
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Federated Graph Neural Networks: Overview,
Techniques, and Challenges

Rui Liu , Pengwei Xing , Zichao Deng, Anran Li , Cuntai Guan , Fellow, IEEE,
and Han Yu , Senior Member, IEEE

Abstract— Graph neural networks (GNNs) have attracted
extensive research attention in recent years due to their
capability to progress with graph data and have been widely
used in practical applications. As societies become increasingly
concerned with the need for data privacy protection, GNNs face
the need to adapt to this new normal. Besides, as clients in
federated learning (FL) may have relationships, more powerful
tools are required to utilize such implicit information to boost
performance. This has led to the rapid development of the
emerging research field of federated GNNs (FedGNNs). This
promising interdisciplinary field is highly challenging for
interested researchers to grasp. The lack of an insightful survey
on this topic further exacerbates the entry difficulty. In this
article, we bridge this gap by offering a comprehensive survey of
this emerging field. We propose a 2-D taxonomy of the FedGNN
literature: 1) the main taxonomy provides a clear perspective on
the integration of GNNs and FL by analyzing how GNNs enhance
FL training as well as how FL assists GNN training and 2) the
auxiliary taxonomy provides a view on how FedGNNs deal with
heterogeneity across FL clients. Through discussions of key ideas,
challenges, and limitations of existing works, we envision future
research directions that can help build more robust, explainable,
efficient, fair, inductive, and comprehensive FedGNNs.

Index Terms— Federated learning (FL), graph neural
networks (GNNs).

I. INTRODUCTION

GRAPH neural networks (GNNs) are powerful tools for
dealing with graph-structured data [1]. Graph-structured

data are data samples connected by a graph topology. For
example, molecular data are graph-structured data in which
atoms serve as nodes and the bonds connecting them serve
as edges in the graph. GNNs can improve the quality of node
embedding by considering neighborhood information extracted
from the underlying graph topology. They have been widely

Manuscript received 21 December 2022; revised 19 May 2023 and
22 November 2023; accepted 23 January 2024. This work was supported
in part by the National Research Foundation, Singapore, and Defence Sci-
ence Organisation (DSO) National Laboratories through the AI Singapore
Programme under AISG Award AISG2-RP-2020-019; in part by the
Alibaba Group through the Alibaba Innovative Research (AIR) Program and
the Alibaba-NTU Singapore Joint Research Institute (JRI) (Alibaba-NTU-
AIR2019B1), Nanyang Technological University (NTU), Singapore; in part
by the RIE 2020 Advanced Manufacturing and Engineering (AME) Program-
matic Fund, Singapore, under Grant A20G8b0102; in part by the Nanyang
Technological University through the Nanyang Assistant Professorship (NAP);
and in part by the Future Communications Research and Development
Programme under Grant FCP-NTU-RG-2021-014. (Corresponding author:
Han Yu.)

The authors are with the School of Computer Science and Engi-
neering, Nanyang Technological University, Singapore 639798 (e-mail:
rui.liu@ntu.edu.sg; han.yu@ntu.edu.sg).

Digital Object Identifier 10.1109/TNNLS.2024.3360429

adopted by diverse applications including drug discovery [2],
neuroscience [3], social networks [4], knowledge graphs (KGs)
[5], recommender systems [6], and traffic flow prediction [7].

A well-trained GNN model requires a large amount of
training graph data, which may be distributed among multiple
data owners in practice. Due to privacy concerns [8], these data
owners (also known as clients) may not be willing to share
their private data, which leads to the problem of data isola-
tion. Furthermore, the graph data stored by different clients
are often non-independent identically distributed (non-i.i.d.),
which exacerbates the data isolation issue. This non-i.i.d.
property can manifest itself as differences in graph structures
or node feature distributions across clients.

Federated learning (FL), a distributed collaborative machine
learning (ML) paradigm, is a promising approach to deal with
the data isolation issue [9], [10], [11], [12], [13]. It enables
local models to benefit from each other while keeping local
data private [14], [15]. Besides, the problem of learning
personalized FL models in the presence of non-i.i.d. data has
been extensively studied [16]. In FL, only model parameters
or embedding features are shared between participants without
exposing potentially sensitive local data. This architectural
design, combined with various cryptographic techniques, can
provide effective protection of local data privacy. In some
situations, there are relationships between FL participants,
consisting of a graph topology with participants as nodes.
This relationship graph may contain useful but implicit
information, such as the participants’ similarities and trust.
Utilizing the topology information to boost FL performance
remains a challenge.

The confluence of these trends of development has inspired
the emergence of the field of federated GNNs (FedGNNs) [17],
which has witnessed rapid development in recent years. Exist-
ing works such as [18] and [19] summarize FedGNNs into
three categories: 1) FL clients containing multiple graphs; 2)
FL clients containing subgraphs; and 3) FL clients containing
one node according to the distribution of graph data. However,
as technical research for these envisioned categories had not
been extensively studied at the time, these early positioning
papers only provided general ideas without specific works
or problem descriptions for the different categories. Besides,
there can be overlapping situations between Category 2 and
Category 3. For example, in Category 2, if there are some
edges connecting subgraphs residing in different FL clients,
these edges can be regarded as interclient graphs, which
also exist in Category 3. A recent survey [20] simplifies the
three-category taxonomy with a two-category taxonomy based

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0002-3606-0553
https://orcid.org/0000-0001-9561-3560
https://orcid.org/0000-0002-3592-4153
https://orcid.org/0000-0002-0872-3276
https://orcid.org/0000-0001-6893-8650


2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

on the location of structural information: 1) structural infor-
mation existing in the FL clients and 2) structural information
existing between FL clients. However, the problem-based sub-
categories of the taxonomy are inadequate as they only cover
a limited subset of the FedGNN literature. Furthermore, this
work primarily focuses on summarizing the existing literature,
without delving into an insightful analysis of the advantages
and disadvantages of the current approaches.

Currently, there is a lack of a comprehensive survey on
FedGNNs that provide an insightful view on this critical topic
for new researchers. This article bridges this important gap.
The main contributions are given as follows.

1) We propose a 2-D taxonomy that categorizes existing
works on FedGNNs from two perspectives.

a) Main Taxonomy: How FL and GNNs are integrated
together.

b) Auxiliary Taxonomy: How FedGNNs deal with
heterogeneity across FL clients. We highlight the
challenges, specific methods, and potential limita-
tions for each category.

2) We discuss commonly adopted public datasets and eval-
uation metrics in the existing literature for FedGNN
benchmarking and provide suggestions on enhancing
FedGNN experiment design.

3) We envision promising future directions of research
toward building more robust, explainable, efficient, fair,
inductive, and comprehensive FedGNNs to enhance the
trustworthiness of this field.

The rest of this article is organized as follows. Key termi-
nologies used in FedGNNs and the proposed 2-D taxonomy
are introduced in Section II. The main challenges, techniques,
and limitations of FedGNNs are reviewed in Sections III
and IV for the main taxonomy and in Section V for the auxil-
iary taxonomy. Section VI summarizes applications, datasets,
evaluation metrics, and data partition methods of FedGNNs.
Finally, we propose seven future directions toward building
trustworthy FedGNNs in Section VII. Section VIII concludes
this survey.

II. TERMINOLOGY AND TAXONOMY

This section explains key terminologies in GNNs and FL
and introduces the proposed 2-D FedGNN taxonomy.

A. Terminology

GNNs are a class of deep learning models designed to
perform feature embedding and inference on graph data. They
require two inputs: 1) a graph, which consists of nodes and
edges, represented by an adjacency matrix A ∈ RN×N , and 2)
their node features X ∈ RN× f , where N denotes the number
of nodes and f is the number of node features. GNNs update
the embedding of a given node by aggregating information
from its neighboring nodes with the following function:

X(l+1)
= GNN

(
A, X(l), w(l)) (1)

where GNN(·) indicates the graph aggregation function, which
can be the mean, weighted average, or max/min pooling
methods. X(l) and X(l+1) represent the node embedding in the

lth and (l +1)th layers. A denotes the graph adjacency matrix.
w(l) are the trainable model weights in the lth layer.

FL is a collaborative ML paradigm that trains a model
across multiple data owners, without exchanging raw data.
It has two main settings: horizontal FL (HFL) and vertical
FL (VFL) [21]. In HFL, the datasets in different clients have
large overlaps in the feature space but little overlap in the
sample space. In VFL, the clients have little overlap in the
feature space but large overlaps in the sample space. In FL,
data owners with sensitive local data can be referred to as
clients if they are coordinated by a central entity referred to
as the server. Under the HFL setting, based on the commu-
nication architecture, FL has two settings: centralized FL and
decentralized FL. In centralized FL, the server coordinates
the clients to jointly learn a model, while in decentralized
FL, clients communicate with each other without a centralized
server to jointly learn a model.

FL also involves an “aggregation” operation. Aggregation,
in the context of FL, updates model parameters in the server
with local model parameters uploaded by clients. For instance,
it can be achieved with an averaging operation following
FedAvg [22]:

wr
=

C∑
c=1

nc

n
wr

c (2)

where nc denotes the number of samples in client c and n
represents the total number of samples in all clients. wr and
wr

c are the global model weights and the local model weights
in the cth client at round r .

To disambiguate between the aggregation operations in
GNNs and FL, we refer to them as GNN aggregation and
FL aggregation, respectively, in this article.

B. Proposed 2-D FedGNN Taxonomy

As shown in Fig. 1, the proposed FedGNN taxonomy
consists of two dimensions. The first dimension focuses on
the integration of FL and GNNs, which serves as the main
taxonomy. The second dimension focuses on FL aggregation
solutions dealing with different levels of graph data hetero-
geneity, which serves as the auxiliary taxonomy.

The main taxonomy focuses on dealing with the integration
of FL and GNNs. According to the existence of explicit
graph information, the main taxonomy can be divided into
two main categories: GNN-assisted FL and FL-assisted GNNs.
These categories are further subdivided into various scenarios
based on their layout settings. Each subscenario introduces
general integration strategies along with detailed solutions for
key challenges. To provide a succinct overview, we briefly
introduce the two main categories of the main taxonomy.

1) GNN-Assisted FL: Methods under this category mainly
target situations where there is no explicit graph, but implicit
graph information exists. The implicit graph information can
be applied to GNN models to assist FL model training. The
implicit graph can be the connectivity network between clients,
denoted by the black dotted lines in the GNN-assisted FL
category of Fig. 1. FL model training is the main task, and the
local data of clients are not necessarily graph data. Works in
this category are further divided into two scenarios according

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LIU et al.: FedGNNs: OVERVIEW, TECHNIQUES, AND CHALLENGES 3

Fig. 1. Proposed 2-D taxonomy for FedGNN research.

to whether a central FL server exists or not: 1) central-
ized FedGNNs and 2) decentralized FedGNNs. Centralized
FedGNNs have a central server to coordinate clients. Clients
in decentralized FedGNNs communicate with their neighbors
directly. Communications between entities are denoted by the
black double arrows in Fig. 1.

