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Abstract— Real-world classification problems may disclose dif-
ferent hierarchical levels where the categories are displayed in
an ordinal structure. However, no specific deep learning (DL)
models simultaneously learn hierarchical and ordinal constraints
while improving generalization performance. To fill this gap,
we propose the introduction of two novel ordinal–hierarchical
DL methodologies, namely, the hierarchical cumulative link
model (HCLM) and hierarchical–ordinal binary decomposition
(HOBD), which are able to model the ordinal structure within
different hierarchical levels of the labels. In particular, we decom-
pose the hierarchical–ordinal problem into local and global graph
paths that may encode an ordinal constraint for each hierarchical
level. Thus, we frame this problem as simultaneously minimizing
global and local losses. Furthermore, the ordinal constraints are
set by two approaches [ordinal binary decomposition (OBD)
and cumulative link model (CLM)] within each global and local
function. The effectiveness of the proposed approach is measured
on four real-use case datasets concerning industrial, biomedical,
computer vision, and financial domains. The extracted results
demonstrate a statistically significant improvement to state-of-
the-art nominal, ordinal, and hierarchical approaches.
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NOMENCLATURE
X Input space (R).
M Number of training points.
H Number of hierarchical levels of the task.
Q Number of classes of the general problem.
Y Set of classes of the general problem.
Y h

L Subset of local classes of the hth level.
YL Set of all the local classes.
|Y h

L | Number of local classes of the hth
hierarchical level.

YG Subset of global classes.
|YG | Number of global classes.
YT Set of global and local classes.
yh

i i th class label of hth hierarchical level.
children(yh

i ) Set of child classes of yh
i .

L Set of all the possible loss functions.
Lh

L Local loss related to local classes
associated with the hth level.

LG Global loss related to global classes.
LT Total loss.

I. INTRODUCTION

IN MACHINE learning (ML), a classification task, is a
supervised learning approach that consists in categorizing

a set of data into predefined classes. Most ML and deep
learning (DL) algorithms deal with classification problems
by considering the target variable as a set of disjointed
classes, not exploiting the potential structural properties of the
data. Several significant real-world classification problems are
naturally modeled as a hierarchical structure, where the target
to be predicted follows a specific class hierarchy. Notable
applications of hierarchical ML approaches include but are not
limited to text categorization [1], text translation [2], natural
language processing (NLP) [3], and bioinformatics [4].

Accordingly, many problems disclose an ordinal relation,
i.e., the categories follow a specific order. However, in contrast
with standard regression problems, the distance between them
is not quantifiable a priori. For that reason, ordinal classifica-
tion (also called ordinal regression) assumes great importance
in several applications ranging from medical research [5], [6],
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[7], [8], [9] to computer vision [10], risk analysis [11], and
industrial applications [12].

Moreover, a hierarchical–ordinal problem could disclose
different hierarchical levels where the categories of each level
are displayed in an ordinal structure. Here, hierarchical levels
refer to different layers or tiers of categorization. Each level
contains classes that are more refined or specific than the
previous level: it follows that the tiers are arranged in a way
that represents a gradual increase in detail. For instance, one
might be interested in classifying the quality of a material
based on various criteria. Instead of having a single quality
measure, it can be useful to categorize the quality at different
levels of granularity or accuracy. Specifically, the top tier
might encompass general categories such as “high quality,”
“medium quality,” and “low quality.” These categories provide
a broad evaluation of the material’s quality. Progressing to a
lower level, in order to signify more specific quality distinc-
tions, each general quality category may contain subcategories.
Namely, within “high quality,” there might exist labels like
“Excellent,” “very good,” and “good.” These subcategories
offer a finer assessment of quality within each overarching
category while displaying ordinal relationship specific to the
corresponding level. However, simultaneously managing both
the hierarchical and ordinal nature of a given task proves to
be a nontrivial problem.

In this context, state-of-the-art ordinal DL strategies can
be used to exploit the ordinal information and penalize
misclassification errors when the predicted class is farther
from the correct one, which is indeed the most relevant
kind of error. However, they do not consider the multiple
hierarchies of ordinal labels and how the weight of misclassi-
fication cost could be different also according to the different
hierarchical levels. Hence, learning hierarchical and ordinal
constraints using a single model remains a real challenge
in the ML/DL literature. This article proposes simultane-
ously learning hierarchical–ordinal constraints using a DL
methodology. The proposed approach is designed according
to a novel hierarchical formulation that models local and
global losses, where local losses act as auxiliary losses to
strengthen the hierarchical–ordinal dependencies. To integrate
ordinal relation within global and local losses, we propose
to include a cumulative link model (CLM) [13] combined
with the quadratic weighted kappa (QWK) loss [14] and
an ordinal binary decomposition (OBD) approach [5] with
the mean absolute error (MAE) loss. Our approaches rep-
resent an extension of ordinal methodologies for modeling
hierarchical constraints. Indeed, the main novelty lies in
decomposing hierarchical–ordinal problems into global- and
local-ordinal tasks that the integration of CLM and QWK or
OBD approaches can potentially solve.

Our main contribution can be summarized as follows.
1) We propose two novel hierarchical DL ordinal method-

ologies, namely, hierarchical CLM (HCLM) and hier-
archical OBD (HOBD), which can model the ordinal
structure of different hierarchical levels of the labels.
In particular, we address the hierarchical problem by
decomposing it into local- and global-ordinal tasks,
which may potentially share common patterns that

can be employed to improve the final classification
performance.

2) We test the effectiveness and generalizability of our
methodologies on four real-use case datasets related to
the industrial [aesthetic quality control (AQC)], biomed-
ical [vaccine priority administration (VPA)], computer
vision [age estimation (AE)], and financial risk [corpo-
rate credit rating (CCR)] domains, all of them disclosing
a natural hierarchical–ordinal structure of the classes.
We also measure the performance with respect to state-
of-the-art ordinal and hierarchical DL methodologies,
by demonstrating a statistically significant gain of our
proposed methodologies both for image and tabular data
sources.

This article is organized as follows. In Section II,
we review ordinal and hierarchical classification methodolo-
gies. We describe the proposed methodology in Section III,
while in Section IV, we discuss how the approach is evaluated
on the AQC, VPA, AE, and CCR datasets. Experimental
procedure is reported in Section V, while the results are
presented in Section VI. Finally, in Section VII, we provide
conclusions of our findings, limitations, and future work.

II. RELATED WORK

This section reviews the two lines of work based on which
our proposal has been devised. The former is the work
on ordinal classification methodologies (see Section II-A).
The latter focuses on hierarchical classification approaches
(see Section II-B). Our approaches provide an extension
of the body of knowledge to solve a different task that
combines characteristics of both lines of research, namely,
hierarchical–ordinal problems. Existing ordinal frameworks
were extended using local losses in a multiple hierarchies
framework. Indeed, the multiple hierarchies of ordinal labels
were included in HCLM and HOBD. This extension ensures
different weights of misclassification cost for each hierarchical
level.

