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Abstract— Recently, machine/deep learning techniques are
achieving remarkable success in a variety of intelligent control
and management systems, promising to change the future of
artificial intelligence (AI) scenarios. However, they still suffer
from some intractable difficulty or limitations for model training,
such as the out-of-distribution (OOD) issue, in modern smart
manufacturing or intelligent transportation systems (ITSs).
In this study, we newly design and introduce a deep generative
model framework, which seamlessly incorporates the information
theoretic learning (ITL) and causal representation learning
(CRL) in a dual-generative adversarial network (Dual-GAN)
architecture, aiming to enhance the robust OOD generalization
in modern machine learning (ML) paradigms. In particular,
an ITL- and CRL-enhanced Dual-GAN (ITCRL-DGAN) model
is presented, which includes an autoencoder with CRL (AE-
CRL) structure to aid the dual-adversarial training with
causality-inspired feature representations and a Dual-GAN
structure to improve the data augmentation in both feature
and data levels. Following a newly designed feature separation
strategy, a causal graph is built and improved based on the
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information theory, which can enhance the causally related
factors among the separated core features and further enrich
the feature representation with the counterfactual features
via interventions based on the refined causal relationships.
The ITL is incorporated to improve the extraction of low-
dimensional feature representations and learn the optimized
causal representations based on the idea of “information flow.”
A dual-adversarial training mechanism is then developed, which
not only enables the generator to expand the boundary of
feature distribution in accordance with the optimized feature
representation from AE-CRL, but also allows the discriminator
to further verify and improve the quality of the augmented data
for OOD generalization. Experiment and evaluation results based
on an open-source dataset demonstrate the outstanding learning
efficiency and classification performance of our proposed model
for robust OOD generalization in modern smart applications
compared with three baseline methods.

Index Terms— Autoencoder (AE), causal representation learn-
ing (CRL), deep learning, generative adversarial network (GAN),
information theoretic learning (ITL), out-of-distribution (OOD).

I. INTRODUCTION

IN RECENT years, machine learning (ML) techniques
have demonstrated excellent performance in developing

various intelligent systems and applications, including smart
manufacturing, smart healthcare, and intelligent transportation
systems (ITSs). Classic ML models usually exhibit reliable
classification or prediction capabilities, but mainly rely on a
fixed and known distribution called in-distribution (ID) [1],
[2], [3]. This is one of the most fundamental assumptions
for ML, which sets the training and test data as independent
and identically distributed (IID). It is noticed that many ML
algorithms with empirical risk minimization (ERM) rely on
the IID assumption. However, studies also revealed their
vulnerability to different distributions of data [4]. In fact,
ML may even face unknown test distributions in real scenario
applications, which may complicate the original IID scenario.
In particular, the test data may have the different distributions
to the training data, and collecting data from different
environments and rebuilding the training set are high cost
or even impossible. It, thus, becomes important to consider
and generate the out-of-distribution (OOD) data samples, so as
to enhance the generalization of learning models in non-IID
issues.
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Basically, OOD generalization problem assumes that data
are extracted from a set of available training domains, and,
thus, can be generalized to a larger set, including all invisible
domains [5]. Most ML models aim to learn the features
with certain invariance in the training data domain, and
these features need to be preserved in the invisible domain.
As one of the important representation learning strategies,
causal representation learning (CRL), which aims to embed
prior knowledge into learning processes in an unsupervised or
semisupervised way, would be able to realize more reliable
predictions with the learned causal representations for domain
adaptation in nonstatic environments, especially when facing
the situation that distributions of training and test data may
be related but different, due to the environmental variation,
selection bias, or time shift in distribution [6]. Krueger et al.
[7] pointed out the use of invariant causality prediction to
achieve the generalizability in across domains, in which the
causal mechanism during data generation process might be
the same across different domains, while interventions can
be varied by domains. Wang et al. [8] introduced CRL
for OOD recommendations and proposed to transfer user
features as intervention and object-oriented recommendations
as postintervention inference of interaction probabilities. They
further integrated the variational autoencoder (VAE) into
causal modeling, which could leverage the encoder to infer the
unobserved user features from historical interactions. Although
the existing research works have shown advance in terms
of alleviation of cross-domain OOD generalization problem,
questions of which features need to be retained, and whether
uncontrollable factors will be introduced again during the
decoding of features for data generation, are still open issues,
calling for new design to capture latent data correlations
and resist distribution shifts with the newly learned feature
representations.

Currently, researchers are paying more efforts to improve
the robustness and generalization of ML models, e.g.,
by generating OOD samples that may appear near the ID
boundary [9], and can be fed into the classification model to
improve knowledge learning. Although several representative
generative models, such as AE and generative adversarial
network (GAN), have been widely used, they are prone to
bring feature selection bias during the data generation process
[10]. Generating data without restrictions will not only fail
to make OOD samples cover the ID boundary, but also
result in poor quality of the generated samples, which is not
conducive to the generalization of learning models. Typically,
addressing this issue can be considered from an information
theoretic perspective, where the mutual information can
be incorporated to effectively constrain the generated data.
It is indicated that ML techniques are inseparable from the
extensive exploration of information theory. Considering the
bias problem in information theoretic learning (ITL) can
essentially help finding the sources of bias [11], [12], which
points out a significant way to find the optimal balance
between accuracy and complexity using information theory,
toward the robust OOD generalization.

In this study, both the ITL and CRL are integrated into
a generative model framework to realize a dual-adversarial
training for the robust OOD generalization. Specifically,

an ITL- and CRL-enhanced Dual-GAN (ITCRL-DGAN)
model is introduced, in which an AE with CRL (AE-CRL)
structure is constructed to assist the dual-adversarial training
in causality-inspired feature representation, while a Dual-GAN
structure is built to improve the data augmentation in both
feature and data levels. Based on a newly designed feature
separation strategy, a causal graph is improved to enhance
the causally related factors in core features, so as to generate
the enriched feature representations according to the latent
causal relationships with better learning efficiency. The ITL
is incorporated to improve the extraction of low-dimensional
feature representations and further learn the optimized
causal representations among the separated core features
using the idea of “information flow.” A dual-adversarial
training mechanism for intelligent data augmentation is finally
developed to tackle the OOD problem. Main contributions of
this study can be summarized as follows.

1) An integrated deep generative model framework is
proposed, in which four loss functions, including an
evidence lower bound loss to facilitate the modeling
of posterior distributions of latent variables with
better distribution description, a causal structure loss
to refine relationships among causal representation
variables based on maximum mean discrepancy (MMD),
an information flow loss to improve the quality of causal
representation by maximizing relations between labels
and the core features, and a reconstruction loss to reduce
the deviation between the generated data and real data,
are defined and seamlessly work together to realize the
causality-inspired feature representation in supporting
the dual-adversarial training from both feature and data
levels.

2) A CRL-enhanced AE structure is designed, in which
a feature separation strategy is newly introduced to
separate the so-called causal features that may be more
relevant to the class labels; then, an information theory-
enhanced causal graph is built to facilitate the finding
of more causally related factors among core features
and, thus, can enrich the feature representation with
counterfactual features via interventions based on the
refined causal relationships.

3) A Dual-GAN structure is devised, in which the first
adversarial network is constructed to maximally retain
the key information in the original data and optimize the
latent features of GAN to expand the boundary of feature
distribution, while the second adversarial network is
constructed to further verify the quality of the augmented
data and make it fit the real data distribution as much
as possible.

The rest of this article is addressed as follows. The state-
of-the-art techniques related to this study are reviewed in
Section II. The basic model architecture is introduced in
Section III. We explain the core mechanisms to realize
the AE-CRL and Dual-GAN for robust OOD generalization
in Section IV. Experiment and evaluation results are
demonstrated and discussed in Section V. We conclude
this study and give promising perspectives regarding future
research in Section VI.
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II. RELATED WORKS

In this section, the existing techniques and methods related
to ITL, CRL, and GAN are reviewed and summarized,
respectively.

