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Abstract— Symbolic regression (SR) is the process of finding
an unknown mathematical expression given the input and output
and has important applications in interpretable machine learning
and knowledge discovery. The major difficulty of SR is that
finding the expression structure is an NP-hard problem, which
makes the entire process time-consuming. In this study, the
solution of expression structures was regarded as a classification
problem and solved by supervised learning such that SR can
be solved quickly by using the solving experience. Techniques
for classification tasks, such as equivalent label merging and
sample balance, were used to enhance the robustness of the
algorithm. We proposed a symbolic network called DeepSymNet
to represent symbolic expressions to improve the performance of
the algorithm. DeepSymNet has been proven to have a strong
representation ability with a shorter label compared to the
current popular representation methods, reducing the search
space when predicting. Moreover, DeepSymNet conveniently
decomposes SR into two smaller subproblems, which makes
solving the problem easier. The proposed algorithm was tested
on artificially generated expressions and public datasets and
compared with other algorithms. The results demonstrate the
effectiveness of the proposed algorithm.

Index Terms— AI for science, deep learning, symbolic network,
symbolic regression (SR).

I. INTRODUCTION

BUILDING mathematical models through hypothesis
deduction and mathematical symbols have been an

important means for scientists to understand the world and
discover physics laws. It plays an important role in simulating,
interpreting, and predicting system behavior and decision
control. If mathematical expressions can be used to represent
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data and their relationships in production and daily life, a new
model with interpretable and strong generalization ability will
be obtained. A core issue that needs to be addressed for this is
symbolic regression (SR). SR is a challenging data modeling
task in academia that aims to discover a mathematical
expression that best characterizes the hidden relationship
between input and output data. With the natural ability to
interpret and generalize, SR mathematical expressions can
be used to explain the causal mechanisms between variables
or predict the trends of complex systems. Therefore, SR is
considered a promising method to discover knowledge from
acquired observations and shows great potential in various
fields, such as astronomy [1], physics [2], and machine
learning [3].

In general, the mathematical expression (symbolic
expression, expression) y = f (X) is composed
of independent variables (x1, x2, . . . , xn), operators
(+, −, ×, . . . , sin, cos, exp, . . .), and various coefficients.
SR methods focus on obtaining the best combination of
these elements and solving the most appropriate coefficients,
given the independent variable X and dependent variable y.
Unfortunately, obtaining the best combination is an NP-hard
problem because the combinatorial space exponentially grows
with the length of symbolic expressions. Moreover, the
nonlinear solving process of the coefficients and the process
of element combination optimization are perturbed by each
other. Therefore, determining the exact expression is difficult.
Traditional SR algorithms are based on genetic programming
(GP) [4], [5]. GP-based algorithms use a symbolic tree
(binary tree) to represent expressions and evolutionary
computation to search for objective expressions that satisfy
the requirements. They are sufficiently time-consuming
because the search space is large and they cannot learn from
the solving experience.

Recently, the application of deep learning [6] in various
fields of scientific research has achieved great success,
such as AlphaGo [7] playing Go, AlphaFold [8] predicting
protein structure and deep learning solving mathematical
problems [9], [10], [11], which are called “AI for science”
[12]. Deep learning, especially supervised learning, makes
it possible to gain the historical experience of solving SR,
thereby speeding up solving when new tasks are encountered.
Therefore, it is feasible to solve the SR with supervised
learning.
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To date, several SR algorithms based on supervised learning
have been proposed. The SymbolicGPT [13] algorithm regards
the expression string as a language, thereby transforming
SR into a translation task and using the language model in
deep learning for training. The NeSymReS [14] algorithm
performs a preorder traversal of the symbolic tree to obtain a
sequence. Consequently, the SR is converted into a sequence
generation task, and a sequence generation model in deep
learning is used for training. The E2E [15] algorithm is
an end-to-end supervised learning-based SR algorithm that
encodes expression structures and coefficients into labels
for training. However, these algorithms are not efficient in
representing expressions, and their labels are relatively long,
increasing the prediction difficulty. They also have the problem
of multiple equivalent labels, causing “ambiguity” during
training. Moreover, they did not balance the number of training
samples, which affected the robustness of the algorithm.

This study aims to explore more efficient representations
of symbolic expressions with shorter labels and to propose
a more robust supervised learning-based SR method. In this
study, a new symbolic network is used to represent symbolic
expressions, called DeepSymNet, and can represent any
symbolic expression. DeepSymNet is further encoded into
a sequence, and the solution of the expression structure is
modeled as a sequence generation and classification task.
Supervised training is performed to predict the structure of an
unknown expression. Then, a nonlinear optimization algorithm
is used to solve the constant coefficients to obtain the final
symbolic expression.

The main contributions of this study are summarized as
follows.

1) DeepSymNet has a stronger representation ability and
shorter label than the current popular representation
methods, which can improve the algorithm performance.

2) Solving the symbolic expression structure is treated
as a classification problem. Thus, the techniques in
classification problems can be used to enhance the
robustness of the algorithm. To the best of our
knowledge, this is the first study to treat SR as
a classification task, offering a fresh perspective on
supervised learning-based SR methods.

3) DeepSymNet is convenient for decomposing the SR
into two smaller subproblems, which makes solving SR
easier.

The remainder of this article is organized as follows.
Section II presents a review of the existing methods on SR.
Section III describes the design of DeepSymNet. Section IV
introduces an SR algorithm using DeepSymNet. Section V
compares the performance of the proposed algorithm with
that of state-of-the-art algorithms and discusses the algorithm
proposed in this study. Finally, the conclusion of the study
and the summary of the proposed algorithm are presented in
Section VI.

II. RELATED WORKS

As previously mentioned, SR includes two processes:
solving the expression structure and solving the coefficients.
However, we need a reasonable representation of the symbolic
expression before solving it, which is beneficial for solving the

Fig. 1. EQL network structure [18].