2) FL-Assisted GNNs: Approaches under this category
focus on the situation where explicit graph data exist and are
isolated across clients, in which GNNs require FL algorithms
to assist model training with such data. The explicit isolated
graph data are denoted by the small graphs inside clients in the
FL-assisted GNN category of Fig. 1. Training the GNN model
with isolated graph data silos is the main task. Methods under
this category are further divided into two scenarios according
to the overlapping scale of graph node IDs across clients:
1) horizontal FedGNNs and 2) vertical FedGNNs. Clients
in horizontal FedGNNs have graph data consisting of nodes
that are largely not overlapping. Clients in vertical FedGNNs
have graph data sharing the same set of node IDs. Nodes’
overlapping is denoted by the gray dotted lines in Fig. 1.

The auxiliary taxonomy focuses on dealing with the het-
erogeneity among FL clients. They can be divided into three
categories: 1) clients having nodes with the same IDs; 2)
clients having different nodes but the same network structure;
and 3) clients employing different network structures. Dif-
ferent intermediate information is applied in FL aggregation
for different categories. For clients having the same nodes,
node embedding features are uploaded to the FL server for
aggregation. This can be found in vertical FedGNNs and some
horizontal FedGNN works with overlapping nodes, indicated
by the thick gray arrows in Fig. 1. For clients having different
nodes but applying the same network structures for training,
model weights and gradients are used for FL aggregation. This
can be found in both scenarios of GNN-assisted FL and some
horizontal FedGNN works without overlapping nodes. For the
clients training local models with different network structures,
the network structure can be modeled as a graph first, and a

GNN model is applied to it. Then, the GNN model weights or
gradients can be used for FL aggregation. Currently, this can
only be found in centralized FedGNN works.

III. GNN-ASSISTED FL

In this section, we review approaches under the GNN-
assisted FL category in the main taxonomy, dealing with the
FL systems with implicit graph information. Such implicit
graph information comes from two sources: 1) interclient
graph and 2) layer connectivity in deep neural networks. For
example, road traffic monitoring sensors that are near each
other tend to record similar traffic conditions. An interclient
graph can be built from such graph-structured clients with
each of them represented as a node in the graph, indicated
by the black dotted lines in Fig. 2. Due to the existence of the
interclient graph, GNN algorithms are applied to assist the FL
training process. Besides, GNNs can also assist the FL system
by modeling the neural network as a graph when local model
architectures are different across clients.

According to the existence of a central server in the
FL system, GNN-assisted FL has two scenarios: centralized
FedGNNs and decentralized FedGNNs. Since the centralized
FedGNNs have both the server and clients, according to the
location of the implicit graph, two subscenarios are generated:
1) implicit graph located in the server and 2) implicit graph
located in the clients, referring to the left part in Fig. 2.
Without a central server, the implicit graph in decentralized
FedGNNs can be only distributed across the clients, referring
to the right part in Fig. 2. For each subscenario, we first
introduce the setting assumption with general solutions and
then list the main challenges in bold titles followed by
detailed techniques. Their advantages and disadvantages are
summarized at the end of this section.

A. Centralized FedGNNs

Centralized FedGNNs have a central server to coordinate
clients. Depending on the location of the implicit graph, GNN

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Illustrations of subscenarios with corresponding challenges in the GNN-assisted FL category. (a) Implicit graph located in the server. (b) Implicit
graph located in the clients. (c) Implicit graph distributed in the clients.

training with the graph can be performed at the server [see
Fig. 2(a)] or local client [see Fig. 2(b)].

1) Implicit Graph Located in the Server: A GNN model is
trained in the server with the interclient graph. It assumes that
neighboring clients tend to have similar local models or feature
embedding. The server first collects parameters from clients as
it does in standard FL. The uploaded local model parameters
are treated as the node features in the interclient graph. Then,
it trains a GNN model with the uploaded parameters to
facilitate FL aggregation. Finally, the updated parameters are
sent back to the clients. The interclient graph can be given
in advance or extracted with a self-attention module during
training [23]. As the server has a separate GNN model, how
to train both local models and the GNN model (bilevel model)
in the server simultaneously is a challenge.

a) Bilevel model training problem: Works such as [24]
and [25] design bilevel optimization schemes to train both
local models and the GNN model with two types of objective
functions: the local task objective functions gc(·) for the local
model training in the clients and an objective function f (·)

for GNN model training in the FL server

min
φ

f
(
φ, w∗

c(φ)|c ∈ 1, . . . , C
)

s.t. w∗

c(φ) ∈ arg min
wc

gc(φ, wc) (3)

where φ denotes the trainable parameters in the GNN model
and w∗

c(φ) is the local solution weight vector of client c. Big-
Fed [24] and SFL [25] adopt different objective functions
for f (·) to fulfill the assumption that neighboring clients’
local models are similar. Big-Fed proposed an unsupervised
contrastive learning loss function; meanwhile, SFL [25] pro-
posed a supervised loss function with a graph smoothness
regularization to train both local and global models.

Different from the bilevel optimization, some works [26],
[27] train the local models and the GNN model sequentially
with separate objective functions. For example, clients in [27]
train their local models with different local tasks. Then, the
server trains a GNN model to fuse multitask local estimates.
By minimizing data reconstruction error with a graph reg-
ularization term, local estimates can be refined based on the
clients’ similarities. HFME [28] updates the local models with
local loss functions and the global model with global loss
functions iteratively. The GNN-based grouping predictor in

the server is designed to cluster clients into groups based
on their data distribution similarities. Clients in the same
group train collaboratively to alleviate heterogeneity problems.
PDGNet [26] models the power allocation policy with a GNN
model in the server to find the optimal power allocation policy.
The objective function is to minimize the transmission error
probability for all FL clients. The GNN model is trained with a
primal-dual iterative approach. CNNFGNN [29] and MLFGL
[23] train the FL local models and the GNN model with only a
local objective function. They perform alternating optimization
to update clients’ model weights with GNN model weights
fixed and then update GNN model weights with the FL local
model weights fixed, over multiple rounds.

2) Implicit Graph Located in the Clients: Depending on the
implicit graph sources, GNN models are trained in the clients
to solve two challenges: 1) data distribution heterogeneity and
2) model heterogeneity. The first challenge assumes that the
implicit graph in the clients is the interclient graph indicating
the relationships among clients. The second challenge assumes
that the implicit graph in the clients is layer connectivity in the
neural network. The paradigm follows the general FL training
procedure where a GNN model is trained collaboratively
by clients with model weights uploaded to the FL server.
The server performs FL aggregation and distributes updated
model weights to the clients for the next round of training.
Meanwhile, building different graphs in the FL clients can
solve different problems.

a) Data distribution heterogeneity problem: Under this
setting, clients not only train the local models as they do
in standard FL but also train a GNN model with the global
graph to obtain global knowledge from other clients to address
the data distribution heterogeneity issue. FedCG [30] builds a
fully connected graph based on the similarity between clients’
model weights or pattern features. A client trains a GNN with
the graph to obtain the global embedding and then combines
the local model embedding and the global embedding with a
trainable weight.

b) Model heterogeneity problem: Standard FL is not well
suited to deal with situations in which clients’ local models
are heterogeneous. HAFL-GHN [31] proposes a solution with
the help of GNNs. It models the neural architecture in the
client as a graph with each parametric layer as a vertex and
the computational flows between layers as edges. The node

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LIU et al.: FedGNNs: OVERVIEW, TECHNIQUES, AND CHALLENGES 5

features are initialized with a categorical (one-hot) feature
indicating the layer type. A GNN-based graph hypernetwork
(GHN) processing the graph representation of architecture is
trained to minimize the empirical risk of all clients. The output
latent node features of GNNs are mapped back to the layer
weights for training the original network. By converting a
neural network into a graph and training it with a GHN model,
heterogeneous model weights can be aggregated across FL
clients indirectly by uploading local GHN weights to the FL
server for aggregation.

B. Decentralized FedGNNs

As illustrated in Fig. 2(c), decentralized FedGNNs do not
have a central server to coordinate FL clients. It only has
one subscenario where the implicit graph is distributed in the
clients. The implicit graph here only refers to the interclient
graph.

1) Implicit Graph Distributed in the Clients: Since the
interclient graph is distributed among the clients, it assumes
that clients can only communicate with their neighbors. Thus,
how to perform decentralized FL model aggregation is a
challenging problem. Besides, how to communicate efficiently
with their neighbors is also critical.

a) Decentralized FL aggregation problem: Existing
works come up with two approaches to solve the decentralized
FL aggregation problem where clients are related by a graph
topology: 1) updating the FL model parameters via weighted
summation of model updates within the neighborhood and 2)
updating the FL model parameters via graph regularization.

In the weighted-summation-based approaches, FL clients
communicate with their neighbors and update their local
models by aggregating their neighbors’ local model parameters
based on the graph topology connecting them

wr+1
c =

∑
j∈N (c)

acj ·
[
wr

j

]
(4)

where wr+1
c ∈ Rp denotes the local model parameters of

client c at round r + 1, which can be a Bayesian model [32],
gated recurrent units [17], or GNNs [33]. [·] is the encryption
operation for data privacy protection, such as Diffie–Hellman
key exchange [33] or secret sharing [34]. acj is the [cth
row, j th column] element in the adjacency matrix A of the
graph, which is assumed to reflect the local data distribution
similarity between client c and j . N (c) is neighborhood of
c (including itself). All works under this section apply (4)
once per round (i.e., a client only aggregates models from
its one-hop neighbors). DSGT [35] utilizes the decentralized
stochastic gradient tracking to achieve faster convergence.