A. Information Theoretic Learning

Recently, in addition to optimizing more cost-effective ML
schemes, connections among statistics, information theory, and
ML are received remarkable attentions and are extensively
explored, aiming to capture more informative but low-
dimensional features from large-scale data. Honkela and
Valpola [13] discussed the variational learning and bits-back
coding from an information theoretic view. They reviewed
the general idea of statistical Bayesian framework with
information theoretic minimum-description-length principle
and indicated the benefit by combining the views of Bayesian
statistics and information theory for model selection and
parameter optimization in learning tasks. Tan et al. [14]
introduced an information theoretic framework to examine
the information-based learning capacity using a so-called
interactively and integratively connected deep recurrent neural
network, which could theoretically analyze the model’s
learning behavior, and further prove the capacity of capturing
the multiscale dependence of spatiotemporal data in predictive
spatiotemporal analytics tasks. Goldfeld and Polyanskiy [15]
focused on the information bottleneck theory as one of the
specific information theoretic paradigms for deep learning
analysis. They discussed operational interpretations, especially
the Gaussian information bottleneck setup, and pointed out
advances in deep neural network-based feature representation
when adopting mutual information in information bottleneck
framework. Li et al. [16] presented an ITL-based method
for diffusion distributed estimation, in which they employed
the error entropy criterion to improve the cost function
based on two algorithms named diffusion minimum error
entropy algorithm and diffusion entropy bound minimization
algorithm. Boscolo et al. [17] introduced an information
theoretic exploratory framework based on the concept of
statistical coinformation, which incorporated a so-called
moment-based approximation of coinformation measure,
to estimate the high-dimensional multivariate probability
density functions based on a set of conditioning variables.
Considering the uncertainty issue in discriminative data
representation tasks, Deng et al. [18] built a robust information
theoretic framework for feature transformation, in which a
discriminative classifier was developed to maximize the mutual
information with a transformation function in the latent space.
They also discussed the three different implementations in
terms of linear subspace embedding, deep transformation,
and structured sparse learning. Meyer et al. [19] designed an
information theoretic feature selection criterion for microarray
data filtering, which defined two properties to realize the
maximization in both lower bound and upper bound of the
mutual information of a subset. They further implemented
it using a backward elimination combined with a sequential
replacement strategy to deal with the densest subgraph
problem. Zhang et al. [20] developed a reinforcement learning
model with an asynchronous advantage actor–critic algorithm,

which utilized the mutual information to measure the user-
level and aggregate-level privacy leakage, respectively, aiming
to optimize the centralized privacy-preserving aggregate
mobility from the information theoretic perspective. To deal
with the generally defined feature transformation learning
problem, Özdenizci and Erdogmus [21] proposed a maximum
mutual information linear transformation method based on
ITL. They further built a graphical model-based hierarchical
multiclass decoding framework to improve the multiclass
classification performance in brain–computer interface tasks.
Xu et al. [22] developed two algorithms using diffusion
cooperative strategy, to deal with the linear and nonlinear
multilabel classification, respectively. They introduced an
information theoretic measure to optimize the cost function
based on a label correlation term defined on some anchor data
with a distributed matrix completion scheme.

B. Causal Representation Learning

In current years, the concept of CRL has drawn more
and more attentions, which could help to learn more about
structural knowledge or causal relations among variables,
exploring the robustness of deep neural network architectures
in modern ML research. Sun et al. [23] integrated the
causal graph into the reinforcement learning framework and
proposed a relation transfer method to infer the target
domain model based on the summarized causal relations
from source task variables using the prior causal knowledge.
Wang et al. [24] constructed a causal graph to analyze
causal relationships in terms of the unbiased user intents with
specific semantics in recommendation tasks. They developed
a causal intervention mechanism, to refine the semantic-
aware representations by eliminating the confounding bias
and disentangling users’ true intents in specific item context.
Guo et al. [25] focused on the causal contextual entropy
prediction in image compression and built a causal context
model to better utilize the so-called channelwise relationships,
which might capture the highly informative adjacent contexts.
They defined the separate entropy coding in a causal global
prediction model with a group-separated attention module,
to pursue more accurate predictions of undecoded points.
Yang et al. [26] designed a causal AE with a causal structure
learning module, to learn the causal representation in a single
source domain. They employed the CRL to generate causal
representations and task-irrelevant representations from low-
dimensional representations, in order to solve the robust
domain adaptation problem. Rao et al. [27] considered the
causal model for decision-making in the medicine field. They
built a transformer-based model to analyze causal associations
from electronic health records, and their experiment results
indicated the benefit of using causal inference for more
accurate estimations. Zhang et al. [28] presented a domain
adaptation model for weather condition discovery, in which a
dynamic item extraction strategy was proposed to guarantee
the representativeness of each prototype of object features in
a confounder dictionary, and a causal intervention reasoning
module was constructed to improve the invariant feature
representation. Xiang and Truong [29] addressed an expressive
causal interaction function for the nonimpeding noisy-AND
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tree and formulated a concise structure representation based
on two structural acquisition methods, which could be used in
both elicitation-based and ML-based acquisitions in Bayesian
networks. Wang et al. [30] introduced a so-called reinforced
causal explainer based on reinforcement learning techniques,
to improve the explainability in graph neural network models.
Their method enhanced the importance of causal effects and
dependencies on each edge, to build an explanatory subgraph
and explain the prediction result as a sequential decision
process. Sahoh et al. [31] built a graph-based structural causal
model to improve the qualitative knowledge representation
in internet of things (IoT) systems when detecting fault
events from sensory signals, in which a causal discovery
algorithm was developed to determine cause-and-effect in ML
models toward human-like perception from observational data.
Zhu et al. [32] applied causal inference into the deep neural
networks, aiming to enhance the causal effect in a supervised
learning scheme. They constructed a direct learning framework
with a shared representation layer and a propensity prediction
regularizer to improve the treatment effect estimation in
multitask learning.

C. Generative Adversarial Networks

It is noticed that GAN has become a promising unsupervised
learning technique in dealing with a variety of intelligent tasks,
ranging from data augmentation, anomaly detection, to dialog
generation, and image translation. Huang et al. [33] presented
an attentive GAN in a self-supervised framework, to deal
with the video anomaly detection in a unsupervised way.
They designed a self-attentive predictor to extract long-term
dependences, and a vanilla discriminator and a self-supervised
discriminator to improve the true–false discrimination and
self-supervised rotation detection. Cai et al. [34] introduced
a dual-attentional GAN for the task of image synthesis
from text description, in which a textual attention module
was used to model the interaction between vision and
text, while a visual attention module was used to learn
the internal vision representation from channel and spatial
axes. Wang et al. [35] proposed a conditional GAN with
a two-step data augmentation strategy in aircraft design.
The GAN-based neural network was employed to augment
the original airfoil dataset with different properties and
further improve the prediction of pressure coefficient curve.
Choi et al. [36] addressed a GAN-based defense model in
two transformation steps. They defined a joint loss function
to optimize parameters in the generator, which could better
learn the vulnerability of the target neural network model
based on the generated adversarial examples. Zheng et al.
[37] employed GAN into the attribute augmented network
embedding task and constructed an attribute augmented
network to extract the node attribute and structural feature
by capturing the latent distribution of data in low-dimensional
representations. They used the teacher forcing scheme with
a pretraining algorithm to improve the training efficiency
and stability during the generative model implementation
process. Shao et al. [38] incorporated GAN into the capsule
network for the better utilization of view angle invariance
and rotation equivariance in image-to-image translation issues.

They applied two capsule networks as the discriminators,
in which the routing algorithm was optimized with the
combination of margin loss and original adversarial loss
in a multiagent competition mechanism. Jiang et al. [39]
developed a weakly supervised discriminative learning scheme
based on a spectral constrained GAN for hyperspectral
anomaly detection, in which a so-called orthogonal projection
divergence spectral constraint based on Kullback–Leibler
(KL) divergence was proposed to enhance the discrimination
capacity in an end-to-end architecture. To improve the training
process of GAN, Franci and Grammatico [40] introduced a
stochastic relaxed forward–backward algorithm and its variant
with averaging, which only included one evaluation of the
pseudogradient mapping for each iteration. They proved that
the convergence could be guaranteed even only a few samples
are available. Considering the searching process as a bilevel
minimax problem, Tian et al. [41] tried to improve the
learning performance in GAN based on an automated search
framework. They trained GAN with a searched architecture
from the training dataset, while the search process was guided
by a differentiable evaluation metric to obtain the optimized
network parameters of both generator and discriminator.