A. Ordinal Classification

Ordinal classification problems are classification tasks
where classes follow a natural order. Existing ML and DL
approaches in the literature attempt to model ordinal con-
straints in different ways [15]. The most naive methods range
from performing a simple regression using the class labels and
rounding the values on the prediction phase to using a cost-
sensitive (e.g., cost matrix) approach to evaluate multiclass
classification models [16]. However, regression learners may
depend on the values used for representing the labels, while
the cost matrix can lead to different label representations, thus
leading to different ambiguous solutions. Instead, our approach
can directly model the ordering of labels by learning a unique
representation of ordinal constraints.

Recent state-of-the-art works move toward two approaches:
OBD and threshold models combining ordinal loss functions.
The OBD method decomposes the ordinal problem into multi-
ple binary subproblems. OBD approaches can be divided into
multiple models and multioutput single models. The multiple
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models (e.g., [17]) solve the ordinal classification problem by
independently employing each binary classification model and
combining the predicted variables into the final label. One of
the significant drawbacks of multiple model approaches lies in
the required number of binary classifiers that depends on the
cardinality of the ordinal label, and the training effort increases
when the task discloses a more complex structure. The
multiple-output single model (e.g., [18]) leverages the property
of a neural network to handle multiple labels in a single stage.
However, all OBD methods are faced with the challenge of
combining the results of all decompositions into a single final
classification output. Error correcting output codes (ECOCs)
are suited for this task, as this approach considers all the
outputs equally in the final decision. Barbero-Gómez et al. [5]
proposed a unified convolutional neural network (CNN) archi-
tecture with a global optimization criterion. Although based on
the approach proposed in [5], our HOBD extends the global
optimization criterion by including different local and global
hierarchical losses, which effectively map hierarchical–ordinal
constraints in a nominal classification framework. As we
will see in the experiments, our HOBD method per-
forms favorably over state-of-the-art OBD competitors
(i.e., [5]).

On the other hand, threshold models represent a widely
used approach for ordinal tasks. These models assume the
presence of an underlying latent continuous variable, from
which distinct ranks emerge through the adjustment of specific
thresholds. Thus, in this framework, the value of the latent
variable and the thresholds must be learned from the data.
Some approaches, such as the classical proportional odds
model, fall into the CLM framework, a probabilistic family
of models for predicting probabilities of groups of contiguous
categories, considering the ordinal scale. An extension of
the CLM model to the DL scenario was proposed in [13]
by using the deep neural network’s output as the value
of the latent variable, which in turn determines the rank.
Unlike OBD, threshold models provide a single mapping
vector composed of several thresholds equal to the number
of classes. However, threshold models and CLM do not lead
to computing the cumulative probability at different scales,
which can be associated with different hierarchical levels.
Our approach can overcome this drawback by estimating
the cumulative probability for each hierarchical level. Also,
the performed experiments demonstrate the effectiveness of
our HCLM approach to the state-of-the-art threshold model
competitor [13].

Ranking-based hashing framework [19] was also proposed
in the literature to learn hash functions with deep neural
networks by exploring the ordinal structure of feature and
label dimensions. Differently from binary quantization-based
hashing methods, the ordinal structure is not represented
a priori but instead learned during the training stage of a deep
neural network. Also, it is worth noting that the ranking-based
hashing approach differs from ordinal classification. This is
due to its nature as a learning-to-rank strategy, which typically
requires a more extensive training process. This is primarily
because the approach involves generating intermediate repre-
sentations, known as hash codes.

Finally, numerous of these approaches involve ordinal loss
functions [14], [20]. These functions incorporate the ordinal
nature of the labels into the error function, aiming to penalize
significant misclassification errors and encourage unimodality
in the probability distribution generated by the model.

B. Hierarchical Classification

In the ML literature, hierarchical classification problems are
usually addressed using a hierarchical multilabel classification
(HMC) approach. In HMC, every instance may belong to
multiple classes simultaneously. These classes are arranged in
a hierarchical structure, implying that an example associated
with a particular subclass belongs simultaneously to all the
superclasses in the hierarchy. The state-of-the-art approaches
include traditional ML models [21] and neural networks archi-
tectures [22], [23], [24], in which the hierarchical structure is
explored in different ways. The most naive approach (global
classifier) [22] is to employ a single classifier for modeling
the entire class hierarchy, where the objective is to predict the
classes associated with the leaves of the hierarchy without con-
sidering upper levels. However, a significant limitation of this
approach is that it completely ignores the class relationships
and any hierarchical constraints while typically predicting only
the leaf nodes (flat classification). A different approach (local
classifiers) [25], [26], [27] is to employ a set of classifiers
for each node or each parent level. Thus, each classifier is
specialized in solving the classification task associated with
the child nodes. However, unlike our approach, where a single
model is used to learn the overall problem, local classifiers
require a more significant computation effort for learning
separated multiple models [28], especially in situations where
the complexity of the task increases. This evidence is also con-
firmed in our experiment as our HOBD and HCLM methods
perform better than the state-of-the-art global and local alter-
natives [22], [25], [26], [27]. Another significant difference
from all the above-cited works is how the proposed approach
models the labels of each hierarchical level. Although state-of-
the-art works employ nominal classification models, we con-
sider the possibility of learning ordinal relationships among
labels.

More related to our work is the HMC approach in [29],
which also leverages a single hierarchical multilabel neural
network architecture (HMCN) capable of simultaneously opti-
mizing their local and global loss functions to model the
hierarchical structure of the classification task while penal-
izing hierarchical violations. The benefit of this strategy is
to decompose local and global classes that may potentially
represent labels of different nature/hierarchy. Unlike their
definition of global classes (which include all the classes
in the hierarchy), our global loss only considers the leaf
nodes of our hierarchical problem, i.e., the classes associated
with the final classification problem we want to solve. Their
formulation addresses two primary concerns. First, the HMC
approach proposed in [29] necessitates a postprocessing step
for guaranteeing that all predictions adhere to the hierarchical
path. This postprocessing penalizes predictions that violate the
hierarchy during the training phase. This requirement is not
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Fig. 1. Overview of the proposed method. The figure describes the general formulation by which the hierarchical–ordinal problem is decomposed and
modulated via HOBD and HCLM alternatively. HCLM: hierarchical CLM. HOBD: hierarchical OBD. CLM: cumulative link model. OBD: ordinal binary
decomposition. QWK: quadratic weighted kappa loss. MAE: mean absolute error. LG : global loss. Lh

L : local loss. LT : total loss. x: input feature vector. Red:
conv2D layer. Blue: dense layer. Green: dropout. Pink: BN. Orange: pooling. Yellow: CLM layer. Light blue: sigmoid activation.

necessary for our approach because our method naturally mod-
els only the admissible paths (i.e., it is impossible to obtain
inconsistent global predictions’ labels). At the same time, our
approach ensures the modeling of local paths by minimizing
each local loss associated with the corresponding hierarchical
level and providing related local predictions. Moreover, our
formulation allows incorporating ordinal constraints within
global and local losses, assuming that global losses’ ordinal
dependencies can differ from local losses. In this way, the
natural setting of this task is considered. Furthermore, the
method models different ordinal relationships between various
local losses associated with different hierarchical levels. For
instance, a discrete ordinal rating scale can be different for
each hierarchy level.