In the graph-regularization-based approaches, graph Lapla-
cian regularization is incorporated into the objective function
to make model parameters from neighboring clients similar in
order to address the non-i.i.d. problem [36]

R(W, L) = tr
(
WT LW

)
=

1
2

∑
i j

ai j∥wi − w j∥
2 (5)

where W ∈ Rn×p denotes the model weights of neighboring
clients. L ∈ Rn×n is the Laplacian matrix of the graph topology

between neighboring clients. tr(·) is the trace operation. ai j is
the edge weight in the adjacency matrix connecting client i and
j . wi ∈ Rp indicates the model parameters in client i . Thus,
for each client, the local objective function can be written as

minwc Lc(wc) + λ ·
1
2

∑
j∈N (c)

acj∥w j − wc∥
2 (6)

where λ indicates a balancing weight, N (c) represents the
neighbors of client c, and Lc(·) is the local loss function
in client c. Each client can only get the related information
from their neighbors. Multitask learning is usually entangled
with the decentralized FL aggregation problem, which can
be solved with the above strategy. dFedU [37] assumes that
each client has one task and a fully connected interclient
graph is given in advance. Once each client obtains the locally
updated models from its neighbors, it performs model updating
with graph regularization. SpreadGNN [38] assumes that each
client solves multiple tasks. An interclient task relationship
graph is initialized from the task classifier model parameters.
Clients apply decentralized periodic averaging stochastic gra-
dient descent (SGD) (DPA-SGD) to optimize the objective
function and update model weights and their corresponding
task relationship graph iteratively with a convergence guaran-
tee. Fed-ADMM [39] solves (6) by proposing a decentralized
stochastic version of the alternating direction method of multi-
pliers (ADMM) algorithm with rigorous statistical guarantees
of their estimators.

b) Communication efficiency problem: Since the clients
need to communicate with all their neighbors, communica-
tion efficiency is critical. Rizk and Sayed [34] propose a
multiserver FedGNN architecture to increase communication
efficiency when dealing with a large-scale graph. It assumes
that there are multiple servers in the network related by a fixed
graph topology and that there is no central server coordinating
the network of servers. Clients under each server conduct
FL model training following the classic centralized FL pro-
tocol. Once all the servers have aggregated their own clients’
model updates, they perform interserver model aggregation
following (4) among themselves. PSO-GFML [40] enhances
communication efficiency by only exchanging a portion of
local model parameters with the servers. Instead of knowing
the adjacency matrix in advance, the graph can be learned dur-
ing training, similar to graph attention networks (GATs) [41].
The edge weights of the interclient graph are calculated based
on the similarity between unlabeled graph embeddings [42] or
hidden parameters [43] in the corresponding clients.

C. Summary

In this section, we have discussed GNN-Assisted FL
approaches that leverage the GNN model training to improve
FL aggregation. We now summarize the techniques in terms
of their advantages and disadvantages, as listed in Table I.

Centralized FedGNNs deal with the graph-structured FL
system setting. With a GNN model trained in the FL server,
it has more flexibility in the FL model aggregation to deal
with the non-i.i.d. problem among FL clients. The GNN model
plays a tradeoff between personalization on the client side and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I
SUMMARY OF ADVANTAGES AND DISADVANTAGES FOR VARIOUS GNN-ASSISTED FL SCENARIOS

generalization on the server side. However, it is more difficult
to guarantee convergence with two objective functions (one
for local models and the other for the global GNN model).
Besides, when it is applied to an FL system with a large-scale
interclient graph, the training cost of the GNN model in the
server becomes enormous. In addition, an imprecise interclient
graph in GNNs may deteriorate model performance. With
the interclient graph stored by the clients with the GNN
model trained locally, it can also relieve the non-i.i.d. problem.
However, the locally stored interclient graph may leak other
clients’ private information. Besides, it also faces the same
issue as above when the interclient graph is imprecise.

Decentralized FedGNNs are designed for the serverless
graph-structured FL setting. It can address the non-i.i.d.
problem among FL clients without a central server by mak-
ing clients communicate with their neighbors directly. Due
to the difference in the neighborhood for each client, the
eventual aggregated model for each client is a personalized
local model. However, such peer-to-peer learning with model
weights shared directly between neighboring clients may result
in high communication costs. Besides, clients with higher
centralities are vulnerable to attacks. In addition, it is not
continual learning as the local models need to be retrained
when a new client joins as their neighbor.

IV. FL-ASSISTED GNNS

In this section, we introduce FL-assisted GNNs in the
main taxonomy, dealing with the FL systems with explicit
graph information, especially isolated graph data. Due to the
isolation of graph data, FL algorithms, as an emerging tool to
process distributed data with privacy protection, are applied to
assist the GNN model training process.

According to the overlapping scale of graph node IDs across
clients, FL-assisted GNNs have two scenarios: 1) horizontal
FedGNNs and 2) vertical FedGNNs. For both scenarios, two
more subscenarios are categorized separately based on the
graph data properties in the clients: 1) clients without missing
edges; 2) clients with missing edges for horizontal FedGNNs;
3) clients with incomplete graph data; and 4) clients with
complete graph data for vertical FedGNNs (refer to Fig. 3). For
each subscenario, we first introduce its setting assumption and

the general strategy. Then, the main challenges are summarized
with bold titles followed by detailed solutions. At the end of
this section, the advantages and disadvantages are discussed
for all subscenarios.

A. Horizontal FedGNNs

Horizontal FedGNNs refer to the situation, whereby the
isolated graph data in clients share the same node feature
spaces but different node IDs. Each client has at least one
graph or a set of graphs. Depending on the loss of edges
connecting nodes in different clients, clients can have local
graph data without missing edges [see Fig. 3(a)] or with
missing edges [see Fig. 3(b)].

1) Clients Without Missing Edges: This setting assumes that
edges connecting nodes in different clients are retained by
clients [the left figure in Fig. 3(a)] or no such edges exist
between clients [the right figure in Fig. 3(a)]. The common
strategy for clients without missing edges is to train local GNN
models in the clients to learn the local graph representations
or node embedding first. Then, an FL algorithm is applied
on top of it. The FL server collects the model parameters
or gradients from clients for FL aggregation, as described
in (2) [44], [45], and sends back the updated parameters to the
clients for the next round of training. FedGNN works under
this setting are introduced according to the research problems
that they solve. GNN-related research problems focus on non-
i.i.d. problems, graph embedding problems with distributed
graph data, and neural architecture search problems with
distributed graph data. FL-related research problems focus on
the communication efficiency problem and privacy protection
problems between clients.

a) Non-i.i.d. problem in distributed graph data: Graph
data consist of data and graphs. The non-i.i.d. problem
exists in both data distribution and graph topology [46]. The
non-i.i.d. problem in data distribution, including attributes
distribution and label distribution, is the same as the one
for normal data. The non-i.i.d. problem in graph topol-
ogy refers to the non-i.i.d. distributions of node degrees,
edge weights, edge types, or graph structures among
clients. Most existing FedGNN works focus on the for-
mer one, providing some personalized FL inspired solutions
[16]: model-based approaches, data-based approaches, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LIU et al.: FedGNNs: OVERVIEW, TECHNIQUES, AND CHALLENGES 7

Fig. 3. Illustrations of subscenarios with corresponding challenges in the FL-assisted GNN category. (a) Clients without missing edges. (b) Clients with
missing edges. (c) Clients with incomplete graph data. (d) Clients with complete graph data.

FL-aggregation-improvement-based approaches. A few works
put some lights on the latter recently.

Model-based approaches improve the adaptation perfor-
mance of the local model or learn a powerful global FL
model for the future personalization of each client, which
includes model interpolation, regularized local loss, metalearn-
ing, knowledge distillation, and so on. ASFGNN [47] and
FedEgo [48] apply the model interpolation technique in the
client. The final model for the client is a combination of
the global model and the local model. The percent of the
local model in the updating process is controlled by a mixing
weight, which can be the Jensen–Shannon divergence [47] or
the earth mover distance (EMD) [48] between local and global
data distributions. FedAlign [49] adds an optimal transport
(OT) distance-based regularization term between local and
global models in the loss function to minimize the model diver-
gence as FedProx [50]. GraphFL [51] applies a metalearning
training scheme to mitigate the non-i.i.d. problem. Inspired
by the model-agnostic metalearning (MAML) [52], it finds a
good initial model that can be fast adapted to clients after a few
local updates. InfoFedSage [46] utilizes a generative module
in the server and an information bottleneck regularizer in the
clients to alleviate the non-i.i.d. problem. FedGraph-KD [53]
and FGSSL [54] apply knowledge distillation to transform the
global information from the server and, meanwhile, preserve
the local information to solve the non-i.i.d. problem.

Data-based approaches target to decrease the statisti-
cal heterogeneity of client data distributions using sample
reweighting, clustering, manifold learning, and so on. FLIT
[55] solves the non-i.i.d. data problem by reweighting samples

based on their prediction confidence. To make local training
more consistent across clients and avoid overfitting the local
data, it puts more weight on the samples that the local model
is less confident in the prediction results than the global
model. GCFL+ [56] and FedINT [57] solve the non-i.i.d.
problem by clustering clients based on the gradients or model
weights of the graph isomorphism network (GIN) model [58]
from each client. General FL aggregation is applied within
each cluster. FMTGL [59] relieves the non-i.i.d. problem by
obtaining universal task representation with a fusion module
shared across clients. The key to getting the universal task
representation is to process the multisource representation
matrices on a common fusion space, consisting of several
learnable support vectors.

FL-aggregation-improvement-based approaches relieve the
non-i.i.d. problem by defining the importance of each client
in FL aggregation. The general FL aggregation approach is
described as follows:

wr
=

C∑
c=1

ηc · wr
c (7)

where wr
c and wr denote the model weights in the cth client

and the global model weights in the server at the round r .
ηc represents the importance of client c in FL aggregation.
ηc can be defined by many factors. Apart from the number
of samples in the clients, Fed-CBT [60] defines it with the
training round index. It puts a higher weight on the clients
with the latest updates. In [61], the weight is defined by
a trainable attention mechanism based on the global model
parameters and local model parameters layerwisely. Fed-Pub

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[62] calculates the weights based on the functional similarity
between the client’s local model outputs of a public randomly
generated graph. To further solve the non-i.i.d. problem, each
client calculates the similarities with all other clients to get a
personalized local model.

Some recent works focus on the non-i.i.d. problem in
the graph structure. FedLIT [63] employs k-means cluster-
ing to categorize edges by type. It then utilizes multiple
convolution channels in each client for message passing on
different types of edges, resolving the non-i.i.d. challenge.
FedStar [64] adopts a feature-structure decoupled GNN with
distinct feature-based and structure-based encoders. For FL
aggregation, only the structure-based encoder is uploaded to
the server, enabling the sharing of structural knowledge across
non-i.i.d. graphs from diverse domains.

b) Graph embedding problem in distributed graph data:
As the local graph topology changes over time or each
node contains time-series data, it is necessary to embed the
spatial–temporal (ST) information for the distributed graph
data. STFL [65], Feddy [66], and 4D-FED-GNN+ [67], [68]
deal with ST graph data embedding differently. STFL [65],
[68] does not consider the temporal relationship in the graph
embedding. They treat the graph data at each time step as one
sample and predict the label for each of them. Feddy [66]
considers temporal information in the graph embedding by
applying dynamic GNNs. 4D-FED-GNN+ [67] focuses on the
evolution graph learning task with missing time points. Each
client trains a GNN model for each time step. GNN acts as
a generator or a self-encoder based on the data availability
at the current and next time step. It improves the predictive
performance of local models while benefiting from other
clients with data corresponding to the missing time points.

c) Neural architecture search problem in distributed
graph data: Designing a suitable architecture for the local
GNN model is beneficial for the global model’s performance.
Existing works pay attention to the GNNs architecture search
problem. FL-AGNNS [69] proposes a federated evolutionary
optimization strategy to search for suitable GCN architectures.
It applies a GCN SuperNet and a weight-sharing strategy
to reduce the searching time so that the proposed algorithm
can find better GCN models in a short time. The approach
in [70] searches for the GNN models that can produce the
most reproducible features. The model is selected based on
a reproducibility matrix between paired GNN models. The
reproducibility value between the two GNNs is defined by
the overlap ratio of the top K reproducible features, which
are selected according to the last layer of the models.

