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Abstract— Infrared small target (IRST) detection aims at sep-
arating targets from cluttered background. Although many deep
learning-based single-frame IRST (SIRST) detection methods
have achieved promising detection performance, they cannot
deal with extremely dim targets while suppressing the clutters
since the targets are spatially indistinctive. Multiframe IRST
(MIRST) detection can well handle this problem by fusing the
temporal information of moving targets. However, the extraction
of motion information is challenging since general convolution
is insensitive to motion direction. In this article, we propose a
simple yet effective direction-coded temporal U-shape module
(DTUM) for MIRST detection. Specifically, we build a motion-
to-data mapping to distinguish the motion of targets and clutters
by indexing different directions. Based on the motion-to-data
mapping, we further design a direction-coded convolution block
(DCCB) to encode the motion direction into features and extract
the motion information of targets. Our DTUM can be equipped
with most single-frame networks to achieve MIRST detection.
Moreover, in view of the lack of MIRST datasets, including
dim targets, we build a multiframe infrared small and dim
target dataset (namely, NUDT-MIRSDT) and propose several
evaluation metrics. The experimental results on the NUDT-
MIRSDT dataset demonstrate the effectiveness of our method.
Our method achieves the state-of-the-art performance in detect-
ing infrared small and dim targets and suppressing false alarms.
Our codes will be available at https://github.com/TinaLRJ/Multi-
frame-infrared-small-target-detection-DTUM.

Index Terms— Direction coding, infrared small target (IRST)
detection, point-level supervision, spatial–temporal fusion.

I. INTRODUCTION

INFRARED small target (IRST) detection aims at accurately
locating small targets in various infrared backgrounds,

which has been widely used in different fields, such as robust
visual system [1], [2] and maritime surveillance [3]. Different
from generic objects, IRSTs are small [4], shapeless [5],
changeable [6], [7], and sometimes immersed in complex
backgrounds. These characteristics introduce significant chal-
lenges to IRST detection.
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Traditional paradigms, including multiple-filter-based meth-
ods [8], [9], [10], [11], sparsity-and-low-rank-based methods
[12], [13], and human-visual-system (HVS)-based methods
[14], have been deeply studied for IRST detection. Although
promising results have been achieved, these methods essen-
tially rely on handcrafted features and prior knowledge. Once
the scenes dramatically change, these methods with fixed
hyperparameters cannot well adapt to the scenarios and thus
suffer significant performance degradation.

Due to the powerful modeling capability, deep learning-
based methods have achieved remarkable performance
improvement and thus attracted increasing research inter-
ests in recent years. Different from traditional methods,
deep learning-based methods can extract highly discrimina-
tive characteristics of the targets from numerous data in a
learnable manner. For example, Dai et al. [15] proposed the
first segmentation-based single-frame IRST (SIRST) detection
method using an asymmetric contextual modulation (ACM)
module. This method achieves good detection performance via
the interaction of high-level semantics and low-level details. Li
et al. [5] proposed a dense nested attention network (DNANet)
to enhance this interaction. Wu et al. [16] embedded a
tiny UNet into a larger UNet backbone (i.e., UIUNet) to
enable multilevel and multiscale representation learning of
IRSTs. Nevertheless, once the target is dim and not salient
(e.g., immersed by strong clutter) in the image, these methods
tend to fail to detect targets using spatial information only.
Extracting the spatial–temporal characteristics from multi-
ple frames can effectively handle this issue. However, deep
learning-based multiframe IRST (MIRST) detection is still in
its primary stage due to the following challenges.

First, it is challenging to extract the motion information
of targets from multiple frames since general convolution
is insensitive to the motion direction of targets. After train-
ing, the convolutional kernel weights are fixed and are not
affected by the relationship among pixels, which is important
for the extraction of motion information. Second, there are
few MIRST datasets, including dim targets with pixel-level
annotations in this field, and the insufficient publicly available
datasets obstruct the development of MIRST detection. Sun
et al. [17] published the only MIRST dataset with mask,
bounding box, and central pixel labels. However, it is unsuit-
able to be used to evaluate the performance of the methods
on dim targets.

To tackle the aforementioned challenges, we propose a
direction-coded temporal U-shape module (DTUM), which
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can be equipped with most single-frame detection methods
to achieve MIRST detection. First, we build a motion-to-
data mapping to make the difference of target motion and
clutter motion measurable. The mapping value represents the
consistency of motion among frames, which is the distinctive
property used in the module. Then, based on this mapping,
we design a direction-coded convolution block (DCCB) to
obtain the motion characteristics of the targets via encoding the
target position into features. As shown in Fig. 1, after DCCB,
the target will be enhanced since its motion is consistent in
frames. Through several DCCBs and the connection between
high- and low-level features, our module can help to detect the
infrared small and dim target while suppressing the clutters.
In addition, we develop a multiframe infrared small and dim
target dataset (NUDT-MIRSDT) with mask and point-level
labels, covering various scenes and extremely weak targets.

In summary, the main contributions of this work are sum-
marized as follows.

1) We propose a simple yet effective DTUM to
enhance dim targets while suppressing false alarms
for MIRST detection. DTUM can be equipped with
most single-frame networks to leverage spatial–temporal
information for MIRST.

2) A motion-to-data mapping is built to distinguish targets
and clutters according to the consistency of their motion.
Besides, we design a DCCB to extract motion informa-
tion by encoding the motion direction into features.

3) We develop an NUDT-MIRSDT dataset with both mask
and point-level annotations for MIRST detection. More-
over, we preliminarily explore the point-level supervi-
sion on our dataset.

4) Experimental results demonstrate the superiority of our
method. Compared with existing methods, our method
achieves better detection performance, especially on dim
targets with signal-to-noise ratio (SNR) lower than 3.

