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Situation-Based Neuromorphic Memory in Spiking
Neuron-Astrocyte Network

Susanna Gordleeva , Yuliya A. Tsybina , Mikhail I. Krivonosov , Ivan Y. Tyukin,
Victor B. Kazantsev, Alexey Zaikin, and Alexander N. Gorban

Abstract— Mammalian brains operate in very special
surroundings: to survive they have to react quickly and effectively
to the pool of stimuli patterns previously recognized as danger.
Many learning tasks often encountered by living organisms
involve a specific set-up centered around a relatively small set
of patterns presented in a particular environment. For example,
at a party, people recognize friends immediately, without deep
analysis, just by seeing a fragment of their clothes. This set-
up with reduced “ontology” is referred to as a “situation.”
Situations are usually local in space and time. In this work,
we propose that neuron-astrocyte networks provide a network
topology that is effectively adapted to accommodate situation-
based memory. In order to illustrate this, we numerically
simulate and analyze a well-established model of a neuron-
astrocyte network, which is subjected to stimuli conforming to
the situation-driven environment. Three pools of stimuli patterns
are considered: external patterns, patterns from the situation
associative pool regularly presented to the network and learned
by the network, and patterns already learned and remembered
by astrocytes. Patterns from the external world are added to and
removed from the associative pool. Then, we show that astrocytes
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are structurally necessary for an effective function in such a
learning and testing set-up. To demonstrate this we present a
novel neuromorphic computational model for short-term memory
implemented by a two-net spiking neural-astrocytic network.
Our results show that such a system tested on synthesized data
with selective astrocyte-induced modulation of neuronal activity
provides an enhancement of retrieval quality in comparison to
standard spiking neural networks trained via Hebbian plasticity
only. We argue that the proposed set-up may offer a new
way to analyze, model, and understand neuromorphic artificial
intelligence systems.

Index Terms— Astrocyte, neuromorphic computing, neuron-
astrocyte interaction, spiking neural network, working memory.

I. INTRODUCTION

THE way the test data is organized, and validated, as well
as the method used to train learning systems can critically

affect the result. Especially, if the quality of learning is directly
linked to survival. Mammalian brains are trained to survive,
which is why they enable an animal to react quickly to patterns
previously associated with dangerous situations. Hence, it is
important to understand how such quick responses emerge
in highly uncertain and complicated real-world operational
conditions.

The cornerstone assumption of the classical statistical
learning frameworks [1], [2], [3] is that a learner or
a learning machine operates in an environment that can
be adequately modeled by some unknown probability
distribution. The learner then gathers relevant information
about the environment by accessing independent samples
from this unknown distribution. The problem, however,
is that these apparently sensible classical assumptions have
major consequences affecting the applicability of the theory.
The independence assumption may be violated when the
learner’s training data inherits strong temporal correlations
(e.g., subsequent frames taken from video footage) and which
have been ignored at the data-processing stage. The absence
of any knowledge about the fixed probability distribution,
which is particularly difficult to alleviate in high-dimensional
settings, enforces conservative worst case distribution-agnostic
generalization bounds [1], [2], [3] and can lead to a stream of
foundational paradoxes highlighting the potential impossibility
to compute stable and accurate learning machines [4].1 Finally,

1See also Theorem 7.1 from [1] showing that an arbitrarily small
perturbation added to an activation function has the capacity to make the
Vapnik-Chervonenkis dimension of a neuron with this modified activation
function infinite and hence rendering all classical generalization bounds
using Vapnik-Chervonenkis dimension useless for neural networks with such
neurons.
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Fig. 1. Diagram of a situation-based model of data. In this model, all data
are partitioned into three pools of patterns. The largest circle of patterns
(light blue) is the external world that contains a huge number of patterns.
A situation-based pool of patterns is much smaller and includes only the
patterns that we meet regularly within this situation (purple). Data patterns
in the situation-based pool can be removed and replaced with patterns from
the external world. Patterns from this pool are used for learning much more
often than a random pattern from the external world pool, hence many of
them are already learned, stored, and can be easily and quickly recognized
by association with patterns stored in the system (dark blue lila).

the fact that the distribution is fixed and unknown has
an impact on the possibility of handling concept drifts—
a widespread phenomenon in real-life practical applications
[5]. We suggest that the above difficulties can potentially be
overcome via the introduction of a new mode of learning
which we will refer to as situation-based learning.

How many people did you meet yesterday? 5? or 10?
Was it difficult to recognize them? Psychologists say that
our day-to-day activities impact our behavior. Recognition of
patterns around us occurs in, what is called in psychology,
a situation. Obviously, biological creatures that require less
time to recognize a situation are getting an evolutionary
advantage, they can escape a predator faster, get a higher
chance of catching prey, or when humans are concerned, earn
more money. We all live in a situation-ridden world, and our
life is based on the recognition of patterns in the current
situation. But how is this recognition organized? We do not
normally spend much time recognizing a friend, a fraction of
a pattern is usually enough. Such quick processing is provided
by a very special structure of pattern learning. We learn
patterns from a situation-based pool, and, since the number of
patterns in the situation is limited, our pool usually is much
smaller than in the whole external world. Such a situation-
based structure of learning is visualized in Fig. 1. There are
three pools of patterns. Patterns from the huge external pool
get into a situation-based pool, and then they become available
for learning much more often than the ones arriving directly
from the external pool. Hence, all patterns from a situation
pool, except for the newcomers, are learned and stored in the
memory—the internal pool. Recognition is, hence, structure-
associated, and patterns from the structure pool are recognized
much easier and quicker patterns than from an external pool.

Obviously, such a situation-based structure has two main
advantages: it is quick and requires less energy, which is very
important in the biological world. Creatures adapted to such
structure-oriented patterns of learning are more competitive
and have an evolutionary advantage. This new data model is

complementary to other important characteristics of learning
and memory explored in the previous work, including high-
dimensionality of the space of stimuli [6], [7] and properties
of data distributions conforming to the task of learning from
few examples [8], [9]. The importance of the problem was
mentioned by [10], [11]. The notion of the situation captures
the spatiotemporal localization of the task and the subjectivity
of learners, i.e., the relevant contexts. This enables a learner
to partition the complexity of the environment into the union
of much simpler “sparse” tasks. A related notion of attention
in deep learning has already been proven successful in the
area of natural language processing giving rise to the popular
transformer models [12]. Here, we formalize the notion at the
conceptual level regardless of its particular implementation in
a learning machine.

All this leads to the key question of whether there
exists a structural organization of neural circuitry that is
particularly suited for structure-based learning and that
possesses characteristics of information processing in these
circuits that are necessary to support this learning. In this
article, we propose relevant neural circuits that are particularly
suited to facilitate situation-based learning. These circuits or
networks combine conventional neurons and astrocytes.