SR. In this section, we review related works regarding these
tasks.

A. Representation of Symbolic Expressions
Symbolic tree (binary tree) [5] is the most commonly used

representation in SR. Several SR algorithms, such as GP [5],
DSR [16], and NeSymReS [14] AIFeynman [2], [17], use
symbolic trees to represent mathematical expressions. In a
symbolic tree, each intermediate and leaf node represents an
operator and a variable or constant, respectively. The number
of children in each intermediate node depends on the operand
number of operators.

In addition to symbolic trees, another representation
constructs a large network to represent symbolic expressions.
An EQL network is a representative example of a network
[18]. EQL adopts the architecture of a feed-forward neural
network, replacing activation functions with operators (Fig. 1),
where the operator id represents the identity operation (i.e.,
id(x) = x).

However, these two representations have certain disadvan-
tages. One disadvantage of symbolic trees is that they are not
efficient for representing symbolic expressions because, for
the same module that appears multiple times in an expression,
a symbolic tree needs to copy it multiple times. For the EQL
network, there is only one id operator (see Fig. 1) per layer,
causing an insufficient representation ability. For example, the
simple expression “x1 sin(x1) + x2” cannot be represented by
an EQL network.

B. Solving Symbolic Expression Structures
The solutions of a symbolic expression structure can be

divided into search-based methods and supervised learning-
based methods.

1) Search-Based Methods: Search-based methods search
for expression structures in the solution space.

The most classic search-based method is the GP algorithm
[4], [5].1 The GP algorithm represents expressions by using a
symbolic tree. First, many expressions are randomly obtained
as the initial population, the evolution is carried out through
replication, exchange, and mutation, and the offspring with
smaller fitness are selected to continue to evolve until the
expression meets the requirements of fitness.

Among search-based methods, there is an important class
that uses reinforcement learning to search for suitable

1https://github.com/trevorstephens/gplearn
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expression structures. One representative method is the DSR
algorithm [16]. DSR encodes a symbolic tree as a sequence
and solves it using the policy gradient method in deep
reinforcement learning [19]. The policy network calculates
the occurrence probability of each element in the sequence
and performs Monte Carlo sampling according to these
probabilities. The idea behind DSR is to increase the sampling
probability of expressions with a large reward, thereby
producing expressions with smaller errors.

AIFeynman [2], [17] is an SR algorithm used for physical
formulas. It uses prior knowledge in physics, such as
dimensional analysis, symmetry analysis, and separability
analysis, to judge the structure of the expression to decompose
the expression into smaller subproblems and reduce the search
space.

There is also a class of methods based on sparse
optimization whose representative algorithm is EQL [18].
The EQL algorithm uses the BP algorithm [19] combined
with sparse optimization to learn parameters to obtain a
sparse subnetwork in the EQL network, thereby obtaining the
mathematical expression structure.

The common disadvantage of search-based methods is
that they are slow because the search space is large and
the experience of solving cannot be reused. Additionally,
each has its own shortcomings. The expression obtained
using GP is often complicated to achieve a smaller fitting
error. The DSR policy network does not utilize the data of
independent and dependent variables. AIFeynman [2] utilizes
a large amount of prior knowledge; therefore, it cannot
perform general SR. It is difficult for the EQL algorithm
to obtain simple expressions through sparse optimization.
Therefore, the obtained expressions are too complex and lose
interpretability.

2) Supervised Learning-Based Methods: Supervised
learning-based methods have been proposed, which
use historical experience when solving a new problem,
to overcome the disadvantages of time-consuming search-
based methods. Representative methods include SymbolicGPT
[13], NeSymReS [14], and E2E [15].

The SymbolicGPT method encodes the symbol expression
as a string and treats the expression structure solution as a
language-translation task. The GPT model [20] in language
translation is used for supervised training with a large number
of artificially generated samples.

The NeSymReS method encodes the symbolic tree as a
sequence by preorder traversal, and the set Transformer [21]
is used for training.

E2E [15] encodes the expression structure and coefficients
into labels for training, thereby simultaneously predicting the
expression structure and coefficients.

These methods have the problems of multiple equiva-
lent labels and imbalanced training samples, which cause
ambiguity during training and affect the robustness of the
algorithm. In addition, they also have other disadvantages. The
expressions considered by the SymbolicGPT [13] algorithm
are relatively simple because the symbolic tree used for
sampling has at most four levels. The E2E [15] method
encodes the coefficients into labels, which makes the labels
very long and affects prediction accuracy.

Fig. 2. Overall DeepSymNet framework.

C. Solving the Coefficients

The solution of coefficients is an important step in SR,
which has a direct effect on the accuracy of symbolic
expressions. The coefficient solution can be divided into
solving independently and solving simultaneously with
expression structure.

1) Solving the Coefficients Independently: The most
common approach to solving the coefficients is to take it
as a separate nonlinear optimization problem after obtaining
the expression structure. Nonlinear least-squares and quasi-
Newton methods [22] in numerical optimization are commonly
used solutions. For example, the DSR [16], SymbolicGPT
[13], and NeSymReS [14] methods all use BFGS [22] to solve
the coefficients.

2) Solving Coefficients Simultaneously With Expression
Structure: This type of method combines the expression
structure and the coefficients into a single problem to solve.
The GP algorithm randomly generates some constants as
leaf nodes, and these constant nodes are also updated when
performing genetic operations on the symbolic tree. The
AIFeyman [2], [17] method uses methods such as polynomial
fitting to solve the coefficients when searching for the
substructure of the expression. The EQL [18] is an end-to-
end method, where the weights in the EQL network are the
coefficients in the expression. When the sparse optimization
of network parameters is completed, the expression structure
and coefficients are determined at the same time. The E2E
[15] is a supervised learning-based method that encodes
expression structure and coefficients into labels for training,
thereby simultaneously predicting expression structure and
coefficients.

We recommend references [23], [24], [25], [26] for more
information and applications to SR.