III. FRAMEWORK OF ITCRL-DGAN
In this section, we first address the problem definition in

terms of the OOD issue and then introduce the network
architecture of our proposed ITCRL-DGAN model, which
basically consists of an AE-CRL structure and a Dual-GAN
structure.

A. Problem Definition
Traditional deep learning models heavily depend on the

IID assumption, which means the data distribution in model
training is required to be the same as in model testing,
Ptrain(X, Y ) = Ptest(X, Y ). However, it is noticed that the
phenomenon of distribution shift may happen in many real
application scenarios, which means distributions of the training
data and the test data may become different, and the test data
distribution may even become unknown due to the spatial
or temporal data evaluation or sample selection bias in data
collection [5]. To handle such OOD problem in reality, the
existing studies tried to use data augmentation techniques to
generate OOD samples for model training enhancement [42],
[43], but it still needs to face the inevitable distribution bias
when training the data generator.

Accordingly, both ITL and CRL are involved in our frame-
work to constrain the distribution bias and further generate
the augmented data to enhance the OOD generalization issue.
Specifically, given a generative model G(x, y,N ; θG), where
N is the random noise and θG is the parameter of the
generation model, the generator is designed to reduce the
distribution bias and be able to augment the original training
data D, where D = {(xi , yi )|xi ∈ X, yi ∈ Y }, X is the set of
original samples, Y is the corresponding set of the labels, and
the distribution of D is P(X, Y ) for data training. Based on the
augmented data Do = {(x j , y j )|x j ∈ Xo, y j ∈ Y }, where Xo is
the set of generated OOD samples with distribution Po(Xo, Y ),
the goal of the framework is to optimize the generator G
and discriminator D during a dual-adversarial training process,
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so as to enhance the data augmentation with generated OOD
samples.

In particular, the OOD generalization problem based on data
augmentation can be summarized as follows. Given a labeled
dataset D with the corresponding distribution P = (X, Y ),
our generative model G(x, y,N ; θG) aims to generate x j in
Do using the knowledge learned from D, while the generated
data keeps the same label in Y . It can effectively enhance
the diversity and reality of available data in model training
and finally improve the prediction of downstream classifier h,
which can be formulated as follows:

min
h

EX,y
[
L(h(X), y)

]
+ EXo,y

[
L(h(Xo), y)

]
. (1)

B. Basic Framework

In general, we design and propose a Dual-GAN structure,
which incorporates ITL and CRL to solve the OOD
generalization problem. As shown in Fig. 1, the basic
architecture includes two important parts: an AE-CRL module
and a Dual-GAN module. The AE-CRL is designed to assist
the Dual-GAN in causality-inspired feature representation,
in which an information theory-enhanced causal model is
constructed and integrated into the AE structure to better
learn the latent causal relationships among the separated core
features; then, generate the enriched feature representations
with counterfactual features. In the Dual-GAN, the first
adversarial network is designed to realize the data generation
in the feature level, which aims to maximally retain the
key information in the original data, and optimize the latent
features of GAN based on the intervention via an improved
causal graph, making the generator be able to expand the
boundary of feature distribution for the OOD generalization.
The second adversarial network is devised to realize the data
augmentation in the data level, which aims to make the
generated data fit the real data distribution as much as possible,
and further verify the quality of the augmented OOD data to
be more realistic.

Specifically, data x are first input into the AE-CRL; then,
the hidden variable Z is compressed and obtained after the
encoder based on ITL, to learn a low-dimensional feature
representation while avoiding the loss of key information.
The variational inference is used to calculate the evidence
lower bound loss LELBO, which could benefit the modeling
of posterior distributions of latent variables and result in
better data distribution. Following a feature separation strategy
that newly separates the obtained Z into the so-called causal
feature and confounder feature, an improved causal graph
with the direct acyclic graph (DAG) structure is constructed,
which is used to enhance the causally related factors among
the separated core features, based on two causal losses.
In particular, a causal structure loss LMMD is defined to
refine the causal relationships among causal representation
variables based on the MMD method, and an information
flow loss L IF is defined to improve the causal representation
by maximizing relations between labels and the core features.
A optimized feature representation Z ′ is then generated based
on counterfactual features via intervention. Differing from
[26], which also introduced CRL into the AE structure, our

design initializes the causal graph by the Markov blanket
and adds multilayer perceptron (MLP) to better learn the
nonlinear relationships among the core features. The idea
of “information flow” is improved and newly applied to
further enhance the quality of causal representations, rather
than simply using the structural loss for feature optimization.
In addition, we define a reconstruction loss L rec to control the
reduction of the deviation between the generated data x ′ and
the real data x by the decoder. Finally, the optimized Z ′ is
used as the input to train the first discriminator.

The design of the Dual-GAN structure basically consists
of one generator network, one decoder, and two discriminator
networks, to form a dual-adversarial training process. In the
first adversarial network, we input the random noise N
and label yi , yi ∈ {y1, y2, . . . , y|Y |}, into the generator G
and generate the hidden variable ZG in the GAN. The first
adversarial training is then conducted between Z ′ and ZG ,
which could make the generated features ZG continuously
approach the optimized Z ′. It is noted that, inspired by
Yang et al. [44], the intervention is employed and added during
the CRL so as to enrich the feature representation in Z ′ with
counterfactual features, aiming at expanding the boundary of
feature distribution in ZG . In the second adversarial network,
the augmented data sample x ′′ is generated from ZG via
the decoder on the basis of the first adversarial training.
Considering the generated x ′ usually in a relatively lower
quality with less diversity, while the enhancement of x ′ could
also benefit the improvement of Z ′ and further influence ZG
and x ′′ in a collaborative way, the second adversarial training
is then conducted among x , x ′, and x ′′, so as to augment more
reliable samples for the robust OOD generalization.

IV. ITL- AND CRL-ENHANCED DUAL-ADVERSARIAL
TRAINING FOR OOD GENERALIZATION

In this section, following the introduction on the AE-CRL
structure, we explain how to construct the improved causal
graph based on a feature separation strategy, and discuss the
implementation for the dual-adversarial training. An intelligent
data augmentation algorithm based on the proposed ITCRL-
DGAN for OOD generalization is developed finally.

A. AE With CRL

In general, we introduce the CRL into the AE structure,
so that the causal graph can be trained based on the
compressed feature representation Z ; then, the learned causal
relationships can be incorporated to generate the refined
feature representation Z ′, which is also used as the input to
the decoder to generate x ′.

Basically, the AE-CRL first inputs x into the compression
network to get the hidden variable Z , which can be simply
expressed as follows:

Z = Encoder(x). (2)

The variational inference approach is employed to model the
distribution of Z , which approximates an incalculable posterior
distribution pθ (Z |x, y) by constructing a new distribution
qϕ(Z |x, y). The difference between the two distributions is
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Fig. 1. Framework architecture of ITCRL-DGAN.

quantified by the KL divergence, and the specific calculation
process can be formulated as follows:

KL[qϕ(Z |x, y)||pθ (Z |x, y)]

= Ez∼qϕ
[log qϕ(Z |x, y)− log pθ (Z |x, y)] (3)

where pθ (Z |x, y)] can be deconstructed by a Bayesian
approach; thus, (1) can be updated as a new expression

KL[qϕ(Z |x, y)||pθ (Z |x, y)]

= Ez∼qϕ
[logqϕ(Z |x, y)− logpθ (x |Z , y)

−logpθ (Z |y)] + logpθ (x |y) (4)

where logpθ (x |y) denotes the log likelihood of the sample and
Ez∼qϕ

[logpθ (x |Z , y)] denotes the expectation of reconstruct-
ing Z into the value of likelihood function of x .

We hope that this expectation is as large as possible, so that
the result of the hidden variable can become better. Thus,
(4) can be expanded to further obtain a lower bound for the
distribution, which can be fixed as follows:

KL[qϕ(Z |x, y)||pθ (Z |x, y)]

= −Ez∼qϕ
[logpθ (x |Z , y)]

+ KL[qϕ(Z |x, y)||pθ (Z |y)] + logpθ (x |y) (5)

where −Ez∼qϕ
[logpθ (x |Z , y)] + KL[qϕ(Z |x, y)||pθ (Z |y)]

denotes the evidence lower bound and can be used to
quantified the evidence lower bound loss LELBO.