III. METHODS

This section sets the notation we used to formulate our
approach (see Section III-A). Afterward, we describe the
formulation of the proposed method in Sections III-B and III-
C and the prediction phase in Section III-D.

The overall methodology is described in Fig. 1. The
hierarchical–ordinal problem is represented using a graph
structure. Our hierarchical problem is decomposed by local
and global classes to learn consistently different classes in
the hierarchy. Note that the order of nodes within a level
in Fig. 1 reflects the natural ordinal structure of the classes.
As can be checked in the last level of the VPA hierar-
chy, this natural order in the labels does not necessarily
correspond with the order defined by the corresponding super-
classes. Accordingly, the ordinal constraints are integrated
using CLM and OBD approaches. Thus, our framework
leads to the design of two methodologies called HCLM and
HOBD for solving generic and real-world hierarchical–ordinal
problems.

A. Notation

The adopted notations are described in the Nomenclature.
Fig. 2 shows an example of general hierarchical constraint

settings regarding graph structure. In our problem definition,
the labels of each child node associated with different parent
nodes can be completely different, reflecting other structures
(i.e., h|

⋂|Y h
L |

i=1 children(yh
i ) = ∅).

Fig. 2. Example of the definitions proposed for global and local classes when
describing the hierarchical task. In this example, the global classes consist
on the set YG = {yH

1 , yH
2 , yH

3 , yH
4 , yH

5 , yH
6 , yH

7 , yH
8 , yH

9 , y2
4 , y2

6 , y2
9 , . . .},

while the local classes consist of Y 1
L = {y1

1 , y1
2 , y1

3 }, Y 2
L = {y2

1 , y2
2 , y2

3 ,

y2
4 , y2

5 , y2
6 , y2

7 , y2
8 , y2

9 }, . . ., and the relationships between levels are
described by children(y1

1 ) = {y2
1 , y2

2 , y2
3 }, children(y1

2 ) = {y2
4 , y2

5 },
children(y1

3 ) = {y2
6 , y2

7 , y2
8 , y2

9 }, children(y2
4 ) = ∅, children(y2

6 ) = ∅,
children(y2

9 ) = ∅, . . ..

Definition 1: The local classes of the hth level of the
hierarchy (Y h

L ) are defined as follows:

Y h
L =

|Y h
L |⋃

i=1

yh
i (1)

where h ∈ {1, 2, . . . , H−1}. Note that the local classes include
all the nodes not in the last hierarchical level (see Fig. 2).

Definition 2: The global classes (YG) are defined as
follows:

YG =

H⋃
h=1

 ⋃
i |children(yh

i )=∅

yh
i

 (2)

where children(·) represents the set of child classes of a given
node, and those nodes fulfilling children(yh

i ) = ∅ correspond
to leaves of the graph. Indeed, global classes consist of classes
with no descendants (see Fig. 2), thus reflecting the original
categories of the classification problem without considering
the parent nodes.

This definition of local and global classes allows deal-
ing with classification problems that can also be arranged
on different hierarchical levels. For the example described
in Fig. 2, the global classes consist on the set YG =

{yH
1 , yH

2 , yH
3 , yH

4 , yH
5 , yH

6 , yH
7 , yH

8 , yH
9 , y2

4 , y2
6 , y2

9 , . . .}, while
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the local classes set is composed by Y 1
L = {y1

1 , y1
2 , y1

3},
Y 2

L = {y2
1 , y2

2 , y2
3 , y2

4 , y2
5 , y2

6 , y2
7 , y2

8 , y2
9}, . . .

Definition 3: The definition of local and global classes
leads to the following:

YT = YL ∪ YG (3)

where

YL =

H−1⋃
h=1

Y h
L . (4)

Note that those classes that are leaves but not placed on the
H th level (last level) will simultaneously be global and local
classes. The reason is that they are part of the original global
classification task but should also be considered to represent
the ordinal structure of the corresponding level.

B. Hierarchical Formulation

In our formulation, we combine local and global losses as
follows:

LT = β

∑H−1
h=1 Lh

L

H − 1
+ (1 − β)LG (5)

where β ∈ [0, 1] is the hyperparameter that regulates the
tradeoff regarding local and global information. Lh

L refers to
the local loss computed according to the hth level

Lh
L ∈ L

(
X, Y h

L

)
(6)

where L (X, Y h
L ) is the set of loss functions computed using

the input data, X , and the classes of the hth hierarchical level,
Y h

L .
On the other hand, LG refers to the global loss computed:

LG ∈ L (X, YG) (7)

where L (X, YG) considers, in this case, the set of global
classes.

In our formulation, we aggregate and minimize the local
losses (i.e., specific models responsible for the prediction of
local classes) and the global loss (i.e., global model responsi-
ble for the prediction of global classes). The rationale behind
this choice lies in maximizing a consistent global prediction at
the final hierarchical level and obtaining a consistent prediction
for each local node. Local losses model the local-ordinal
information for each hierarchical level while the global loss
function keeps track of the label dependency in the hierarchy
as a whole by also taking into account the global-ordinal
information for all leaf nodes. The detailed formulation is
described in Section III-C.

C. Hierarchical–Ordinal Formulation

In this section, we present the proposed hierarchical–ordinal
methodologies, namely, HCLM (see Section III-C1) and
HOBD (see Section III-C2) as an extension of state-of-the-
art CLM and OBD approaches.