d) Communication efficiency problem between clients:
Large-scale local graph data require local GNN models with
an enormous number of parameters, which results in high
communication costs between clients. To reduce the com-
munication and computation cost of GNN model training,
FedGraph [71] designs a sampling policy for the server based
on reinforcement learning. In each round, the server refines
the sampling strategies (i.e., the number of nodes to be
sampled) and the GNN model parameters for the clients.
CTFL [72] clusters clients based on the closeness of their local
model parameters with a divide-and-conquer strategy. Only

one representative local model of each cluster is sent to the
server for FL aggregation to reduce communication costs.

e) Privacy protection problem between clients: By shar-
ing model parameters and graph topology, FedGNNs have
large attack surfaces, requiring more attention to privacy
protection. Some works assume that both clients and the
server are honest-but-curious. FeSoG [73] uploads encrypted
gradients using dynamic local differential privacy (LDP) to the
server for FL aggregation. Clients in FedGraph [71] encrypt
local training with a trusted execution environment (TEE)
and the server encrypts global model aggregation with secure
multiparty computation (MPC) or homomorphic encryption
(HE). FedEgo [48] protects the graph privacy by constructing
mashed ego-graphs in the client. The global structure is pro-
tected by sampling neighboring nodes with a fixed size for the
central node to construct the ego-graphs in the clients. Local
graph embedding is anonymous by averaging a batch of ego-
graphs (mixup or mashed) before being uploaded to the server.
SOS [74] encrypts the original graph by generating new graphs
from the original ones based on the information-bottleneck
principle and then employs the local GNN models for training
on these generated new graphs. FDL-TF [75] ensures privacy
by introducing a trusted authority to verify the accuracy of
uploaded model weights before FL aggregation in the server.
Some assume that only the server is honest-but-curious and
clients are honest. For example, ESA-FedGNN [76] utilizes
Shamir secret sharing and double-mask strategy to ensure
privacy and prevent malicious adversaries from stealing model
parameters.

2) Clients With Missing Edges: This setting assumes that
some edges connecting nodes in different clients are missing
[refer to Fig. 3(b)]. The missing edges can be divided into two
types: 1) edges between nodes with different node IDs and 2)
edges between aligned nodes in different clients. For the first
type, how to deal with the k-hop neighbor information isolated
by the missing edges is a key challenge. Since local clients
cannot communicate with each other directly, amending the
local graph with estimated edges to mimic the k-hop neighbor
information in other clients is a common strategy. A complete
local graph can ensure that a high-quality graph representation
and edges between clients can mitigate the non-i.i.d. data
problem to some extent. For the second type, KG completion
is an important challenge in this setting. The key strategy is to
transform information between aligned nodes across clients to
help local KG embedding completion. Once the local graphs
are amended, the FL algorithm is applied to assist GNN
training in the same way as the “client with no missing edge”
works.

a) K-hop neighborhood estimation problem: Edge gen-
erators or node generators, located in the server, clients, or a
third party, are designed to amend the local graphs to estimate
their k-hop neighborhood information. Once the local graphs
are complete, GNN models are trained on them in the clients,
and an FL aggregation is applied in the server to obtain a
global model.

FASTGNN [77] proposes a simple edge generator in the
server. It reconstructs the missing edges between clients with
Gaussian randomly generated edges and broadcasts them to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LIU et al.: FedGNNs: OVERVIEW, TECHNIQUES, AND CHALLENGES 9

all clients to update their local graphs. The edge generator
in FedGL [78], located in the server, can generate a global
pseudograph with node embeddings uploaded by FL clients
and distribute it to the clients to amend their local graphs for
GNN model training.

Instead of generating missing edges directly, some
works [79], [80] designed generative models to recover miss-
ing neighborhood node embedding first and then reconstruct
missing edges based on them. FedSage+ [79] proposes a node
feature generator in the client. To train the generator, the client
holds out some existing edges randomly in the local graphs.
The generator, equipped with a Gaussian noise generator,
is trained to predict the number of missing neighborhood
nodes and reconstruct hold-out neighborhood node features.
Once the subgraph is updated, each client trains a GNN model
continually, GraphSage [4], and uploads the model parameters
to the server for FL aggregation. FedNI [80] improves the
node generator by adding a discriminator to identify if the
node features come from the generator or the real missing
neighbor. This generative adversarial network (GAN)-based
generator [81] improves the quality of generated node features.
Besides, it removes nodes in the client with a breadth-first
search, instead of random selection.

DP-FedRec [82] leverages a private set intersection (PSI)
to extend the local graph and relieve the non-i.i.d. problem.
Clients i and j execute the PSI protocol to get the intersected
vertex. The client i extends the edges and vertex for the
intersected vertex within k-hop from the client j . To protect
privacy, all clients add noise to the graph data before the
local graph extension step, which is referred to as applying
differential privacy (DP).

FedPerGNN [83] and FedGNN [84] amend their local
graphs in a more safe way. They introduce a third-party server,
which only deals with graph expansion for the clients. The
original central server first generates and sends a public key
to clients for local node IDs and embedding encryption. Then,
clients upload the ciphertexts to the third-party server. The
third-party server locates the interacted nodes by checking
the ciphertexts of their IDs and distributes encrypted node
embedding to the clients to amend their local graphs for the
following local GNN training.

Some works [85], [86] pay more attention to communication
efficiency with simple graph amending methods. In [85], the
client sends a request via the central server to the corre-
sponding clients to get the missing embedding by neighbor
sampling. It proposes an algorithm that can find an optimal
sampling interval that achieves the best tradeoff between
convergence and running time. FedGCN [86] allows clients
to collect one- or two-hop averaged neighbor node features
from other clients once at the beginning of the training to
amend missing information. Then, each client trains the local
GNN model, and the server collects local model weights
for FedAvg-based FL aggregation. FedGCN also provides a
theoretical analysis of the tradeoff between the convergence
rate and communication cost under different data distributions.

b) KG completion problem: KGs from different domains
may contain the same entities. How to improve KG embedding
quality with the help of other KGs without leaking privacy is

a challenge. The key part is to transform information between
aligned embedding across clients.

FKGE [87] designs a revised GAN-based module [88] to
translate the aligned entity and relation embedding between
paired KGs. If the paired KGs are improved, the refined
embedding is broadcast to other KGs. FedE [89] designs an
overall entity table in the server to record all unique entities
from clients. The server applies FedAvg FL aggregation on
the aligned entity embedding in the table. Once finished,
the updated entity embeddings are distributed to clients. The
clients update entity embedding based on KG embedding
methods with a self-training contrastive learning loss.

To tackle the privacy leakage issue in FedE, clients in
FedR [90] upload relation embeddings instead of entity
embeddings since the server cannot infer entity embedding
given only relation embedding. To further protect the privacy,
secure aggregation [91] is applied to the relation embedding
before being uploaded to the server, and the relation table in
the server is obtained via private set union (PSU).

FedEC [92] improves FedE with the non-i.i.d. problem by
adding a regularization term in the loss. It can increase the
similarity between global and local entity embedding in the
current round and decrease the similarity between local entity
embedding in the current and the last round.

B. Vertical FedGNNs

Clients in vertical FedGNNs hold nodes with completely
overlapping node IDs but different feature spaces. Clients
train a global GNN model with features from different clients
with the help of FL. According to the completeness of graph
data, vertical FedGNNs have two subscenarios: 1) clients with
incomplete graph data and 2) clients with complete graph data.

1) Clients With Incomplete Graph Data: This setting
assumes that graph topology, node features, and node labels
are owned by different clients. That is, clients do not have
complete graph data (neither node features nor graph topology)
[see Fig. 3(c)]. For example, in an FL system with three
clients, one client owns the node features, one owns the graph
topology, and one owns the node labels, or one gets node
features, and the other owns the rest if there are only two
clients in the system. How to make these clients work together
while protecting their privacy is a key challenge.

a) Graph data privacy protection problem: Instead of
sharing the original adjacency matrix of the graph, SGNN [93]
calculates a dynamic time warping (DTW) algorithm-based
similarity matrix to convey the same graph topology but
conceal the original structure. To protect the privacy of the
node features, one-hot encoding is applied to map the original
features to a matrix. Then, the information from different
clients is uploaded to the server to train a global GNN model
for a node classification task. FedSGC [94] assumes that there
are only two clients without a central server. Graph topology
and node features are owned by two clients. The client who
has the node labels is the active party to create encryption key
pairs. Clients encrypt the sensitive information using additively
HE (AHE) before sending them to the other party for the GNN
model parameter updating.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II
SUMMARY OF ADVANTAGES AND DISADVANTAGES FOR DIFFERENT SCENARIOS OF FL-ASSISTED GNNs

2) Clients With Complete Graph Data: In this setting,
it assumes that clients contain complete graph data, including
graph topology and node features. However, their node feature
types are different [refer to Fig. 3(d)]. Integrating the node
features in a safe way is the key strategy to train the GNN
model with such distributed graph data.

a) Node embedding integrating problem: Clients in
VFGNN [95] integrate DP encrypted node features in the
semihonest server via mean, concatenation, or regression
calculations as FL aggregation. Once training is complete,
the client who owns node labels receives the updated node
embedding from the server to perform node prediction. FML-
ST [96] assumes that there is a global pattern graph shared
by all clients with the same nodes. They fuse the local ST
pattern and global ST pattern using a multilayer perceptron
(MLP) with concatenated patterns as inputs. Clients leverage
the global pattern to personalize their local pattern graph
by evaluating the difference between global and local pat-
tern graphs. FedVGCN [97] transfers homomorphic encrypted
intermediate results between two clients to complete node
feature space with the semihonest server creating encryption
key pairs and doing FL aggregation. Graph-Fraudster [98]
studies the adversarial attacks on the local raw data and
node embedding. It proves that the DP mechanism and top-k
mechanism are two possible defenses to the attacks.

C. Summary

In this section, we have discussed FL-assisted GNN
approaches that leverage FL to assist GNN model training in a
distributed setting. We now summarize the techniques in terms
of their advantages and disadvantages, as listed in Table II.

Horizontal FedGNNs deal with clients having graph data
with different node IDs. They can train GNN models with
isolated graph data and relieve the data heterogeneity prob-
lem across clients. However, they generally overlook the
heterogeneity in the graph topology. Biased graphs may
cause unfairness in FedGNNs. Besides, the privacy protection

capability achieved by existing works is generally low. For
example, few works consider encrypting the model weights
before sending them to the server, making current works lack
robustness against malicious attacks. In addition, communi-
cation costs are high when the local graph model size or
the number of clients is large. Finally, existing approaches
only work with limited basic GNN models. More advanced
GNN models need to be included. Approaches capable of
dealing with more difficult situations where edges between
clients are missing can recover some missing information to
improve performance. However, if the amended local graph is
imprecise, the model performance may deteriorate. Besides,
some approaches require clients to share some node features
with the neighbors to repair local graphs, which can cause
privacy leakage.