II. RELATED WORK

In this section, we briefly review the major works in IRST
detection, IRST dataset, and point-level supervision tasks
(e.g., localization and segmentation).

A. IRST Detection

It has achieved advanced progress recently. Many traditional
and deep learning-based methods are proposed for this task.
According to the forms of input data, these methods can be
classified into SIRST detection methods and MIRST detection
methods.

SIRST detection is based on spatial local saliency of tar-
gets [18], [19], which is similar to salience object detection
[20], [21], [22], [23], [24], [25]. Traditional methods include
spatial-filtering-based methods [11], sparsity-and-low-rank-
based methods [12], [13], and HVS-based methods [14]. Deep
learning-based methods usually achieve better performance
due to data-driven feature learning. Dai et al. [19] improved
their ACM model with a local contrast measure method [26]
to make the relatively long-range contextual interactions with
clear physical interpretability. Li et al. [5] further relieved

Fig. 1. Illustration of the target motion perception process using the proposed
DCCB. The images in the middle column are the intermediate results of
DCCB with direction coding. The bottom right image is the output map with
the target significantly enhanced.

the opposition of high-level information acquisition and the
low response of small target using a dense nested interactive
module (DNIM). Moreover, Zhang et al. [27] built a Taylor
finite difference (TFD)-inspired edge block to pay attention
on shape matters for detecting IRSTs in shape. Wu et al. [28]
designed a multilevel TransUNet with a specially designed
copy-rotate-resize-paste data augmentation and FocalIoU loss
to achieve both precise target localization and shape descrip-
tion. However, IRSTs are usually immersed in heavy clutter
and complex background. Once the target is not visually
salient in a single image, SIRST detection methods will suffer
performance degradation. It is important to incorporate spatial
and temporal information in a video for detecting infrared
small and dim targets.

MIRST detection methods can incorporate both spatial
local saliency and motion information of targets. MIRST
detection methods can detect targets while reducing false
alarms. Several traditional methods were proposed for MIRST
detection. Reed et al. [8], [9], [10] proposed a typical method
(i.e., 3-D matched filtering) to obviously improve the SNR of
targets through spatial filtering and temporal energy accumula-
tion. Sun et al. [29] proposed a multiple subspace learning and
spatial–temporal patch-tensor (MSLSTIPT) model to detect
infrared small and dim targets. Then, Liu et al. [30] developed
a nonconvex tensor low-rank approximation (NTLA) method
to achieve accurate background estimation. Deep learning-
based methods have been successfully applied in small moving
target detection for remote sensing (e.g., DSFNet [31]) and
for visual systems (e.g., STMD+ [1] and feedback STMD
[2]). Besides, there are some networks [32], [33] based on
detection framework for MIRST detection. However, there
is no open-source deep learning-based method based on a
segmentation framework for MIRST detection due to the lack
of suitable multiframe dataset.

Therefore, we focus on multiframe information to achieve
good performance in detecting infrared small and dim
targets.
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B. Datasets for IRST Detection

Large and high-quality dataset is crucial for deep learning-
based methods. There are two types of IRST datasets, single-
frame datasets and multiframe datasets.

There are many single-frame datasets acquired from differ-
ent scenes. All these frames are labeled with mask. The first
published synthetic dataset is NUST-SIRST [34], which con-
tains 10 100 images from real scenes with simulated targets.
Most targets in this dataset are large (>9 × 9) and bright. Dai
et al. [15] released the first real dataset (i.e., NUAA-SIRST),
which has totally 427 images that are insufficient for net-
work training. Subsequently, larger datasets were developed,
e.g., NUDT-SIRST [5] with 1327 images and IRSTD-1k [27]
with 1001 images.

Most multiframe datasets are labeled with bounding boxes
or position coordinates. Fu et al. [35] built an infrared target
detection and tracking dataset, including 21 750 frames from
87 sequences with bounding boxes and trajectory annotations.
The first infrared small aerial target dataset (SIATD) [33] was
developed with position annotations, which contains 150 185
frames from 350 sequences. Sun et al. [17] developed an
infrared dim small target dataset (IRDST) with labels in three
types (mask, bounding box, and central pixel). There are
totally 142 727 frames from 5930 sequences. Most targets in
these datasets are intense and salient in the space domain.
However, as for MIRST methods, the detection performance
on dim targets is very important for their evaluation. There is
no special MIRST dataset for dim targets.

C. Point-Level Supervision

It is a common weak supervision manner and has been
widely used in many tasks, such as object detection [36],
[37], instance segmentation [38], [39], and object counting
[40], [41]. Bearman et al. [42] incorporated point supervision
along with an objectness prior to the training loss function
and achieved comparable results to those fully supervised
semantic segmentation methods. Laradji et al. [38] proposed a
point-level annotation method for instance segmentation. They
used both point annotation and pseudo mask to supervise the
training process. Liu et al. [43] proposed a deep detection net-
work with only point supervision to achieve crowd counting.
They mined useful person size information from point-level
annotations.

All these works aim at segmenting and localizing generic
objects with rich texture, shape, and context information.
However, few works exploited the point-level supervision in
IRST detection, even in small target detection.

III. METHODOLOGY

In this section, we introduce the motion-to-data mapping
and its implementation, i.e., DCCB. Then, we introduce the
DTUM, which consists of 3-D convolution layers and DCCBs.
Besides, we describe our NUDT-MIRSDT dataset and a hard
point mining (HPM) loss function for point-level supervision.