1) Hierarchical CLM: The following conditions hold.

a) Background on cumulative link model: CLM [30] is
a set of threshold models that are suited to posterior model
probabilities of a given label y ∈ Y = {y1, y2, . . . , yQ}, taking
into account the ordinal relation defined by the problem. The
input data x ∈ X are projected into a 1-D space denoted as
f (x) ∈ R and divided into Q intervals by Q − 1 thresholds,
where Q is the number of classes of the general problem.
According to [13], these thresholds are learned during the
training process from the following equation:

tq = t1 +

q−1∑
i=2

γ 2
i , q = 1, . . . , Q − 1 (8)

where t1 determines the first threshold (which splits the first
and the second classes) and γ = {γ2, . . . , γi , . . . , γQ−2}

parameters are used to obtain the rest of the thresholds based
on the first one. All of them are learned along with the
model weights through gradient descent optimization. This
formulation ensures that the constraints t1 ≤ t2 ≤ · · · ≤ tQ−1
are fulfilled and, assuming t0 = −∞ and tQ = +∞, all the
output space is covered. The cumulative probability obtained
by the CLM for any given class yq and input data x is
calculated as follows:

h−1(P
(
y ⪯ yq |x

))
= tq − f (x), q = 1, 2, . . . , Q − 1 (9)

where f (·) is a mapping function of the input vector learned
during the training phase and h−1(·) is a monotonic function
that is known as link function. In this case, the logit function,
defined by the equation, has been implemented as a link
function

h−1(p) = logit(p) = log
p

1 − p
(10)

where p = P(y ⪯ yq |x). Finally, cumulative probabilities can
be used to obtain standard posterior probabilities by simply
subtracting them

P(y = y1|x) = P(y ⪯ y1|x) (11)

P
(
y = yq |x

)
= P

(
y ⪯ yq+1|x

)
− P

(
y ⪯ yq |x

)
(12)

where q ∈ {2, . . . , Q − 1} and, by definition, P(y ⪯ yQ |x) =

1.
b) Our hierarchical CLM approach: Notice how in our

methodology, we integrated the CLM for modeling both the
local and global losses [see (5)]; thus, the candidate classes
Y become YG and YL , and the number of classes Q becomes
|YG | and |Y h

L |, for the global and local losses, respectively.
The employed elementary loss function is the QWK

loss [14], a continuous version of the weighted Kappa metric,
which is suitable for ordinal problems as it weights the errors
differently depending on the distance from the correct class.

The QWK local loss computed for the hth level is defined
as follows:

Lh
L =

∑M
m=1

∑
yi ∈Y h

L
ωi,ym P(y = yi |xm)∑|Y h

L |

i=1
Mi
M

∑
y j ∈Y h

L

(
ωi, j

∑M
m=1 P

(
y = y j |xm

)) (13)

where xm is the input data of the mth sample, M is the total
number of training samples, Mi is the number of training
samples of the i th local class, P(y = yi |xm) is the model
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posterior probability that the mth sample belongs to local class
yi , and ωi, j are the elements of the penalization matrix (for
the quadratic version, ωi, j = ((i − j)2/(|Y h

L | − 1)2)).
Similarly, the QWK global loss is defined as follows:

LG =

∑M
m=1

∑
yi ∈YG

ωi,yi P(y = yi |xm)∑|YG |

i=1
Mi
M

∑
y j ∈YG

(
ωi, j

∑M
m=1 P

(
y = y j |xm

)) (14)

where P(y = yi |xm) is the model conditional probability that
the mth sample belongs to global class yi .

2) Hierarchical OBD:
a) Background on ordinal binary decomposition: OBD

is an ordinal approach based on decomposing the classification
task of Q classes of the original problem into a set of
Q − 1 binary problems. In particular, each problem q consists
on verifying if y ≻ yq conditioned to x where 1 ≤ q < Q
[5]. The individual probability of belonging to a specific class
P(y = yq) is computed as a function of the cumulative
probabilities P(y ≻ yq) as follows:

P(y = y1) = 1 − P(y ≻ y1)

P
(
y = yq

)
= P

(
y ≻ yq−1

)
− P

(
y ≻ yq

)
, ∀1 ≤ q < Q

P
(
y = yQ

)
= P

(
y ≻ yQ−1

)
.

The output code for each class is defined as the coordinates
of a vertex of a hypercube in Q − 1 dimensions. To decide
the class associated with a sample x, the class with the nearest
code according to some distance is considered.

b) Our hierarchical OBD approach: In our proposed
HOBD, we employed the MAE as distance and thus as
elementary loss. For the local losses, the MAE computed for
the hth hierarchical level is defined as follows:

Lh
L =

1
|Y h

L | − 1

∑
yi ∈Y h

L

|1{y ≻ yi } − P(y ≻ yi |x)| (15)

where x is the input data matrix, P(y ≻ yi |x) is the model
posterior cumulative probability for local class yi , and 1{y ≻

yi } is the corresponding target vector.
The MAE global loss is defined as follows:

LG =
1

|YG | − 1

∑
yi ∈YG

|1{y ≻ yi } − P(y ≻ yi |x)| (16)

where P(y ≻ yi |x) is the model posterior cumulative proba-
bility for global class yi and 1{y ≻ yi } is the corresponding
target vector.

D. Prediction

According to the proposed formulation, prediction can be
obtained for local or global classes. Predicted classes are
obtained differently depending on the methodology (HCLM
or HOBD). As CLM provides us with posterior probabilities,
the predicted classes of HCLM are obtained by

ŷh
L = argmax

yi ∈Y h
L

P(y = yi |x) (17)

ŷG = argmax
yi ∈YG

P(y = yi |x). (18)

In the case of HOBD, we compute the distance between
the model posterior probability vector and the ground truth of
global and local labels. The predicted label is the one that has
the minimum distance and can be computed for the global and
local classes as follows:

ŷh
L = argmin

y∈Y h
L

||ph
L − th

L(y)|| (19)

ŷG = argmin
y∈YG

||pG − tG(y)|| (20)

where ph
L = (P(y ≻ yi |x) : yi ∈ Y h

L ) and pG = (P(y ≻ yi |x) :

yi ∈ YG) are two vectors containing all posterior cumulative
probabilities (associated with the independent binary subprob-
lems of OBD) for global and local classes, respectively, and
th

L(y) = (1{y ≻ yi } : yi ∈ Y h
L ) and tG(y) = (1{y ≻ yi } : yi ∈

YG) are the corresponding target vectors for global and local
classes, respectively.

Note that, in our experiments, we have evaluated only the
prediction for global classes. This choice is based on the fact
that these classes are the most important ones in terms of cost
for the considered real problems, and the prediction can be
directly compared with the results obtained with a nonhier-
archical approach. However, local predictions could also be
useful for other practical contexts. Therefore, we evidenced
how the proposed method can provide local prediction by
considering the AQC dataset.

IV. MATERIALS

We based the evaluation of the proposed approach
on four real-use case datasets, including industrial (see
Section IV-A), biomedical (see Section IV-B), computer vision
(see Section IV-C), and financial risk (see Section IV-D)
domains. These four datasets were selected based on the
hierarchical and ordinal nature they offer for evaluating our
approach. All employed datasets disclose a different hierar-
chical structure originating from a real-world task. Indeed,
the target to be predicted follows a specific class hierarchy
for each task (see Fig. 3). In particular, the AQC and VPA
datasets disclose two hierarchical levels, while the AE and
CCR datasets include three hierarchical levels. In all datasets,
categories for each hierarchical level are arranged on an
ordinal scale.