Vertical FedGNNs deal with clients having graph data of
different node features but the same node IDs. They can help
clients train a GNN model with isolated graph data. However,
for the incomplete graph data setting, existing approaches only
support two clients (pairwise FL) or three clients, which is
insufficient. Besides, these systems are vulnerable to malicious
attacks, and they only work with limited basic GNN models.

V. AUXILIARY TAXONOMY

In this section, we discuss the proposed auxiliary taxonomy
for FedGNNs. According to the level of heterogeneity of local
data and models across FL clients, existing works can be
divided into three categories (with increasing heterogeneity
levels): 1) clients with the same nodes; 2) clients with different
nodes but the same network structure; and 3) clients with dif-
ferent network structures. To implement FL aggregation under
different situations, diverse strategies have been proposed with
various intermediate information exchanged among FL clients
(see Table III).

A. FL Clients With the Same Nodes

In this category, it is assumed that clients have nodes with
the same set of nodes but different types of node features.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LIU et al.: FedGNNs: OVERVIEW, TECHNIQUES, AND CHALLENGES 11

TABLE III
SUMMARY OF FEDGNN LITERATURE IN THE 2-D TAXONOMY

Vertical FedGNNs and part of horizontal FedGNNs with
overlapping nodes (e.g., KG completion tasks) belong to this
category. In this situation, FL clients usually upload the node
feature embeddings to the FL server, where different feature
embeddings of the same node are aggregated for knowledge
transfer among clients. Besides, model weights can also be
shared among clients to jointly train a global FL model in
vertical FedGNNs.

B. FL Clients With Different Nodes but the Same Network
Structure

In this category, it is assumed that FL clients have
different nodes but with the same network architecture.
Most GNN-assisted FL works and horizontal FedGNN
works belong to this category as their clients contain
different samples. Since the node IDs are different under this
setting, node feature embedding cannot be uploaded to the
server for FL aggregation. According to GNN aggregation
X(l+1)

= AX(l)W, the size of the trainable matrix W is not
related to the graph topology but related to the dimensions
of node features and output features. Thus, the embedding
of the entire graph [43], [96], trainable model weights, and
gradients in the GNN model can be uploaded to the server
for FL aggregation. Whether to upload model weights or
gradients depends on the preference between training speed
and model performance [22]. Uploading model weights to
the server allows each client to perform multiple epochs of
local training. However, its local model update direction may
deviate from the global FL model. Uploading gradients allows
the client to closely follow the latest global optimization
direction in every updating step. However, the frequent
communication between clients and the server may increase
communication costs during the training process.

C. FL Clients With Different Network Structures

Works in this category deal with a more difficult situation
where network architectures in clients are different. GNN

model weights from different clients share the same dimen-
sions as long as the node feature dimensions are the same
across clients. However, in this setting, the node features
from different clients are heterogeneous, resulting in various
local network architectures across clients. Currently, only
Litany et al. [31] provide a solution. It converts the local
network architecture into a graph with each layer as a vertex
and the layer type as the node features. Once the number
of node features is consistent across clients, it becomes the
second category in Section V-B. A GNN model is trained with
the graph, and GNN model weights are uploaded to the server
for FL aggregation. However, the current solution is limited to
a few predefined network architectures, which is not efficient
and flexible.

VI. IMPLEMENTATION

Performance benchmarking is an essential factor for the
long-term improvement of the FedGNN research field. In this
section, we review and discuss the applications with bench-
marks, evaluation metrics, experiment evaluation designs, and
platforms in the existing FedGNN literature.

A. Applications

There are several benchmark datasets developed for GNNs,
including citation network datasets, social network datasets,
and chemical property datasets. FedGNNs test their algorithms
on these datasets [17], [24], [33], [33], [38], [47], [49], [51],
[53], [54], [55], [55], [56], [56], [61], [62], [63], [64], [71],
[74], [78], [79], [94], [95], [97], [98], [99] with various
data partition methods. FedGNNs also explore many GNN
applications in a decentralized setting with privacy concerns.
FedGNNs have been applied in KG completion [87], [89],
[90], [92] and recommendation system tasks [73], [83], [84]
with privacy protection by considering one KG or one user as
one client. Besides, income prediction [27], malicious trans-
action detection [44], [45], network anomaly detection [68],

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

and Internet-of-Things (IoT) threat detection [57] are also
potential applications for FedGNNs. FedGNNs have been
used in FL applications with graph-structured information.
In computer vision applications, FedGNNs can improve the
image classification performance [30], [32], [37] by making
close clients have similar local models. It can also help
the image classification training with heterogeneous network
structures across clients by converting the local neural network
structure into a graph [31]. Healthcare applications [60], [65],
[80] can be addressed with FedGNNs when the data contain
graph structures or there are relationships among patients. For
example, brain imaging data can be parceled into different
regions of interest (ROIs) with each ROI as one node in the
graph. The population graph between patients can improve
disease prediction with the help of FedGNNs [60]. Trans-
portation can leverage FedGNNs in many situations, such as
traffic flow prediction [29], [43], [77], [96], object position
prediction [66], or indoor localization [23], [100]. Sensors or
surveillance cameras can be modeled as clients connected by a
map graph. Alternatively, the objects detected by the cameras
can form a local graph.

B. Evaluation Metrics

The usage of evaluation metrics depends on the learning
task. In general, there are two types of tasks: 1) classification
task and 2) regression task. For classification tasks (e.g.,
node classification, graph classification, and image classifica-
tion), accuracy, precision, recall, F1-score, and area under the
receiver operating characteristic curve (ROC-AUC) have been
adopted as evaluation metrics. For regression tasks (e.g., node
embedding regression, graph embedding regression, graph
learning, and link prediction), the following evaluation metrics
are adopted.

1) For node and graph embedding regression tasks (e.g.,
recommendation system [73] and traffic flow predic-
tion [77]), mean absolute error (MAE), mean square
error (mse), root mse (RMSE), and mean absolute
percentage error (MAPE) are adopted as the evaluation
metrics [55], [66], [73], [82] to measure the distance
between predicted values and the ground truth.

2) For graph learning tasks (e.g., brain connectivity esti-
mation [60]), apart from the MAE, the graph learning
performance can be measured by the Frobenius distance
between the estimated graphs and the ground truth.

3) For link prediction tasks (e.g., KG completion [87],
[89], [90], [92]), the link prediction performance can be
evaluated with mean rank, mean reciprocal rank (MRR),
and the proportion of correct entities in top N ranked
entities (Hits@N).

FedGNN applications, the corresponding datasets, research
problems, and evaluation metrics are summarized in Table IV.

C. FedGNN Experimental Evaluation Design

Since there are few real cross-silo graph datasets, the major-
ity of works simulate the distributed setting by performing
partitioning on the public datasets summarized in Table IV.
Here, we discuss the experimental evaluation design in the

FedGNN literature according to the different scenarios in the
main taxonomy.

In the GNN-assisted FL setting, an interclient graph exists
between clients with various local data types, such as graph
data, image data, or temporal data. For the local data partition,
clients with i.i.d. and non-i.i.d. data distribution have different
data partition methods. Besides, there are several ways to
build an interclient graph. These methods are summarized as
follows.

To construct FL clients with the i.i.d. data distribution, sam-
ples are distributed evenly and randomly to clients. A sample
can be an image [31], [32] (e.g., an image from MNIST),
a time-sequence data from a sensor [23], or a protein graph
from some biomedicine dataset [42]. A sample can also be
a node in the graph [17] with a different partition method:
each client selects some seed nodes randomly and expands the
graph with a breadth-first search on the original entire graph
to get their local data.

To construct FL clients with non-i.i.d. data distributions,
there are five main approaches.

1) Imbalanced Partition: Different clients have different
numbers of samples. It can be achieved by distributing
the samples using a latent Dirichlet allocation (LDA)
[33], [38].

2) Clustering Partition: Different clients have different
clusters. It can be achieved by dividing the samples
into clusters using a clustering algorithm (e.g., k-means)
[23], [42].

3) Label Distribution Skew Partition: Different clients have
different subsets of label classes. It can be achieved by
making one client maintain data only from one class or
a subset of classes [27], [30].

4) Natural Identity Partition: Different clients have dif-
ferent characteristics. For example, in the traffic flow
dataset, one sensor is assigned to one client [29].
In human activity recognition, one person with his/her
data is considered as one client [37]. In nature language
processing (NLP) datasets, documents from one domain
are assigned to one client [24].

5) Synthetic Data Generation: Generate synthetic data
points for clients following Gaussian distribution with
different variances [34], [35], [40].

The interclient graphs can be obtained as follows.

1) Natural Graph: Some datasets contain a natural graph
topology that can be used as an interclient graph directly.
For example, in traffic flow data, the road map can be
used as an interclient graph with each sensor as one
client [29]. In the NLP dataset application, the syntactic
structure can also work as the graph between different
domains as clients [24]. The wireless communication
network can also serve as it between routers [26].

2) Simulated Graph Based on Clients’ Similarities: Some
datasets have no natural graph topology. The interclient
graph can be calculated based on the clients’ informa-
tion, such as clients’ embedding [23], [27], [27], [28],
[30], [37].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LIU et al.: FedGNNs: OVERVIEW, TECHNIQUES, AND CHALLENGES 13

TABLE IV
SUMMARY OF APPLICATIONS, DATASETS, AND CORRESPONDING EVALUATION METRICS IN FEDGNNs

3) Synthetic Graph: A fully connected graph [17],
[42], ring connected graph [32], or just a ran-
domly generated graph can be used as the interclient
graph [34], [35], [40].

In the FL-assisted GNN setting, clients maintain a set of
graphs or a set of nodes (one graph). We summarize the
main data partition methods for both horizontal and vertical
FedGNNs in the following.

In the horizontal FedGNN scenario, clients have differ-
ent node IDs. If each client has a set of graphs, the data
partition methods for i.i.d. and non-i.i.d. are very similar to
the GNN-assisted FL setting. For i.i.d., graph samples are
distributed to clients evenly and randomly [60], [61], [66],
[67], [70], [80]. For non-i.i.d., imbalanced partition [55], label
distribution skew partition (graphs of one class are assigned
to one client) [65] and natural identity partition (one dataset
is assigned to one client) [56] are applied.

