kishida et al. [22] presented an integrated
event- and self-triggered networked control scheme for uncer-
tain linear systems with finite-gain L2 stability, where the
event-triggering condition decides whether a new control sig-
nal would be transmitted to the actuator at each sampling,
and the self-triggering condition determines the time instants
of sampling. Zhou et al. [23] proposed a combined self-
and event-triggered control strategy to investigate the output
control approach for quantized linear systems. Qi et al. [24]
presented an event- and self-triggered boldsymbol control
method for switched linear systems with exogenous distur-
bance. The current sampled data are employed to adaptively
predict the inter-execution intervals to decrease resource con-
sumption. Sahoo et al. [25] proposed a mixed event- and
self-triggering-based regulation method for CT linear dynam-
ical systems. Zuo et al. [26] developed both event- and
self-triggered transmission strategies for dynamical systems
by designing a triggering condition to save network resources.

To avoid the continuous monitoring of the system state by a
hardware device, the self-triggering mechanism is introduced
to design controllers by some researchers. In contrast to the
event-triggered control which updates the control policy based
on the developed triggering condition, the next triggering
time in the self-triggered control [27] is determined at the
former triggering time instant, that is to say, the continuous
monitoring of the system state through hardware devices is not
required anymore at the sensor side, and the embedded devices
can shut their communication until the next transmission time
instant. Focusing on linear systems, Zhang et al. [28] designed
a self-triggered gain scheduling control for achieving the
stabilization semiglobally for input constrained linear systems
to avoid continuous monitoring the system states. Lu and
Maciejowski [29] investigated a self-triggering mechanism-
based model predictive control (MPC) strategy for linear
systems in the presence of both state and input constraints,
where both the updating of MPC control policy and the next
triggering instant are determined according to the relaxed
dynamic programming inequality. Brunner et al. [30] inves-
tigated a novel self-triggered aperiodic control method for
perturbed DT linear systems by evaluating the set-membership
conditions. In this way, a tradeoff is realized between the
communication rate and the worse case asymptotic limita-
tion on the closed-loop system state. For nonlinear systems,
Liu et al. [31] presented an optimized self-triggered strategy-
based robust MPC scheme for constrained DT uncertain
nonlinear systems subject to disturbances. Li and Li [32]
proposed a self-triggered distributed MPC scheme to reach
consensus of a heterogeneous time-varying multiagent system.
The self-triggering time intervals are alternatively optimized
by the control inputs, and the influence on the system per-
formance is analyzed. Based on the state information of each
agent collected from its neighbors, Fan et al. [33] proposed
a self-triggered consensus algorithm with Zeno-exclusion
analysis for multiagent systems. Gao et al. [34] proposed
a state estimation-based self-triggered control scheme for

cyber-physical systems subject to joint attacks of both sen-
sors and actuators with the enhancement of resource saving.
Furthermore, Gao et al. [35] developed a robust self-triggered
control scheme for time-varying constrained uncertain systems
by analyzing the reachability for both linear and nonlin-
ear scenarios. Furthermore, some attempts have been made
for practical implementations. Cao et al. [36] proposed a
self-triggered MPC strategy to investigate the trajectory track-
ing control problem for nonholonomic vehicles considering
coupled input constraints and bounded perturbations. By intro-
ducing the self-triggered communication strategy, Zhou and
Tokekar [37] developed a decentralized target tracking method
for multirobot teams, and the time when a particular robot
should search the online data from its neighbors and when
it is secure to manipulate with possibly out of date data is
determined based on the self-triggering mechanism to reduce
the communication bandwidth.

From the aforementioned state-of-the-art of existing
self-triggered control schemes, it is widely explored in MPC,
distributed control, and networked control, rare works focused
on optimal control. Lou and Ji [38] investigated a new
self-triggered adaptive optimal control method for nonlinear
CT systems leading to a high quantitative accuracy at a
limited channel transmission rate. Kobayashi and Hiraishi [39]
investigated the synthesis of self-triggered control problem
for network systems in an optimal manner by computing the
control input and the sampling time simultaneously.

In order to avoid the continuous monitoring through
hardware devices in existing event-triggered control strate-
gies, as well as to decrease the computational burden,
the communication bandwidth, and the energy consumption,
we present a new self-triggered approximate optimal neuro-
control method for nonlinear systems based on ADP. The main
contributions and novelties are concluded as following three
aspects.

1) Different from existing ADP-based event-triggered con-
trol strategies [12], [21], the next triggering instant in the
developed ADP-based self-triggered control is predicted
by a software based on the previous triggering instant,
that is to say, a new triggering condition based on
self-triggering mechanism is explored to predict the next
triggering instant. Thus, the continuous monitoring of
the system state in the event-triggered control strategy
is avoided, and the hardware device for continuous
monitoring the system state is not required anymore.