A. AQC Dataset

The evaluation of the quality of a manufactured product
(quality control task) is usually taken by the expert operator
that arranges the quality classes in a hierarchy from most
general to most specific shapes. The quality control task is
done by considering, for instance, the quality of the material
by inspecting different factors such as aesthetic defects, grains,
and other specific details. Thus, a different hierarchical level in
this context may correspond to a particular aspect that should
be considered for the overall quality process. Furthermore,
as in the case of the AQC task, the quality classes assume
a natural ordering where usually the first category represents
the worst quality, while the last class indicates the maximum
quality. Thus, misclassifying a pattern in the furthest quality
classes may be more penalized than classifying it in adjacent
classes.
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Fig. 3. Structure of the classes for the proposed datasets. In blue and red, the local and global classes are shown, respectively. The classes exploited in both
global and local losses are indicated with both colors. (a) AQC dataset. (b) VPA dataset. (c) AE dataset. (d) CCR dataset.

The collected dataset [31] comprises 2120 color images of
1060 wooden stocks, which undergo an AQC phase before
being assembled on sport rifles. This process consists of
assigning a specific grade to each item according to the wood
grain and its aesthetic properties, ensuring that each type of
rifle model complies with the production requirements by
assembling a specific grade class. The categories are grouped
into four macro classes (1–4) and each of these, except class 1,
is divided into three micro labels (−, c, and +). The proposed
problem contains ten aggregated global classes with an ordinal
relation: 1, 2−, 2c, 2+, 3−, 3c, 3+, 4−, 4c, and 4+. Notice
how the problem is structured on two hierarchical levels: the
first class has not been divided into micro labels because the
company usually produces model series with higher quality
classes. Table I in the supplementary material shows the
distribution of the global classes. It is worth noting that a
different ordinal structure is present in the two hierarchical
levels. For the AQC task, the local classes consist on Y 1

L =

{y1
1 , y1

2 , y1
3 , y1

4} = {1, 2, 3, 4}, while the global classes consist
on the set YG = {y1

1 , y2
1 , y2

2 , y2
3 , y2

4 , y2
5 , y2

6 , y2
7 , y2

8 , y2
9} =

{1, 2−, 2c, 2+, 3−, 3c, 3+, 4−, 4c, 4+
} [see Fig. 3(a)].

B. VPA Dataset

Clinical decision support is increasingly in demand to
extract relevant information from electronic health records
(EHRs) to support territorial clinical medicine and general
practitioners (GPs). The FIMMG_COVID dataset [32] was
derived from the FIMMG EHR database, which is integrated
into the FIMMG Netmedica cloud architecture. It consists
of EHR data belonging to 17 147 patients collected from
11 different GPs to estimate the COVID-19 VPA in the
population. The classes are represented by the priority
classes (PCs) defined by the GPs according to a unified
priority selection criteria (i.e., age, dysautonomia, chronic
pathologies, and obesity), which considers the age-related
comorbidities to have a more critical weight than the age
itself. The anagraphic, monitoring, and pathologies tables
were selected according to the GP’s suggestions as to the
most potential discriminative (predictors) for classifying the

severity of chronic disease and thus the PCs, resulting in a
total of 27 independent variables. In particular, the candidate
features are sex, age, weight, height, waist circumference,
systolic blood pressure, diastolic blood pressure, and one-hot
encoding of the 20 most frequent International Classification
of Disease (ICD-9) categories. It is worth noting that these
features do not reflect any information about the severity of
the disease. Also, this dataset shows a natural hierarchical
order where the first hierarchical level represents different
age ranges, while the second level represents PCs, as reported
in Table I in the supplementary material. We excluded one
of the original PCs (i.e., highly vulnerable patients), which
is not directly influenced by age. In this case, the global
PC classes assume an ordinal structure that is different from
the local age-range classes and does not only depend on
age. Moreover, the natural order in the global labels does
not necessarily correspond with the order defined by the
corresponding superclasses [see Fig. 3(b)]. Our formulation
allows taking into account this natural hierarchical–ordinal
setting. Hence, for the VPA task, the local classes consist
on Y 1

L = {y1
1 , y1

2 , y1
3 , y1

4 , y1
5 , y1

6 , y1
7} = {Over90, 80–89,

70–79, 60–69, 50–59, 30–49, 16–29}, while the global
classes consist on the set YG = {y2

1 , y2
2 , y2

3 , y2
4 , y2

5 , y2
6 ,

y2
7 , y2

8 , y2
9 , y2

10, y2
11, y2

12, y2
13, y2

14, y2
15, y2

16, y2
17, y2

18, y2
19, y2

20, y2
21,

y2
21, y2

23} = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23} [see Fig. 3(b)].

C. AE Dataset

The UTKFace dataset contains over 20 000 facial images
that include individuals of all ages, ranging from 0 to 116 years
old. It is widely used as a benchmark dataset for various tasks,
such as face detection and AE [33]. These images capture
various poses, facial expressions, lighting conditions, obstruc-
tions, resolutions, and other variables. The dataset presents an
ordinal nature by default but can be decomposed into different
hierarchical levels based on age ranges. Global classes were
defined by balancing age ranges and the number of images
for each class, as reported in Table II in the supplementary
material. According to our formulation, the overall problem
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was decomposed into three different hierarchical levels. Local
classes of the first level consist of Y 1

L = {y1
1 , y1

2 , y1
3} = {0–

26, 27–44, 45+}, while for the second level, Y 2
L = {y2

1 , y2
2 ,

y2
3 , y2

4 , y2
5 , y2

6 , y2
7 , y2

8} = {0–11, 12–22, 23–26, 27–37, 38–44,
45–64, 65–79, 80+}. The global classes consist of the set
YG = {y3

1 , y3
2 , y3

3 , y3
4 , y3

5 , y2
3 , y3

6 , y3
7 , y2

5 , y3
8 , y3

9 , y3
10, y3

11, y3
12} =

{0–1, 2–5, 6–11, 12–18, 19–22, 23–26, 27–29, 30–37, 38–44,
45–54, 55–64, 65–72, 73–79, 80+} [see Fig. 3(c)].