Assuming that qϕ and pθ are codistributed, then
KL[qϕ(Z |x, y)||pθ (Z |x, y)] = 0; thus, it can be further

improved as follows:

logpθ (x |y) = Ez∼qϕ
[log pθ (x |Z , y)]

−KL[qϕ(Z |x, y)||pθ (Z |y)]. (6)

Accordingly, the target of the variational inference is to
maximize the likelihood function pθ (x |y), which equals to
maximize the evidence lower bound. It is noted that, following
this way, the reconstruction process of unobservable variables
can be efficiently improved.

The extracted hidden variable Z is then input into the
causal graph structure, aiming to obtain the optimized feature
representation Z ′ based on the refined causal relationships
among core features. Finally, our AE-CRL puts Z ′ into the
decoder and obtains the reconstructed sample x ′. It is noted
that the dimension of x ′ should be the same as that of x . The
general expression of x ′ can be simply described as follows:

x ′ = Decoder(Z ′). (7)

The mean square error is used to quantified the reconstruc-
tion loss L rec between input x and output x ′, which can be
defined as follows:

L rec = ||x − x ′||2. (8)

B. Causal Model Constructing

As shown in Fig. 2, to enhance the learning effect in terms
of finding more causally related factors among the extracted
features when constructing causal graph, we design to only
input those core features that may be more relevant to the class
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Fig. 2. Causal model structure based on feature separation.

labels into the causal graph model, which means the extracted
Z needs to be defined and separated into two categories: the
causal feature ZC and the confounder feature ZS .

Given S as a confounder set {si }
|Y |
i=1, where |Y | is the

number of labels in dataset, si is defined as a vector to
describe the confounder features in terms of yi in feature
space. For example, considering a image classification task,
the confounder features can be recognized as the background
features, which may not very related but confuse the
identification of the core object in a given picture.

Similar to [45], considering both the causal features and
confounder features can be represented by manifolds, ZS can
be modeled as follows:

ZS = f (Z , S) =

|Y |∑
i=1

P(si |Z)si (9)

where P(si |Z) indicates the probability that Z belongs to the
confounder features of si .

Inspired by Hinton et al. [46], which considers a classifier
based on (9) as the distilled knowledge for feature extraction,
we design to separate the confounder features from Z by a
subtraction operation. The separated causal feature ZC can
then be obtained and described as follows:

ZC = Z − ZS (10)

where “−” denotes the operation of matrix subtraction.
We go further to discuss the construction of the causal

graph, which may causally describe a hidden relationship
between the parent and child nodes, using a DAG structure.
In particular, we employ the Markov blanket to accelerate the
convergence during the initialization process, and incorporate
the MLP to enhance the learning of nonlinear relationships
among features, which can be expressed as follows:

C = MLP(ZC) (11)

where C = {C1, C2, . . . , Cn} denotes the new nonlinear
representations of features and MLP(∗) indicates a two-layer
neural network.

Interventions are then involved to refine the more
exact causal relationships among the input causal features.
T = {T1, T2, . . . , Tn} represents a collection of interventions

that work on different feature nodes, respectively. For example,
as shown in Fig. 2, when an intervention T4 is added to C4,
it will cut off all edges pointed to C4 (i.e., C1 and C3); thus,
C4 is not affected by other nodes and can be viewed as a
constant. Following this way, the intervention can break down
the spurious correlation by controlling C4 as a constant and
then analyze the causality among other features.

Since the causal graph is implemented based on DAG,
it can be described as an adjacency matrix A. Then, the
improved nonlinear representation C ′ based on the refined
causal relationships can be obtained and described as follows:

C ′ = AT C + ϵ (12)

where C ′ = {C ′1, . . . , C ′4, . . . , C ′n} and ϵ denotes the additive
noise.

The obtained C ′ is then used as the input to another MLP
to generate the reconstructed feature representation Z ′C , which
can be expressed as follows:

Z ′C = MLP(C ′). (13)

Accordingly, the optimized causal features Z ′C from the
improved causal graph can be fused again with the separated
confounder features to generate the reconstructed feature
representation Z R , which can be expressed as follows:

Z R = ZS + Z ′C (14)

where “+” denotes the operation of matrix addition.
To better learn the casual structure, we define a causal

structure loss LMMD to calculate the error between ZC and
Z ′C based on MMD, which can be quantified as follows:

LMMD = MMDk
(
ZC , Z ′C

)
+ λ|A| (15)

where |A| is defined to denote the number of edges in A.
MMDk = (1/n2)

∑n
i, j=1 k(xi , x j ) + (1/n2)

∑n
i, j=1 k(x ′i , x ′j ) −

(2/n2)
∑n

i, j=1 k(xi , x ′j ), and kernel k is usually taken as the
Gaussian kernel, k(x, x ′) = exp(−γ ∥x − x ′∥2

2).
Furthermore, to more effectively mine the causal rela-

tionships and explore how the causal variables affect the
predicted labels, the information theory, especially the idea of
“information flow” [47], is improved and applied to measure
the causal information among those core features, which can
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be viewed as the causal counterpart of the mutual information
I (ZC ; y), and is defined as I (ZC → y). It is noted that
I (ZC → y) is not equal to I (ZC ; y) and can be formulated
as follows:

I (ZC → y)

=

∫
P(ZC)

∑
y

P(y|do(ZC))log
P(y|do(ZC))∫

P(y|do(ZC))d ZC
d ZC

(16)

where do(ZC) indicates the intervention and the classic
backdoor adjustment is used to calculate P(y|do(ZC))

P(y|do(ZC)) =
∑

Z

P(y|ZC , Z)P(Z). (17)

Based on the above calculations, we may keep ZC fixed
and estimate the causal effect of ZC on y, so as to maximally
retain the causal representation related to the label information
and refine the causal associations among the extracted core
features.

Finally, by using I (ZC → y) to quantify the information
flow loss L IF, a total causal loss Lc based on the constructed
causal graph can be expressed as follows:

LC = LMMD − L IF. (18)

We then employ the counterfactual estimation to generate
the counterfactual features Zcf based on the “abduction-
action-prediction” process [48], toward the alleviation of OOD
issue. Following the “abduction” step implemented by the
improved causal graph, the counterfactual interventions, which
will make a certain causal variables as the constant, are
used as actions in the “action” step, so as to generate the
counterfactual features. Then, the generated counterfactual
features will be utilized as the input in the “prediction”
step. If the predicted result is consistent with the original
label, it indicates that this result falls within the feature
space of that label; thus, this generated counterfactual feature
can be kept, while those features whose predicted labels are
changed will be discarded. The enriched feature representation
with the generated counterfactual features can be expressed
as follows:

Z E = ZS + Zcf (19)

where “+” denotes the operation of matrix addition.
Finally, the optimized feature representation based on

AE-CRL can be obtained and described as follows:

Z ′ = Z R ∪ Z E . (20)

C. Dual-Adversarial Training

As shown in Fig. 1, our proposed Dual-GAN structure
is mainly composed of a redesigned generator with two
discriminators. Similar to a conventional conditional GAN,
the input includes a random noise N with the label y. The
generator consists of two encoders, and we encode noise N
by one encoder, which can be simply expressed as follows:

Ne = Encoder(N ). (21)

Label y needs to be re-encoded to obtain the label
representation, so that it can be matrix-summed with
the updated random noise, which is simply expressed
as follows:

ye = Encoder(y)

ZG = f (Ne + ye). (22)

During the first and second adversarial training, the
generator G(∗) needs to make the generated feature or data
as realistic as possible to fool the discriminator, for example,
making the gap between G1(N , y) and Z ′ as small as possible.
The discriminator D(∗) outputs a scalar that discriminates
whether the input is the real data or from the generated data.
The G(∗) and D(∗) work together to learn the features, and
maximize the probability of D(∗) in making mistakes that
determine the input is from the original data rather than G(∗),
according to the following adversarial game:

min
G

max
D

E[D(∗)] + E[1− D(G(∗))] (23)

where E(∗) is the expectation. On the one hand, we expect
E[1−D(G(∗))] to be as small as possible; on the other hand,
we expect E[D(∗)] to be as large as possible.