If each client has only one graph, it is more complex
for both settings (i.i.d. and non-i.i.d.) to partition one entire
graph into several subgraphs. For i.i.d., two methods are
applied: 1) nonoverlapping partition by randomly dividing the
entire graph into several subgraphs [77] and 2) overlapping
partition by randomly assigning a portion of nodes or edges
to one client [51], [71], [78], [89], [90], [92]. For non-i.i.d.,
strategies used in GNN-assisted FL settings still work albeit
with some changes. For clustering partition, nodes, instead
of general samples, are grouped using various methods, such
as k-means, METIS [101], and Louvain [102] for graph data.
These groups are then assigned to clients [54], [62], [72], [74],
[79], [99]. For label distribution skew partition, each client
selects most nodes from major classes and few nodes from
minor classes [47], [48], [85]. For natural identity partition,
more identity units are applied to partition the data. In the
recommendation application, one user with its interactions is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

considered as one client [73], [83], [84]. In the KG completion
application, one KG is considered as one client [87]. In some
citation network applications, papers published in the same
year are assigned to one client [59], [85].

In the vertical FedGNN scenario, clients have the same
node IDs. For the incomplete graph setting, if there are three
clients, then each of them gets one of the node features, graph
topology, and node labels of graph data [93]. If there are only
two clients, then one will get one component of graph data
and the other gets the rest [94]. For the complete graph setting,
node features are divided evenly to clients with the graph
topology retained by all clients [95], [96], [97], [98].

D. FedGNN Platforms

Currently, there are two FedGNN platforms. Fed-
GraphNN [19] is an open-source platform supporting three
GNN models and two FL aggregation methods. It has
collected 36 graph datasets and partitioned them into dis-
tributed silos, forming a promising FedGNN benchmarking
tool. FederatedScope-GNN [103] consists of an event-driven
FedGNN framework with two components: 1) ModelZoo
and 2) DataZoo. ModelZoo provides comprehensive GNN
models (e.g., GCN [104], GAT [41], and GraphSage [4])
used in the clients and some of the existing FedGNN models
(e.g., FedSage+, FedGNN, and GCFL+). DataZoo provides a
collection of splitting strategies for distributing a given graph
dataset among FL clients.

VII. PROMISING FUTURE RESEARCH DIRECTIONS

As an emerging field, FedGNN research is starting to gain
traction. Nevertheless, for this technology to effectively deal
with challenges in real-world applications, many problems
remain to be addressed. Here, we highlight seven of them,
which hold promising opportunities.

1) Robust FedGNNs Against Malicious Attacks: By sharing
node embeddings, graph topology, and model param-
eters, FedGNNs have large attack surfaces. Although
some works attempt to address this issue by leveraging
DP [77], [84], [87] or cryptographic methods [34], [47],
[71], [95], they are designed to guard against only
semihonest attackers. Additional research is needed to
explore how FedGNNs can be made more robust in the
face of malicious privacy attacks.

2) Explainable FedGNNs to Improve Interpretability:
Works on the explainability of GNNs [105] and FL [106]
are starting to emerge. FedGNN involves complex
model structures and training processes. Thus, achieving
explainability [107] under this setting is even more
challenging. The incorporation of explainability into
FedGNNs needs to jointly consider the needs for inter-
pretability by the stakeholders involved while balancing
the goals of preserving privacy and training models
efficiently.

3) Efficient FedGNNs for Large-Scale Graph Data: Exist-
ing FedGNNs are generally studied with small-scale
distributed datasets. Thus, communication efficiency has
not yet been adequately considered. However, in order

to scale FedGNNs up to large-scale graph data (e.g.,
KGs), communication overhead can be an important
bottleneck since the clients often adopt multilayer GNN
models with a large number of model parameters to be
transmitted.

4) Fair FedGNNs for Clients With Biased Graphs: Graph
data consist of the graph topology and data. Existing
FedGNNs mainly focus on the non-i.i.d. problem in
data distribution while ignoring the non-i.i.d. problem in
graph topology distribution across FL clients. Different
clients may own graphs with different properties. For
example, some clients have graphs from one class with
high node degrees, while others have graphs with low
node degrees [108], [109]. Such biased graphs can affect
outcomes or even cause harm in the FedGNNs [110].
Thus, achieving fairness in this setting is important.

5) Continual FedGNN Training for New Clients: In GNN-
assisted FL, clients are treated as nodes in the graph.
As new clients join, a well-trained global model can be
applied to them directly. However, in the decentralized
setting, since there is no server to coordinate the global
training, all clients need to retrain their local models
when new clients join. Thus, to improve the training
efficiency, it is necessary to develop continual learning
algorithms for decentralized FedGNNs.

6) Comprehensive FedGNN Frameworks Supporting
Diverse GNN Models: Various GNN algorithms have
been rapidly emerging in recent years. However, existing
FedGNNs only employ a limited set of GNN models
(e.g., GCN, GAT, and GraphSage). Thus, to make
full use of GNNs to assist FedGNNs in solving more
difficult problems, comprehensive FedGNN frameworks
with more GNN algorithms or strategies are required.

7) Realistic Cross-Silo Graph Datasets for Benchmarking:
Existing FedGNNs are mostly evaluated with graph
data partitioned artificially. Nevertheless, the long-term
development of this field still requires realistic and
large-scale federated graph datasets to be made available
to support experimental evaluations under settings close
to practical applications. Real-world graph datasets, such
as healthcare datasets, recommender systems, and KGs,
can be useful starting points.

VIII. CONCLUSION

In this survey, we provide an overview of FedGNNs.
We propose a 2-D taxonomy of FedGNNs, categorizing them
based on system settings and client heterogeneity. In addi-
tion, we highlight key challenges, possible strategies, and the
advantages and disadvantages associated with each category.
Furthermore, we discuss commonly employed applications,
accompanied by relevant public datasets, evaluation metrics,
and experimental designs in the FedGNN literature. We also
outline open problems and directions that would inspire further
research in FedGNNs. We believe that the discussions in this
survey based on our proposed FedGNN taxonomy will provide
a useful roadmap for aspiring researchers and practitioners
seeking to enter the field of FedGNNs and contribute to its
long-term development.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LIU et al.: FedGNNs: OVERVIEW, TECHNIQUES, AND CHALLENGES 15

REFERENCES

[1] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, Mar. 2020.

[2] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl,
“Neural message passing for quantum chemistry,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2017, pp. 1263–1272.

[3] Y. Ding, N. Robinson, C. Tong, Q. Zeng, and C. Guan, “LGGNet:
Learning from local-global-graph representations for brain–computer
interface,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–14, 2023.

[4] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. 31st Conf. Neural Inf. Process. Syst.
(NeurIPS), 2017, pp. 1024–1034.

[5] Y. Chen, L. Wu, and M. J. Zaki, “Toward subgraph-guided knowl-
edge graph question generation with graph neural networks,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Apr. 24, 2023, doi:
10.1109/TNNLS.2023.3264519.

[6] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J.
Leskovec, “Graph convolutional neural networks for web-scale rec-
ommender systems,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2018, pp. 974–983.

[7] Z. Cui, K. Henrickson, R. Ke, and Y. Wang, “Traffic graph convolutional
recurrent neural network: A deep learning framework for network-
scale traffic learning and forecasting,” IEEE Trans. Intell. Transp. Syst.,
vol. 21, no. 11, pp. 4883–4894, Nov. 2020.

[8] GDPR. (2018). General Data Protection Regulation. Accessed:
Dec. 8, 2021. [Online]. Available: https://gdpr-info.eu/

[9] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process. Mag.,
vol. 37, no. 3, pp. 50–60, May 2020.

[10] P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends Mach. Learn., vol. 14, nos. 1–2, pp. 1–210, Jun. 2021.

[11] A. Li, L. Zhang, J. Tan, Y. Qin, J. Wang, and X.-Y. Li, “Sample-level
data selection for federated learning,” in Proc. IEEE INFOCOM Conf.
Comput. Commun., May 2021, pp. 1–10.

[12] A. Li et al., “Efficient federated-learning model debugging,” in Proc.
IEEE 37th Int. Conf. Data Eng. (ICDE), Apr. 2021, pp. 372–383.

[13] R. Goebel, H. Yu, B. Faltings, L. Fan, and Z. Xiong, Trustworthy
Federated Learning, vol. 13448. Cham, Switzerland: Springer, 2023.

[14] P. Kairouz et al., “Advances and open problems in federated learning,”
Found. Trends Mach. Learn., vol. 14, nos. 1–2, pp. 1–210, 2021.

[15] A. Li, L. Zhang, J. Wang, F. Han, and X.-Y. Li, “Privacy-preserving
efficient federated-learning model debugging,” IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 10, pp. 2291–2303, Oct. 2022.

[16] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized
federated learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34,
pp. 1–17, 2022.

[17] S. Scardapane, I. Spinelli, and P. D. Lorenzo, “Distributed training of
graph convolutional networks,” IEEE Trans. Signal Inf. Process. over
Netw., vol. 7, pp. 87–100, 2021.

[18] H. Zhang, T. Shen, F. Wu, M. Yin, H. Yang, and C. Wu, “Federated
graph learning—A position paper,” 2021, arXiv:2105.11099.

[19] C. He et al., “FedGraphNN: A federated learning system and benchmark
for graph neural networks,” 2021, arXiv:2104.07145.

[20] X. Fu, B. Zhang, Y. Dong, C. Chen, and J. Li, “Federated graph
machine learning: A survey of concepts, techniques, and applications,”
ACM SIGKDD Explorations Newslett., vol. 24, no. 2, pp. 32–47,
Nov. 2022.

[21] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, Federated
Learning. Cham, Switzerland: Springer, 2019.

[22] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Statist., 2017, pp. 1273–1282.

[23] Z. Wu, X. Wu, and Y. Long, “Multi-level federated graph learning and
self-attention based personalized Wi-Fi indoor fingerprint localization,”
IEEE Commun. Lett., vol. 26, no. 8, pp. 1794–1798, Aug. 2022.

[24] P. Xing, S. Lu, L. Wu, and H. Yu, “BiG-fed: Bilevel optimization
enhanced graph-aided federated learning,” IEEE Trans. Big Data,
pp. 1–12, 2022.

[25] F. Chen, G. Long, Z. Wu, T. Zhou, and J. Jiang, “Personalized federated
learning with graph,” 2022, arXiv:2203.00829.

[26] B. Li, A. Swami, and S. Segarra, “Power allocation for wireless federated
learning using graph neural networks,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), May 2022, pp. 5243–5247.

[27] H. Lee, A. L. Bertozzi, J. Kovačević, and Y. Chi, “Privacy-preserving
federated multi-task linear regression: A one-shot linear mixing approach
inspired by graph regularization,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), 2022, pp. 5947–5951.

[28] Y. He, D. Yan, and F. Chen, “Hierarchical federated learning with
local model embedding,” Eng. Appl. Artif. Intell., vol. 123, Aug. 2023,
Art. no. 106148.

[29] C. Meng, S. Rambhatla, and Y. Liu, “Cross-node federated graph
neural network for spatio-temporal data modeling,” in Proc. 27th
ACM SIGKDD Conf. Knowl. Discovery Data Mining, Aug. 2021,
pp. 1202–1211.