A. Motion-to-Data Mapping

In a single frame, the targets and clutters have similar spatial
characteristics. Therefore, it is important for the detection

Fig. 2. Motion-to-data mapping. (a) Statistical results of the mapping values
(i.e., sum of indexes) of targets and clutters. (b) Sample of the target motion
in five frames. (c) Sample of the clutter motion in five frames. (d) Mapping
index matrix. The target trajectory is more consistent, and its mapping value
(i.e., Vmap) is larger than the clutter trajectory.

methods to extract temporal characteristics due to the distinc-
tive motion of the target. In this section, we provide a method
to map different types of motion among frames to different
value intervals. The results of mapping are beneficial for the
distinction of the targets and clutters. Without considering
the camera movement, the biggest difference between target
motion and clutter motion is the consistency of the motion
direction in frames. Motion-to-data mapping can make this
difference measurable, and it is the base of the extraction of
motion information.

According to the motion characteristics of targets and clut-
ters, the mapping should meet two requirements. First, the
value should decrease when the motion direction is reversed.
Second, the value should achieve its maximum only when the
motion direction is constant among input frames. To satisfy
the above requirements, the mapping index matrix is specially
designed, as shown in Fig. 2(d). The final mapping value is
defined as

Vmap =

∣∣∣∣∣
4∑

i=1

It−i→t

∣∣∣∣∣ (1)

where It−i→t represents the index value of the motion direction
from the (t − i)th frame to the t th frame. According to the
index matrix, we count the mapping values of the targets
and clutters, as shown in Fig. 2(a). Most sums of target
motion direction indices among five frames are around 6, while
those of clutter motion direction indices are evenly distributed
between 0 and 6. The statistical distribution demonstrates that
most target trajectories are mapped to large values via our
motion-to-data mapping. Meanwhile, most mapping values of
clutter trajectories are lower than those of target trajectories.
Therefore, after the motion-to-data mapping, the difference
between target motion and clutter motion is obvious and
measurable and is easier for the network to learn.

B. Direction-Coded Convolution Block

In IRST detection, the motion difference between the targets
and clutters is important to distinguish them. However, it is
hard to perceive different motion directions accurately since
the general 3-D convolution is a weighted summation of local
features with fixed weights. The motion-to-data mapping is an
efficient way to extract motion characteristics. The DCCB is
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the implementation of motion-to-data mapping in the temporal
module, including a direction-coded max-pooling layer and
a temporal convolution layer. To obtain the relative location
of the target, we put the direction coding into max-pooling
layer with the mapping index, considering that the index of
local maximum can represent the relative location of the high
response area. To capture the change of motion direction
among frames, we use the temporal convolution layer to learn
the mapping process from the indices in multiple frames to
the mapping value Vmap.

The max-pooling layer in DCCB is similar to the general
max-pooling layer, where the output of the layer is replaced
by the local maximums with direction information. The for-
mulations of max-pooling layer in common and in DCCB can
be written as

y = fmax(x, k) (2){
y, id = f ′

max(x, k, I )
y′

= y · id
(3)

where x is the input pixels and k is the size of pooling kernel.
I is the mapping index matrix, id is the direction coding of the
output y′, and fmax(·) and f ′

max(·) represent the operation of
max-pooling layer in general layer and DCCB, respectively.

The detailed structure of our DCCB is shown in Fig. 3(b).
The input feature Fin ∈ RCi−1×5×Hi−1×Wi−1 of the i th DCCB is
first processed by direction-coded max-pooling layer to obtain
the direction feature Fdirection ∈ RCi ×5×Hi ×Wi , i.e.,

Fdirection = Mk(Fin) ⊗ Im (4)

where Mk(·) represents the max-pooling operation with the
kernel size of k × k, Im denotes the maximum index of each
pixel in Mk(Fin), and ⊗ denotes the elementwise multiplica-
tion. Taking some pixel as the origin, Fdirection contains the
position of the target relative to the origin in each frame.

To extract the motion information, a temporal fusion oper-
ation is needed to make the network focus on the change of
target position among frames. We use a 5 × 1 × 1 convolu-
tion layer to catch this change and generate the final mapping
result F i

motion ∈ RCi ×5×Hi ×Wi . The temporal fusion operation
can be described as

F i
motion = H i

5×1×1(Fdirection)

= σ
(

BN
(
|conv(Fdirection)|

))
(5)

where H i
5×1×1 represents a 5 × 1 × 1 convolution layer in the

i th DCCB, and conv, BN, and σ denote the convolution, batch
normalization, and ReLU activation, respectively.

Importantly, there is an operation in (5) changing the feature
into the absolute value. As shown in Fig. 2, the index matrix
has positive and negative values to achieve the functions of
decreasing the mapping value of inconsistent motion and
increasing that of consistent motion. If the target position
is encoded by negative indices, this operation can ensure
the mapping value increase. The absolute value represents the
response to the targets in the feature map, which indicates
the probability of the existence of the target. Finally, the
DCCB helps the network to implement the motion-to-data
mapping and extract the motion information of the targets.

C. Direction-Coded Temporal U-Shape Module

The DTUM is designed to extract temporal information and
fuse spatial–temporal characteristics. Inspired by [44], DTUM
is based on UNet, and it is simple and efficient to capture
contextual information. Considering the salient difference of
target motion and clutter motion, a simple structure and
shallow semantic representation can be sufficient for this task,
especially with our DCCB. Therefore, we construct the module
with a framework similar to UNet to achieve MIRST detec-
tion simply and effectively, as shown in Fig. 3. Differently,
besides the spatial features, DTUM pays more attention to the
temporal features with the help of 5 × 1 × 1 convolutions.
Besides, DTUM can perceive motion characteristics with the
help of DCCBs.