D. CCR Dataset

Credit ratings are evaluations of company credit worthiness
provided by specialized agencies. These ratings are essential
financial indicators for potential investors, as they help to
understand better the risk associated with a company’s invest-
ment returns. Most credit rating agencies use a unique rating
scale with a discrete ordinal structure. The employed dataset
was collected by the S&P rating agency, which uses a grading
scale with 23 different levels ranging from AAA, the most
favorable rating, to D, the riskiest [34]. However, due to the
few samples present for classes C and D (261 in total), we dis-
carded CCC+, CCCc, CCC-, CC+, CCc, Cc, and D classes,
resulting in a final 16-class grading task, as shown in Table III
in the supplementary material. In addition, considering the
highly unbalanced distribution of classes, an undersampling
strategy directly proportional to class frequencies was adopted
based on training samples for each seed. Concerning our
Y 1

L = {y1
1 , y1

2} = {A*, B*
}, where A*

= {AAA, AA, A}

and B*
= {B B B, B B, B}, while for the second level, Y 2

L =

{y2
1 , y2

2 , y2
3 , y2

4 , y2
5 , y2

6} = {AAA, AA, A, BBB, BB, B}. The
global classes consist on the set YG = {y2

1 , y3
1 , y3

2 , y3
3 , y3

4 , y3
5 ,

y2
3 , y3

6 , y3
7 , y2

5 , y3
8 , y3

9 , y3
10, y3

11, y3
12, y3

13, y3
14, y3

15} = {AAA,
AA+,AAc, AA-, A+, Ac, A-, BBB+, BBBc, BBB-, BB+, BBc,
BB-, B+, Bc, B-

} [see Fig. 3(d)].

V. EXPERIMENTAL PROCEDURE

In this section, we describe the experimental procedure,
starting from the employed architectures (see Section V-A) and
also including the description of the performed experimental
comparisons (see Section V-B) and the evaluation metrics (see
Section V-C).

A. Architectures

The structure of the predictive model does not require
any particular assumption; thus, different model structures are
equally acceptable.

The hierarchical constraint is modulated on the networks’
top fully connected (FC) layers, by forming a multioutput
classification head to achieve local- and global-ordinal opti-
mizations. This classification head comprises H − 1 local
outputs and one global output. The main flow includes H
FC layers with ReLU activation to which local submodules
are connected. Its own FC layer characterizes each local
submodule before the local output. Our approach ensures that
each local submodule learns the ordinal constraint from a
given hierarchical level. In our architecture, batch normal-
ization (BN) [35] was inserted to accelerate the networks’
convergence and improve the training stability.

As regards the proposed HCLM approach, each local output
and the global one present only one neuron, which provides
the model projection in a 1-D space. This value is used to
classify the sample into the corresponding class according to
the CLM with the logit link function. Accordingly, for the
proposed HOBD approach, each local submodule FC layer is
decomposed into a set of |Y h

L | − 1 FC blocks (with the same
dimension). Each block consists of an FC layer, a leaky ReLU
activation function, and a dropout layer. Each final output layer
with a sigmoid activation function solves an individual binary
classification subproblem. The global output also assumes the
same decomposition, presenting |YG | − 1 binary outputs.

Considering the different types of data related to the clas-
sification tasks we aim to solve, we employed CNNs as
feature extractors to solve the AQC and AE tasks on rifle
stocks images and facial images, while we adopted standard
multilayer perceptron (MLP) architectures for solving the VPA
and CCR tasks associated with tabular data.

For the AQC classification, the VGG16 model [36] was used
as architecture, maintaining the pretrained ImageNet weights
for the convolutional part of the model according to a transfer
learning approach. The choice of VGG16 architecture as a
baseline model for the AQC task is related to a previous
work [31], where VGG16 achieved the best results among
other state-of-the-art classification models in standard nominal
classification. A dropout regularization layer was inserted in
the first FC layer of the classification head. The rate of dropout
and the size of all dense layers are selected within the hyperpa-
rameters optimization procedure. On the other hand, the choice
of ResNet50 for the AE dataset relies on additional performed
tests, which highlights the superiority of this model to other
standard architectures (VGG-16, EfficientNet, MobileNet, and
so on). In this way, using different networks allows us to
evaluate whether the approach can be generalized to different
architectures.

In the VPA task, monitoring and pathologies information is
annotated irregularly over time, leading to sparse observations.
Therefore, standard MLP architecture achieved competitive
state-of-the-art results to deal with this setting by modeling
spatial relationship [37]. Since the CCR dataset originated
from tabular data with no temporal information encoded, the
MLP was also employed for solving this task. The MLP
networks consist of two hidden layers with a ReLU activation
function, each followed by a dropout layer. Also, in this
case, the size of hidden and top FC layers and dropout rate
are chosen within hyperparameters selection. Adam [38] is
adopted as an optimizer, and the best learning rate, batch
size, and dropout rate were selected as hyperparameters. All
hyperparameters were tuned in the separate validation set using
a grid-search approach (see Table I).

HCLM and HOBD methodologies were evaluated following
a stratified (over rifles for AQC dataset, over GP for VPA
dataset, and over companies for CCR dataset) holdout proce-
dure: the dataset was split by maintaining 80% of the whole
set for the training phase and the remaining 20% for the test
set. From the training set, another 15% of the samples were
taken for the validation set. For the AQC dataset, experiments
with an on-the-fly data augmentation strategy were performed
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TABLE I
MODEL HYPERPARAMETERS EXPLORED FOR EACH BACKBONE

ARCHITECTURE RELATED TO AQC, VPA, AE, AND CCR DATASETS.
ALL HYPERPARAMETERS WERE TUNED IN THE SEPARATE

VALIDATION SET USING A GRID-SEARCH APPROACH. FC:
FULLY CONNECTED LAYERS. LR: LEARNING RATE

for balancing global classes, randomly applying a horizontal
flip to the training samples. Moreover, we also evaluated the
contribution of the local- and global-ordinal losses exploring
the following values of β: {0.1, 0.2, 0.5, 0.8, 0.9}. The early
stopping strategy was adopted for all the experiments with
a patience value of 15 epochs monitoring validation loss.
To achieve robust results from a statistical perspective, all the
experiments were performed 30 times using different seeds to
create the data partitions and initialize the model parameters.
All the experiments were run using TensorFlow 2.0 and Keras
2.3.1 frameworks on an Intel Core i7-4790 CPU 3.60 GHz
with 16 GB of RAM and NVIDIA GeForce GTX 970. All the
experiments are reproducible and the Python code used in the
experiments will be available in a public repository.1

B. Experimental Comparisons

Unlike other state-of-the-art work, our methodologies are
conceived for learning ordinal and hierarchical dependen-
cies. For that reason, we decided to compare the proposed
HCLM and HOBD with respect to other hierarchical and
ordinal formulations widely employed in the ML literature
(see Section II). The state-of-the-art comparisons include the
following.

1) Global (GLB) Approach [22]. This approach maps
a hierarchical problem into a standard classification
problem that fully embeds the parent-level information.
The nominal global approach (GLB-NOM) ignores the
class hierarchy predicting only leaf node classes as a
standard multiclass classification [28] with categorical
cross-entropy (CCE) loss. The ordinal variant of this
approach was implemented by integrating ordinal rela-
tionship through OBD [5] (GLB-OBD) and CLM [39]
(GLB-CLM).