In the first adversarial training, we employ Z ′ generated
by AE-CRL to train the first discriminator D1, and input
the generated ZG to it. Through the backpropagation, the
discriminator can be trained adversarially with the generator.
The loss function LG of the generator can be expressed as
follows:

LG = Entropy(D1(G(N , y), 1)). (24)

While training the AE-CRL, Z ′ and ZG are input into D1
for the first adversarial training. The loss function L D1 of D1
can be expressed as follows:

L D1 =
1
2
(Entropy(D1(Z ′), 1)+ Entropy(D1(G(N , y)), 0))

(25)

where Entropy(∗) is the binary cross entropy.
It is noted that by adding interventions through the

constructed causal graph, the enriched causal representation
can be added to the original compressed hidden variable
Z based on the refined causal relationships, as the new
representation Z ′. Thus, it can be used to achieve the
goal of data generation in the feature level during the
first adversarial training, enabling the generator to generate
data with more causality-enhanced features against the OOD
issue.

In second adversarial training, ZG generated in the first
adversarial training is used to obtained the augmented data
x ′′ through the decoder, which can be simply expressed as
follows:

x ′′ = Decoder(ZG). (26)

The augmented x ′′ based on ZG and x ′ from AE-CRL
is then adversarially trained with the original x . The loss
functions, LDec1 of the decoder in the AE-CRL structure and
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Algorithm 1 Data Augmentation for OOD Generalization
Input: An original dataset D
Output: A generated dataset Do

1: Initialize the model
2: Initialize iteration T , batch size b, steps s, intervention I
3: for t in T do
4: for s steps do
5: Sample mini-batch of b original data {x s

1, x s
2, . . ., x s

b}

6: Sample mini-batch of b noise data {ns
1, ns

2, . . . , ns
b}

7: Sample mini-batch of b class label {ys
1, ys

2, . . . , ys
b}

8: Construct {zs
1, zs

2, . . . , zs
b} as the input of the causal

model by Eq. (2)
9: Generate {zs

1
′, zs

2
′, . . . , zs

b
′
} by Eq. (10)-(14)

10: Generate {zs
G1

, zs
G2

, . . . , zs
Gb
} by Eq. (21)-(22)

11: Generate {x s
1
′, x s

2
′, . . . , x s

b
′
} by Eq. (7)

12: Generate {x s
1
′′, x s

2
′′, . . . , x s

b
′′
} by Eq. (26)

13: Update AE-CRL by Eq. (18) and Eq. (27)
14: Update generator by Eq. (24)
15: Update decoder in Dual-GAN by Eq. (28)
16: Update discriminator D1 by Eq. (25)
17: Update discriminator D2 by Eq. (29)
18: end for
19: end for
20: Sample m noise data {n1, n2, . . . , nm}

21: Sample m class label {c1, c2, . . . , cm}

22: Generate {zG1 , zG2 , . . . , zGm } by Eq. (21)-(22)
23: Generate the augmented data X ′′ = {x ′′1 , x ′′2 , . . . , x ′′m} by

Eq. (26)
24: Do ←− X ′′

25: return Do

LDec2 of the decoder in the Dual-GAN structure, for the second
adversarial training, can be described, respectively, as follows:

LDec1 = Entropy(D2(Decoder(Z ′), 1)) (27)
LDec2 = Entropy(D2(Decoder(ZG), 1)). (28)

The generator and AE-CRL aim to make the generated data
fool the discriminator as much as possible, which means the
generated x ′ and x ′′ need to be as closer as possible to the
original sample x .

After putting x , x ′, and x ′′ into the second discriminator D2
for training, the loss function L D2 of D2 can be expressed as
follows:

L D2 =
1
3
(αEntropy(x, 1)+ Entropy(x ′, 0)

+Entropy(x ′′, 0)) (29)

where α denotes the hyperparameter.
Following this way, based on our designed Dual-GAN

structure, the first adversarial training is performed between
ZG and Z ′ in the feature level, which allows the generator
to expand the boundary of feature distribution in accordance
with the optimized feature representation from AE-CRL. The
second adversarial training is conducted among x , x ′, and x ′′

in the data level, which not only enables the augmented data
to be as realistic as possible, but also can effectively alleviate
the OOD issue.

D. Data Augmentation for OOD Generalization

Based on the discussion above, the loss function of AE-CRL
can be optimized according to the evidence lower bound loss
LELBO, causal loss LC , and reconstruction loss L rec, which can
be expressed as follows:

LAE-CRL = −LELBO + β1LC + β2L rec (30)

where β1 and β2 are the hyperparameters.
Considering those adversarial losses discussed in Dual-

GAN, finally, the overall loss function for our ITCRL-DGAN
model can be expressed as follows:

L ITCRL-DGAN = LAE-CRL + λ1LG + λ2L D1 + λ3LDec1

+λ4LDec2 + λ5L D2 (31)

where λ1–λ5 are the hyperparameters.
The detailed algorithm to realize the intelligent data

augmentation for OOD generalization in a dual-adversarial
training process is shown in Algorithm 1. It basically consists
of two parts: one is the training part of AE-CRL and Dual-
GAN (from Lines 3 to 19), where {zs

1
′, zs

2
′, . . . , zs

b
′
} generated

from the causal model in AE-CRL and {zs
G1

, zs
G2

, . . . , zs
Gb
}

generated from the generator in Dual-GAN are used to
adversarially train discriminator D1, while the original data
{x s

1, x s
2, . . . , x s

b} and {x s
1
′, x s

2
′, . . . , x s

b
′
} generated from decoder

in AE-CRL and {x s
1
′′, x s

2
′′, . . . , x s

b
′′
} generated from decoder

in Dual-GAN are used to adversarially train discriminator
D2. Another one is the generation part based on the trained
generative model, where X ′′ = {x ′′1 , x ′′2 , . . . , x ′′m} will be
used as the augmented data to facilitate the robust OOD
generalization problem.

V. EXPERIMENT AND ANALYSIS

In this section, the experiment design with the used public
dataset is first introduced, followed by a series of evaluations
conducted to compare and demonstrate the usefulness and
effectiveness of the proposed ITCRL-DGAN model in data
augmentation for OOD generalization.

A. Experimental Design

The well-known Canadian Institute for Advanced Research,
10 classes (CIFAR-10) dataset is employed to conduct the
experiment using our proposed model. The dataset consists of
60 000 of 32 × 32 color images from ten categories, namely,
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck. We also use the CIFAR-10-C dataset to evaluate
the extent to which our ITCRL-DGAN model can generalize
to OOD issues. CIFAR-10-C contains variants of CIFAR-10
test images altered by various corruptions (e.g., Gaussian noise
and motion blur). When computing sufficient input subsets
on CIFAR-10-C images, we use a uniform random sample of
2000 images across the entire CIFAR-10-C set.

To verify the validity of the proposed model, several
classical or newly proposed methods, including DAG-graph
neural network (DAG-GNN) [49], causal autoencoder (CAE)
[26], and regularized training with invariance on causal
essential set (RICE) [50], are employed to conduct the
comparison evaluations, which are summarized as follows.
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Fig. 3. Learning performance analysis. (a) First adversarial training. (b) Second adversarial training. (c) AE-CRL. (d) ITCRL-DGAN.

1) DAG-GNN: A deep generative model based on VAE,
which introduced a GNN architecture with MLP to
improve the data generation.

2) CAE: A causal structure learning method based on
VAE, which combined a causal graph with an AE
to capture causal representations for robust domain
adaptation problem.

3) RICE: A regularized training algorithm based on Cycle-
GAN, which employed the so-called causal invariant
transformations to modify the noncausal feature for
OOD generalization.

In addition, to demonstrate performances among our
ITCRL-DGAN and the three baseline methods, evaluation
metrics that include precision, recall, F1 score, and accuracy
are considered. Experiments are conducted on an Ubuntu
server, GTX 3080Ti, E5-2683 Core, 32G RAM, and
Python 3.8.