To be equipped with most single-frame detection methods,
the input of DTUM is the concatenation of the spatial features
of multiple consecutive frames generated by the single-frame
method, i.e., Fspa ∈ RC×5×H×W . The channel number C is
large to ensure that the temporal module can receive sufficient
spatial features and fuse spatial–temporal features well. The
input feature Fspa is first processed by a batch normalization
layer [45] and a ReLU layer to normalize the input. Then, the
feature is sent to a conv3d layer H 0

5×1×1 to fuse the spatial
features from different frames and suppress some simple false
alarms. Next, to extract the motion information, a set of
DCCBs H k

DCCB are used to encode the direction and map
the motion, which are only used in the first half of DTUM
since the coded motion details mostly exist in low-level
features. Finally, the motion feature Fmotion ∈ RC×5×H/8×W/8

is generated. This process can be described as

Fmotion = H k
DCCB

(
H 0

5×1×1

(
σ
(
BN(Fspa)

)))
. (6)

Then, Fmotion is recovered to the same size of the input
feature Fspa through several upsampling layers, conv3d layers,
and skip connections. Finally, after fusing the normalized
spatial feature, the predicted results can be obtained. In this
article, we cascade three DCCBs (i.e., k = 1, 2, 3) to code
the motion direction and distinguish targets and clutters.
Consequently, the motion information can be extracted and
fused with spatial features, resulting in notable detection
performance improvements.

D. NUDT-MIRSDT Dataset

We develop a new dataset named NUDT-MIRSDT
for MIRST detection. There are 10 000 frames from
100 sequences (80 for training and 20 for test) and with
9523 targets in total. Most of these target are smaller than
9 × 9. The scenes cover sky, sea, and land. The sequences
are generated by shaking and adding noise to the infrared
images captured from real world. The pixel- and point-level
annotations are provided. The labeled point is the brightest
point of the target, which is generated by a self-designed
program. The shape of the target is always changing in
a sequence to increase the diversity of samples. Besides,
the target trajectory is a regular curve with jitter, which is
randomly generated.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LI et al.: DIRECTION-CODED TEMPORAL U-SHAPE MODULE FOR MIRST DETECTION 5

Fig. 3. DTUM architecture. (a) Structure of DTUM. (b) Structure of DCCB. (c) Structure of conv3d layer in DTUM. (d) Structure of conv2d layer in
DTUM. The input of DTUM is the spatial features off multiple consecutive frames. Through a U-shape temporal convolution module, the motion features are
extracted and fused with spatial features.

Fig. 4. Distribution of NUDT-MIRSDT. (a) Distribution of target size.
(b) Distribution of target SNR. (c) Distribution of background average
fluctuation. (d) Images in NUDT-MIRSDT.

The distribution of NUDT-MIRSDT is shown in Fig. 4. We
divide the test set into two subsets according to their SNR.
In this way, we can evaluate the detection performance with
respect to different target intensities. The definition of SNR is

SNR =
|m t − µb|

σb
(7)

where m t is the maximum value of the target and µb and σb

represent the mean value and the standard deviation (i.e., fluc-
tuation) of the local background area (11 × 11 area centered
around the target), respectively. For the first test subset, there
are eight sequences with SNR lower than 3. For the second test
subset, there are 12 sequences with SNR ranging from 3 to 10.
When the SNR of the target is large, most methods can
achieve good detection performance. The performance on the
second test subset of NUDT-MIRSDT dataset can reflect their
capability under extremely dim targets and highly fluctuant
scenes.

E. HPM Loss for Point-Level Supervision

1) Motivation: In MIRST detection, pixel-level annotation
requires expensive labeling cost, while point-level annotation
saves a lot of annotation efforts. However, point-level super-
vision can introduce an extreme imbalance of positive and
negative samples since it assigns only one positive sample
for a target. Considering that most background regions are
smooth and locally similar, using the hard example mining
method [46], [47], [48], [49] can significantly reduce negative
examples in learning and make the network focus on hard
and positive examples. To this end, we propose an HPM
loss specially designed for IRST detection under point-level
supervision, inspired by OHEM [47] and focal loss [50].
Specifically, HPM loss can suppress the negative impact of
the blurry annotations through a protection box in the weight
matrixes. The HPM loss can select the worth-learning pixels in
background automatically for attentional learning. In this arti-
cle, the worth-learning points mainly include real targets and
some hard negative examples except outliers (i.e., incorrectly
labeled pixels) with the highest losses. The HPM loss can
dilute the losses of negative examples through replacing some
hard negative examples with easy ones. The computational
process of the HPM loss is shown in Algorithm 1 and
introduced in detail as follows.

2) Initial Loss Calculation: To mine hard negative exam-
ples, the first step is to calculate the classification initial losses
L ini of all samples. Most loss functions can be used in this step,
and we use the weighted L1 loss, i.e.,

L ini(p, y) = wp · l1(p, y) (8)

where y ∈ {0, 1} specifies the ground-truth class, p ∈ [0, 1]

is the predicted results of the model, and wp represents the
preset weight value, which is aimed at preventing the samples
around targets being selected as hard examples.

Considering point-level annotation, most target points are
incorrectly labeled as background. In the training process,
these points have large losses and can be easily mined as hard
negative points for targeted learning. To avoid focusing on
incorrect information, we set a protection box centered around
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Algorithm 1 Algorithm for HPM Loss

Input: The output of the network F ∈ RH×W , the label
T ∈ RH×W .
1: Generate protection boxes according to the label, and
produce a weight matrix Wp.
2: Compute the L1 loss by Eq. (8).
3: Gain the total hard negative example set T by Eq. (9).
4: Generate the hard example set H by random selection
from T, H ⊂ T.
5: Generate the easy example set E by random selection
from all.
6: Produce the weight matrix W according to H, E and T .
7: Calculate H P M loss by Eq. (12).
Output: H P M

the labeled target point to reduce the losses of pixels in the
box, that is, the significance of wp. Specifically, wp values of
the pixels in this box are set to 0, and those outside this box
are set to 1. In this way, the negative effects of point-level
annotation can be suppressed.