2) By selecting a proper design structure for the nested
updating policies, the critic NN weight error dynamics
is guaranteed to be asymptotically stable, rather than
uniformly ultimately bounded (UUB) in most of existing
ADP-based control schemes.

3) The self-triggered control scheme cannot only guarantee
the system to be stable in an optimal manner but
also reduces the computation, the precious communi-
cation bandwidth, and the energy consumption. In other
words, the developed control scheme offers a feasible
tradeoff between the overall resource cost and the sys-
tem control performance, which is significant in real
implementations.
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The remainder of this article is structured as follows.
In Section II, the problem statement is given. In Section III, the
self-triggered approximate optimal neuro-control is designed
via the ADP framework in detail, and the stability analysis is
offered. In Section IV, simulation studies illustrate the effec-
tiveness of the developed approach. In Section V, concluding
remarks are briefly described.

II. PROBLEM STATEMENT

The considered nonlinear system dynamics is modeled in
the general form as

ẋ = f (x)+ g(x)u(x) (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the system state and
control input vectors, respectively. f (x) ∈ Rn and g(x) ∈

Rn×m represent the known drift dynamics and control input
matrix, respectively. To ease the notation, x(t) = x is denoted
in the sequel.

To make the analysis more amenable, the following two
assumptions are provided.

Assumption 1: The vector-valued drift function f (x) is
Lipschitz continuous on the compact set � ∈ Rn including the
origin such that the solution x(t) of the nonlinear system (1)
is unique for the given equilibrium point x0 ∈ � and u.
Moreover, there is a scalar D f > 0 such that ∥ f (x)∥ ≤

D f ∥x∥, where ∥ · ∥ indicates the 2-norm of a vector, and the
considered system (1) can be stabilized on �.

Assumption 2: The control input matrix g(x) is norm-
bounded as 0 < ∥g(x)∥F ≤ Dg for arbitrary x ∈ �, where
Dg > 0 and ∥ · ∥ denotes the Frobenius norm of a matrix.

Define the infinite-horizon cost function as

V (x, u) =

∫
∞

t
U (x(τ ), u(τ ))dτ (2)

where U (x, u) = xT Qx + uT Ru ≥ 0 for all x ∈ Rn and
u ∈ Rm , U (0, 0) = 0, V (0, 0) = 0, and Q ∈ Rn×n and
R ∈ Rm×m are symmetric positive definite matrices.

Definition 1: For the nonlinear system (1), a control policy
u(x) is defined to be admissible with respect to (2) if u(x)
is continuous on a set � ∈ Rn , u(0) = 0, u(x) stabilizes the
nonlinear system (1), and V (x0) in (2) is finite for all x ∈ �,
where x0 = x(0) is the initial state of x . The admissible control
set ψ(�) consists of admissible control policies.

For any given admissible control policy u in the admissi-
ble control set ψ(�), if the associated cost function (2) is
continuously differentiable and V ∈ C1, then we can derive
the nonlinear equation by taking the time derivative of (2) as
in [41]

U (x, u)+ ∇V T(x)( f (x)+ g(x)u) = 0 (3)

where ∇V T(x) = ∂V (x)
/
∂x indicates the partial gradient of

V (x) with respect to the system state x .
To drive the closed-loop system (1) to be convergent, the

optimal control policy u∗(t) ∈ ψ(�) should be achieved by
seeking the minimized cost function, i.e., the optimal cost
function as

V ∗(x) = min
u∈ψ(�)

∫
∞

t
U (x(τ ), u(τ ))dτ . (4)

By considering the optimal cost function (4), the associate
Hamiltonian is defined for the nonlinear system (1) as

H
(
x, u,∇V ∗(x)

)
=U (x, u)+∇V ∗T(x)( f (x)+g(x)u). (5)

Depending on the Bellman principle of optimality [1], the
optimal cost function V ∗(x) is derived by seeking the solution
of the following Hamilton–Jacobi–Bellman equation (HJBE)

0 = min
u∈ψ(�)

H
(
x, u∗,∇V ∗(x)

)
. (6)

Hence, the optimal neuro-control policy is illustrated in the
closed form as

u∗(x) = −
1
2

R−1gT(x)∇V ∗(x). (7)

By involving the self-triggered mechanism, the present opti-
mal neuro-control policy is updated when the self-triggered
time instant is satisfied only, which is predicted by the present
state and a given function through software. Thus, it is easy
to implement in contrast to the event-triggered optimal control
schemes.

With the help of the prediction, the optimal neuro-control
policy is updated under the self-triggered mechanism as
uk = u(x(tk)) at the predicted time tk . Therefore, the control
target of this article is to present a self-triggered approximate
optimal neuro-control policy u(x(tk)) to make the closed-loop
system (1) to be stable.