B. Evaluation on Training Efficiency
We first compare and demonstrate the learning performance

of our proposed model in the first adversarial training,
the second adversarial training, AE-CRL, and the complete
ITCRL-DGAN, respectively. The results are shown in Fig. 3.

As shown in Fig. 3(a) and (b), the loss values of the
generator and discriminator are trending toward each other and
eventually converge to their respective optimal losses, which
indicates that our proposed model can be effectively trained
to generate high-quality data. In particular, during the first
adversarial training, the loss values of LG and L D1 converge
to 0.66 and 0.93 around 500 iterations, respectively. This
indicates the effectiveness of our model that is able to capture
the latent features and enrich the feature representation in AE-
CRL. As for the second adversarial training, a similar trend
can be observed, where LDec2 and L D2 are converging toward
each other, reaching the values of 1.5 and 0.8, respectively.
However, due to the complexity of the three-way adversarial
process, three points are worth noting during the second
adversarial training. First, during the first ten iterations, a rapid
increase in LDec1 and a rapid decrease in L D2 can be observed.
This is due to the fact that the AE-CRL module shows a
rapid drop in LAE-CRL loss in Fig. 3(c), which may cause
the model instability. This affected the quality of the data
generated by the model for a brief period of time. While
after the initial instability, the quality of the generated data
could recover and improve rapidly. Second, unlike in Fig. 3(a),
where LG and L D1 have the tendency to converge, the loss of
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Fig. 4. Comparison on feature visualization based on augmented data using UMAP. (a) Original. (b) DAG-GNN. (c) CVAE. (d) RICE. (e) ITCRL-DGAN.

LDec2 crosses and exceeds the loss of L D2 . This is primarily
due to the complex interactions in the three-way adversarial
training among the decoder in Dual-GAN, decoder in AE-
CRL, and the second discriminator. In the second adversarial
training, the rapid increase of LDec1 in the early stage leads
to rapid decrease of L D2 . Then, both LDec1 and L D2 need to
reduce and eventually force LDec2 to rise faster than that of
common cases. In addition, it is found that all of them are
able to continuously optimize their modules and eventually
converge to the optimal loss values. This result demonstrates
that our method can efficiently learn the causality-inspired
feature representation and train the generative model in the
dual-adversarial training process.

Moreover, according to Fig. 3(c) and (d), it can be observed
that LAE-CRL and L ITCRL-DGAN decrease rapidly in the first
20–30 iterations and then become relatively stable. These
results demonstrate the strong ability of our causal model
in learning the optimized feature representation among the
refined causal relationships and adaptability of the ITCRL-
DGAN model in dealing with the OOD problem.

C. Evaluation on Data Augmentation

Then, we demonstrate the feature visualization of the
generated data using uniform manifold approximation and
projection (UMAP), which is a data downscaling and
visualization tool with faster computation and better rep-
resentation of high-dimensional data in comparison with
t-distributed stochastic neighbor embedding (t-SNE) and
principal component analysis (PCA). The comparison results
among our proposed model and three baseline methods are
illustrated in Fig. 4.

Fig. 4(a) and (b) shows the visualization results of
the original data and the data processed by DAG-GNN,
respectively. It can be observed that the distribution of
similar data (the same label) is more dispersed, along with
no obvious boundary between different categories of data.
This means it is difficult for the subsequent classification
models to learn the class-to-class boundaries and classify the
samples correctly, leading to the classification results that are
not particularly satisfied, especially when facing the OOD
issue. Fig. 4(c) and (d) shows the visualization results of
the data generated by CVAE and RICE, respectively, which
introduced the causal models to perform data augmentation
on the samples. However, it can observed that although the
distribution of some classes is more concentrated, they still
have the problem of unclear boundaries between classes.
The data augmented by the proposed ITCRL-DGAN model
are visualized in Fig. 4(e). In comparison with the other
methods, our model results in a more uniform distribution and
more obvious boundaries between classes, which indicates the
significance of our AE-CRL in learning the enriched feature
representation, and the effectiveness of our Dual-GAN in data
augmentation from both the feature and data levels.

D. Evaluation on Classification Performance
We go further to compare the overall classification

performance of our ITCRL-DGAN against other three baseline
methods when facing the OOD problem. The classification
performance and the ablation analysis results are shown in
Tables I and II, respectively.

As shown in Table I, when facing the OOD problem,
the common trend is that the classification performance will
decrease significantly in the test dataset in comparison with
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TABLE I
COMPARISON ON CLASSIFICATION PERFORMANCE BASED ON DIFFERENT METRICS

TABLE II
ABLATION ANALYSIS BASED ON DIFFERENT METRICS

the training dataset. This general trend can be observed in all
four methods in Table I. Referring to Table I, all four methods
are able to achieve reasonably high training accuracy and
F1 score of higher than 90%. However, the DAG-GNN only
achieved 71% accuracy and 72.7% F1 score in test dataset,
which is the lowest among all four methods, demonstrating
its inability to handle the OOD problem. In comparison,
the proposed ITCRL-DGAN achieved 80% accuracy (4%,
6%, and 9% improvement against RICE, CVAE, and DAG-
GNN, respectively) and 84.2% F1 score (5%, 7.8%, and
11.5% improvement against RICE, CVAE, and DAG-GNN,
respectively). These results indicate that the proposed model
can effectively address the OOD problem in classification and
still maintain a reasonable performance in the test dataset.
In comparison with its best opponent (i.e., RICE), our ITCRL-
DGAN can improve the GAN model with a dual-adversarial
structure and an information theoretically enhanced causal AE
structure, to generate better quality data that address the OOD
problem. This eventually leads to a significant improvement
in the accuracy of the subsequent classification models.

In addition to the comparison against the other three state-
of-the-art methods, an ablation analysis is also conducted
to demonstrate the usefulness of each training steps. The
performance results are summarized in Table II. The /CRL
indicates the removal of the causal model in ITCRL-DGAN,
the /First-GAN is the case where the first discriminator is
removed on the basis of /CRL, and the /AE is when the AE is
removed on the basis of /First-GAN. The results clearly show
that the performance improves with each individual steps, and
removing any of these steps will result in a negative impact on
the classification performance. Overall, the complete ITCRL-
DGAN offers the best performance in addressing the OOD
problem and achieves the best result in the test dataset
because of the consideration of finding more causally related
factors among core features and using ITL- and CRL-enhanced
feature representations to aid a dual-adversarial training for the
robust generalization.

VI. CONCLUSION

In this article, we designed and proposed a generative
model called ITCRL-DGAN, which incorporated ITL and
CRL into a dual-adversarial training process, to better learn the

causality-inspired feature representation and improve the data
augmentation in both feature and data levels, toward the robust
OOD generalization in modern smart application development.

Specifically, an AE-CRL structure was designed to aid
the dual-adversarial training based on the optimized feature
representation, while a Dual-GAN structure was devised
to enhance the data augmentation with the OOD samples.
A feature separation strategy was newly proposed, which
separated the compressed hidden variable into the causal
feature and confounder feature, and only input the causal
feature that could be more relevant to the class labels into
the causal graph, to improve the effect of causal learning.
An improved causal graph was then built, which could
find more causally related factors among the separated core
features and further enrich the feature representation with
counterfactual features via interventions based on the refined
causal relationships. In addition, the ITL was involved in
the generative model training, which could not only facilitate
the extraction of low-dimensional feature representations,
but also help learn the improved causal representations
based on the idea of “information flow.” In the Dual-GAN
structure, the first adversarial network was constructed to
maximally retain the key information in the original data and
expand the boundary of feature distribution in the feature
level, and the second adversarial network was constructed
to further improve the quality of the augmented data to
approach to the real data distribution as much as possible.
A dual-adversarial training mechanism was finally developed
to realize the intelligent data augmentation for the robust
OOD generalization. Compared with three other similar data
augmentation methods, experiment and evaluation results
based on an open-source dataset demonstrated the usefulness
and effectiveness of our proposed generative model in
terms of the outstanding learning efficiency and classification
performance for the improvement of OOD generalization in
smart application scenarios.