3) Selecting Hard and Easy Negative Sets: In this step, the
hard negative example set H and the easy negative example
set E are selected from the whole negative set S.

To obtain H, we search the top u points with the
highest losses by sorting L ini. Considering some outliers
(e.g., missed targets and target points outside the protection
box), we remove the samples with top v highest losses to
reduce the probability of those points being selected. There-
fore, we generate the total hard negative examples T defined
by (9). Then, we randomly select bhn samples from T as the
final hard negative example set H [i.e., (10)]

T = {S
(
top(L ini, u)

)
} − {S

(
top(L ini, v)

)
} (9)

H = Random(T, bhn). (10)

Moreover, some easy negative samples are selected to
participate in backpropagation, to dilute the total loss of
negative examples while ensuring enough negative examples
in training, and to improve the robustness. We randomly select
ben samples from the whole negative samples as the easy
negative example set E

E = Random(S, ben). (11)

4) Calculating HPM Loss: According to H and E, the
weight matrix W used in the final loss function is generated to
weight the losses of the samples involved in backpropagation.
Then, the final HPM loss is calculated as

HPM(pt ) =

∑
−αW (1 − pt )

γ log(pt ) (12)

pt =

{
p, if y = 1
1 − p, otherwise

(13)

where
∑m

i=1
∑n

j=1 wi j = bhn + ben + bp, wi j ∈ W , and bp

represents the number of positive samples. α ∈ [0, 1] is a
weight factor for class 1 and 1 − α for class 0. Through
adjusting the ratio of different types of points, we can alleviate

the imbalance between foreground and background samples,
as well as mine hard examples in point-level supervision.

Similar to wp, W also has a protection box centered around
the labeled target point, that is, the weights of all samples in
the box except the labeled target point are 0. Therefore, it can
further suppress wrong learning of the blurred information in
the box, which is caused by point-level supervision, through
setting the losses of the residual points inside the box to
0 during training.

IV. EXPERIMENTS

A. Evaluation Metrics

In this article, we adopt probability of detection (Pd )
[5], false alarm rate (Fa) [5], and area under curve (AUC)
[51], [52] to evaluate the detection performance. Meanwhile,
we modify the calculation method (i.e., shooting rules) of the
three metrics to adapt to the MIRST detection task.

The definitions of three metrics are described as follows.
1) Probability of detection [5] (i.e., recall rate) is a target-

level evaluation metric. It evaluates the capability of
algorithms to find targets and locate targets accurately.
Pd is defined as

Pd =
TTP

TAll
× 100% (14)

where TTP and TAll represent the number of correctly
predicted targets and all targets in label, respectively.

2) False alarm rate [5] is a pixel-level evaluation metric. It
evaluates the capability of algorithms to suppress false
alarms. Fa is defined as

Fa =
PFP∑N

i=1 Hi × Wi
(15)

where PFP represents the number of all pixels falsely
predicted as targets, Hi × Wi is the size of the i th input
image, and N is the number of test images.

3) AUC is the area value under the receiver operating
characteristics (ROC) curve [51], [52], which is a com-
prehensive metric to evaluate the detection performance.
The AUC value is within the range [0, 1]. A larger AUC
value represents better target detection performance.

In the process of evaluation, the criterion of judging whether
a prediction is correct or incorrect is important. The existing
works widely use the distance between the centroids of the
ground truth and the predicted result as the criterion [5],
[12]. However, in IRST detection, most targets are smaller
than 9 × 9 [9], [29] with the radius smaller than 4, and
thus, a large threshold of this distance is unsuitable. A small
threshold is also unsuitable since the centroid is usually inac-
curate without pixel-level annotation, and this deviation can
cause misjudgment. Therefore, we propose a new fine-grained
criterion to fit the IRST detection task with point-level, pixel-
level, or bounding-box annotations. This criterion, termed as
shooting rules, is used to calculate TTP in Pd and PFP in Fa .
The details are shown in Fig. 5.

First, we generate the centroid of the ground truth according
to the annotation. The point label, the center of bounding-
box label, and the centroid of mask label are regarded as
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TABLE I

Pd (×10−2), Fa (×10−5), AUC, PARAM (M), AND FPS4 (FRAMES/SECOND) VALUES ACHIEVED BY DIFFERENT STATE-OF-THE-ART METHODS ON THE
NUDT-MIRSDT DATASET. THE BEST RESULTS ARE IN RED, AND THE SECOND BEST RESULTS ARE IN BLUE. THE WORST RESULTS ARE IN

BOLD. S-FRAME AND M-FRAME REFER TO SINGLE-FRAME AND MULTIFRAME METHODS, RESPECTIVELY

Fig. 5. Shooting rules. The top right of the figure shows rules about TTP. If
there are pixels predicted as the target in Box_1, this target is detected right,
i.e., TTP + 1. The bottom right shows rules about PFP. Any pixel predicted as
target outside Boxes_2 of all targets is regarded as a false alarm, i.e., PFP +1.

the centroid of the ground truth used in the rules. Then,
we find the 3 × 3 region (Box_1) centered at this point.
A predicted target having pixels inside Box_1 is considered
to be correctly detected. Meanwhile, we find the 9 × 9 region
(Box_2) centered at this point. All positively predicted pixels
outside Box_2 are considered to be misclassified. According
to these rules, TTP and PFP can be calculated. This fine-grained
pixel-by-pixel judgment can well fit IRST detection by fully
considering the response of the core target region and the
response of the area outside of target.