The structural, metabolic, and homeostatic functions of
astrocytes are well established [13]. Recently it has been
revealed that astrocytes contribute to neural information
processing via bidirectional exchange of regulatory signals
with the neuronal elements. Astrocytes respond to neural
activity by intracellular calcium elevations [14]. Calcium
pulses in astrocytes induce the release of chemical transmitters
(termed “gliotransmitters”) which then regulate the synaptic
gain of near and distant tripartite synapses at diverse timescales
[15]. The data show that astrocytes have an impact on local
synaptic plasticity, neuronal network oscillations, memory, and
behavior (for recent reviews see [16], [17], [18]). Despite
that the role played by astrocytes is not yet fully understood,
these recent findings support the hypothesis that cognitive
processing and memory are not the result of neuronal activity
only but of the coordinated activity of both astrocytes and
neurons [19]. Consequently, the most interesting research
question is: whether the presence of astrocytes, which provide
multiplex topology of a recognition network with different
time and spatial scales of communication, facilitates the
ability of the network to work with structure-associated
learning? In this article, we investigate this question and
show numerically that neuron-astrocyte networks indeed play
a key role in situation-based recognition. This function is also
closely linked to the idea of local corrections in large neural
networks working with big data [7].

II. RELATED WORK

Although astrocytic involvement in the information pro-
cessing in the brain has been widely shown experimentally
[16], there is a lack of computational studies of neural
circuits focusing on astrocyte signaling in the context of
learning and memory. The importance of computational
modeling for developing a better understanding of nature and
findings answers to open questions is difficult to overestimate.
Examples of works where such modeling brought new
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knowledge are numerous. In the area of astrocyte modeling,
a recent study [20] successfully demonstrated the self-
repairing capability of a distributed spiking neuron-astrocyte
network (SNAN) in a robotic obstacle avoidance application.
Nazari et al. [21] studied the information transmission
between the cortical spiking neural network and the cortical
neuron–astrocyte network. They showed how the cortical
spiking network managed to improve its pattern recognition
performance without the need for retraining by receiving
additional information from a neuron-astrocyte network.
In addition, scholars proposed several digital implementations
of astrocytic dynamics [22] and neuron-astrocyte interaction
[23], [24]. In our previous works, we investigated how
the astrocyte-induced dynamic coordination in the neuronal
ensembles [25], [26] induces the generation of integrated
information sets [27], [28], [29]. Moreover, we showed that
a biologically inspired SNAN can implement the multiitem
short-term memory [30], [31]. We revealed that several
information patterns can be maintained in memory at the
time scale of calcium elevation in astrocytes, while the
readout by the neurons due to the astrocyte-induced activity-
dependent short-term synaptic plasticity resulted in local
spatial synchronization in neuronal ensembles. Following our
approach, a recent modeling study [32] investigated the
contribution of astrocytic modulation of synaptic transmission
to the formation of different modes of short-term working
memory encoding. Another computational model predicts that
the duration and stability of working memory representations
can be altered by astrocytic signaling [33]. We further showed
that the SNAN can reliably store not only binary but also
analogous information patterns in short-term memory [34].
However, the work in this article goes much further and
proposes a new bio-inspired two-net SNAN for more complex
learning tasks, in which SNAN is implemented for associated
learning.

III. SIGNIFICANCE

In this article, we present three key findings: 1) a novel
approach to formalizing machine learning data, namely,
the temporal organization of the data as opposed to the
widely accepted IID data sampling; 2) a novel neuromorphic
computational model for short-term memory implemented
by SNAN; and 3) a proof, through rigorous computational
experiments, that SNAN tested on synthesized data with
selective astrocyte-induced modulation of neuronal activity
may provide an enhancement of retrieval quality in comparison
to a standard SNN trained via Hebbian plasticity. The
proposed SNAN is a hybrid system, which combines the
fast-spiking neural networks pretrained by the spike-timing-
dependent plasticity (STDP) rule with the general dataset,
and a slow astrocytic network, which provides time-dependent
data buffering via calcium activity and gliatransmitter-induced
spatial-temporal coordination of neural network activity.

IV. SITUATION-BASED LEARNING IN SNAN MODEL

The concept of the proposed situation-based memory model
is schematically summarized in Fig. 2. A new biologically
motivated computational model of short-term memory is
implemented through the interaction of neural and astrocytic

networks. The model acts at multiple timescales: at a
millisecond scale of firing neurons and the second scale
of calcium dynamics in astrocytes. The neuronal network
consists of randomly sparsely connected excitatory and
inhibitory spiking neurons with plastic synapses. To train
synapses in neural networks, we used the traditional STDP
rule. Astrocytes track the neural activity and respond to
it by intracellular calcium elevations, which trigger the
release of gliotransmitters. Gliotransmitter-induced short-term
synaptic plasticity results in local spatial synchronization
in neuronal ensembles. The short-term memory realized
by such astrocytic modulation is characterized by one-
shot learning and is maintained for seconds. The astrocytic
influence on the synaptic connections during the elevation
of calcium concentration implements Hebbian-like synaptic
plasticity differentiating between specific and nonspecific
activations. Composed of two building blocks, e.g., fast-
spiking neurons and slow astrocytes, the proposed memory
architecture eventually demonstrated synergetic functionality
in loading information. The readout of this memory by
the neuronal block and storage is implemented by the
astrocytes.

SNAN Architecture: The architecture of the proposed SNAN
is shown in Fig. 3. The SNAN includes three interacting layers:
the layer of pyramidal neurons, the layer of interneurons,
and the astrocytic layer. An input signal encoded as 2-D
patterns was applied to the first layer. The first layer consists
of 6241 (79 × 79) synaptically coupled pyramidal neurons,
which are connected randomly with their connection length
determined by the exponential distribution. To maintain
the balance of excitation and inhibition during neuronal
activity, the layers of pyramidal neurons and interneurons
communicate bidirectionally. Astrocytes generating calcium
signals are connected by local gap junction diffusive couplings.
To design the interaction of the neuronal and astrocytic
layers, we followed the approach proposed in our previous
works [35], [36]. Calcium elevations occur in response to
the increased concentration of the neurotransmitter released
by pyramidal neurons when a group of them fires coherently.
In turn, gliotransmitters are released by activated astrocytes
modulating the strength of the synaptic connections in the
corresponding neuronal group. The output signal is taken from
frequencies of transient discharges of pyramidal neurons.

Detailed information concerning the models and the
description of parameters is provided in Section V.

V. MODEL DETAILS

In this section, the SNAN architecture is described in detail
together with the STDP learning rule and neuron/astrocytic
models. Specifically, we start with biological realistic models
of neuronal, astrocytic networks that capture the essence of
the biological interplay between these cells, at the same time
minimizing the computational overhead. Then, we describe the
communication between pyramidal neurons and astrocytes at
tripartite synapses.