III. DEEPSYMNET

Fig. 2 illustrates the overall DeepSymNet framework. The
first layer of DeepSymNet consists of the input data, the
middle layer is the hidden layer, and the last layer is the output
layer.

The nodes of the hidden layer are composed of operators
(+, −, ×, ÷, sin, cos, exp, log, id), where the id operator is the
same as that in EQL [18]. The number of id operators in each
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Fig. 3. Subnetwork represents a symbolic expression (take
c1x1 − sin(x1) cos(x2) + c2 as an example).

hidden layer is equal to the number of nodes in the previous
layer, whereas the other operators appear only once in each
hidden layer. Operator id has a one-to-one correspondence
with the nodes of the previous layer, and its role is to enable
each layer to utilize the information of all previous layers.
The other operators are ordinary operators that are entirely
connected to the previous layer. Let the number of nodes in
the i th layer is ni and the number of operators except id be
m. Subsequently, the number of hidden layer nodes satisfies
ni+1 = ni + m.

The connections between the id operators and the previous
layer were fixed and did not need to be resolved. There is
no connection between the ordinary operator and the previous
layer, or there are one (operand is 1) or two (operand is 2)
connections, which implies that a subnetwork represents a
symbolic expression in this network (Fig. 3). The more hidden
layers an expression occupies, the higher the complexity of the
expression. Thus, the number of hidden layers can be used as
a rough measure of the expression complexity.

Note that the input layer has a special node “const” used to
represent constant coefficients in symbolic expressions. Only
the edges connected to the “const” node have weights (constant
coefficients) to prevent sufficiently many constant coefficients
in the symbolic expression, as shown in Fig. 3. It is easy
to verify that, if DeepSymNet has sufficient layers, it can
represent any symbolic expression.

In summary, DeepSymNet is a complete network that can
represent any expression, and the solution of SR is the process
of searching for subnetworks in DeepSymNet.

IV. SYMBOLIC EXPRESSION SOLVING ALGORITHM

In this study, the structure and coefficients of symbolic
expression were solved separately. First, the expression
structure was obtained by searching the subnetwork in Deep-
SymNet. Subsequently, a nonlinear optimization algorithm was
used to solve the coefficients.

A. Supervised Learning to Solve Symbolic Expression
Structure

In Section III, we derived that the symbolic expression
corresponds to a subnetwork of the symbolic network.
Therefore, the solution to the expression structure lies in
searching the subnetwork structure, which is a combinatorial
optimization problem. In this study, a supervised learning
method was adopted to consider the solution of the subnetwork
structure as a sequence classification problem. Specifically,
we adopted the Transformer [27] model for training, and
the loss function was cross-entropy. Transformer [27] is

TABLE I
CORRESPONDENCE BETWEEN THE OPERATOR

CODE AND THE NODE NUMBER

a sequence-to-sequence model based on the “self-attention
mechanism,” which can calculate the “attention weight”
between each position in the input sequence and other
positions, thereby achieving interaction and information
transmission between different positions in the input sequence.
Transformer was originally proposed by Google and used
in machine translation tasks, and later was widely used in
other tasks, such as text classification, language generation,
sequence generation, and so on.

1) Representation of Training Samples: The training
samples must be properly represented before training.

a) Training sample input: We randomly generated m
input data X i for the expression y = f (X) to obtain the
corresponding yi = f (X i ). Then, the sequence composed
of (X i , yi ) was constructed as a training sample input. The
sequence elements (X i , yi ) were sorted in ascending order
according to each dimension’s value of X i to remove the
effect of sequence element order on the results. Specifically,
the sequence elements are sorted by the first dimension of X ,
the second dimension, and so on.

b) Training sample label: We proposed a unique
encoding scheme to encode the subnetworks into a sequence
of integers as training labels. The integers at the beginning
represent the operators selected from DeepSymNet, with zero
as the separator, and the following integers represent the
connection relationships of the selected operators. Finally, the
sequence was filled with pad tokens to a fixed length. Based
on the encoding process, we decomposed the subnetwork
structure into two subproblems: operator selection and
connection relation selection.

The operators selected in each layer correspond to an
integer in the label, and only the first eight operators (ordinary
operators) must be selected because the connections between
the id operators and the previous layer are fixed. Table I lists
each operator as having a unique operator code and node
number in the hidden layer. The relationship between the
operator code and the node number is code = 2number. There
are a total of 28

= 256 cases for eight ordinary operators;
therefore, an integer between 0 and 255 can be used to
represent the operators selected for each layer. This integer
represents the sum of the selected operator codes, which can
be parsed according to Table I.

For the encoding of the connection relations, each integer
represents the node number of the previous layer connected
to the selected operator. The integers are arranged in the
order in which the chosen operator appears in the network.
For operators with two operands, the left operand comes first
and the right operand comes last. Therefore, the length of the
connection-relation code depends on the number and type of
operators selected.

For example, the subnetwork label shown in Fig. 3
is [52, 5, 2, 0, 0, 2, 0, 1, 2, 10, 4, 5, 0, 2, 256, . . . , 256], where
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Fig. 4. Parsing process of a label (take y = c1x1 − sin(x1) cos(x2) + c2 as
an example).

[52, 5, 2] is the selected operators, the first 0 is the separator,
[0, 2, 0, 1, 2, 10, 4, 5, 0, 2] is the connection relation code, and
256 is the pad token. The parsing process for this label is
shown in Fig. 4.

2) Sampling of the Training Samples: The training samples
are artificially generated. In the process of generating
training samples, we improved the quality of the training
samples by merging equivalent labels and sample balancing,
thereby enhancing the performance of the algorithm. We will
demonstrate this through experiments in Section V-B4.
We obtained the training samples by making random
connections in DeepSymNet (Fig. 2). Random connections
must satisfy the following rules.

1) Operators sin, cos, exp, and log cannot be nested with
each other. For example, expression cos(sin(x) + c) is
not allowed.