[30] D. Caldarola, M. Mancini, F. Galasso, M. Ciccone, E. Rodola, and
B. Caputo, “Cluster-driven graph federated learning over multiple
domains,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops (CVPRW), Jun. 2021, pp. 2749–2758.

[31] O. Litany, H. Maron, D. Acuna, J. Kautz, G. Chechik, and S. Fidler,
“Federated learning with heterogeneous architectures using graph Hyper-
Networks,” 2022, arXiv:2201.08459.

[32] A. Lalitha, O. Cihan Kilinc, T. Javidi, and F. Koushanfar, “Peer-to-peer
federated learning on graphs,” 2019, arXiv:1901.11173.

[33] Y. Pei et al., “Decentralized federated graph neural networks,” in Proc.
Int. Workshop Federated Transf. Learn. Data Sparsity Confidentiality
Conjunct (IJCAI), 2021.

[34] E. Rizk and A. H. Sayed, “A graph federated architecture with privacy
preserving learning,” in Proc. IEEE 22nd Int. Workshop Signal Process.
Adv. Wireless Commun. (SPAWC), 2021, pp. 131–135.

[35] S. Lu, Y. Zhang, and Y. Wang, “Decentralized federated learning for
electronic health records,” in Proc. 54th Annu. Conf. Inf. Sci. Syst., 2020,
pp. 1–5.

[36] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and
P. Vandergheynst, “Graph signal processing: Overview, challenges, and
applications,” Proc. IEEE, vol. 106, no. 5, pp. 808–828, May 2018.

[37] C. T. Dinh, T. T. Vu, N. H. Tran, M. N. Dao, and H. Zhang, “A new
look and convergence rate of federated multitask learning with Laplacian
regularization,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–11, 2022.

[38] C. He, E. Ceyani, K. Balasubramanian, M. Annavaram, and S. Aves-
timehr, “SpreadGNN: Serverless multi-task federated learning for graph
neural networks,” 2021, arXiv:2106.02743.

[39] H. Wang, X. Zhao, and W. Lin, “Heterogeneous federated learning on
a graph,” 2022, arXiv:2209.08737.

[40] V. C. Gogineni, S. Werner, Y. Huang, and A. Kuh, “Decentralized graph
federated multitask learning for streaming data,” in Proc. 56th Annu.
Conf. Inf. Sci. Syst. (CISS), Mar. 2022, pp. 101–106.

[41] P. Veličković et al., “Graph attention networks,” in Proc. Int. Conf.
Learn. Represent. (ICLR’18), 2018, pp. 1–11.

[42] Y. Tao, Y. Li, and Z. Wu, “SemiGraphFL: Semi-supervised graph
federated learning for graph classification,” in Proc. Int. Conf. Par-
allel Problem Solving Nature. Cham, Switzerland: Springer, 2022,
pp. 474–487.

[43] X. Yuan et al., “FedSTN: Graph representation driven federated learning
for edge computing enabled urban traffic flow prediction,” IEEE Trans.
Intell. Transp. Syst., vol. 24, pp. 1–11, 2022.

[44] H. Du, M. Shen, R. Sun, J. Jia, L. Zhu, and Y. Zhai, “Malicious
transaction identification in digital currency via federated graph deep
learning,” in Proc. IEEE Conf. Comput. Commun. Workshops (INFO-
COM WKSHPS), May 2022, pp. 1–6.

[45] H. Peng, Y. Zhang, H. Sun, X. Bai, Y. Li, and S. Wang, “Domain-
aware federated social bot detection with multi-relational graph neural
networks,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2022,
pp. 1–8.

[46] J. Guo, S. Li, and Y. Zhang, “An information theoretic perspective for
heterogeneous subgraph federated learning,” in Proc. Database Syst.
Adv. Appl., 28th Int. Conf. DASFAA, Tianjin, China. Cham, Switzerland:
Springer, Apr. 2023, pp. 745–760.

[47] L. Zheng, J. Zhou, C. Chen, B. Wu, L. Wang, and B. Zhang, “ASFGNN:
Automated separated-federated graph neural network,” Peer-to-Peer
Netw. Appl., vol. 14, no. 3, pp. 1692–1704, May 2021.

[48] T. Zhang, C. Mai, Y. Chang, C. Chen, L. Shu, and Z. Zheng, “FedEgo:
Privacy-preserving personalized federated graph learning with ego-
graphs,” ACM Trans. Knowl. Discovery Data, vol. 18, no. 2, pp. 1–27,
Feb. 2024.

[49] Y. Lin, C. Chen, C. Chen, and L. Wang, “Improving federated rela-
tional data modeling via basis alignment and weight penalty,” 2020,
arXiv:2011.11369.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1109/TNNLS.2023.3264519


16 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[50] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V.
Smith, “Federated optimization in heterogeneous networks,” in Proc.
Mach. Learn. Syst., vol. 2, 2020, pp. 429–450.

[51] B. Wang, A. Li, M. Pang, H. Li, and Y. Chen, “GraphFL: A federated
learning framework for semi-supervised node classification on graphs,”
in Proc. IEEE Int. Conf. Data Mining (ICDM), Nov. 2022, pp. 498–507.

[52] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 1126–1135.

[53] S. Wang, J. Xie, M. Lu, and N. N. Xiong, “FedGraph-KD: An effective
federated graph learning scheme based on knowledge distillation,” in
Proc. IEEE IEEE 9th Intl Conf. Big Data Secur. Cloud (BigDataSecu-
rity) Intl Conf. High Perform. Smart Comput., (HPSC) IEEE Intl Conf.
Intell. Data Secur. (IDS), May 2023, pp. 130–134.

[54] W. Huang, G. Wan, M. Ye, and B. Du, “Federated graph semantic
and structural learning,” in Proc. Int. Joint Conf. Artif. Intell., 2023,
pp. 139–143.

[55] W. Zhu, J. Luo, and A. White, “Federated learning of molecular
properties with graph neural networks in a heterogeneous setting,” 2021,
arXiv:2109.07258.

[56] H. Xie, J. Ma, L. Xiong, and C. Yang, “Federated graph classification
over non-IID graphs,” Proc. 35th Conf. Neural Inf. Process. Syst.
(NeurIPS’21), 2021, pp. 18839–18852.

[57] G. Wang and Q. Yan, “Federated threat detection for smart home
IoT rules,” in Proc. Int. Workshop Federated Learn. Distrib. Data
Mining, 2023.

[58] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph
neural networks?” 2018, arXiv:1810.00826.

[59] Y. Liu, D. Han, J. Zhang, H. Zhu, M. Xu, and W. Chen, “Federated
multi-task graph learning,” ACM Trans. Intell. Syst. Technol., vol. 13,
no. 5, pp. 1–27, Oct. 2022.

[60] H. C. Bayram and I. Rekik, “A federated multigraph integration approach
for connectional brain template learning,” in Proc. Int. Workshop Multi-
modal Learn. Clin. Decis. Support, Cham, Switzerland: Springer, 2021,
pp. 36–47.

[61] K. Hu, J. Wu, Y. Li, M. Lu, L. Weng, and M. Xia, “FedGCN: Federated
learning-based graph convolutional networks for non-Euclidean spatial
data,” Mathematics, vol. 10, no. 6, p. 1000, Mar. 2022.

[62] J. Baek, W. Jeong, J. Jin, J. Yoon, and S. J. Hwang, “Personalized
subgraph federated learning,” in Proc. Int. Conf. Mach. Learn., 2023,
pp. 1396–1415.

[63] H. Xie, L. Xiong, and C. Yang, “Federated node classification over
graphs with latent link-type heterogeneity,” in Proc. ACM Web Conf.,
Apr. 2023, pp. 556–566.

[64] Y. Tan, Y. Liu, G. Long, J. Jiang, Q. Lu, and C. Zhang, “Federated
learning on non-IID graphs via structural knowledge sharing,” in Proc.
AAAI Conf. Artif. Intell., vol. 37, no. 8, 2023, pp. 9953–9961.

[65] G. Lou, Y. Liu, T. Zhang, and X. Zheng, “STFL: A temporal-
spatial federated learning framework for graph neural networks,” 2021,
arXiv:2111.06750.

[66] M. Jiang, T. Jung, R. Karl, and T. Zhao, “Federated dynamic graph
neural networks with secure aggregation for video-based distributed
surveillance,” ACM Trans. Intell. Syst. Technol., vol. 13, no. 4, pp. 1–23,
Aug. 2022.

[67] Z. Gürler and I. Rekik, “Federated brain graph evolution prediction
using decentralized connectivity datasets with temporally-varying acqui-
sitions,” IEEE Trans. Med. Imag., vol. 42, no. 7, pp. 2022–2031,
Jul. 2022.

[68] H. Zhang, K. Zeng, and S. Lin, “Federated graph neural network for
fast anomaly detection in controller area networks,” IEEE Trans. Inf.
Forensics Security, vol. 18, pp. 1566–1579, 2023.

[69] C. Wang, B. Chen, G. Li, and H. Wang, “Automated graph neural
network search under federated learning framework,” IEEE Trans.
Knowl. Data Eng., vol. 35, pp. 1–13, 2023.

[70] M. Y. Balık, A. Rekik, and I. Rekik, “Investigating the predictive repro-
ducibility of federated graph neural networks using medical datasets,”
in Proc. Int. Workshop Predictive Intell. Med. Cham, Switzerland:
Springer, 2022, pp. 160–171.

[71] F. Chen, P. Li, T. Miyazaki, and C. Wu, “FedGraph: Federated graph
learning with intelligent sampling,” IEEE Trans. Parallel Distrib. Syst.,
vol. 33, no. 8, pp. 1775–1786, Aug. 2022.

[72] C. Zhang, S. Zhang, S. Yu, and J. James, “Graph-based traffic forecasting
via communication-efficient federated learning,” in Proc. IEEE Wireless
Commun. Netw. Conf. (WCNC), 2022, pp. 2041–2046.

[73] Z. Liu, L. Yang, Z. Fan, H. Peng, and P. S. Yu, “Federated social
recommendation with graph neural network,” ACM Trans. Intell. Syst.
Technol., vol. 13, no. 4, pp. 1–24, Aug. 2022.

[74] C. Zhang, W. Wang, J. J. Yu, and S. Yu, “Extracting privacy-preserving
subgraphs in federated graph learning using information bottleneck,” in
Proc. ACM Asia Conf. Comput. Commun. Secur., 2023, pp. 109–121.

[75] Y. Djenouri, T. P. Michalak, and J. C.-W. Lin, “Federated deep learning
for smart city edge-based applications,” Future Gener. Comput. Syst.,
vol. 147, pp. 350–359, Oct. 2023.