1) Neural Network: Among the many existing biological
plausible spiking neuron models [37], [38], [39], [40],
we have chosen the simplified Izhikevich model [41]
as computationally efficient for modeling networks. The
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Fig. 2. Concept of the situation-based memory operation in the SNAN model.

dynamics of neuronal membrane potential are given by [41]

dVi

dt
= 0.04V 2

i + 5Vi −Ui + 140+ Iapp,i + Isyn,i

dUi

dt
= a(bVi −Ui ) (1)

with the auxiliary after-spike resetting

if Vi ≥ 30 mV, then

{
Vi ← c
Ui ← Ui + d

(2)

where the subscript i corresponds to the neural index, Vi is
the neuronal membrane potential in millivolts, and time t in
milliseconds. The applied current Iapp,i simulates the input
signal, Isyn,i is the synaptic current. The parameter descriptions
and their values used in this work can be found in Table S1
of the supplementary material.

The total synaptic current injected from all synapses of i th
neuron is described by [42], [43]

Isyn,i =

Ni∑
k=1

wsyn,k(Esyn − Vi )

1+ exp(−Vpre,k/ksyn)
(3)

where Ni is the total number of synapses, wsyn,k is the
weight of the kth synapse associated with neuron, Vpre is
the membrane potential of the presynaptic neuron, Esyn is the
synaptic reversal potential. Esyn = −90 mV for the inhibitory
synapse and Esyn = 0 mV for the excitatory. Parameter ksyn
denotes the slope of the synaptic activation function threshold.
We neglect the synaptic and axonal delays in the system for
simplicity.

Pyramidal neurons interact with each other (connection
type: EE) and with interneurons (EI). Interneurons communi-
cate with pyramidal neurons (IE) and are not interconnected.
The architecture of synaptic connections between neurons
is nonspecific (random) with different parameters within
excitatory and inhibitory layers, as well as between layers,
which is described further below. A detailed list of parameter
values of synaptic connection organization can be found in
Table S1 of the supplementary material. The number of

output connections per each neuron is fixed at Nout. Each
postsynaptic neuron is randomly selected in polar coordinates.
The distances between neurons r are determined by the
exponential distribution fR(r), and the angles φ are chosen
from a uniform distribution in the range [0; 2π ]

fR(r) =

{
1/λ exp(−r/λ), r ≥ 0
0, r < 0.

(4)

Considering the difference in the sizes of the layers, the
coordinates of postsynaptic neurons are calculated as follows:

EE: xpost =
⌈

xpre + r cos(φ)
⌉

ypost =
⌈

ypre + r sin(φ)
⌉

EI: xpost =
⌈

K−1
1 xpre + r cos(φ)

⌉
ypost =

⌈
K−1

2 ypre + r sin(φ)
⌉

IE: xpost =
⌈

K1xpre + r cos(φ)
⌉

ypost =
⌈

K2 ypre + r sin(φ)
⌉

(5)

where xpre and ypre denote the coordinates of the presynaptic
neuron, xpost and ypost are the coordinates of the postsynaptic
neurons, K1 = W/W1, K2 = H/H1. Coordinates are picked
repeatedly in case of duplicated connection (random selection
was a process without replacement).

In the proposed SNAN, the synaptic weights dynamically
adjust during training only for EE and IE types of synaptic
connections. The synaptic weights for EI synapses are fixed
and equal to wsynEI = 0.1. The initial weights of the synapses
between pyramidal neurons (EE) and interneuron–pyramidal
neurons (IE) are 10−4. The maximum weights are limited
to values wsynEEmax, wsynIEmax. The STDP rule updates the
synaptic weights according to the timing difference between
the pre and postsynaptic spikes and is described by

δwsynEE,k(1t) =

{
gsynEE exp(1t/τ), 1t ≤ 0
−gsynEE exp(1t/τ), 1t > 0

wsynEE,k ∈ [10−4, wsynEEmax] (6)

where δwsynEE,k(1t) is used to update the synaptic weight, 1t
is the time difference between presynaptic and postsynaptic
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spikes, gsynEE is the plasticity window height, τ control the
width of the plasticity window, and they are 20 ms in our
model. Training of synaptic connections from interneurons to
pyramidal neurons is organized so that interneurons activated
by pyramidal neurons inhibit all subnetworks of pyramidal
neurons that were not active during the presentation of the
training pattern. In such a way, the weights of IE synapses are
updated according to the following:

δwsynIE,k(1t) =

{
gsynIE exp(1t/τ)H( f ∗ − f ), 1t ≤ 0
−gsynIE exp(1t/τ), 1t > 0

wsynIE,k ∈ [10−4, wsynIEmax] (7)

where 1t is the time difference between presynaptic and
postsynaptic spikes, gsynIE is the plasticity window height,
τ control the width of the plasticity window, and they are
20 ms in our model. f and f ∗ are the actual firing rate
(i.e., a running average over 10 ms) and threshold firing rate
of the postsynaptic pyramidal neuron, respectively. H is the
Heaviside step function.

2) Astrocytic Network: The astrocytic layer consists of
676 cortical astrocytes connected with only nearest neighbors.
It has been experimentally shown that individual cortical
astrocytes contact several neuronal somatas and hundreds
of neuronal dendrites with some overlapping in the spatial
territories corresponding to different astrocytes in the cortex
[44]. Such an organization of neuron-astrocyte interaction
allows the astrocytes to integrate and coordinate a unique
volume of synaptic activity. Following experimental evidence,
each astrocyte in the SNAN bidirectionally interacts with
an ensemble of NAE = 16 pyramidal neurons with some
overlapping. Spiking neuronal activity induces the release of
neurotransmitters (glutamate) from the presynaptic terminals
into the synaptic gap. The released glutamate binds to the
metabotropic glutamate receptors (mGluRs) on the astrocyte
membrane and triggers the production of inositol 1,4,5-
trisphosphate (IP3) in astrocytes, which is followed by the
generation of a calcium pulse. The Ullah model [45] is used
to describe the dynamics of the intracellular concentrations of
IP3 and Ca2+ in astrocytes

d[Ca2+
]m

dt
= JER − Jpump + Jleak + Jin − Jout + JGca

dhm

dt
= a2

(
d2
[IP3]m + d1

[IP3]m + d3
(1− hm)− [Ca2+

]mhm

)
d[IP3]m

dt
=
[IP3]

∗
− [IP3]m

τIP3
+ JPLCδ + Jglu + JGip3 (8)

where m (m = 1, . . . , 676) is the astrocyte index.
[Ca2+

], [IP3], h are the cytosolic calcium and IP3 concentra-
tions and fraction of activated IP3 receptor on the endoplasmic
reticulum (ER) membrane, respectively. JER is Ca2+ flux from
the ER to the cytosol, Jpump is the pump flux from the cytosol
to ER, and Jleak is the leakage flux from the ER to the cytosol.
The fluxes Jin and Jout describe the exchange of calcium
with the extracellular space. JPLCδ describes the production of
IP3 by phospholipase Cδ (PLCδ), Jglu describes the glutamate-
induced IP3 production in response to neural activity. These

fluxes are expressed as follows:

JER = c1v1[Ca2+
]
3h3
[IP3]

3

(
c0/c1 − (1+ 1/c1)[Ca2+

]
)(

([IP3] + d1)([Ca2+
] + d5)