2) Subtraction and division operators cannot connect two
identical nodes.

3) The operands of any operator cannot all be constants.
After obtaining the connection relationships, starting from

any node of the last hidden layer and traversing from back
to front, a subnetwork can be obtained, corresponding to an
expression. The label of an expression was obtained according
to the encoding method described in Section IV-A1.

Note that random connections may cause a layer of the
subnetwork to not select any ordinary operators (i.e., all id
operators and the encoding of the operators of this layer
is 0), which is meaningless and conflicts with separator 0.
In this case, this layer needs to be deleted, and for the
subsequent hidden layer nodes, if the node number is greater
than eight, eight needs to be subtracted (because there are eight
operators), as shown in Fig. 5(a)→(b).

Another situation that must be addressed is that there are
several equivalent labels corresponding to the same expression,
as shown in Fig. 5(c)→(b). We need to merge equivalent
labels; otherwise, “ambiguity” will occur during training.

It is a challenging task to merge equivalent labels. If they
are merged through pairwise comparison, the time complexity
is O(n2) (where n is the number of expressions), which
is unacceptable due to the large number of expressions.
Therefore, we propose a feasible method for merging
equivalent labels, that is, to cluster labels by sorting. We input
the same data X to the subnetwork corresponding to the
label, obtain the output y, and then sort the labels according
to y so that the equivalent labels will be arranged together

after sorting. The average time complexity of common
sorting algorithms like quicksort [28] and TimeSort [29] is
O(n log2 n), which is faster than pairwise comparison. For
multiple equivalent labels, the label with the least operators
is reserved, thus completing the merging of equivalent labels.

We regarded the solution of the subnetwork as a classi-
fication problem, and each label is a category. We collected
multiple samples for each label (category) as follows: First, the
values of the constant coefficients are randomly collected in a
certain interval. Then, the values of the constant coefficients
are fixed, and m different data points X i are randomly
collected. Finally, we input X i to the subnetwork to obtain
the output yi , and the sequence composed of (X i , yi ) is a
training sample corresponding to this label. In the process of
inputting X i to obtain yi , X i must be resampled if there are
some intermediate values with relatively large absolute values;
otherwise, data errors will occur during training.

We repeated the above process to collect n training samples
for each label, which ensures that the number of samples for
each label is balanced and improves the robustness. Evidently,
from the sampling process, the coefficients of the samples for
the same label are different, which is necessary because of
the same label. If the coefficients are different, the function
curve will be different. Therefore, different coefficients make
the supervised information contained in the training set richer
and the trained model more robust.

3) Training Method: After the training data are ready,
we input the (X i , yi ) sequences and the labels to the trans-
former [27] in the encoding stage, and output the probabilities
of occurrence of the label elements in the decoding stage. The
loss function is a cross-entropy loss function. Note that 0 must
be added in front of each label as the starter before input.

In the Transformer [27] model, each sequence element
is represented as a vector of fixed dimensions D. The
dimension of each element in the input sequence of the
algorithm in this study was variNum + 1, where variNum
is the number of independent variables. Therefore, before
inputting the sequence to the standard Transformer model,
we performed linear mapping on each element to map
the element to a D-dimensional vector. The training label
was a sequence of integers ranging from 0 to 256. First,
we performed word embedding for each integer to transform
it into a D-dimensional vector and then input it to the standard
transformer model. Fig. 6 illustrates the entire transformer
module. Fig. 7 illustrates the schematic of the training phase.

4) Predicting Labels: Label prediction can be performed
after training the model. We input the (X i , yi ) sequence and
starter 0 to the Transformer module when predicting the
first element of the label and then iteratively predict the
following elements until the number of iterations iterNum
equals maxLen, which is the maximum length of the label.
To improve the prediction accuracy, we used a beam search
[19] to obtain multiple candidate labels. A schematic of the
label prediction phase is shown in Fig. 8(a).

From the construction of the label in Section IV-A1,
the label is divided into two parts: operator selection and
connection relationship, which are separated by the separator
“0.” This suggests that label prediction can be divided into two
subtasks (i.e., operator prediction and connection relationship
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Fig. 5. Delete the invalid id layers and merge equivalence labels (Take y = c1x1 + c2x2 − sin(x1) as an example). (a) → (b) Delete the invalid id layers.
(c) → (b) Merge equivalence labels.

Fig. 6. Transformer module for DeepSymNet.

prediction) to better solve the label prediction problem.
Therefore, we propose an improved solution method that trains
and predicts operator selection and connection relationship
selection separately. We explore this in detail by conducting
experiments in Section V-B3.

B. Solving Constant Coefficients

After the label (i.e., the subnetwork structure) was obtained,
the following objective function was constructed, and we used
the BFGS [22] optimization algorithm to solve the constant
coefficients. Note that other optimization methods such as
nonlinear least-squares [22] can also be used

min
C

n∑
i=1

(yi − f (X i , C))2. (1)

We selected the one with the smallest fitting error as the
final symbolic expression because there are multiple candidate
symbolic expressions corresponding to multiple candidate
labels obtained by beam search [19]. A schematic of the
solution of the constant coefficients is shown in Fig. 8(b).

C. Comparative Analysis of Computational Complexity
Between the Proposed Model and Search-Based Methods

The proposed model’s computational complexity is indepen-
dent of the complexity of the expression being solved when
making predictions since the size of the model parameters has
been determined. The only thing related to the computational
complexity is the beam size of the beam search, which is
proportional to the computational complexity.

Fig. 7. Schematic of the label training process. First, collect subnetworks
and code them to get training labels, then collect data points to get training
sample input, and finally input training samples into the model for training.
The loss function is the cross-entropy loss function.