III. SELF-TRIGGERED APPROXIMATE OPTIMAL
NEURO-CONTROLLER DESIGN AND

STABILITY ANALYSIS

A. Asymptotically Converged Critic NN

Starting from the cost function (2), it is tough to solve the
HJBE (6). Fortunately, based on the general approximation
ability of NNs, V (x) is accurately approximated by a feedfor-
ward NN with only one hidden layer [40], [41] such that

V (x) = W T
c σ(x)+ εc(x) (8)

where Wc ∈ Rlc , σ(x) ∈ Rlc , and εc(x) ∈ R represent
the unknown optimal weight vector, the activation function,
and the approximation error, respectively, and lc indicates the
quantity of hidden neurons. Thus, taking the partial derivative
of (8) along the system state x , we have

∇V (x) = ∇σ T(x)Wc + ∇εT
c (x) (9)

where ∇σ T(x) = ∂σ(x)/∂x ∈ Rn×lc and ∇εT
c (x) =

∂εc(x)
/
∂x ∈ Rn are the corresponding partial gradients along

the system state x , respectively.
In this case, the Hamiltonian for the nonlinear system (1)

is defined as

H(x, u,Wc) = U (x, u)+ W T
c ∇σ(x)ẋ + ∇εc(x)ẋ . (10)

In order to derive the optimal control policy (7) customized to
a given controlled plant, the unknown optimal weight vector
Wc is trained by approximating (8) as

V̂ (x) = Ŵ T
c σ(x) (11)
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where Ŵ c is the estimate of Wc. The partial gradient with
respect to the corresponding system state x of (11) is described
as

∇ V̂ (x) = ∇σ T(x)Ŵ c. (12)

Under the approximation (11) of the cost function V (x), the
Hamiltonian (43) is approximated by

H
(
x, u, Ŵ c

)
= U (x, u)+ Ŵ T

c ∇σ(x)ẋ

= ec. (13)

By comparing (13) with (5), the Hamiltonian approximation
error is obtained as

ec = ε − W̃ T
c θ (14)

where W̃ c = Wc − Ŵ c denotes the weight approximation error
vector, θ = ∇σ(x)ẋ , and ε = −∇εc(x)ẋ is norm-bounded by
a positive constant εM as ∥ε∥ ≤ εM .

Similarly, to derive the critic NN weight vector, the target
function Ec = (1/2)eT

c ec is minimized through the commonly
used steepest descent algorithm. Thus, the weight vector is
updated by

˙̂W c = −lc

[
∂Ec

∂Ŵ c

]
(15)

where lc > 0 is a learning rate. On this basis, the nested
updating policies are described as

˙̂W c = −lc
(
ec − ε̂M − 0 sgn

(
W̃ T

c θ
))
θ (16)

where 0 > 0 is a design parameter, ε̂M is the estimate of εM

tuned by

˙ε̂M = −lεŴ T
c θ, (17)

and lε > 0 is a learning rate. Define the weight approximation
error vector as W̃ c = Wc − Ŵ c, and it is adjusted by

˙̃W c = −
˙̂W c

= lc
(
ε − εM + ε̃M − W̃ T

c θ − 0 sgn
(
W̃ T

c θ
))
θ (18)

where ε̃M = εM − ε̂M , and it is adjusted by

˙ε̃M = −lεW̃ T
c θ. (19)

Remark 1: From (18) and (19), we know that the approx-
imation error item ε̃M , adjusted by (19), is embedded in the
updating policy (18) of W̃ c. Thus, the updating policies (18)
and (19) are then regarded as “the nested updating policies.”

Next, we will show the nested updating policies (18)
and (19) can ensure the asymptotic stability of the critic NN
weight error dynamics, rather than UUB in most existing
ADP-based optimal control methods.

Theorem 1: For the nonlinear system (1), the developed
nested updating policies (18) and (19) ensure the critic NN
weight error dynamics to be asymptotically stable.

Proof: Considering both approximation errors in the nested
updating policies, select a Lyapunov function candidate as

L1 = tr
(

1
2lc

W̃ T
c W̃ c

)
+

1
2lε
ε̃

2
M . (20)

For (20), taking its time derivative and plugging the nested
updating policy (18) into it, we derive

L̇1 = tr
(

1
lc

W̃ T
c

˙̃W c

)
+

1
lε

˙ε̃M ε̃M

= tr
(
W̃ T

c (ε − εM)θ
)
+ tr

(
W̃ T

c ε̃Mθ
)

− 0
∥∥W̃ T

c θ
∥∥ −

∥∥W̃ T
c θ

∥∥2
+

1
lε

˙ε̃M ε̃M . (21)