)3

Jpump =
v3[Ca2+

]
2

k2
3 + [Ca2+

]2

Jleak = c1v2
(
c0/c1 − (1+ 1/c1)[Ca2+

]
)

Jin =
v6[IP3]

2

k2
2 + [IP3]

2

Jout = k1[Ca2+
]

JPLCδ =
v4
(
[Ca2+

] + (1− α)k4
)

[Ca2+
] + k4

. (9)

Astrocytes interact with each other through gap junctions.
Gap junctions are permeable to the second messenger IP3 and
to calcium ions [46], [47]. Currents JGcam and JGip3m describe
the diffusion of Ca2+ ions and IP3 molecules via gap junctions
of the mth astrocyte and can be expressed as follows:

JGcam = dca

∑
j

([Ca2+
] j − [Ca2+

]m)

JGip3m = dip3

∑
j

([IP3] j − [IP3]m) (10)

where j , dca, and dip3 represent, respectively, the number of
astrocytes connected to the mth astrocyte and the Ca2+ and
IP3 diffusion rates. Biophysical meaning of all parameters
in (8)–(10) and their values can be found in [45] and
are summarized in Table S2 of the supplementary material
(astrocytic network parameters). Note that the timescale of the
model of calcium dynamics in astrocytes is seconds. At the
same time, the timescale of model (1), (2) is milliseconds.
To match the timescales in the combined model, we had to
appropriately rescale the values of relevant model parameters.

3) Bidirectional Neuron-Astrocyte Interaction: The amount
of neurotransmitter-glutamate that diffuses from the synaptic
cleft associated with the i th pyramidal neuron and reaches the
astrocyte is described by the following equation [25], [48]:

dG i

dt
= −αgluG i + kglu H(Vi − 30 mV) (11)

where αglu is the glutamate clearance constant, kglu is the
release efficiency, H is the Heaviside step function, and Vi
is the membrane potential of i th pyramidal neuron. Glutamate
contacts the mGluRs on the astrocyte membrane and initiates
the production of IP3. The flux Jglu represents the glutamate-
induced IP3 production and is defined as follows:

Jglu =

{
Aglu, if t0 < t ≤ t0 + tglu

0, otherwise
(12)

here t0 represents the moment when the total level of glutamate
concentration in all synapses associated with this astrocyte
reaches a threshold(

1
NAE

∑
i∈NAE

[G i ≥ G thr]

)
≥ Fact (13)

where the parameter G thr = 0.2 is the threshold for glutamate,
[x] is the Iverson bracket. Fact = 0.75 denotes the fraction
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Fig. 3. SNAN topology. The SNAN includes three interacting layers: the layer
of pyramidal neurons, the layer of interneurons, and the astrocytic layer. The
first layer (79 × 79) consists of synaptically coupled pyramidal neurons. The
pyramidal neurons bidirectionally communicate with the interneurons from
the second layer (40 × 40). The ratio of pyramidal neurons to interneurons
in the model is chosen in accordance with the experimental observations and
computational model of the cortex [54], where 80% of the CSN neurons are
pyramidal neurons and 20% are interneurons. Astrocytes are connected by a
local gap junction diffusive couplings and represent a 2-D square lattice with
a dimension 26 × 26. We focus on the bidirectional interaction between the
first neuronal and astrocytic layers. Each astrocyte is interconnected with an
ensemble of Na = 16 pyramidal neurons with dimensions 4 × 4 (red lines)
overlapping in one row and one column. An input signal encoded as a 2-D
pattern is applied to the first layer.

of synchronously spiking neurons of the neuronal ensemble
corresponding to the astrocyte.

Experimental studies have shown that astrocytes are able to
facilitate synaptic transmission due to the action of glutamate
released from astrocytes. More precisely, we consider that
the astrocytic glutamate induces potentiation of the excitatory
synapse via NMDAR-dependent postsynaptic slow inward
currents (SICs) generation [49], [50] and mGluR-dependent
heterosynaptic facilitation of presynaptic glutamate release
[51], [52], [53]. In the SNAN, we propose that Ca2+ elevation
in astrocytes results in glutamate release, which can modulate
the synaptic strength of all synapses corresponding to the
morphological territory of a given astrocyte. For simplicity,
astrocyte-induced enhancement of synaptic weight of the
affected excitatory synapses, wsynEE, is described as follows:

wsynEE = wsynEE (1+ νCa), wsynEE ∈ [0, wsynEEmax]

νCa = ν∗Ca H
(
[Ca2+

]m − [Ca2+
]thr
)

(14)

where wsynEE is the weight of the excitatory synapse trained
according to Hebb’s rule, ν∗Ca = 2 represents the strength

of the astrocytic modulation of the synaptic weight, H(x)

is the Heaviside function, [Ca2+
]thr denotes the threshold

Ca2+ concentration in the astrocyte m. The feedback from
the astrocytes to the neurons is activated when the astrocytic
Ca2+ concentration is larger than [Ca2+

]thr, and the fraction
of synchronously spiking neurons of neuronal ensemble
corresponding to the astrocyte Fastro during the period of
τsyn = 5 ms. The duration of astrocyte-induced enhancement
of synaptic transmission is fixed and equal to τastro = 20 ms.

Model equations are integrated using the Runge–Kutta
fourth-order method with a fixed time step, 1t =

0.1 ms. A detailed listing of model parameters and
values can be found in Tables S1 (neural network
model) and S2 (astrocytic network and neuron-astrocytic
interaction) of the supplementary material. The code is avail-
able at https://github.com/altergot/Neuron-astrocyte-network-
Situation-associated-memory.

VI. MEMORY PERFORMANCE METRICS

For a detailed description of the algorithm used to measure
the memory performance of the proposed SNAN, please refer
to the supplementary materials.

Training and Testing Protocol: To train and test the
proposed SNAN, we use the alpha-digits dataset (https://
github.com/altergot/Neuron-astrocyte-network-Situation-asso-
ciated-memory/tree/main/images) which consists of P binary
images of digits and capital letters of size W × H pixels.
The input patterns are fed to the layer of pyramidal neurons.
Each image pixel corresponds to a neuron, which receives
a rectangular excitatory pulse, Iapp,i , with length tstim and
amplitude Astim for training (with ttest and Atest in case of
testing). On average there are 950 neurons under stimulation
(15% of the network) in a training image. Training samples
were presented to highly overlapped neuronal populations (an
average for 40 training samples overlapping was 51%). The
output signal was read out according to the firing rates of
pyramidal neurons. Table S3 in the supplementary material
provides a list of the training and testing protocol parameters
and their corresponding values.

1) SNN Pretraining: First, we pretrained the synaptic
connections only in the spiking neuronal network consisting
of pyramidal neurons and interneurons without taking into
account the influence of astrocytes. During pretraining, each
of the P patterns was presented to the neuronal network ten
times in random order. After the pretraining was completed,
the network weights were fixed. To test the training quality,
we calculated the correlation of recalled patterns with the ideal
samples according to the procedure described in Section VI.
In the cued recall, we applied a shorter input with lower
amplitude (ttest and Atest) to the network. These inputs were
spatially distorted by high-level random noise matching the
training samples.