Fig. 8. Schematic of the solution process. (a) Label prediction process.
Input the data points (X i , yi ) and starter 0 to the Transformer module, and
combine with beam search to obtain multiple candidate labels. (b) Constant
coefficients solving process. Restore the obtained candidate labels into
candidate expressions, construct an optimization objective function for solving
coefficients for each expression, and use the BFGS algorithm to solve it. Select
the expression with the smallest error as the final result.

The traditional search-based method is iterative, and the
number of iterations is related to the complexity of the
expression being solved. The higher the complexity, the more
iterations there are.
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TABLE II
DISTRIBUTION OF THE TRAINING SET AND TESTING SET

ACCORDING TO THE NUMBER OF HIDDEN LAYERS
(ROUGH EXPRESSION COMPLEXITY)

The search-based methods often require many iterations
since the solution of expression structure is an NP-
hard combinatorial optimization problem. Therefore, the
computational complexity of search-based methods is much
higher than the proposed model.

V. EXPERIMENTS

In this section, we test our algorithm on artificially
generated and public datasets and compare it with the current
popular algorithms. The proposed algorithm was implemented
using PyTorch, and all source codes are available at the GitHub
repository at https://github.com/wumin86/DeepSymNet.

A. Experimental Parameters Setting
In our experiments, DeepSymNet had up to six hidden

layers and supported up to three variables. We generated
20 samples for each label and each sample contained 20 data
points. The sampling intervals of the constant coefficients and
variables were both [−2, 2]. The training strategy we used was
early stopping [19] (i.e., training was stopped when the loss on
the validation set no longer decreased). The Adam optimizer
[19] was used.

B. Test Results on Artificially Generated Data
In this section, we use artificially generated datasets for

training and testing to explore the properties of the proposed
algorithm.

1) Introduction to Artificially Generated Training Datasets
and Test Datasets: The distribution of the training and test sets
used in this section is shown in Table II based on the number
of hidden layers (rough expression complexity) occupied by
the expressions.

Note that half of the test set labels appeared in the training
set, and half did not appear in the training set.

2) Comparison of the DeepSymNet Label and Symbolic Tree
Label: In this section, we compare the labels of DeepSymNet
and the symbolic tree. We used the label of the symbolic
tree in NeSymReS [14]. The label was obtained by the
preorder traversal of the symbolic tree in NeSymReS. First,
we compared the lengths of the two labels. Table III lists the
average lengths of the two labels in the expressions for the
training set.

In Table III, the average label length of DeepSymNet
is shorter than that of NeSymReS because DeepSymNet
represents expressions more efficiently than symbolic trees.
For the same module that appears multiple times in an

TABLE III
AVERAGE LABEL LENGTHS OF NESYMRES AND

DEEPSYMNET IN THE TRAINING SET

Fig. 9. Comparison diagram of the symbolic tree and DeepSymNet.
(a) DeepSymNet. (b) Symbolic tree.

TABLE IV
LABEL PREDICTION ACCURACY WITH LABELS OF NESYMRES AND

DEEPSYMNET (THE LABEL APPEARED IN THE TRAINING SET)

expression, DeepSymNet only needs to construct it once.
Then, it can be used everywhere through the id operator,
whereas the symbolic tree needs to copy it multiple times.
Fig. 9 shows the comparison between DeepSymNet and the
symbolic tree, where the box represents the same module,
which is constructed once in DeepSymNet and three times
in the symbolic tree.

A shorter label may make the prediction easier, and the
trained model performs better because the search space size
increases exponentially with the label length. To verify our
conjecture, we used these two labels to fully train the model
separately and then performed label prediction on the test set.
We obtained the prediction accuracy of the label prediction
according to whether it is consistent with the real label.
Beam search [19] is used to obtain multiple candidates when
predicting the label, and the prediction is considered successful
as long as one of the candidates is consistent with the real
label. The experimental results are listed in Table IV.

Based on Table IV, the prediction accuracy of the model
trained with the DeepSymNet label is much higher than that of
the model trained with the NeSymReS label, which illustrates
the superiority of the DeepSymNet label over the symbolic
tree label.

3) Splitting DeepSymNet Into Two Parts for Separate
Training: From the previous results in Table IV, the prediction
accuracy of the proposed model rapidly decreases as the
number of hidden layers occupied by expressions increases.
We analyzed in Section IV-A that label prediction can be
divided into two subtasks, such as operator prediction and
connection relationship prediction, to ensure that the label
prediction problem can be better solved. In this section,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE V
LABEL PREDICTION ACCURACY (DSN1, THE LABEL

APPEARED IN THE TRAINING SET)

TABLE VI
LABEL PREDICTION ACCURACY (DSN2, THE LABEL

APPEARED IN THE TRAINING SET)

experiments are conducted to explore the prediction bottleneck
and improve the algorithm performance using this solution.

a) Prediction accuracy of the test set whose label
appeared in the training data: The label of the test set
appeared in the training set in this part of the experiment (i.e.,
the corresponding category appeared in the training set).

i) Label prediction results: To explore the prediction
bottleneck, we conducted three prediction tasks: operator
selection only, connection relation only, and complete
prediction task. We input the operator sequence of the
label into the model, and the model predicts the connection
relations according to the input when only predicting the
connection relation. We referred to the trained model as DSN1.
The prediction accuracy was calculated for expressions with
different numbers of hidden layers. The predicted results are
listed in Table V.

Based on the results, as the number of hidden layers
increases, the prediction accuracy of operator selection
drops sharply, while the prediction accuracy of connection
relationships has always been high. Therefore, the prediction
bottleneck lies in the operator selection. This is because the
operator selection space is much larger than the connection
relationship selection space, which is analyzed and discussed
in detail in Section V-D. We trained the operator selection
separately to improve the accuracy of the operator selection.
During prediction, we first obtained the operator selection
sequence using the operator selection model and then input
it to DSN1 to predict the connection relationship. We refer to
the separately trained models DSN2, and the test results are
listed in Table VI.