For matrices X and Y , if Y X ∈ R, we notice that tr(XY ) =

tr(Y X) = Y X . Introducing the updating policy (19) into (21),
we derive

L̇1 = tr
(
W̃ T

c θ(ε − εM)
)
+ tr

(
W̃ T

c θ ε̃M
)
− 0

∥∥W̃ T
c θ

∥∥
−

∥∥W̃ T
c θ

∥∥2
+

1
lε

˙ε̃M ε̃M

≤
∥∥W̃ T

c θ
∥∥∥∥ε − εM

∥∥ + tr
(
W̃ T

c θ ε̃M
)
− 0

∥∥W̃ T
c θ

∥∥
−

∥∥W̃ T
c θ

∥∥2
+

1
lε

˙ε̃M ε̃M

≤ 2εM
∥∥W̃ T

c θ
∥∥ + tr

(
W̃ T

c θ ε̃M
)
− 0

∥∥W̃ T
c θ

∥∥
−

∥∥W̃ T
c θ

∥∥2
+

1
lε

˙ε̃M ε̃M

= −(0 − 2εM)
∥∥W̃ T

c θ
∥∥ −

∥∥W̃ T
c θ

∥∥2
. (22)

From the above analysis, we know that if there exists a
design parameter 0 ≥ 2εM , then, L̇1 ≤ 0. Hence, it indicates
that the nested updating policies (18) and (19) guarantee the
asymptotic stability of the critic NN weight error vector W̃ c.
This ends the proof. ■

B. Self-Triggered Approximate Optimal Neuro-Control

Based on the partial derivative of the approximate critic
NN (12), the desired optimal neuro-control policy (7) is
approximated by

û(x) = −
1
2

R−1gT(x)(∇σ(x))TŴ c. (23)

According to the self-triggered mechanism, the optimal
neuro-control policy can be updated at the predicted time
sequence as

û(xk) = ûk = −
1
2

R−1gT(xk)(∇σ(xk))
TŴ c. (24)

C. Stability Analysis

Before showing the stability of the closed-loop system (1)
with the developed self-triggered approximate optimal neuro-
control policy (24), the following assumptions are provided.

Assumption 3: On the compact set � ∈ Rn , the control
input function u(x) is Lipschitz continuous, i.e., there is a
scalar Du > 0 such that ∥u(x(t))− u(x(tk))∥ = ∥u∗

− uk∥ ≤

Du∥xe∥, where xk = x(tk) and xe = x − xk .
Assumption 4: W̃ c, ∇σ(x), and ∇εc are norm-bounded as

∥W̃ c∥ ≤ WcM , ∥∇σ(x)∥ ≤ σcM , and ∥∇εc∥ ≤ εcM , where
WcM , σcM , and εcM are unknown positive scalars.

Theorem 2: For the nonlinear system (1), consider the
cost function (2), Assumptions 1–4, and the developed
self-triggered approximate optimal neuro-control policy (24).
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If there are positive constants δ ∈ (0, 1] and ϵ ∈ (0, 1) such
that

δ
(
1 − ϵ2)xT

k N xk ≥ xT
e

((
1 −

1
ϵ2

)
N + M

)
xe (25)

where N and M are later defined positive definite diagonal
matrices with proper dimensions. Then, the UUB stability can
be assured for the closed-loop nonlinear system (1).

Proof: Select a Lyapunov function candidate as

L2 =
1
2

xTx + V ∗(x). (26)

Substituting the developed self-triggered approximate optimal
neuro-control policy (24), the time derivative of (26) becomes

L̇2 = xT ẋ + ∇V ∗(x)ẋ

≤ xT(
f (x)+ g(x)ûk

)
+ ∇V ∗(x)

(
f (x)+ g(x)

(
u∗(x)+ ûk − u∗(x)

))
≤ xT(

f (x)+ g(x)ûk
)
+ ∇V ∗(x)

(
f (x)+ g(x)u∗(x)

)
+ 2u∗T R

(
u∗(x)− ûk

)
. (27)

Based on Assumptions 1 and 2, considering (3) and utilizing
Young’s inequality, we obtain

L̇2 ≤ −xT D f x +
1
2

xT Dgx +
1
2

ûT
k Dg ûk

+ 2u∗T R
(
u∗

− ûk
)
− xT Qx − u∗T Ru∗

≤ −xT
(

D f +
1
2

Dg

)
x + 2u∗T R

(
u∗

− ûk
)

+
1
2

(
u∗

− u∗
+ ûk

)T
Dg

(
u∗

− u∗
+ ûk

)
− xT Qx − u∗T Ru∗

= −xT
(

D f +
1
2

Dg

)
x +

1
2

(
u∗

− ûk
)T

Dg
(
u∗

− ûk
)

− u∗T
(

R −
1
2

Dg

)
u∗

− xT Qx

+ u∗T(
2R − Dg I

)(
u∗

− ûk
)
. (28)