2) Situation-Based Learning in SNAN: To implement the
situation-based learning in the proposed SNAN, we use
the following protocol. After the SNN pretraining, we turn
on the bidirectional interaction between the pyramidal neuron
layer and the astrocytic layer. To let the astrocytic network
generate the first calcium pattern, we apply the initial pool
of patterns to SNAN. This pool consists of seven randomly
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Fig. 4. Training and testing protocol. For training and testing of the proposed SNAN, we use the alpha-digits dataset consisting of P binary images of
digits and capital letters. The input patterns are fed to the layer of pyramidal neurons. First, we pretrain the spiking neuronal network consisting of pyramidal
neurons and interneurons without considering the influence of astrocytes. During pretraining, each P pattern is presented to the neuronal network ten times
in random order (green). After the pretraining is completed, the synaptic weights are fixed. To implement the situation-based learning in the proposed SNAN,
we use the following protocol. After the SNN pretraining, we turn on the bidirectional interaction between pyramidal neurons and astrocytic layers. To let the
astrocytic network generate the first calcium pattern, we apply the initial pool of patterns to SNAN. This pool consists of seven randomly selected patterns
(pink) from the general dataset used in the SNN pretraining. Each pattern is presented ten times with the addition of a random 5% “salt and pepper” noise.
After a break (approximately 650 ms) necessary for the formation of calcium elevations in the pattern-specific astrocytes (examples of astrocytic Ca2+ signals
are shown in colors corresponding to the patterns), we start the ongoing training-testing process of the SNAN in real-time. This situation-based learning
process can be conventionally divided into a sequence of cycles, which follow each other continuously. Every test cycle starts with the training of the SNAN
on one new pattern (e.g., pattern “A,” gray), which was absent in the initial pool and was randomly chosen from the general dataset. After that, we test the
memorization of all patterns from the initial pool—“Cycle 1.” We present the SNAN with test patterns that have been spatially distorted by high-level noise.
To identify the memory performance, we analyze the quality of the recalled patterns. In the next cycle, “Cycle 2,” one pattern from the initial pool (pattern
“C”) is replaced by a new pattern that has been learned in the previous cycle (pattern “A”), which models a situation-based environment. Thus, after N cycles
all patterns from the initial pool are substituted by new patterns from the general pretraining dataset. This procedure can be performed endlessly allowing the
system to work with all patterns from the general dataset in situation-based mode.

selected patterns from the general dataset used in the SNN
pretraining. Each pattern was presented ten times.

Noise is an essential part of both sensory input [55] and
internal neuronal dynamics and may contribute to information
processing in neural systems as well as to learning and
memory [56]. Noise can play the role of a regularizer
in training deep learning neural networks too [57]. Recent
work demonstrated that external noise in SNN-based learning
systems could help to maintain and recover memorized
patterns [58]. Given the ubiquity and relevance of noise,
we corrupted the input training patterns by a random 5%
“salt and pepper” noise. After a break (approximately 650 ms)
needed for the formation of calcium impulses in pattern-
associated astrocytes, we started the ongoing training-testing
process of the SNAN in real-time. This situation-based
learning process can be conventionally divided into a sequence
of cycles, which follow each other continuously.

Every test cycle starts with training of the SNAN on one
new pattern which was absent in the initial pool and was
randomly chosen from the general dataset. After that, we test
the storage of all patterns from the initial pool in memory.
Throughout the article, we use the term ‘memory’ to refer to
the ability of pattern recall in the presence of perturbations.
We present the SNAN with the seven test patterns that match
the patterns from the initial pool but have shorter lengths,
lower amplitude (ttest and Atest), and which are spatially
distorted by high level (20%) random noise. To identify the
memory performance, we analyze the quality of the recalled
patterns. In the next cycle, one pattern from the initial pool is
replaced by a new pattern that has been learned in the previous
cycle. Thus, after seven cycles all patterns from the initial pool
are substituted by new patterns from the general pretraining
dataset. This procedure can be performed endlessly allowing
the system to work with all patterns from the general dataset
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Fig. 5. Pretrained SNN’s memory performance. The correlations between
SNN recalls and the ideal target samples for different dataset sizes are marked
in red. The maximum correlations between SNN recalls and nontarget samples
are marked in blue. The maximum correlation between target and nontarget
samples are marked by green. Average means over all test patterns ± standard
deviation are shown for (a) 20% and (b) 30% noise levels in test images. The
dotted line indicates test patterns correlation.

in a situation-based mode. Fig. 4 shows the time scheme of
the training and testing protocol.

VII. RESULTS

A. SNN Memory Performance
First, we determine the size of the general dataset that can be

loaded in memory of the SNN and used for implementation
of the situation-based learning in the proposed SNAN. For
this, we pretrain the SNN on the dataset of different sizes and
test the quality of memory maintenance of the SNN in cued
recall. Information retrieval is organized by the application of
a cue sample representing one pattern from the memory set
distorted by “salt and pepper” noise. The dependencies of the
correlation between the SNN cued recalls and the ideal target
samples (averaged over all test patterns ± standard deviation)
on the dataset size are shown in Fig. 5 by red curves. Two cases
were considered for test images distorted by 20% [Fig. 5(a)]
and 30% [Fig. 5(b)] noise levels. The maximum correlations
between SNN recall and nontarget samples averaged over all
test patterns and the maximum correlation between the target
and nontarget samples are presented by blue and green curves
in Fig. 5, respectively. According to the results obtained,
the considered SNN can learn up to 40 patterns. In further

Fig. 6. Example of SNAN training on the patterns from the initial pool
(Fig. 4). (a), (d), and (g) First, second, and seventh training patterns from the
initial pool, respectively. (b), (e), and (h) Responses of the pyramidal neuronal
layer to the patterns. The values of the membrane potentials are shown.
(c), (f), and (i) Intracellular Ca2+ concentrations in the astrocytic layer.

analysis, we used dataset sizes of 20 and 40 patterns for
comparison.

B. SNAN Situation-Based Learning Performance
1) Astrocytic Contribution to the SNAN Memory Per-

formance: To assess the contribution of astrocytes in
information processing and memory formation in neuron-
astrocyte networks, the pretrained SNN was bidirectionally
connected to the astrocytic layer. To start the process of
the SNAN situation-based learning, we load the initial pool
of seven patterns to the system by applying the inputs
[Fig. 6(a), (d), and (g)] to the pyramidal neuronal
layer. The activity of pattern-specific neuronal subnetworks
[Fig. 6(b), (e), and (h)] induces the generation of calcium
signals in corresponding astrocytes. Due to the fact that
calcium dynamics in astrocytes has slow scale, the overlapped
spatial calcium patterns in astrocytic layer for different
samples coexist for several seconds [Fig. 6(c), (f), and (i)].