In future works, we will further investigate more deep
learning-based data augmentation schemes to enhance the
OOD generalization. More evaluations in different smart
application scenarios will be conducted to improve the
performance of our generative model with more efficient
algorithms.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



ZHOU et al.: ITL-ENHANCED DUAL-GANs WITH CAUSAL REPRESENTATION 13

REFERENCES

[1] V. Sandfort, K. Yan, P. J. Pickhardt, and R. M. Summers, “Data
augmentation using generative adversarial networks (CycleGAN) to
improve generalizability in CT segmentation tasks,” Sci. Rep., vol. 9,
no. 1, Nov. 2019, Art. no. 16884.

[2] J. Liu, Z. Hu, P. Cui, B. Li, and Z. Shen, “Heterogeneous risk
minimization,” in Proc. Int. Conf. Mach. Learn., 2021, pp. 6804–6814.

[3] Z. Shen, P. Cui, T. Zhang, and K. Kunag, “Stable learning via sample
reweighting,” in Proc. AAAI Conf. Artif. Intell., vol. 34, no. 4, 2020,
pp. 5692–5699.

[4] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do ImageNet
classifiers generalize to ImageNet?” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 5389–5400.

[5] H. Ye, C. Xie, T. Cai, R. Li, Z. Li, and L. Wang, “Towards a theoretical
framework of out-of-distribution generalization,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 34, 2021, pp. 23519–23531.

[6] B. Li et al., “Invariant information bottleneck for domain generalization,”
in Proc. 36th AAAI Conf. Artif. Intell., vol. 36, 2022, pp. 7399–7407.

[7] D. Krueger et al., “Out-of-distribution generalization via risk extrapola-
tion,” in Proc. Int. Conf. Mach. Learn., 2021, pp. 5815–5826.

[8] W. Wang, X. Lin, F. Feng, X. He, M. Lin, and T.-S. Chua, “Causal
representation learning for out-of-distribution recommendation,” in Proc.
ACM Web Conf., Apr. 2022, pp. 3562–3571.

[9] S. Vernekar, A. Gaurav, V. Abdelzad, T. Denouden, R. Salay,
and K. Czarnecki, “Out-of-distribution detection in classifiers via
generation,” 2019, arXiv:1910.04241.

[10] K. Sricharan and A. Srivastava, “Building robust classifiers through
generation of confident out of distribution examples,” in Proc. 3rd
Workshop Bayesian Deep Learn. (NeurIPS), 2018, pp. 1–5.

[11] K. Kuang, P. Cui, B. Li, M. Jiang, S. Yang, and F. Wang, “Treatment
effect estimation with data-driven variable decomposition,” in Proc. 31st
AAAI Conf. Artif. Intell., vol. 31, 2017, pp. 140–146.

[12] D. Liu et al., “Mitigating confounding bias in recommendation via
information bottleneck,” in Proc. 15th ACM Conf. Recommender Syst.,
Sep. 2021, pp. 351–360.

[13] A. Honkela and H. Valpola, “Variational learning and bits-back coding:
An information-theoretic view to Bayesian learning,” IEEE Trans.
Neural Netw., vol. 15, no. 4, pp. 800–810, Jul. 2004.

[14] Q. Tan, Y. Liu, and J. Liu, “Demystifying deep learning in predictive
spatiotemporal analytics: An information-theoretic framework,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 8, pp. 3538–3552,
Aug. 2021.

[15] Z. Goldfeld and Y. Polyanskiy, “The information bottleneck problem
and its applications in machine learning,” IEEE J. Sel. Areas Inf. Theory,
vol. 1, no. 1, pp. 19–38, May 2020.

[16] C. Li, P. Shen, Y. Liu, and Z. Zhang, “Diffusion information theoretic
learning for distributed estimation over network,” IEEE Trans. Signal
Process., vol. 61, no. 16, pp. 4011–4024, Aug. 2013.

[17] R. Boscolo, J. Liao, and V. Roychowdhury, “An information
theoretic exploratory method for learning patterns of conditional gene
coexpression from microarray data,” IEEE/ACM Trans. Comput. Biol.
Bioinf., vol. 5, no. 1, pp. 15–24, Mar. 2008.

[18] Y. Deng, F. Bao, X. Deng, R. Wang, Y. Kong, and Q. Dai, “Deep
and structured robust information theoretic learning for image analysis,”
IEEE Trans. Image Process., vol. 25, no. 9, pp. 4209–4221, Sep. 2016.

[19] P. E. Meyer, C. Schretter, and G. Bontempi, “Information-theoretic
feature selection in microarray data using variable complementarity,”
IEEE J. Sel. Topics Signal Process., vol. 2, no. 3, pp. 261–274,
Jun. 2008.

[20] W. Zhang, B. Jiang, M. Li, and X. Lin, “Privacy-preserving aggregate
mobility data release: An information-theoretic deep reinforcement
learning approach,” IEEE Trans. Inf. Forensics Security, vol. 17,
pp. 849–864, 2022.

[21] O. Özdenizci and D. Erdogmus, “Information theoretic feature
transformation learning for brain interfaces,” IEEE Trans. Biomed. Eng.,
vol. 67, no. 1, pp. 69–78, Jan. 2020.

[22] Z. Xu, Y. Liu, and C. Li, “Distributed information-theoretic semisu-
pervised learning for multilabel classification,” IEEE Trans. Cybern.,
vol. 52, no. 2, pp. 821–835, Feb. 2022.

[23] Y. Sun, K. Zhang, and C. Sun, “Model-based transfer reinforcement
learning based on graphical model representations,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 34, no. 2, pp. 1035–1048, Feb. 2023.

[24] X. Wang, Q. Li, D. Yu, P. Cui, Z. Wang, and G. Xu, “Causal
disentanglement for semantic-aware intent learning in recommendation,”
IEEE Trans. Knowl. Data Eng., vol. 35, no. 10, pp. 9836–9849,
Oct. 2023.

[25] Z. Guo, Z. Zhang, R. Feng, and Z. Chen, “Causal contextual prediction
for learned image compression,” IEEE Trans. Circuits Syst. Video
Technol., vol. 32, no. 4, pp. 2329–2341, Apr. 2022.

[26] S. Yang, K. Yu, F. Cao, L. Liu, H. Wang, and J. Li, “Learning causal
representations for robust domain adaptation,” IEEE Trans. Knowl. Data
Eng., vol. 35, no. 3, pp. 2750–2764, Mar. 2023.

[27] S. Rao et al., “Targeted-BEHRT: Deep learning for observational
causal inference on longitudinal electronic health records,” IEEE
Trans. Neural Netw. Learn. Syst., early access, Jun. 23, 2022, doi:
10.1109/TNNLS.2022.3183864.

[28] H. Zhang, L. Xiao, X. Cao, and H. Foroosh, “Multiple adverse weather
conditions adaptation for object detection via causal intervention,” IEEE
Trans. Pattern Anal. Mach. Intell., early access, Apr. 12, 2022, doi:
10.1109/TPAMI.2022.3166765.

[29] Y. Xiang and M. Truong, “Acquisition of causal models for local
distributions in Bayesian networks,” IEEE Trans. Cybern., vol. 44, no. 9,
pp. 1591–1604, Sep. 2014.

[30] X. Wang, Y. Wu, A. Zhang, F. Feng, X. He, and T.-S. Chua, “Reinforced
causal explainer for graph neural networks,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 45, no. 2, pp. 2297–2309, Feb. 2023.

[31] B. Sahoh, C. Kaewrat, K. Yeranee, N. Kittiphattanabawon, and
M. Kliangkhlao, “Causal AI-powered event interpretation: A cause-
and-effect discovery for indoor thermal comfort measurements,” IEEE
Internet Things J., vol. 9, no. 22, pp. 23188–23200, Nov. 2022.

[32] F. Zhu, J. Lu, A. Lin, J. Xuan, and G. Zhang, “Direct learning with
multi-task neural networks for treatment effect estimation,” IEEE Trans.
Knowl. Data Eng., vol. 35, no. 3, pp. 2457–2470, Mar. 2023.

[33] C. Huang et al., “Self-supervised attentive generative adversarial
networks for video anomaly detection,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 34, no. 11, pp. 9389–9403, Nov. 2023.