B. Implementation Details

All deep learning-based methods in this article are imple-
mented in PyTorch on a computer with an Intel Xeon Gold
6328H CPU @ 2.80 GHz and two Tesla V100s PCIe 32-GB
GPUs. In detail, the networks were trained for 20 epochs with
Adam optimizer [42] with an initial learning rate of 0.001.
The learning rate is decayed after each epoch with a decaying
rate of 0.5. We initialize the weights of convolution layers
using the Kaiming method [53] and use random initialization

with uniform distribution to initialize the bias. The input of
our method is five consecutive frames and the size of each
frame is 512 × 512. The ratio (bp:bhn:ben) in HPM loss is set
to 1:10:30 [54].

C. Comparison With State-of-the-Arts

To demonstrate the effectiveness of our method, we compare
our method with state-of-the-art IRST detection methods,
including traditional SIRST detection methods (Top-hat [11],
NRAM [13], PSTNN [55], and WSLCM [56]), traditional
MIRST detection methods (MSLSTIPT [29], ASTTV-NTLA
[30], IMNN-LWEC [57], and SRSTT [58]), and deep learning-
based SIRST detection methods (ALCNet [19], Res-UNet
[59], DNANet [5], ISNet [27], and UIUNet [16]) on the
NUDT-MIRSDT dataset. All traditional methods were imple-
mented with their default parameters. In the implementation
of our method, we adopt the same loss as in the single-frame
network. Besides, we only adjust the output channels of the
spatial architectures (from 1 to 32) to maintain enough spatial
information of targets. We adopt 0 as threshold for all deep
learning-based methods.

1) Quantitative Results: We test different methods in the
cases of both SNR ≤ 3 and SNR > 3. The results are shown in
Table I and ROC curves are shown in Fig. 6. It can be observed
that our method achieves the best performance in terms of
both Pd and Fa . For the traditional methods, MIRST detection
methods achieve better performance with longer inference time
in suppressing false alarms than SIRST detection methods.
It is worth noting that SRSTT [58] achieves the highest
Pd and lowest Fa compared to all traditional methods and
deep learning-based SIRST detection methods. However, its
inference time is the longest because it needs to calculate
30 frames for one output. ASTTV-NTLA [30] is specially
designed for low-rank scenes, resulting in worst performance
of compared methods on the NUDT-MIRSDT dataset. Simi-
larly, the traditional methods with manually designed features
easily suffer from performance decrease when the scenes
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Fig. 6. ROC performances of different methods on the NUDT-MIRSDT dataset. (a) NUDT-MIRSDT (SNR ≤ 3). (b) NUDT-MIRSDT (SNR > 3).
(c) NUDT-MIRSDT (all). (d) Sequence 1 (SNR ≤ 3). (e) Sequence 4 (SNR ≤ 3). (f) Sequence 10 (SNR > 3). (g) Sequence 11 (SNR > 3).

change dramatically. That is why the traditional methods
usually perform worse than deep learning-based methods.

Moreover, the multiframe methods achieve better perfor-
mance under those scenes with high fluctuation. The targets
and clutters are similar in the spatial domain so that it is
hard to classify them from single frame. According to the
motion characteristics of the target, many false alarms can be
eliminated via multiframe features accumulation. As shown
in Table I, our method can introduce significant performance
gain (around 30% increases of Pd and obvious decreases
of Fa) when compared with all the five SIRST detection
methods on the NUDT-MIRSDT dataset. Especially on the
subset with SNR ≤ 3, the increases of Pd are mostly more
than 50%. Fig. 6 also shows that our method achieves signif-
icant improvement in terms of AUC. Note that, our DTUM
only introduces 0.07 M additional parameters to this SIRST
detection network. Benefited by the direction coding of DCCB
in DTUM, the position of the target in each frame is explicitly
fused into the features. After the temporal convolution, the
motion features are well extracted and effectively suppress the
clutters and enhance the targets.

2) Qualitative Results: As shown in Fig. 7, we show
the output images of different detection methods on seven
sequences from two NUDT-MIRSDT subsets. Fig. 7(a1)–(a3)
shows the outputs of methods on the subset with SNR ≤ 3, and
Fig. 7(b1)–(b4) shows the outputs of methods on the subset
with SNR > 3.

As shown in Fig. 7, the targets in the subset with
SNR ≤ 3 are so weak that even an expert cannot find
the target accurately from the single frame. All compared
single-frame methods work badly on this subset. Only some
multiframe methods (e.g., SRSTT, Res-UNet+DTUM, and
DNANet+DTUM) can detect some targets by using their tem-
poral salience. Compared to the top performing, our method

achieves better performance on suppressing false alarms while
maintaining a high detection rate. Moreover, different from
other deep learning-based methods, our method can fuse
spatial and temporal information and enhance the small and
dim targets by extracting their motion information with the
help of our DCCB.

D. Ablation Study

To demonstrate the effectiveness of DCCB and find the
possibly optimal configuration of DTUM, we conduct our
ablation study on the subset with SNR ≤ 3. Specifically,
we change the depth of DTUM, the number of DCCBs used
in DTUM, and some operations in DCCB, and evaluate the
detection performance.

1) Depth of DTUM: The depth of DTUM is related to
the velocity of the target on the image. Due to the long
imaging distance, small targets only move a few pixels in
five consecutive frames, and the module does not rely on
deep structure to capture the motion information. Therefore,
we change the number of direction-coded max-pooling layers
in DTUM from 1 to 3 (i.e., the downsampling multiple
from 2 to 8), to investigate its influence on MIRST detection.
The results are shown in Table II.