Then, we ran the ongoing process of situation-based
learning according to the approach described in Section VI-2
and shown in Fig. 4. Briefly, in each of the ten cycles,
we loaded a new pattern from pretraining dataset to the SNAN
and tested the patterns memorized in the previous cycles.
A constant number of patterns in the cycle was maintained
by deleting one randomly selected pattern during each cycle.
Test patterns were applied to the pyramidal neurons with 20%
level noise, and the SNANs cued recalls in the values of
the neuronal firing rate were read out. Examples of input
test images from several cycles and the systems retrievals are
shown in Fig. 7.

To estimate the astrocytic impact on memory formation
in the SNAN, we calculated the dependencies of recall
correlation with samples on the noise level. First, the test
was run with astrocytic modulation of synaptic transmission
in the SNN and then without it (Fig. 8). The test involved
20 and 40 patterns from the pretrained dataset. The differences
in correlation between the recalled pattern and noisy input
clearly show that astrocytes steadily improve the quality of the
system retrieval up to 10% for high noise levels (red curve
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Fig. 7. Example of the SNAN test patterns from the general pretrained dataset (Fig. 4). Three testing cycles are shown. (Left) Testing images with 20%
“salt-and-pepper” noise. (Right) Cued recalls in the pyramidal neuronal layer. The averaged firing rate on the test time interval for each neuron is shown.

Fig. 8. Astrocyte-induced enhancement of the memory performance in the
proposed SNAN. (a) and (b) Correlations between SNAN recalls and the ideal
samples dependent on noise level in testing patterns with astrocytic modulation
of synaptic transmission in neural networks (red curves) and without it (blue
curves). (c) and (d) Difference between correlations of systems recalls and
test patterns. (a) and (c) and (b) and (d) correspond to dataset sizes of 20 and
40 patterns, respectively. The dotted line indicates test patterns correlation.

in comparison with blue curve). The reason for such recall
enhancement is that a short presentation of the cue to the
neural network evokes the additional astrocytic-induced spike
in the synaptic strength between stimulus-specific neurons,
which results in a local spatial synchronization in the whole
stimulus-specific neuronal population.

2) Contribution of the SNN Pretraining to the SNAN
Memory Performance: Next, we evaluate the contribution of
neural network learning to the SNAN memory performance
according to synaptic weights adjustment via the STDP rule.
For this, we compare the memory performance of the three
SNAN types: 1) with synaptic connections trained according
to the STDP rule; 2) with randomly mixed synaptic weights
after the SNN pretraining, and 3) with fixed synaptic weights
without the SNN pretraining. Fig. 9(a) shows the changes
in the correlation of the SNANs cued retrievals relative to
the input noise patterns for these cases with and without
astrocytic influence on neural activity. The best levels of

Fig. 9. Difference between correlations of the SNANs recalls and test
patterns. The memory performance was shown for three SNAN types with and
without astrocytic influence: 1) with synaptic connections trained according
to the STDP rule; 2) with randomly mixed synaptic weights after the
SNN pretraining; and 3) with fixed synaptic weights without the SNN
pretraining. (a) wsynIEmax = 0.05, wsynEEmax = 0.05. (b) Strong connections
from interneurons to pyramidal neurons wsynIEmax = 0.15, wsynEEmax = 0.05.
(c) Strong connections inside the pyramidal neurons layer wsynIEmax = 0.05,
wsynEEmax = 0.07.

recall correlations were demonstrated by the proposed SNAN
trained by the STDP rule with astrocytic modulation of
synaptic transmission, followed by the SNAN with mixed
synaptic weights and astrocytic modulation, and then the
pretrained SNN without astrocytes. The worst results were
shown by networks without astrocytic modulation of synaptic
transmission and without training of synaptic connections.
Interestingly, astrocyte-induced enhancement of synaptic
transmission in the sample-specific neuronal subnetworks can
provide good quality retrieval in the system even for neural
networks with mixed weights of synaptic connections [blue
line in Fig. 9(a)].

3) Effect of the Synaptic Connectivity Strength on the SNAN
Memory Performance: Next, we studied the influence of
synaptic connectivity architecture in the neural layers of the
SNAN on the correlation of the system recalls. We specifically
focused on the weight of synaptic connections between layers
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Fig. 10. (a) Example of the dataset used for evaluation of the impact of
the samples overlapping on the SNAN memory performance. The figure
shows the case for samples of size 17 × 17 pixels with overlapping in
7 pixels which corresponds to overlapping in 41.18% between the neighboring
patterns. (b) Corresponding calcium activity in an astrocytic layer.

and inside the pyramidal neuronal layer. Higher inhibition of
the system [Fig. 9(b)] due to the increase of the maximum
synaptic weights of the connection from interneurons layer
to pyramidal neurons, wsynIEmax, induces the SNN memory
performance decline (red dashed line), but does not affect
the SNAN memory performance (red line). This can be
explained by the fact that samples in training were applied
to highly overlapped neuronal populations. Such subnetworks
of interneurons corresponding to several patterns provide
strong inhibition of the signal propagation in a sample-
specific population of pyramidal neurons and prevent correct
recall. However, this can be compensated by the stimuli-
specific astrocyte-induced enhancement of excitatory synaptic
transmission. On the contrary, increasing the maximum
excitatory synaptic strengths in the pyramidal neuronal layer,
wsynEEmax, results in astrocyte-induced overactivation of the
SNAN and a decrease in the recall quality (Fig. 9(c) red and
green lines).

4) Capacity of the Situation-Based Memory in the SNAN:
The situation-based memory capacity in the proposed SNAN
is determined by the duration of Ca2+ signals in astrocytes.
Duration of astrocytic Ca2+ elevations is determined by the
intrinsic mechanisms of the IP3-evoked calcium release from
the ER in astrocytes, which is described by the biophysical
model [45] used in this study. Brief application of the
cue samples during testing results in prolongation of Ca2+

elevations in astrocytes and, thus, in the increased storage
time of patterns in the memory of the SNAN. On average, the
Ca2+ signals duration in astrocytes is 3.8 s, which can support
the situation-based learning during nine cycles on 15 different
patterns.

5) Impact of the Overlapping Level in Samples on the SNAN
Memory Performance: The pretrained spiking neural network
can retrieve the correct samples from test images distorted
with 20% noise level with an average correlation level of
96%. This, however, applies only to nonoverlapping patterns
without additional effect of astrocytic modulation, since even
a small sample overlapping results in chimeras generation in
the solely neuronal network model. To characterize the impact
of the overlapping level in training samples on the SNAN
memory performance, we use rectangles of different sizes
displaced at the fixed number of pixels relative to the neighbor
as information patterns [Fig. 10(a)]. In this case, in contrast to
the used alpha-digit dataset, the level of overlap between the
neighboring patterns can be precisely specified.

Fig. 11. Impact of the overlapping level in samples on the SNAN memory
performance. The dependencies of correlation level of the SNANs cued recalls
and samples for different levels of sample overlapping are shown for SNAN
with astrocytic modulation of synaptic transmission and without it for (a) 20%
and (b) 30% noise level. Blue and red dotted lines show a correlation of system
recalls with the most similar nontarget samples. Black dotted lines indicate
test patterns correlation.