According to Assumption 4, we notice that

∥u∗
− ûk∥ = ∥u∗

− û + û − ûk∥

≤ ∥u∗
− û∥ + ∥û − ûk∥

≤
1
2
∥R−1

∥F∥g(x)∥F∥W̃ c∇σ(x)+ ∇ec(x)∥

+ Du∥xe∥

≤
1
2
∥R−1

∥F Dgµ+ Du∥xe∥ (29)

where µ = ∥WcMσM + ecM∥. Thus, we have

L̇2 ≤ − xT
(

Q −

(
D f +

1
2

Dg

)
I
)

x +
1
4

R−2 D3
gµ

2

+ xT
e Dg D2

u xe − u∗T
(

R −
1
2

Dg

)
u∗

+ ∥u∗
∥∥2R − Dg I∥F

(
1
2

R−1 Dgµ+ Du∥xe∥

)
≤ − xT

(
Q −

(
D f +

1
2

Dg

)
I
)

x +
1
4

R−2 D3
gµ

2

+ xT
e Dg D2

u xe − u∗T
(

R −
1
2

Dg

)
u∗

+
1
2

u∗T D2
uu∗

+
1
2
∥2R − Dg I∥2

F xT
e xe

≤ − xT
(

Q −

(
D f +

1
2

Dg

)
I
)

x

− u∗T
(

R −
1
2

(
Dg − D2

u − D2
g

)
I
)

u∗

+ xT
e

(
Dg D2

u +
1
2
∥2R − Dg I∥2

F

)
xe +1

≤ − xT
(

Q −

(
D f +

1
2

Dg

)
I − N

)
x − xT N x

− u∗T
(

R −
1
2

(
Dg − D2

u − D2
g

)
I
)

u∗

+ xT
e Mxe +1 (30)

where 1 = (1/4)R−2 D3
gµ

2
+ (1/8)R−2µ2

∥2R − Dg I∥2
F , N ∈

Rn×n is a positive definite diagonal matrix, and M = (Dg D2
u +

(1/2)∥2R − Dg I∥2
F )I .

Noticing that x = xk + xe, we have

xT N x = (xk + xe)
T N (xk + xe)

= xT
k N xk + xT

e N xe + 2xT
k N xe

=
(
1 − ϵ2)xT

k N xk +

(
1 −

1
ϵ2

)
xT

e N xe

+

(
ϵxk +

1
ϵ

xe

)
N

(
ϵxk +

1
ϵ

xe

)
≥

(
1 − ϵ2)xT

k N xk +

(
1 −

1
ϵ2

)
xT

e N xe. (31)

Thus, (30) becomes

L̇2 ≤ −xT Q0x − xT N x − u∗T R0u∗
+1

−
(
1 − ϵ2)xT

k N xk + xT
e

((
1 −

1
ϵ2

)
N + M

)
xe (32)

where Q0 = Q − (D f + (1/2)Dg)I − N and R0 =

R − (1/2)(Dg − D2
u − D2

g)I . Considering the condition (25),
we have

L̇2 ≤ −xT Q0x − xT N x − u∗T R0u∗
+1

≤ −λmin(Q0)∥x∥
2
− λmin(R0)∥u∗

∥
2
+1

≤ −λmin(Q0)∥x∥
2
+1. (33)

We can conclude that L̇2 ≤ 0 as long as Q0 and R0 are selected
as positive definite matrices, i.e., Q > (D f + (1/2)Dg)I + N
and R > (1/2)(Dg − D2

u − D2
g)I , as well as x locates outside

the following compact set:

�x =

{
x : ∥x∥ ≤

√
1

λmin(Q0)

}
.

Thus, the closed-loop nonlinear system (1) is assured to be
UUB under the present self-triggered approximate optimal
neuro-control scheme. This ends the proof. ■

Remark 2: For Assumptions 1 and 2, we notice that prac-
tical systems are always modeled as continuous nonlinear
differential equations. Thus, it is common that it has a unique
equilibrium point x0. Furthermore, f (x) and g(x) denote the
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drift function and control input matrix in practical application
systems, respectively. For example, f (x) in robot systems
consists of the inertia, Coriolis, and centripetal force, and g(x)
indicates the inertia, so it is feasible to assume them to be
norm-bounded, and g(x) cannot be zero. For Assumption 3,
the ADP-based control strategy is developed based on policy
iteration, which starts from a proper initial admissible control.
It means that the initial admissible control can be regarded as
a priori control. Meanwhile, we consider to design the control
scheme in infinite horizon, so the Lipschitz continuity of
control input u(x) is satisfied. For Assumption 4, it is certain
that the value of cost function is finite in practical systems,
so its approximation cannot be infinite. Since W̃ c, ∇σ(x), and
∇εc denote the weight approximation error, and the partial
gradients of activation function and NN approximation error,
they can be ensured to be finite. Thus, Assumptions 3 and 4
can be fulfilled in practice. Moreover, these assumptions are
commonly used in developing ADP-based control schemes [3],
[7], [41].