2) Local Classifier per Parent Node (LCPN) [25], [26],
[27] Approaches: Models are trained for solving each
local task (i.e., a separate model for each parent node)
using nominal (LCPN-NOM) or ordinal classifiers. The
ordinal relationship was encoded with an OBD (LCPN-
OBD) and a CLM (LCPN-CLM) layer by considering,
respectively, MAE and QWK as loss functions. Binary
subproblems were treated with a sigmoid activation

1Python code used in the experiments will be made available on the GitHub
repository.

function on the output neuron and binary cross-entropy
(BCE) loss.

3) For the AQC task, we performed additional experiments
decomposing the hierarchical constraints in two different
tasks using the multitask learning (MTL) approach [40].
This strategy is viable when the global label can be
handled as a combination of labels from two distinct
tasks (i.e., macro and micro tasks as reported in Table I
in the supplementary material) for the AQC dataset).
This approach is not viable for the VPA, AE, and CCR
tasks, as the global classes are not fully decomposable.
In the MTL-CLM formulation, we computed the QWK
macro and micro losses related to the macro {1, 2, 3, 4}

and micro {+, c, −} classes, respectively. We also
extended this comparison (MTL-CLMloc) to include a
hierarchical constraint by minimizing the micro loss
locally for each macro class. Since class 1 has no child
labels, a further postprocessing step was necessary to
put this hierarchical constraint. It is worth noting that
this additional step is not required in our approach.
In MTL-OBD and MTL-OBDloc, the OBD approach is
applied to both decomposable tasks and MAE losses are
minimized.

4) HMCN [29]: This method uses a multilabel binary
encoding strategy to minimize the BCE loss for each
hierarchical level. In this case, the output is a binary
class vector (expected output) containing all classes in
the hierarchy. In contrast with our approach, in this case,
the model may lead to the prediction of nonadmissible
paths, thus requiring a further postprocessing stage (i.e.,
violation constraint) to avoid inconsistent global classes.

C. Evaluation Metrics

Although the proposed HCLM and HOBD approach can
be used for predicting local and global classes, we measured
the performance with respect to state-of-the-art methodologies
in terms of the prediction obtained for the global classes.
The main objective for all the considered datasets is to
provide a reliable global class prediction rather than a good
performance for local classes. Moreover, the global results
are the only ones that can be compared directly with those
of nonhierarchical state-of-the-art approaches. However, for
the sake of completion, we further extracted the local class
performance of the proposed approach for the AQC datasets.

Considering the ordinal nature of global and local
classes, ordinal metrics were chosen for evaluating our
hierarchical–ordinal problem as they properly reflect the devi-
ation of a misclassification error from the actual class.

The following metrics were considered.
1) QWK, to be maximized [14].
2) MAE, to be minimized, which reflects the average

absolute deviation of the predicted class from the true
class (i.e., average absolute deviation in the number of
categories of the ordinal scale) [41].

3) 1-off accuracy, to be maximized, indicates the predicted
class as correct when it is off at most by one adjacent
class from the ground-truth one.
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4) Accuracy, to be maximized, included as the standard
nominal metric.

VI. RESULTS

In this section, we report the results of the proposed HOBD
and HCLM approach for AQC (see Section VI-A), VPA
(see Section VI-B), AE (see Section VI-C), and CCR (see
Section VI-D) datasets. Afterward, we provide the statistical
test criteria for evaluating the results and the performed
statistical analysis (see Section VI-E) to highlight the pos-
sible significant performance improvement of the proposed
approach to state-of-the-art models.

A. Aesthtetic Quality Control Dataset

Table II compares the proposed approaches to GLB, LCPN,
MTL, and HMCN competitors for the AQC dataset. With
QWK = 0.921 (0.009) and MAE = 0.635 (0.048), the
HOBD approach outperforms all the baseline algorithms.
Moreover, the averaged ranking in terms of QWK [RQWK =

2.100 (1.213)] and MAE [RMAE = 2.000 (1.203)] for HOBD
are lower than those reported by all state-of-the-art competi-
tors. The HCLM discloses lower performance than HOBD and
comparable results to state-of-the-art methods. The proposed
HOBD approach is consistent with this task’s imbalanced
setting. Indeed, adopting the data augmentation procedure
reflects no improvement in QWK and an improvement of 0.6%
in terms of MAE.

B. VPA Dataset

Table II compares the proposed approaches to GLB, LCPN,
and HMCN competitors for the VPA dataset. With QWK =

0.942 (0.013) and MAE = 0.960 (0.091), the HOBD approach
outperforms all the baseline algorithms. Moreover, the aver-
aged ranking in terms of QWK [RQWK = 2.133 (1.525)] and
MAE [RMAE = 1.433 (0.626)] for HOBD are lower than those
reported by all state-of-the-art competitors. Similar to the AQC
dataset, the HCLM discloses lower performance than HOBD
and comparable results to state-of-the-art methods.

C. AE Dataset

Table II displays how the proposed method compares to
its competitors, GLB, LCPN, and HMCN, for the AE dataset.
In the QWK metric, the proposed approaches HOBD [QWK =

0.889 (0.004)] and HCLM [QWK = 0.889 (0.007)] out-
perform all the state-of-the-art algorithms. This is confirmed
by the QWK averaged ranking where these methods achieve
the best results, in particular with RQWK = 1.708 (0.999)

for HCLM. At the same time, MAE results are compara-
ble between HOBD [MAE = 0.978 (0.019)] and standard
GLB-OBD [MAE = 0.978 (0.020)], but the MAE averaged
ranking for HOBD [RMAE = 1.458 (0.509)] is lower than
those of all competitors. However, the extracted results demon-
strated how the proposed method is more stable in terms of
RMAE and RQWK for solving the specific task.

D. CCR Dataset

Table II displays how the proposed method compares to its
competitors, GLB, LCPN, and HMCN, for the CCR dataset.

With MAE = 2.175 (0.129), the HOBD method outperforms
all the other approaches. Moreover, the averaged ranking in
terms of MAE [RMAE = 1.467 (0.507)] for HOBD is lower
than the state-of-the-art competitors. For what concerns QWK,
the performance between HOBD [MAE = 0.611 (0.037)]
and GLB-CLM [MAE = 0.610 (0.035)] is comparable. The
QWK averaged ranking for HOBD [RQWK = 2.400 (1.221)]
is higher than GLB-CLM [RQWK = 2.167 (1.555)]. The
higher performance of GLB-CLM in terms of QWK can be
justified by the distribution of rating classes (see Table III in
the supplementary material). A greater number of samples in
the middle classes may negatively influence the GLB-CLM
that systematically predicts always those central classes, thus
providing an increase of QWK, which, however, does not
correlate with a reduction of MAE and an increase of accuracy.
Differently, our HOBD leads to achieving the best tradeoff
regarding Acc, 1-off, MAE, and QWK.