After the SNN pretraining on 40 patterns with fixed overlap-
ping, we use the situation-based training and testing protocol
for the SNAN described above with little modifications. To be
sure that the sample overlapping level inside one cycle is
constant between all patterns, we apply samples to the SNAN
sequentially (not in random order as before). The example
of corresponding calcium activity in an astrocytic layer is
shown in Fig. 10(b). The dependencies of correlation level
of the SNANs cued recalls on different overlapping levels
of samples are shown in Fig. 11 for SNAN with astrocytic
modulation of synaptic transmission and without it. Results
show that including the astrocytic modulation of synaptic
transmission into a spiking neural network with connections
trained according to the Hebbian plasticity leads to a robust
improvement of the system retrieval performance for almost
all levels of sample overlapping, excluding the highest levels
(>80%). It is important to note that the contribution of
astrocytes is especially significant for a high noise value in
cue samples [comparing Fig. 11(a) with (b)]. On average,
in the range of samples with overlapping levels from 0 to 0.9,
the astrocyte-induced enhancements of retrieval quality (in
particular, the correlation of cued recalls with ideal samples)
amounts to 5% for test samples distorted by 20% noise and
20% for −30% noise in cue samples. Fig. 11 shows that
even for huge pattern overlapping, spurious correlations never
dominate in that sense as the accuracy of our system is always
equal to 100%. Correlation with the target sample always
exceeds correlation with the wrong sample.
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6) Comparative Analysis: For comparative analysis,
we summarized the performance of the situation-based
memory in the developed SNAN and also that of other
published studies on the short-term working memory in the
SNNs with biologically relevant unsupervised learning rule,
such as STDP, in Table S3 of the supplementary material.
Obviously, our result is one of the best in terms of frequency
of target pattern activation. The developed SNAN is the only
one that can deal with patterns presented to the overlapped
neuronal populations, to the best of our knowledge.

To compare our results with the previous studies
of the SNN-based classification methods, SNAN is
trained and tested on the standard MNIST dataset
(https://github.com/teavanist/MNIST-JPG) within the proposed
situation-based memory framework. The dataset used in
experiments was partitioned into the training and test sets
comprising 10 000 and 2000 samples of 28 × 28 pixels
images of digits 0–9, respectively. Original images from the
MNIST dataset have been converted into 79 × 79 patterns
to ensure consistency with the size of the pyramidal neuron
layer. The SNN was pretrained on 10 000 training samples
distorted by 5% noise applied to the rescaled images with
one presentation of the sample. After the SNN pretraining,
we trained the SNAN on the initial pool (containing 69 images
in total, 3 digits × 23 images) using the proposed situation-
based learning approach. The MNIST test images presented
to the SNAN were corrupted with 20% noise applied to the
rescaled images. During the ongoing training-testing process
of the situation-based memory in our system in real-time,
we calculated the correlations between recalls in the SNAN
and the images from the MNIST training set. The average
accuracy, measured as the proportion of instances when
the pattern corresponding to the maximal correlation of
SNAN recalls coincided with the target digit, is 97.2%. This
compares favorably with the classification accuracy achieved
in the previously reported SNN architectures.

Table S4 of the supplementary material summarizes the
classification accuracies of the SNN-based systems with
biologically plausible learning rules on the MNIST test set.
Surprisingly, the pattern recognition system based on SNAN
equipped with a simple correlator to process recalls appears
to show higher accuracy than all other architectures presented
in Table S4 of the supplementary material.

Using the procedure described above we also tested how
the proposed situation-based memory in the SNAN can deal
with the MNIST test set corrupted by correlated noise.
A detailed description of these experiments and examples of
the noisy test images along with the accuracy attained by the
SNAN system in this task are provided in the supplementary
material. Interestingly, in these additional experiments, the
SNAN demonstrated good accuracy on test images distorted
with high-level correlated noise without being shown any
examples of images corrupted by such noise.

Comparing the proposed model with recent deep neural
network (DNN) models in terms of memory performance can
be highly intriguing. However, implementing deep-learning
networks using spike-based frameworks is a topic that requires
further research [59]. Such an approach is believed to
be one of the primary challenges and future prospects of

neuromorphic computing. Based on the results obtained thus
far, the enrichment of spiking DNN models with astrocytic
layers shows great promise. Conducting a comprehensive
comparison of performance metrics between spiking DNN
models with and without astrocytes would be highly
interesting.

7) Relation to Transformer Models: Situation-based learn-
ing and inference implemented in the proposed SNAN
model are closely related to the idea of attention. They
also bear functional similarity to popular transformer models
[12] in that both learning and inference are modulated by
contexts inherent to particular situations evolving over time.
SNANs’ attention mechanism, implemented through astrocytes
and relevant signaling pathways, is the consequence of the
neuromorphic organization of the network (see [60]). This
mechanism enables SNANs to exploit contexts, potentially
over large temporal scales, whilst enjoying the benefits of
parallel processing of information. The presence of attention
circumventing the shortcomings of fixed network topology
could explain why SNANs compare favorably to other relevant
models, as is shown in Tables S3 and S4 of the supplementary
material.

VIII. DISCUSSION

The results obtained in the article could be instrumental
in the development of brain-like (e.g., “strong”) artificial
intelligence. Inspired by the brain structural and functional
organizational hierarchy, neuromorphic hardware systems that
implement spike-driven computations could potentially be
capable of implementing energy-efficient machine intelligence
[59]. In addition, the possibility of enhancing learning
performance by astrocytes is an important milestone in
the ongoing discussion of the role of astrocyte-neuronal
network interactions in brain processing [16]. Specifically,
we have investigated the functional roles of different players,
e.g., neurons, synapses, plasticity, and astrocytes, in the
implementation of cognitive information-processing tasks in
the brain. In particular, it was interesting to observe how
the interplay of synaptic changes by STDP and by the
gliotransmitter modulations improve memory performance
(see Fig. 9).

The STDP-based plasticity represents a key biophysical
mechanism of learning in neuronal networks and is considered
one of the most perspective features for SNNs. Modeling and
implementing this mechanism involves choosing appropriate
values for its parameters. In this work, we did not intend to
find optimal parameters of the STDP laws for SNNs as this
was beyond the scope of our study. The main focus here was
on exploring the holistic interaction between STDP, astrocytes,
and neural dynamics in situation-based learning. Nevertheless,
we recognize the importance of selecting parameters of
STDP-based plasticity appropriately and would therefore
like to refer interested readers to relevant literature on the
topic [61], [62], [63].