D. Self-Triggered Mechanism

In this section, the inter-execution time 1k = tk+1 − tk, k =

1, 2, . . . ,∞, is determined as 1k = 8(xk), which implies that
inter-execution time is lower bounded with a positive scalar,
that is to say, the self-triggered mechanism is admissible.
Before the proof, we provide the definition of Zeno behavior
as follows.

Definition 2 (Zeno Behavior): The nonlinear system is Zeno
if

lim
k→∞

tk =

∞∑
k=0

1k = t∞ < ∞ (34)

where 1k is defined as the kth intersampling time and t∞ is
called the Zeno time [42].

Theorem 3: The self-triggered time sequence {tk} is deter-
mined by

tk+1 = tk +
1
λ

ln
(

λ
δxT

k N xk

ρ(xk)
+ 1

)
(35)

where λ = 2+2D f and ρ(xk) = (2D2
f +D2

g D2
u)λmax(M)xT

k xk .
Then, the self-triggering condition (35) is admissible for the
nonlinear system (1). Furthermore, the inter-execution time is
provided by

1k =
1
λ

ln
(

λ
δxT

k N xk

ρ(xk)
+ 1

)
> 0. (36)

Proof: Choose a Lyapunov function candidate as L3(t) =

xT
e Mxe, t ∈ [tk, tk+1). We have its time derivative as

L̇3 = 2xT
e Mẋe

= 2xT
e M

(
f (x)+ g(x)ûk

)
≤ 2xT

e Mxe + f T(x)M f (x)+
(
g(x)ûk

)T
Mg(x)ûk

≤ 2xT
e Mxe + xT D2

f Mx + D2
g D2

u xT
k Mxk

≤ 2xT
e Mxe + 2

(
xT

k D2
f Mxk + xT

e D f Mxe
)

+ D2
g D2

u xT
k Mxk

= xT
e

(
2 + D f

)
Mxe + xT

k

(
2D2

f + D2
g D2

u

)
Mxk

≤ λxT
e Mxe + ρ(xk). (37)

Thus, we have

L̇3 ≤ λL3 + ρ(xk). (38)

By using the comparison principle, it yields

L3 ≤
ρ(xk)

λ

(
eλ(t−tk ) − 1

)
, t ∈

[
tk, tk+1). (39)

Based on the self-triggered mechanism shown in (35), one has

ρ(xk)

λ

(
eλ(t−tk ) − 1

)
≤ δxT

k N xk, t ∈
[
tk, tk+1). (40)

According to (39) and (40), we can see that the nonlinear
system (1) with the self-triggering condition (35) is ensured
to be exponentially stable. Furthermore, it is obvious that

1k =
1
λ

ln
(

λ
δxT

k N xk

ρ(xk)
+ 1

)
> 0.

This indicates that the inter-execution time between the current
and the next predict time instant is larger than zero, which
means that the Zeno behavior can be avoided. This ends the
proof. ■

In summary, the ADP-based self-triggered approximate
optimal neuro-control scheme is described in Algorithm 1.

Algorithm 1 ADP-Based Self-Triggered Approximate Opti-
mal Neuro-Control

1: Initialization: Initialize parameters
Q, R,λ, δ, lc, lε, N , 0, the terminal time of system
operation T , and the computation accuracy ξ > 0 of cost
function. Let p = 0, k = 0, t0 = 0, V (0)(x0) = 0, and
begin with admissible control policy u(0)0 (x0).

2: Policy evaluation: Let k ≥ 0, p = p + 1, based on
the control policy u(p)k (xk), solve the following nonlinear
equation for u(p)k (xk):

U
(

xk, u(p)k

)
+ ∇V (p)T(xk)

(
f (xk)+ g(xk)u

(p)
k

)
= 0.

(41)

3: Policy improvement: Update the control policy u(p)k (xk)

by

u(p+1)
k (xk) = −

1
2

R−1
i gT

i (xk)∇V (p)(xk). (42)

4: If ∥V (p+1)(xk)− V (p)(xk)∥ ≤ ξ , go to 5 and obtain the
self-triggered approximated optimal neuro-control uk at
time instant tk ; else, return to 2.

5: Self-triggered mechasnism: Let k = k + 1, predict the
next triggering time instant by

tk+1 = tk +
1
λ

ln
(

λ
δxT

k N xk

ρ(xk)
+ 1

)
. (43)

6: If tk ≤ T , go to Step 2; else, stop.
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E. Computational Requirements

Inspired by [43] and [44], the minimal computational
requirements will be analyzed for the developed self-triggered
approximate optimal neuro-control (24).