According to the results, the prediction accuracy is greatly
improved after the operator selection is trained separately.

ii) Full expression prediction result: After the
coefficients were solved using the BFGS [22] algorithm, the
full expression was obtained. The error between the predicted
and real expressions was calculated using (2), which was used

TABLE VII
FULL EXPRESSION PREDICTION ACCURACY (THE LABEL

APPEARED IN THE TRAINING SET)

TABLE VIII
LABEL PREDICTION RESULTS (DSN1, THE LABELS

DID NOT APPEAR IN THE TRAINING SET)

TABLE IX
LABEL PREDICTION RESULTS (DSN2, THE LABELS

DID NOT APPEAR IN THE TRAINING SET)

to measure the accuracy of the predicted expression

meanError =
1
n

n∑
i=1

|yi − f (X i , C)|. (2)

The optimal (real) solution is considered if meanError is
less than 0.00001. Table VII lists the prediction accuracies.

The prediction accuracy of DSN2 is higher than that of
DSN1 (Table VII). In addition, we found that the accuracy
of the full-expression prediction was lower than that of the
label. For some expressions, although the label is successfully
predicted, the objective function constructed by (1) may be
nonconvex, and it is difficult to obtain the correct coefficients
using the BFGS algorithm.

b) Prediction accuracy of the test set whose label did
not appear in the training data: In this part of the test, the
label of the test set did not appear in the training set (i.e., the
corresponding category did not appear in the training set).

i) Label prediction results: The prediction accuracies
of these labels are listed in Tables VIII and IX. From the
results, some expressions whose categories did not appear
in the training set can also be predicted correctly. However,
the prediction accuracy is relatively low, and the accuracy
sharply decreases as the number of hidden layers increases.
The prediction accuracy of DSN2 is higher than that of DSN1.

ii) Full expression prediction result: Table X lists the
prediction accuracy according to the expression error, and the
prediction accuracy of DSN2 is generally higher than that of
DSN1.

The full expression prediction accuracy is much higher than
that of the label prediction, as shown in Table X. For some
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TABLE X
FULL EXPRESSION PREDICTION ACCURACY (THE LABEL

DID NOT APPEAR IN THE TRAINING SET)

TABLE XI
EXPRESSION IS PREDICTED CORRECTLY, ALTHOUGH

THE LABEL IS PREDICTED WRONG

Fig. 10. meanError difference between DSN1 and DSN2 on test set with
⩽ 3 hidden layers.

expressions, although label prediction fails, correct expressions
can be obtained by solving the coefficients. As presented in
Table XI, although the predicted expression has one more
coefficient c2, coefficient c2 obtained by BFGS is sufficiently
small and can be ignored; therefore, the prediction can be
considered correct.

c) Performance comparison of DSN1 and DSN2 for
approximate solutions: We explored the accuracy of finding
the optimal solution in previous experiments. However,
in many cases, the model could not obtain the optimal (real)
solution, but only an approximate solution, particularly when
the labels of the test samples did not appear in the training
set. We can use meanError to evaluate the performance of an
algorithm in determining approximate solutions.

We drew the meanError difference (meanErrorDSN1 −

meanErrorDSN2) curves of all expressions with approximate
solutions to compare DSN1 and DSN2 more intuitively
(Figs. 10–13). Based on the results, most of the curves are
above 0; thus, for most expressions, the meanError obtained
by DSN1 is larger than that of DSN2.

Furthermore, we made statistics on the meanError of
Figs. 10–13, and the statistical indicator is the number of votes
calculated based on the meanError. The specific voting method
is that, for a certain expression, the vote number of model1 is
increased by one if the meanError of model1 is less than or
equal to model2, as expressed in the following equation:

vote1 =

{
1, meanError1 ⩽ meanError2

0, otherwise.
(3)

Fig. 11. meanError difference between DSN1 and DSN2 on test set with
four hidden layers.

Fig. 12. meanError difference between DSN1 and DSN2 on test set with
five hidden layers.

Fig. 13. meanError difference between DSN1 and DSN2 on test set with
six hidden layers.

TABLE XII
COMPARISON OF THE VOTE NUMBER BETWEEN DSN1 AND DSN2

A comparison of the votes for DSN1 and DSN2 is presented
in Table XII. The vote number of DSN2 is higher than that of
DSN1 based on the results.

4) Ablation Experiment to Verify the Enhanced Robustness
of Equivalent Label Merging and Sample Balance: Equivalent
label merging and sample balance are two methods used to
enhance algorithm robustness. In this section, we conducted
ablation experiments to verify the enhancement of algorithm
robustness by these two methods. We first randomly
sampled 500 000 training samples called TrainDataOrg, which
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Fig. 14. Histogram of the sample number distribution corresponding to the
labels.

TABLE XIII
FULL EXPRESSION PREDICTION ACCURACY

contained 128 455 different labels (categories). We counted the
histogram of the sample number distribution corresponding to
these labels, as shown in Fig. 14.

We found that the distribution of sample numbers in these
labels is seriously uneven, with the minimum sample number
being 1, the maximum sample number being 13 196, and the
variance of the sample number being 13012.29. We balanced
the sample size. On the premise that the total number of
samples was 500 000, the number of samples for each of the
first 114 635 labels was 4, and the number of samples for the
last 13 820 labels was 3 (because 114 635 × 4 + 13 820 × 3 =

500 000). We called the obtained training samples TrainDataB.
The number of labels decreased to 77 089 after merging

the equivalent labels and we further balanced the number of
samples. The number of samples for each of the first 37 466
labels was 7, and the number of samples for the last 39 623
labels was 6 (because 37 466 × 7 + 39 623 × 6 = 500 000).
We called the obtained training samples TrainDataBM.

We trained on the training data TrainDataOrg, TrainDataB,
and TrainDataBM to obtain models DSNOrg, DSNB, and
DSNBM, respectively. These three models were tested on test
sets, which are generated in the same way as in Section V-B1.
The accuracy of these three models on the test set is shown
in Table XIII. It can be seen that the accuracy of DSNOrg,
DSNB, and DSNBM increases sequentially, indicating that
after adding sample balance and merging equivalent labels,
the accuracy of the model in solving the optimal solution is
improved.