In memory tasks, the synaptic weights are adjusted
following a training protocol by sequential image application.
Indeed, we also verified that STDP provided successful in
training and information retrieval with a certain degree of
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fidelity. In this context the interneurons balanced network
firing by depression and, hence, we can safely assume that
they are responsible for lateral inhibition via “selecting”
stimulus-specific excitation routes. This solely neuronal story
can not resolve the problem of “overlapping populations”
when different input patterns stimulate similar neuronal groups
(up to 50% of overlaps in our samples). Obviously, the
synaptic plasticity alone can not resolve this problem, as it
will inevitably lead to false recalls and decreased performance.
However, our research shows that astrocytes can significantly
improve this situation.

The astrocytic calcium operates at much slower time scales,
hence, the astrocytes can not significantly affect the fast
dynamics of neurons and synapses at the time scale of single
image processing. Moreover, the calcium excitability has a
gradual character [64]. It provides a proportional response
to stimuli with different intensities. Thus, the stronger the
activation of pyramidal neurons in terms of their discharge
intensities over intervals of a dozen seconds, the higher the
calcium response in the corresponding astrocytes. This way
the astrocytes corresponding to the overlapping areas generate
larger signals. In turn, they send back different levels of modu-
lations during the recall processing. Furthermore, patterns with
a high degree of overlap can be successfully resolved, which
gives a noticeable increase in the retrieval fidelity.

At a functional level, astrocytes supplement neuronal
processing by amplitude modulation in addition to rate
encoding by all-or-none firing neurons. At the same time,
being distributed in time the astrocytic modulation provides a
dynamic separation of overlapping patterns. It is very similar
to reservoir computing in machine learning with traditional
artificial neurons [65], [66]. Here, the astrocytes serve as a
reservoir naturally “predicting” correct retrieval due to dozens
of seconds of stored history.

In general, decoding the physiological meaning of the
spatial-temporal Ca2+ signaling in astrocytes, its computa-
tional properties, and its impact on neuronal signaling remains
a major challenge in modern neurobiology [14]. Integration of
astrocytic signaling in cognitive processing has implications
for understanding the basis of cognitive dysfunction and the
development of new therapeutic strategies [16]. The SNAN
model proposed here could constitute a tool to investigate the
role of astrocytes in cognitive functions. To facilitate a stronger
link of the proposed SNAN with neuroscience, it might
be interesting to employ the mechanisms of intracellular
integration of Ca2+ signals in astrocytes [36].

Our current work and model do not consider challenges
and issues related to the hardware implementation of the
model. Having said this, hardware implementation of SNN
models is a promising and viable modern trend in the
field of neuromorphic electronics. Memristors and memristive
electronics can already reproduce in silico both spiking neuron
dynamics, synaptic signal transmission, and synaptic plasticity.
With respect to the implementation of astrocytes and the
astrocyte-to-neuron control in silico, several articles reported
successful implementations of the astrocyte dynamics [22],
[23], [67]. This suggests that hardware implementations of
SNN-based neuromorphic memory could be viable in the near
future.

Finally, we would like to comment on the biological
plausibility and model limitations in capturing the behavior
of real brain circuits. By construction, our neuromorphic
SNN model imitates morphological constitutions of real brain
networks at the macroscopic level. At this macroscopic
level, the model demonstrates that involving astrocytes in
the processing circuits can lead to significant improvements
in memory performance, as compared to neuronal SNNs
without astrocytes (see Tables S3 and S4 of the supplementary
material). The proposed SNAN model reflects experimental
data on the structure, connectivity, and neurophysiology of the
interaction between neurons and astrocytes in the underlying
cortical tissue [14], [16], [19]. As the prototype of the
SNAN model, we utilize our previously published biologically
plausible computational model of working memory [30]. This
model consists of an SNN interacting with a network of
astrocytes. In order to enhance its bio-fidelity, we enriched
the model with an unsupervised synaptic learning rule
based on spike-timing-dependent Hebbian plasticity, as well
as a layer of inhibitory neurons [59]. Our biologically
relevant, yet still general, modeling approach has ultimately
provided insight into the hypothesis of astrocytes participating
in memory formation. This hypothesis has emerged from
various experimental findings on the contribution of astrocyte
signaling to information processing and cognitive function
[16], [17]. However, many of these cases lack a comprehensive
understanding of the precise mechanisms underlying the
astrocytic contribution, making our understanding somewhat
fragmented. Therefore, further research is necessary to
elucidate the specific role of astrocytic action in memory
processes. It is difficult to compare true human memory
with any given and fixed mathematical model as our
understanding of memory and its mechanisms is far from
complete. Moreover, this understanding is continuously
evolving. Circuits of true memory are involved in (and are
affected by) many complex biological processes, including
hormonal regulations at the micro level, and emotions
and stresses at the psychophysiological level. These factors
may significantly affect memory performance in different
“intrinsic situations,” somewhat similar to what we modeled
here as “external situations.” In this context, by involving
astrocytic components, our model offers a framework capable
of accounting for factors previously considered exogenous.
Remarkably, we show here that doing so is advantageous
as compared to other models of memory (see Tables S3
and S4 of the supplementary material). Further steps could
consider including and assessing the performance of brain
circuits that are directly responsible for memory function,
for example, the hippocampus. The topological organization
of cells in such structures is more complicated than simple
layered architectures which are typical artificial neuronal
networks including SNNs. The advantage of considering
more complicated topologies of networks could be to
explore the existence of architectures optimizing network
learning and retrieval tasks. Another point that is missed
in almost all mathematical models of SNNs is structural
plasticity—dynamic changes in the number of connections,
neurons, and astrocytes in the network and their properties.
Finally, all living networks have a differentiation facilitating
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ongoing information exchange with the external world,
forming processing pathways from the sensory stimuli,
e.g., visual images in our case, to execution signals, and
repository systems. Including, modeling, and analyzing these
could be natural steps toward bringing the performance of
neuromorphic SNNs to that of true living brains.

IX. CONCLUSION

This article presents a novel approach to temporal non-IID
data organization for machine learning in spiking neuronal
networks. The effectiveness of data formalization in situation-
based pools is demonstrated by the short-term memory
task implemented by the brain-inspired SNAN. The SNAN
includes a layer of principle (pyramidal) neurons supplied
by a group of inhibitory interneurons. Synaptic connections
in the pyramidal layer self-adjust adaptively according to the
Hebbian-like STDP. Following morphological brain synaptic
organization, the pyramidal neurons are accompanied by
astrocytes organized in the form of a layered network
(see Fig. 3). Astrocytic modulation of neuronal activity
represents the activity-dependent short-term synaptic plasticity
that induces the stimulus-specific local spatial synchronization
in neuronal ensembles. The synergistic interplay between fast-
spiking neuronal networks trained on the general dataset and
slow astrocytic syncytia provides buffering of situation-based
data pools by the selective coordination of neuronal signaling,
which results in successful storage and retrieval of highly
overlapped information patterns. We demonstrated that the
astrocyte-induced influence on synaptic transmission results
in a 10% enhancement of spiking neural network memory
performance in terms of correlation level between the cued
retrievals and samples for strong 50% overlapped patterns.

CODE AVAILABILITY

The code is available at https://github.com/altergot/Neuron-
astrocyte-network-Situation-associated-memory.
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