For the Veronese map ϑ from x = [x1, x2, . . . , xn]
T

∈ Rn

to the quadratic function xTx ∈ Rn×n , we have

ϑ : =
[
x2

1 , x1x2, . . . , x1xn, x2
2 , x2x3, . . . , x2

n

]T
.

Therefore, its computation has space complexity
N (ts)(n(n + 1)/2), where ts is the discretization step,
N (ts) = ⌊(1k max/ts)⌋−⌊(1k min/ts)⌋, 1k max is the maximum
time the system is allowed to run in the open loop, and
1k min is the minimum time on guaranteeing the time cost
for one step computation. For the time complexity, define
tc > 0 as the time it takes to execute an instruction in
a given digital platform, and the implementation requires
N (ts)(n(n + 1)/2)tc multiplications and the same amount of
additions in preprocessing step, as well as N (ts)tc for testing
L̇2 ≤ −λmin(Q0)∥x∥

2
+1 in the running step.

Now, turn to our concern. Noticing that the Lyapunov
function candidate (26) consists of a quadratic function of x
and an optimal cost function V ∗ (i.e., an integral of quadratic
functions of x and u from the initial time t to infinity). Thus,
the implementation of the developed self-triggered control
policy (24) has a space complexity as

Ms = N (ts)
(

n(n + 1)
2

+
m(m + 1)

2
+ 1

)
since it requires the space of N (ts)(n(n +1)/2) for computing
xTx , N (ts)(m(m + 1)/2) for computing uT Ru, and N (ts) for
storing the integral at tk . Meanwhile, it has a time complexity
as

Mt = (2n(n + 1)+ m(m + 1)+ N (ts))tc

since it requires preprocessing time as N (ts)n(n+1)tc for xTx ,
N (ts)n(n + 1)tc for xT Qx and N (ts)m(m + 1)tc for uT Qu
in the integral, and N (ts)tc for testing the inequality L̇2 ≤

−λmin(Q0)∥x∥
2
+1 in the running step. It is worth pointing

out that the minimum inter-execution time 1k min is determined
by Mt , and the maximum inter-execution time 1k max is
determined by guaranteeing L̇2 = −λmin(Q0)∥x∥

2
+ 1.

Remark 3: By introducing the self-triggering mechanism,
this article presents a novel ADP-based optimal neuro-control
scheme for nonlinear systems. The superiority of this approach
is emphasized as follows: 1) it reduces the computational and
communication resources, as well as energy cost since the
control policy (24) is updated aperiodically and 2) the updating
time instants of control policy are predicted by the designed
self-triggered mechanism (35). It implies that the hardware
monitoring the full system state in the event-triggered control
structure is no longer required.

IV. SIMULATION STUDIES

In this section, we provide two simulation examples, includ-
ing practical and numerical systems, to verify the present
self-triggered approximate optimal neuro-control scheme via
ADP (24) to be effective.

Fig. 1. Evolution of the critic NN weights for the torsional pendulum system.

A. Example 1

A torsional pendulum bar system is employed with the
dynamics expressed as

dθ
dt

= ω

J
dω
dt

= u − Mgl sin θ − fd
dθ
dt

(44)

where M = 1/3 kg and l = 2/3 m indicate the mass and
length of the pendulum bar, respectively. Let the rotary inertia
be J = 4/3 mL2, the frictional factor be fd = 0.2, and
the gravitational acceleration be g = 9.8 m/s2. Replacing the
system state θ and ω by x1 and x2, the torsional pendulum
bar system is expressed in the state-space form as

ẋ =

[
x2

−
Mgl
J sin x1 −

fd
J x2

]
+

[
0
1
J

]
u.

In the cost function, Q and R are selected as identity matrices
with appropriate dimensions. Given the initial system state
vector as x0 = [1,−1]

T, the activation function of critic
NN is chosen as σ(x) = [x2

1 , x1x2, x2
2 ]

T, and the weight
vector is defined as Ŵ c = [Ŵ c1, Ŵ c2, Ŵ c3]

T with initial
value Ŵ 0

c = [0.502,−0.489, 0.012]
T. It is worth pointing

out that their selection depends on the experience according
to [40] and [41]. The learning rates in the nested updating
policies for the critic NN are chosen as lc = lε = 0.4 and
0 = 0.5. In the self-triggered mechanism, based on the
“trial and error,” we choose the parameter λ = 0.1 and
δ = 0.1, 0.3, 0.5, 0.7, 0.9, 1 to test the sensitivity on the
sampling frequency and show comparison results, respectively.