[76] Y. Liu, H. Li, X. Qian, and M. Hao, “ESA-FedGNN: Efficient secure
aggregation for federated graph neural networks,” Peer-to-Peer Netw.
Appl., vol. 16, no. 2, pp. 1257–1269, Mar. 2023.

[77] C. Zhang, S. Zhang, J. J. Q. Yu, and S. Yu, “FASTGNN: A topological
information protected federated learning approach for traffic speed
forecasting,” IEEE Trans. Ind. Informat., vol. 17, no. 12, pp. 8464–8474,
Dec. 2021.

[78] C. Chen, Z. Xu, W. Hu, Z. Zheng, and J. Zhang, “FedGL: Feder-
ated graph learning framework with global self-supervision,” Inf. Sci.,
vol. 657, Feb. 2024, Art. no. 119976.

[79] K. Zhang, C. Yang, X. Li, L. Sun, and S. M. Yiu, “Subgraph federated
learning with missing neighbor generation,” in Proc. 35th Conf. Neural
Inf. Process. Syst. (NeurIPS’21), 2021.

[80] L. Peng, N. Wang, N. Dvornek, X. Zhu, and X. Li, “FedNI: Federated
graph learning with network inpainting for population-based disease
prediction,” IEEE Trans. Med. Imag., vol. 42, no. 7, pp. 2032–2043,
Jul. 2022.

[81] I. Goodfellow, “Generative adversarial networks,” Commun. ACM,
vol. 63, no. 11, pp. 139–144, 2020.

[82] Y. Qiu, C. Huang, J. Wang, Z. Huang, and J. Xiao, “A privacy-preserving
subgraph-level federated graph neural network via differential privacy,”
in Proc. Knowl. Sci., Eng. Manage., 2022, pp. 6671–6682.

[83] C. Wu, F. Wu, L. Lyu, T. Qi, Y. Huang, and X. Xie, “A federated
graph neural network framework for privacy-preserving personalization,”
Nature Commun., vol. 13, no. 1, pp. 1–10, Jun. 2022.

[84] C. Wu, F. Wu, Y. Cao, Y. Huang, and X. Xie, “FedGNN: Federated
graph neural network for privacy-preserving recommendation,” in Proc.
FL-ICML, 2021, pp. 165–177.

[85] B. Du and C. Wu, “Federated graph learning with periodic neighbour
sampling,” in Proc. IEEE/ACM 30th Int. Symp. Quality Service (IWQoS),
Jun. 2022, pp. 1–10.

[86] Y. Yao, W. Jin, S. Ravi, and C. Joe-Wong, “FedGCN: Convergence-
communication tradeoffs in federated training of graph convolutional
networks,” 2022, arXiv:2201.12433.

[87] H. Peng, H. Li, Y. Song, V. Zheng, and J. Li, “Differentially private
federated knowledge graphs embedding,” in Proc. 30th ACM Int. Conf.
Inf. Knowl. Manag., Oct. 2021, pp. 1416–1425.

[88] J. Jordon, J. Yoon, and M. Van Der Schaar, “PATE-GAN: Generating
synthetic data with differential privacy guarantees,” in Proc. Int. Conf.
Learn. Represent., 2018, pp. 1–21.

[89] M. Chen, W. Zhang, Z. Yuan, Y. Jia, and H. Chen, “FedE: Embedding
knowledge graphs in federated setting,” in Proc. 10th Int. Joint Conf.
Knowl. Graphs, Dec. 2021, pp. 80–88.

[90] K. Zhang et al., “Efficient federated learning on knowledge
graphs via privacy-preserving relation embedding aggregation,” 2022,
arXiv:2203.09553.

[91] K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2017, pp. 1175–1191.

[92] M. Chen, W. Zhang, Z. Yuan, Y. Jia, and H. Chen, “Federated knowledge
graph completion via embedding-contrastive learning,” Knowledge-
Based Syst., vol. 252, Sep. 2022, Art. no. 109459.

[93] G. Mei, Z. Guo, S. Liu, and L. Pan, “SGNN: A graph neural network
based federated learning approach by hiding structure,” in Proc. IEEE
Int. Conf. Big Data (Big Data), Dec. 2019, pp. 2560–2568.

[94] T.-H. Cheung, W. Dai, and S. Li, “Fedsgc: Federated simple graph
convolution for node classification,” in Proc. Int. Workshop Federated
Transf. Learn. Data Sparsity Confidentiality Conjuncation IJCAI, 2021.

[95] C. Chen et al., “Vertically federated graph neural network for privacy-
preserving node classification,” in Proc. Int. Joint Conf. Artif. Intell. Org.
(IJCAI’22), 2022, pp. 1959–1965.

[96] W. Li and S. Wang, “Federated meta-learning for spatial–temporal
prediction,” Neural Comput. Appl., vol. 34, no. 13, pp. 10355–10374,
Jul. 2022.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LIU et al.: FedGNNs: OVERVIEW, TECHNIQUES, AND CHALLENGES 17

[97] X. Ni, X. Xu, L. Lyu, C. Meng, and W. Wang, “A vertical fed-
erated learning framework for graph convolutional network,” 2021,
arXiv:2106.11593.

[98] J. Chen, G. Huang, H. Zheng, S. Yu, W. Jiang, and C. Cui, “Graph-
fraudster: Adversarial attacks on graph neural network-based vertical
federated learning,” IEEE Trans. Computat. Social Syst., vol. 10, no. 2,
pp. 492–506, Apr. 2023.

[99] C. Wang, B. Chen, G. Li, and H. Wang, “FL-AGCNS: Federated learning
framework for automatic graph convolutional network search,” 2021,
arXiv:2104.04141.

[100] S. Chen, Q. Zhu, Z. Li, and Y. Long, “Deep neural network based
on feature fusion for indoor wireless localization,” in Proc. Int. Conf.
Microw. Millim. Wave Technol. (ICMMT), May 2018, pp. 1–3.

[101] G. Karypis and V. Kumar, “Multilevelk-way partitioning scheme
for irregular graphs,” J. Parallel Distrib. Comput., vol. 48, no. 1,
pp. 96–129, 1998.

[102] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” J. Stat. Mechanics: Theory
Exp., vol. 2008, no. 10, Oct. 2008, Art. no. P10008.

[103] Z. Wang et al., “FederatedScope-GNN: Towards a unified, comprehen-
sive and efficient package for federated graph learning,” in Proc. 28th
ACM SIGKDD Conf. Knowl. Discovery Data Mining (KDD’22), 2022,
pp. 4110–4120.

[104] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[105] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural
networks: A taxonomic survey,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 45, no. 5, pp. 5782–5799, May 2023.

[106] Q. Li et al., “A survey on federated learning systems: Vision, hype and
reality for data privacy and protection,” IEEE Trans. Knowl. Data Eng.,
vol. 35, no. 4, pp. 3347–3366, Apr. 2023.

[107] J. Zhang and H. Yu, “EID: Facilitating explainable AI design discus-
sions in team-based settings,” Int. J. Crowd Sci., vol. 7, no. 2, pp. 47–54,
Jun. 2023.

[108] Z. Chen, T. Xiao, and K. Kuang, “BA-GNN: On learning bias-aware
graph neural network,” in Proc. IEEE 38th Int. Conf. Data Eng. (ICDE),
May 2022, pp. 3012–3024.

[109] Y. Dong, S. Wang, Y. Wang, T. Derr, and J. Li, “On structural expla-
nation of bias in graph neural networks,” in Proc. 28th ACM SIGKDD
Conf. Knowl. Discovery Data Mining, Aug. 2022, pp. 316–326.

[110] J. Zhang, Y. Shu, and H. Yu, “Fairness in design: A framework for
facilitating ethical artificial intelligence designs,” Int. J. Crowd Sci.,
vol. 7, no. 1, pp. 32–39, Mar. 2023.

Rui Liu received the B.Eng. degree from the
Harbin Institute of Technology (HIT), Harbin,
China, in 2014, and the Ph.D. degree from the
Singapore University of Technology and Design
(SUTD), Singapore, in 2019.

She is currently a Research Fellow with the
School of Computer Science and Engineering
(SCSE), Nanyang Technological University (NTU),
Singapore. Her research focuses on graph neural
networks, federated learning, and brain–computer
interfaces.

Pengwei Xing received the bachelor’s degree in
computer science from Henan University, Kaifeng,
China, in 2016, and the master’s degree in computer
science from Tianjin University, Tianjin, China,
in 2019. He is currently pursuing the Ph.D. degree
with the School of Computer Science and Engi-
neering (SCSE), Nanyang Technological University
(NTU), Singapore.

His research mainly focuses on federated learning
and graph learning.

Zichao Deng received the B.Eng. degree from
Nanyang Technological University (NTU),
Singapore, in 2018, where he is currently pursuing
the Ph.D. degree with the School of Computer
Science and Engineering (SCSE).

His research focuses on federated graph learning.

Anran Li received the B.S. degree from the Anhui
University of Science and Technology, Huainan,
China, in 2016, and the Ph.D. degree from the
University of Science and Technology of China,
Hefei, China, in 2021.

She is currently a Research Fellow with the School
of Computer Science and Engineering, Nanyang
Technological University, Singapore. Her research
interests mainly focus on data quality assessment,
federated learning, and mobile computing.

Cuntai Guan (Fellow, IEEE) is currently a Presi-
dent’s Chair Professor with the School of Computer
Science and Engineering, the Director of the Artifi-
cial Intelligence Research Institute, the Director of
the Centre for Brain-Computing Research, and the
Co-Director of the S-Lab for Advanced Intelligence,
Nanyang Technological University, Singapore. His
research interests include brain–computer interfaces,
machine learning, neural signal and image process-
ing, neural and cognitive rehabilitation, and artificial
intelligence.

Dr. Guan is a fellow of the American Institute for Medical and Biological
Engineering (AIMBE), National Academy of Inventors (NAI), USA, and the
Academy of Engineering Singapore. He was a recipient of the Annual BCI
Research Award, the IES Prestigious Engineering Achievement Award, the
Achiever of the Year (Research) Award, the King Salman International Award
for Disability Research, and the Finalist of the President Technology Award.

Han Yu (Senior Member, IEEE) received the Ph.D.
degree from the School of Computer Science and
Engineering, Nanyang Technological University
(NTU), Singapore, in 2014.

He held the prestigious Lee Kuan Yew
Post-Doctoral Fellowship (LKY PDF)
from 2015 to 2018. He is currently a Nanyang
Assistant Professor (NAP) with the School of
Computer Science and Engineering (SCSE), NTU.
He has published over 200 research papers and
book chapters in leading international conferences

and journals. He is a coauthor of the book Federated Learning, the first
monograph on the topic of federated learning. His research focuses on
federated learning and algorithmic fairness.

Dr. Yu is a Distinguished Member of China Computer Federation (CCF)
and a Senior Member of Association for the Advancement of Artificial
Intelligence (AAAI). His research works have won multiple awards from
conferences and journals.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 