E. Statistical Analysis

We evaluated the statistical significance of the
best-performing approach compared to other competitors.
First, we performed an Anderson–Darling test [42] to test
that the values of the metrics follow a normal distribution
considering α = 0.05. In this way, the QWK (p = 0.697)
and MAE (p = 0.894) scores for the proposed HOBD
approach were found to follow a normal distribution for
the AQC dataset. Accordingly, the QWK (p = 0.266) and
MAE (p = 0.231) scores for the proposed HOBD approach
were also found to follow a normal distribution according
to the Anderson–Darling test for the VPA dataset. Hence,
a paired-sample one-sided t-test (α = 0.05) was performed
to compare the QWK and MAE of the best-performing
HOBD with respect to the best-performing state-of-the-art
methodologies.

For the AQC dataset, the QWK scores were found to be
significantly (α = 0.01) higher for HOBD than all GLB,
LCPN, MTL, and HMCN models. Accordingly, we also found
the MAE scores to be significantly lower (α = 0.01) for
HOBD than all GLB, LCPN, MTL, and HMCN models.

Moreover, for the VPA dataset, the QWK scores were found
to be significantly higher for HOBD than GLB-NOM, GLB-
CLM, LCPN, and HMCN, with α = 0.01, and GLB-OBD
with α = 0.05. Accordingly, we also found the MAE scores
significantly lower (α = 0.01) for HOBD than GLB, LCPN,
and HMCN.

The results of the AE dataset indicate that HOBD outper-
formed GLB-NOM, GLB-CLM, LCPN, and HMCN in terms
of QWK scores, with statistical significance (α = 0.01).
We also found that HOBD had significantly (α = 0.01)
lower MAE scores than GLB-NOM, GLB-CLM, LCPN, and
HMCN.

For the CCR dataset, the QWK scores were found to be
significantly higher for HOBD than GLB-NOM, LCPN, and
HMCN with α = 0.01 and GLB-OBD with α = 0.05.
Accordingly, we also found the MAE scores to be significantly
(α = 0.01) lower for HOBD than GLB-NOM, GLB-CLM,
LCPN, and HMCN.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



ROSATI et al.: LEARNING ORDINAL–HIERARCHICAL CONSTRAINTS FOR DEEP LEARNING CLASSIFIERS 11

TABLE II
PERFORMANCE EVALUATION ON AQC, VPA, AE, AND CCR DATASETS. EXPERIMENTAL RESULTS: AVERAGE OVER 30 EXECUTIONS EXPRESSED WITH

MEAN (STD). THE PERFORMANCE OF EACH MODEL IS MEASURED ON THE TEST SET. THE BEST RESULTS ARE IN BOLD. STARS INDICATE
WHETHER THE BEST-PERFORMING ALGORITHM IS SIGNIFICANTLY BETTER THAN STATE-OF-THE-ART APPROACHES (**: α = 0.05). DA:

DATA AUGMENTATION. ACT: ACTIVATION FUNCTION. CCE: CATEGORICAL CROSS ENTROPY. BCE: BINARY CROSS ENTROPY.
RQWK : AVERAGED RANK FOR QWK METRIC. RMAE : AVERAGED RANK FOR THE MAE METRIC

F. Local Performance Analysis
For the sake of completion, the method’s performance when

considering the local classes has been evaluated on the AQC
dataset, and the metrics’ results can be checked in Table III.

As expected, when comparing these results with those in
Table II, the overall performance is significantly improved due
to reducing the number of classes with respect to the global
setting. Depending on the real scenario, the performance of
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TABLE III

PERFORMANCE EVALUATION ON LOCAL CLASSES (Y 1
L ) OF

OUR BEST PERFORMING METHOD (HOBD, WITH DATA
AUGMENTATION AND β = 0.5) ON THE AQC DATASET

TABLE IV
PERFORMANCE EVALUATION ON CCR. ABLATION ANALYSIS WAS

PERFORMED BY REMOVING THE MID-HIERARCHICAL
LEVEL ON THE CCR DATASET

local classes can also be an important factor in selecting the
predictor to be implemented.

G. Hierarchical-Level Ablation Analysis

We further analyzed the potential gain of the proposed
approach to model multiple hierarchical constraints by per-
forming an ablation analysis. Thus, from the three levels of
the hierarchy of the CCR dataset [see Fig. 3(d)], we excluded
the second level and compared our best-performing approach’s
performance to the best state-of-the-art competitors (see
Table IV). Also, in this case, as expected, we found a drop
in the performance related to ordinal metrics when the middle
level was removed. This result justifies the effectiveness of
the proposed method, which is able to increasingly improve
the overall global performance when the information available
about the hierarchy constraints is higher (three levels instead
of two).

VII. CONCLUSION

This article proposes a DL methodology for learning
ordinal–hierarchical constraints. Our formulation breaks down
the hierarchical–ordinal problem into local- and global-ordinal
tasks that can potentially share common patterns. Differ-
ently from state-of-the-art DL approaches that tried to model
only the hierarchical or the ordinal dependencies indepen-
dently, we proposed two compact hierarchical DL strategies
based on OBD (HOBD) and CLM (HCLM) to embrace
hierarchical–ordinal constraints of the classification prob-
lem. We tested our approach on four different real-world
hierarchical–ordinal datasets. The proposed HOBD proved
effective in dealing with these tasks by overcoming the other
state-of-the-art nominal, hierarchical, and ordinal approaches.
Thus, the proposed approaches are suited for solving other
real-world classification tasks with hierarchical and ordinal
properties.

A. Limitations and Future Work

Supported by numerous experiments conducted across var-
ious datasets, the proposed methodology demonstrates the

capacity to automatically encode diverse hierarchical struc-
tures. This is feasible as long as comprehensive knowledge
about the hierarchy (including local classes belonging to
specific hierarchical levels) and the corresponding ordinal
constraints at each hierarchical level are available. Although
the experiments were performed using two and three hier-
archical levels, the value of h can be increased to deal
with more complex hierarchies. The proposed methodology
is conceived to deal with a fixed number of hierarchical
levels specified by the problem. Given that the proposed
ordinal–hierarchical approach improved the state-of-the-art
methodologies, in future works, this proposal can be extended
to deal with tasks where the hierarchical and ordinal label
structure is not given a priori but can be inferred from the char-
acteristics of the data. Thus, our approach can be extended via
a meta-learning formulation to customize and preserve ordinal
and hierarchical task knowledge simultaneously [43]. More-
over, the proposed approach needs to consider the presence
of sparse or missing labels. In different application scenarios
ranging from recommendation systems to clinical decision
support systems, some classes in the hierarchy may be missing
or unavailable. For example, in the cross-domain recommenda-
tion, providing reliable recommendations to newly joined users
(so-called cold-start users) is a challenging task. In this con-
text, unlabeled data are abundant and easily accessible, while
the collection of labeled data is a major task. Future work may
be handled to generalize the proposed methodology to weakly
supervised and semi-supervised settings scenarios, using self-
learning [44], context-based learning [45], and incremental
learning approaches [46].
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