The experimental results show that the DTUM with one
direction-coded max-pooling layer performs much worse than
that with two or three layers. This is because a single
downsampling operation could introduce a limited receptive
field and thus make it hard to capture the whole change
of the motion direction among the input frames. In the
end, DTUM with single downsampling cannot achieve the
motion-to-data mapping and thus distinguish the targets and
clutters. When comparing the DTUMs with two and three
direction-coded max-pooling layers, they all achieve good
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Fig. 7. Visualized results of different methods. (a1)–(a3) Results on the NUDT-MIRSDT (SNR ≤ 3) subset. (b1)–(b4) Results on the NUDT-MIRSDT
(SNR > 3) subset. For better visualization, the target area is enlarged in the top-right corner and highlighted by a red circle. The false alarm area is marked
by a yellow circle. Our method achieves a higher detection rate and lower false alarm rate.

TABLE II
RESULTS OF DTUMS WITH DIFFERENT DEPTHS ON THE NUDT-MIRSDT

(SNR ≤ 3) SUBSET. THE BEST RESULTS ARE IN RED. THE VALUE IN
PARENTHESES REPRESENTS THE DOWNSAMPLING MULTIPLE

performance in detecting the targets with small SNR (i.e., ≤3)
and suppressing false alarms. This phenomenon shows that
two or three direction-coded max-pooling layers are enough
for MIRST detection to extract the motion information in
five consecutive frames, and more layers cannot improve the
detection performance significantly. Moreover, if the input
frames cover a large movement of the target, deeper temporal
module is necessary.

2) Configuration of DTUM: We replace the general con-
volution layer with DCCB in the first half of DTUM. Since
there are four levels of convolution in the architecture of
DTUM, we test five configurations, as shown in Table III.
Four letters in architecture denote the first four convolution
layers in DTUM.

TABLE III
RESULTS OF SOME CONFIGURATIONS OF DTUM ON THE NUDT-MIRSDT

(SNR ≤ 3) SUBSET. THE BEST RESULTS ARE IN RED. “D” AND “G”
INDICATE DCCB AND GENERAL CONVOLUTIONAL

LAYER, RESPECTIVELY

Besides, to verify that the general 3-D convolution is insen-
sitive to IRST motions, we replace all DCCBs and Conv3d
layers in DTUM with 5 × 3 × 3 convolution layers. The
results are shown in Table III.

Compared to the architectures with multiple DCCBs, the
performance improvement of the architecture with one DCCB
is insignificant (AUC is lower). This is because one DCCB
cannot well capture the motion among five frames. We also
find that more DCCBs (≥2) in DTUM do not introduce
significantly continuous performance improvement since the
movement among five consecutive frames is small. After
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TABLE IV
RESULTS OF SOME CONFIGURATIONS OF DCCB IN RES-UNET+DTUM

ON THE NUDT-MIRSDT (SNR ≤ 3) SUBSET. THE BEST
RESULTS ARE IN RED

several DCCBs, the targets in different frames are processed
to the same position, and thus, there is no target movement
among the features of multiple frames. Therefore, the motion
information can be fully extracted with a small number of
DCCBs.

As shown in Table IV, the results of the architecture with
all 5 × 3 × 3 convolution layers are far worse than those of
the “GDDD” architecture, and even worse than those with
all 5 × 1 × 1 convolution layers. This illustrates that the
general 3-D convolution cannot well extract IRST motion
characteristics due to the fixed weights, although it has more
parameters.

Compared to DTUM (“GDDD”) without DCCB, DTUM
with DCCB achieves better performance in terms of Pd and
Fa . Due to the direction-coding mechanism, DCCB helps the
network extract motion information by exploring the relation-
ship of the motion direction in different frames. This infor-
mation can significantly improve the detection performance.
To verify the effectiveness of DCCB, we also visualize the
intermediate feature maps of different architectures, as shown
in Fig. 8. With the single frame (in Fig. 8), an expert cannot
well distinguish the target from the background, but our
method can. Besides, we find that after removing DCCBs
in DTUM, the network can no longer enhance the target
when suppressing the background. These experimental results
illustrate that our DCCB is very sensitive to the motion of
targets.

Moreover, the performance of the architecture with four
DCCBs is the worst among five configurations. As shown in
the first row of Fig. 8, there is no visible response on the
target area but much response on the edge of the cloud in
the output features of Res-UNet. Applying DCCB directly on
these features without downsampling can cause both targets
and clutters to be maintained and suppressed indiscriminately
since the motion information cannot be captured with a
5 × 1 × 1 convolution. Meanwhile, this operation can even
harm the original spatial features of different frames irre-
versibly. Therefore, DCCB is not suitable to deal with the
spatial features as the first convolution layer in DTUM.

3) Operations in DCCB: DCCB is designed to implement
the motion-to-data mapping and make the network sensi-
tive to different motion patterns by introducing the specific
mapping index matrix and merging the direction information
into the features. To investigate the effectiveness of our
DCCB, we replace the important operations (i.e., direction

combination, absolute value operation, and direction index)
in DCCB with other similar operations. The results are shown
in Table IV.

1) Direction Combination: It is used to merge the direction
information into the pooling features. We combine the
pooling results and index results by the elementwise
multiplication (Dot). To investigate the effectiveness of
this operation, we replace this operation with concate-
nation (Cat) and elementwise addition (Sum).

2) Absolute Value Operation: Equation (5) is designed
to extract the motion information with the direction
features. In this ablation, we delete its absolute value
operation but keep others the same.

3) Mapping Index Matrix: Mapping index matrix is
used to index the relative position of the tar-
get. In this ablation, we replace the mapping
index matrix ([−1.5,−0.5; 0.5, 1.5]) with the original
index matrix ([0, 1; 2, 3]). Since all the elements of the
original matrix are positive, the absolute value operation
is deleted in the meantime for a fair comparison.

As shown in Table IV, encoding direction information with
the elementwise multiplication achieves the best detection
performance. The other combination methods suffer decreases
of 6.049%/7.183% and 0.009/0.0085 in terms of Pd and
AUC. This is because the fixed-weight weighted summation of
direction indices and features cannot retain both information
and exploit the direction information.