Taking δ = 0.7 as the representative for explaining the sim-
ulation results, simulation results are provided in Figs. 1–5 and
Table I. Fig. 1 illustrates the evolution of the critic NN weights.
We can see that they converge to [0.986,−0.371, 0.407]

T
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TABLE I
SAMPLING TIMES WITH DIFFERENT VALUES OF PARAMETER δ

Fig. 2. State trajectories of the torsional pendulum system.

gradually. As illustrated in Fig. 2, by applying the devel-
oped self-triggered approximate optimal neuro-control policy
computed by (24), the system states converge to zero after
29.2 s. Fig. 3 shows the self- and time-triggered control inputs.
We can observe that the self-triggered approximate optimal
neuro-control input is a piecewise continuous signal. It implies
that the self-triggered approximate optimal neuro-control sig-
nal keeps unchanged during the time interval [tk, tk+1) and is
updated at tk only. Fig. 4 illustrates the comparison results
for the numbers of acquired samples, and the time-triggered
and the self-triggered control methods require 1000 and only
131 samples, respectively. It shows that the sampling fre-
quency is greatly reduced. From Fig. 5, we find that the
minimum inter-sampling time 1k = 0.2 s, which implies that
the Zeno behavior has not occurred. As a representative com-
parison, these figures also illustrate the control performance
under the parameter chosen as δ = 0.1. Together with Table I,

Fig. 3. Time- and self-triggered control inputs of the torsional pendulum
system.

Fig. 4. Required samples of time- and self-triggered controls of the torsional
pendulum system.

where 1k min and 1k max denote the actual minimum and
maximum inter-execution times, respectively, we can conclude
that with the increase of δ, the number of required samples
is decreased, and the system states take less settling time to
approach the neighborhood of the equilibrium. It implies that
we can choose a proper value according to the requirements
of the transient response and resource cost.

B. Example 2

The overhead crane system, which transports loads from one
place to another, plays an important role in industry. In contrast
to Example 1, its dynamic model is more complicated and has
a high order. The dynamic model of this system is formulated
as that in [45], and the same parameters of the overhead crane
plants are selected.
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Fig. 5. Inter-execution times of the torsional pendulum system.

Fig. 6. Evolution of the critic NN weights of the overhead crane system.

In the simulation, Q and R are also selected as iden-
tity matrices with appropriate dimensions. The initial system
state vector as x0 = [0.5,−0.5, 0.8,−0.9]

T. The activation
function of critic NN is chosen as σ(x) = [x2

1 , x1x2, x1x3,

x1x4, x2
2 , x2x3, x2x4, x3x4, x2

4 ]
T, and the weight vector is

defined as Ŵ c = [Ŵ c1, Ŵ c2, . . . , Ŵ c9]
T with initial

value Ŵ 0
c = [0.656, 0.759,−0.892,−0.497, 0.707, 0.905,

−0.736,−0.896, 0.092]
T. The parameters in the nested updat-

ing policies are chosen as lc = 1.2, lε = 0.01, and 0 = 0.001.
The parameter in the self-triggered mechanism is chosen as
λ = 0.4 and δ = 0.7.

Simulation results of Example 2 are presented in
Figs. 6–10. Fig. 6 describes the convergence process of the
critic NN weights, we can observe that Ŵ c converges to
[0.862, 0.715,−0.889,−0.436, 0.734, 0.976,−0.798,−1.214,
0.013]

T. As displayed in Fig. 7, the system states gradually

Fig. 7. State trajectories of the overhead crane system.

Fig. 8. Time- and self-triggered control inputs of the overhead crane system.

Fig. 9. Required samples of time- and self-triggered controls of the overhead
crane system.

converge to the equilibrium point after 13 s. Fig. 8 describes
a piecewise signal of the self-triggered control, which is
updated at tk only, while the time-triggered control is a
continuous signal. From Fig. 9, it shows that in contrast to the
time-triggered control input, which requires 800 samples, the
self-triggered one needs 320 samples only, which means that
the sampling has been reduced by 60%. Fig. 10 shows that the
minimum inter-sampling time 1k min = 0.05 s. Thus, we can
declare that the developed self-triggered approximate optimal
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Fig. 10. Inter-execution times of the overhead crane system.

neuro-control scheme is effective to assure the closed-loop
overhead crane system to be stable in a UUB manner.

V. CONCLUSION

A self-triggered approximate optimal neuro-control scheme
is presented for nonlinear systems through ADP. By guaran-
teeing the asymptotic stability of the weight error dynamics,
the critic NN is established to approximate the solution of
the HJBE. Hereafter, the optimal neuro-control is indirectly
derived in the ADP framework. By introducing the self-
triggered mechanism, the updating time instants are predicted
to determine the time updating the control policy. It is worth
pointing out that a proper self-triggering condition, which pre-
dicts the next updating instant of the control policy, is designed
to avoid the continuous monitoring of the system state by
hardware devices in the event-triggered control approach,
and the computation, the communication, and the energy
consumption are decreased in an alternative way. Furthermore,
the nested updating policies guarantee the asymptotic stability
of the critic weight error dynamics, rather than UUB in most
existing ADP-based optimal control methods.
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