We also compared the number of votes between these three
models, as shown in Table XIV. It can be seen from Table XIV
that DSNB has a greater number of votes than DSNOrg, while
DSNBM has a greater number of votes than DSNB, indicating
that the accuracy of the model has been improved by sequen-
tially adding sample balance and merging equivalent labels.

In summary, equivalence label merging and sample balance
have indeed enhanced the robustness of the algorithm and
improved its performance.

From the above experiments, we can draw the following
conclusions.

TABLE XIV
COMPARISON OF THE NUMBER OF VOTES

TABLE XV
NUMBER OF EXPRESSIONS CONTAINED IN EACH DATASET

1) The difficulty of prediction increases as the number of
hidden layers (i.e., the complexity) of the expression
increases.

2) The bottleneck of label prediction lies in operator
selection.

3) DSN2 is better than DSN1 in solving both the optimal
and approximate solutions.

4) Equivalence label merging and sample balance can
enhance the robustness of the proposed algorithm.

C. Test Results on Public Datasets

In this section, we use the SR public test datasets to
test our algorithm and compare it with the current popular
algorithms. Six test datasets were used in this study: Koza,
Korns, Keijzer, Vlad [30], ODE [25], and AIFeynman [2].
We selected expressions from these datasets with no more than
three variables for testing because the currently trained model
supports up to three variables, and all the selected symbolic
expressions are shown in the Appendix. Table XV lists the
number of expressions included in each dataset.

1) Comparison With Supervised Learning-Based Methods:
In this section, we compared the proposed algorithm with the
current popular supervised learning-based methods, E2E [15],
SymbolicGPT [13], and NeSymReS [14].

a) Introduction of training datasets: The training data
labels we used in this section are the same as those in
Section V-B4, but we generated 20 training samples for each
label, resulting in a total of 77 089 × 20 = 1571 780 training
samples. All algorithms are trained using exactly the same
training data.

b) Performance evaluation results: The performance
evaluation indicators used are the meanError of the expression.
Fig. 15 illustrates the plot of meanError values of the tested
algorithms for each dataset. Based on Fig. 15, the meanError
of the proposed algorithm (DSN1, DSN2) is the smallest.

We also calculated the votes for each dataset using the
method presented in Section V-B3 between the algorithms,
and the results are shown in Tables XVI–XXI. From
Tables XVI–XXI, the accuracy of the algorithms proposed in
this study (DSN1, DSN2) is better than that of the compared
algorithms.

2) Comparison With Search-Based Methods: In this section,
we compared the proposed algorithm with the current popular
search-based methods, EQL [18], GP [5], and DSR [16].
To make a fair comparison in a limited time, we set the
population size of the GP algorithm to 2000 and the maximum
evolutionary generation to 20. The maximum number of
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Fig. 15. Comparison of meanError on test set with supervised-learning based algorithms.

TABLE XVI
NUMBER OF VOTES ON THE KOZA DATASET (COMPARED WITH

SUPERVISED LEARNING-BASED METHODS)

TABLE XVII
NUMBER OF VOTES ON THE KORNS DATASET (COMPARED WITH

SUPERVISED LEARNING-BASED METHODS)

TABLE XVIII
NUMBER OF VOTES ON THE KEIJZER DATASET (COMPARED WITH

SUPERVISED LEARNING-BASED METHODS)

TABLE XIX
NUMBER OF VOTES ON THE VLAD DATASET (COMPARED WITH

SUPERVISED LEARNING-BASED METHODS)

iterations for DSR was 120, and EQL adopted its default
settings.

a) Introduction of training datasets: In this experiment,
more training data were used for training to improve the
prediction performance. The distribution of the training set
used is shown in Table XXII according to the number of
hidden layers (rough expression complexity) occupied by the

TABLE XX
NUMBER OF VOTES ON THE ODE DATASET (COMPARED WITH

SUPERVISED LEARNING-BASED METHODS)

TABLE XXI
NUMBER OF VOTES ON THE AIFEYNMAN DATASET (COMPARED WITH

SUPERVISED LEARNING-BASED METHODS)

TABLE XXII
DISTRIBUTION OF THE TRAINING SET ACCORDING TO THE NUMBER OF

HIDDEN LAYERS (ROUGH EXPRESSION COMPLEXITY)

expressions. To improve the training efficiency, the training set
was divided into four parts for separate training based on the
number of hidden layers: less than or equal to 3 and equal to 4,
5, and 6. Therefore, we obtained four independently trained
models. Each model predicts separately with a beam size of
10, and the candidate with the smallest meanError among all
the candidates is selected as the final result.

b) Performance evaluation results: The performance
evaluation indicators used are the meanError of the expression,
the complexity of the predicted expression, and the running
time of the algorithm. The complexity of an expression is
measured by the number of operators in the expression.

The interpretability of an expression is closely related to the
complexity of the expression. The lower the complexity,
the stronger the interpretability, and vice versa. Therefore,
the complexity of the expression should be considered
when evaluating the performance of an SR model. In our
experiments, if the complexity of the expression is greater than
three times that of the real expression, the current expression
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TABLE XXIII
NUMBER OF VOTES ON THE KOZA DATASET (COMPARED

WITH SEARCH-BASED METHODS)

TABLE XXIV
NUMBER OF VOTES ON THE KORNS DATASET (COMPARED

WITH SEARCH-BASED METHODS)

TABLE XXV
NUMBER OF VOTES ON THE KEIJZER DATASET (COMPARED

WITH SEARCH-BASED METHODS)

TABLE XXVI
NUMBER OF VOTES ON THE VLAD DATASET (COMPARED

WITH SEARCH-BASED METHODS)

is considered unexplainable, and meanError is set to 10.
Note that the expression complexity obtained using the EQL
algorithm was sufficiently high. The minimum expression
complexity of EQL is 121, which greatly exceeds three
times the complexity of the real expression. For a convenient
comparison, we did not modify the meanError value obtained
by the EQL algorithm and used the original value.