[34] Y. Cai et al., “Dualattn-GAN: Text to image synthesis with dual
attentional generative adversarial network,” IEEE Access, vol. 7,
pp. 183706–183716, 2019.

[35] Y. Wang et al., “An intelligent method for predicting the pressure
coefficient curve of airfoil-based conditional generative adversarial
networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 7,
pp. 3538–3552, Jul. 2023.

[36] S.-H. Choi, J.-M. Shin, P. Liu, and Y.-H. Choi, “ARGAN: Adversarially
robust generative adversarial networks for deep neural networks against
adversarial examples,” IEEE Access, vol. 10, pp. 33602–33615, 2022.

[37] C. Zheng, L. Pan, and P. Wu, “Attribute augmented network embedding
based on generative adversarial nets,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 34, no. 7, pp. 3473–3487, Jul. 2023.

[38] G. Shao, M. Huang, F. Gao, T. Liu, and L. Li, “DuCaGAN: Unified dual
capsule generative adversarial network for unsupervised image-to-image
translation,” IEEE Access, vol. 8, pp. 154691–154707, 2020.

[39] T. Jiang, W. Xie, Y. Li, J. Lei, and Q. Du, “Weakly supervised
discriminative learning with spectral constrained generative adversarial
network for hyperspectral anomaly detection,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 33, no. 11, pp. 6504–6517, Nov. 2022.

[40] B. Franci and S. Grammatico, “Training generative adversarial networks
via stochastic Nash games,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 34, no. 3, pp. 1319–1328, Mar. 2023.

[41] Y. Tian, L. Shen, L. Shen, G. Su, Z. Li, and W. Liu, “AlphaGAN: Fully
differentiable architecture search for generative adversarial networks,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 10, pp. 6752–6766,
Oct. 2022.

[42] K. Lee, H. Lee, K. Lee, and J. Shin, “Training confidence-calibrated
classifiers for detecting out-of-distribution samples,” in Proc. ICLR,
2018, pp. 1–16.

[43] D. Mandal et al., “Out-Of-distribution detection for generalized zero-
shot action recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2019, pp. 9977–9985.

[44] M. Yang, F. Liu, Z. Chen, X. Shen, J. Hao, and J. Wang,
“CausalVAE: Disentangled representation learning via neural structural
causal models,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2021, pp. 9588–9597.

[45] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by
locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
Dec. 2000.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1109/TNNLS.2022.3183864
http://dx.doi.org/10.1109/TPAMI.2022.3166765


14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[46] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, arXiv:1503.02531.

[47] N. Ay and D. Polani, “Information flows in causal networks,” Adv.
Complex Syst., vol. 11, no. 1, pp. 17–41, Feb. 2008.

[48] J. Pearl, M. Glymour, and N. P. Jewell, Causal Inference in Statistics:
A Primer. Hoboken, NJ, USA: Wiley, 2016.

[49] Y. Yu, J. Chen, T. Gao, and M. Yu, “DAG-GNN: DAG structure learning
with graph neural networks,” in Proc. Int. Conf. Mach. Learn., 2019,
pp. 7154–7163.

[50] R. Wang, M. Yi, Z. Chen, and S. Zhu, “Out-of-distribution generalization
with causal invariant transformations,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 375–385.

Xiaokang Zhou (Member, IEEE) received the Ph.D.
degree in human sciences from Waseda University,
Tokorozawa, Japan, in 2014.

From 2012 to 2015, he was a Research Associate
with the Faculty of Human Sciences, Waseda
University. Since 2017, he has been working as
a Visiting Researcher with the RIKEN Center
for Advanced Intelligence Project (AIP), RIKEN,
Tokyo, Japan. He is currently an Associate Pro-
fessor with the Faculty of Data Science, Shiga
University, Hikone, Japan. He has been engaged

in interdisciplinary research works in the fields of computer science and
engineering, information systems, and social and human informatics. His
recent research interests include ubiquitous computing, big data, machine
learning, behavior and cognitive informatics, cyber–physical–social systems,
and cyber intelligence and security.

Dr. Zhou is a member of the IEEE Computer Society (CS); Association for
Computing Machinery (ACM), USA; Information Processing Society of Japan
(IPSJ) and The Japanese Society for Artificial Intelligence (JSAI), Japan; and
China Computer Federation (CCF), China.

Xuzhe Zheng received the bachelor’s degree
in management from the Hunan University of
Technology and Business, Changsha, China, in 2020,
where he is currently pursuing the master’s degree
in management science and engineering.

His main research interests include causal infer-
ence research and data-driven decision-making
research.

Tian Shu received the bachelor’s degree in computer
science, majoring in the Internet of Things, from
Xiangnan University, Chenzhou, China, in 2020.
She is currently pursuing the master’s degree in
electronic information with the Hunan University of
Technology and Business, Changsha, China.

Her recent research interests include deep learning,
medical big data, and intelligent transportation.

Wei Liang (Member, IEEE) received the M.S. and
Ph.D. degrees in computer science from Central
South University, Changsha, China, in 2005 and
2016, respectively.

From 2014 to 2015, he was a Researcher
with the Department of Human Informatics and
Cognitive Sciences, Waseda University, Tokorozawa,
Japan. He is currently working at the Xiangjiang
Laboratory and the Changsha Social Laboratory of
Artificial Intelligence, Hunan University of Technol-
ogy and Business, Changsha. He has published more

than 20 papers at various conferences and journals. His research interests
include information retrieval, data mining, and artificial intelligence.

Dr. Liang is a member of the IEEE Computer Society (CS) and China
Computer Federation (CCF), China.

Kevin I-Kai Wang (Member, IEEE) received
the B.E. degree (Hons.) in computer systems
engineering and the Ph.D. degree in electrical and
electronics engineering from the Department of
Electrical and Computer Engineering, University of
Auckland, Auckland, New Zealand, in 2004 and
2009, respectively.

He was a research engineer designing commercial
home automation systems and traffic sensing
systems from 2009 to 2011. He is currently a
Senior Lecturer with the Department of Electrical,

Computer, and Software Engineering, University of Auckland. His current
research interests include wireless sensor network-based ambient intelligence,
pervasive healthcare systems, human activity recognition, behavior data
analytics, and biocybernetic systems.

Lianyong Qi (Senior Member, IEEE) received the
Ph.D. degree from the Department of Computer Sci-
ence and Technology, Nanjing University, Nanjing,
China, in 2011.

In 2010, he visited the Department of Information
and Communication Technology, Swinburne Uni-
versity of Technology, Melbourne, VIC, Australia.
He is currently a Professor with the College of
Computer Science and Technology, China University
of Petroleum (East China), Qingdao, China. His
research interests include big data and recommender
systems.

Shohei Shimizu received the Ph.D. degree in engi-
neering (statistical science) from Osaka University,
Osaka, Japan, in 2006.

He is currently a Professor with the Faculty of Data
Science, Shiga University, Hikone, Japan, where he
leads the Causal Inference Team, RIKEN Center for
Advanced Intelligence Project. His research interests
include statistical methodologies for learning data
generating processes, such as structural equation
modeling and independent component analysis and
their application to causal inference.

Dr. Shimizu received the Hayashi Chikio Award (Excellence Award) from
the Behaviormetric Society in 2016. He has been a Coordinating Editor of
Behaviormetrika (Springer) since 2016.

Qun Jin (Senior Member, IEEE) received the
Ph.D. degree from Nihon University, Tokyo, Japan,
in March 1992.

He is currently a Professor with the Department
of Human Informatics and Cognitive Sciences,
Faculty of Human Sciences, Waseda University,
Tokorozawa, Japan. He has been extensively
engaged in research works in the fields of
computer science, information systems, and human
informatics, with a focus on understanding and
supporting humans through convergent research. His

recent research interests cover computing for human well-being, behavior
and cognitive informatics, health informatics, big data, personal analytics
and individual modeling, digital twin, smart energy and behavioral data
analytics for carbon neutrality, cyber security, blockchain, metaverse, artificial
intelligence and machine learning, and applications in healthcare and learning
support.

Dr. Jin is a Foreign Fellow of the Engineering Academy of Japan (EAJ).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 