Fig. 16 illustrates the plot of meanError values of the
tested algorithms for each dataset. Fig. 17 shows the plot
of the absolute value of the complexity difference between
the predicted and real expressions in the datasets. Based on
Figs. 16 and 17, the meanError of the proposed algorithm
(DSN1, DSN2) is the smallest, and the complexity of the
obtained expression is also closest to the real expression
complexity.

We calculated the votes for each dataset using the method
presented in Section V-B3 between the algorithms and the
results are shown in Tables XXIII–XXVIII. Furthermore,
we calculated the number of wins for each algorithm based
on Tables XXIII–XXVIII, as listed in Table XXIX. From
Tables XXIII–XXIX, the accuracy of the algorithms proposed
in this study (DSN1, DSN2) is better than that of the compared
algorithms, and the performance of DSN2 is better than that
of DSN1.

TABLE XXVII
NUMBER OF VOTES ON THE ODE DATASET (COMPARED

WITH SEARCH-BASED METHODS)

TABLE XXVIII
NUMBER OF VOTES ON THE AIFEYNMAN DATASET (COMPARED

WITH SEARCH-BASED METHODS)

TABLE XXIX
NUMBER OF WINS FOR EACH ALGORITHM ON EACH DATASET

TABLE XXX
RUNNING TIME (SECONDS)

Table XXX lists the running time of each algorithm on
each dataset, and the running speed of the proposed algorithm
(DSN1, DSN2) is the fastest.

Based on the results, it can be concluded that the algorithm
in this study is superior to the compared algorithms in
three aspects: symbolic expression error, symbolic expression
complexity, and running speed, proving the effectiveness of
the proposed algorithm.

D. Discussion
This section discusses the features of our algorithm to gain

a deeper understanding of the proposed model.
1) Why Does Operator Selection Become a Bottleneck for

Prediction? Why Does DSN2 Work Better Than DSN1?:
The selection space for each operator element in the label is
256 by analyzing the encoding rules in Section IV-A1, whereas
for the connection relations, the selection space of each
element depends on the operator selection, and its maximum
value does not exceed the number of nodes in the previous
layer. Therefore, the connection relationship selection space is
much smaller than the operator selection space, and operator
selection becomes a prediction bottleneck. By taking the
expression shown in Fig. 4 as an example, the selection space
sizes of the connection relationship for the first, second, and
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Fig. 16. Comparison of meanError on test set with search based algorithms.

Fig. 17. Complexity difference between the predicted expression and the real expression on the test set.

third hidden layer nodes are three, six, and eight, respectively,
which are much smaller than the operator selection space size.

DSN2 trains operator selection with a separate model, which
allows the model to focus on the learning of operator selection.
Thus, DSN2 performs better than DSN1.

2) Has the Trained Model Learned How to Solve SR?:
The proposed algorithm was regarded as a classification model
during the previous training process, and different labels
corresponded to different categories. Therefore, it is difficult
to obtain an optimal solution for expressions whose categories
do not appear in the training set. However, although an optimal
solution cannot be obtained, an approximate solution can be
determined from previous experimental results. This implies
that our model learned how to solve the SR during training.

We compared a randomly initialized model with the trained
model to further verify that the trained model has learned
the relevant SR knowledge and not by chance. Only the
connection relation is randomly selected in the random model
because the random selection of the operator can cause illegal
expressions. Therefore, the random model in this experiment
was a semirandom model.

The beam size was set to 1 for both models. The
evaluation index used is the meanError difference between
the semirandom and trained models. The experimental results

Fig. 18. meanError difference between the semirandom model and trained
model on the test set.

are shown in Fig. 18. Based on the results, the meanError
of the semirandom model on all test samples is much larger
than that of the trained model. In addition, the trained and
semirandom models obtained eight and zero optimal solutions,
respectively. This shows that the trained model performs
better than the semirandom model when solving both the
optimal and approximate solutions, which further suggests that
the proposed model has learned how to solve SR through
supervised learning.
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TABLE XXXI
KOZA DATASET

TABLE XXXII
KORNS DATASET

TABLE XXXIII
KEIJZER DATASET

TABLE XXXIV
VLAD DATASET

VI. CONCLUSION

This article proposed a supervised learning-based SR
algorithm that investigates core problems in SR. First,
DeepSymNet was proposed to efficiently represent symbolic
expressions. The prediction of the expression structure
is regarded as a classification problem, which offers a
fresh perspective on supervised learning-based SR methods.
DeepSymNet is convenient for decomposing SR into operator
selection and connection relationship selection, improving
the solution performance. These contributions allowed us
to obtain a model with high accuracy. Furthermore, our
model can provide good approximate solutions to test samples
whose labels did not appear in the training set, indicating
that the trained model has learned how to solve SR. The
proposed algorithm was tested on artificially generated data
and public test datasets and compared with current popular
algorithms. The experimental results prove the superiority of
the algorithm in terms of accuracy and speed. This study
is an application of AI in solving mathematical problems
(i.e., AI for mathematics).

However, the proposed algorithm has some limitations. Its
greatest limitation is that the prediction result is affected

TABLE XXXV
ODE DATASET

TABLE XXXVI
AIFEYNMAN DATASET

when the sampling interval of the test sample variable is
inconsistent with that of the training sample. A possible
solution is to combine it with search-based algorithms, such
as reinforcement learning, to leverage the strengths of both
algorithms.

APPENDIX
PUBLIC DATASETS USED IN EXPERIMENTS

The public test datasets (Koza, Korns, Keijzer, Vlad [30],
ODE [25], and AIFeynman [2]) used in this article are
presented in Tables XXXI–XXXVI.
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