Elementwise multiplication can not only preserve the
response of targets and background on the feature map but
also distinguish different directions according to the sign of the
value. Comparing the results of the other combination methods
with the results of Res-UNet+DTUM (GGGG) in Table III,
those results are similar. This illustrates that concatenation and
elementwise addition operations cannot merge the direction
information into the features effectively but incorporate with
noise.

After deleting the absolute value operation, the performance
suffers decreases of 2.268% and 0.0087 in terms of Pd and
AUC. This demonstrates the necessity of the absolute value
operation since the mapping value of a target’s motion can be
negative. As shown in the last two rows of Table IV, replacing
the mapping index matrix with the original index matrix suf-
fers decreases of 6.616%/5.860% and 0.0207/0.0157 in terms
of Pd and AUC. This clearly demonstrates the superiority of
motion-to-data mapping in MIRST detection.

E. Supervision in MIRST Detection

In this section, we explore the effects of spatial deep super-
vision (SDS) and point-level supervision on the performance
of IRST detection.

1) Spatial Deep Supervision: Some deep learning-based
SIRST detection methods (e.g., DNANet [5] and UIUNet
[16]) use SDS to train the networks. There are two types
of SDS methods. In DNANet, the deeply supervised features
are generated through the equal number downsampling and
upsampling operations besides convolution layers. In UIUNet,
the deeply supervised features are generated without upsam-
pling. We train the DNANet+DTUM and UIUNet+DTUM
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Fig. 8. Intermediate feature maps of Res-UNet+DTUM with different configurations. The first row is the output features of the Res-UNet in Res-UNet+DTUM.
The second row is the output features of the last Conv2d layer in DTUM. The third row is the output features of the last Conv2d layer in DTUM (DDDD).
The last row is the output features of the last Conv2d layer in DTUM (GGGG). The last column is the output results of different configurations. The target
is in the red circle.

TABLE V
RESULTS OF NETWORKS WITH OR WITHOUT SDS ON

THE NUDT-MIRSDT DATASET

with and without SDS to make the effect of SDS clear,
as shown in Table V.

As the results shown, both two SDS methods cause the
detection performance to decrease without changing DTUM.
With SDS in MIRST detection, the spatial networks become
insensitive to the targets. Before the temporal operation, some
targets disappear from the features. Actually, the spatial and
the temporal parts have different optimization directions. The
spatial part should focus on detecting all potential targets,
while the temporal part should pay attention to the real targets.
A spatial network sensitive to the locally salient area is
beneficial to achieve good detection performance in MIRST
detection. This is also why Res-UNet performs worse than
DNANet and ISNet, but Res-UNet+DTUM performs better
than DNANet+DTUM and ISNet+DTUM. Therefore, it is not
suitable to use the existing SDS in MIRST detection.

2) Point-Level Supervision: To explore the pointly super-
vised IRST detection, we replace the original loss functions
of different models with focal loss [50], OHEM [47], and
our HPM loss. Due to the point-level annotation, many target
samples are labeled as background, which are highly likely to
be trained as hard background examples in OHEM. To avoid
this situation and make a fair comparison, the same protection
box in the HPM loss is used in OHEM to prevent those target
samples included in loss computation. We train models with
different losses on the NUDT-MIRSDT dataset with point-
level annotations. Results are shown in Table VI, and their
ROC curves are shown in Fig. 9.

There are significant increases in terms of Pd and AUC
after using our HPM loss function. Comparing the results of

TABLE VI
RESULTS OF DIFFERENT LOSS FUNCTIONS WITH POINT-LEVEL

SUPERVISION ON THE NUDT-MIRSDT DATASET. THE BEST RESULTS
ARE IN RED, AND THE SECOND BEST RESULTS ARE IN BLUE. THE

WORST RESULTS ARE IN BOLD. “T” INDICATES THE DTUM

OHEM [47] with focal loss [50], the targets have stronger
responses after the models trained with OHEM. This confirms
the superiority of hard example mining in learning the target
characteristics. Besides, as shown in Table VI, the models
trained with other loss functions all have both low Pd and
Fa , and some have to set very low segmentation thresholds for
the final prediction. This illustrates that all samples have weak
responses through those models since the point-level supervi-
sion contains limited information. However, the model trained
with our HPM loss can generate strong target responses. This
is because the HPM loss is specially designed according to the
characteristics of IRST detection and point-level supervision.
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Fig. 9. ROC performances of methods trained with different loss functions and point annotations on the NUDT-MIRSDT dataset. The blue curve is higher
than other curves with the same line type, which illustrates that using our HPM loss can enhance the learning of targets and achieve better performance.
(a) NUDT-MIRSDT (SNR ≥ 3). (b) NUDT-MIRSDT (SNR > 3). (c) NUDT-MIRSDT (all).

The HPM loss can remove some outliers without annotations
and with wrong annotations from the loss computation since
they have such high losses that they may lead the network to
learn wrong information.

It is worth noting that the detection performance of network
trained with HPM loss and point-level supervision is close to
the performance under full supervision. With the HPM loss
function, the Pd values of most methods can exceed 90% or
even 100% (e.g., DNANet+DTUM) of those fully supervised
methods, and the Fa values are significantly reduced according
to the hard mining mechanism. This illustrates that hard
mining is very effective in IRST detection with point-level
supervision. It helps the network to suppress false alarms better
and capture the informative region of targets with extremely
restricted supervision.

V. CONCLUSION

In this article, we propose a simple yet effective DTUM
to achieve MIRST detection by using prior knowledge of
target motion. Our proposed DTUM can be equipped with
most SIRST detection networks to improve the detection
performance, especially on scenes with extremely dim tar-
gets. To comprehensively evaluate the performance of MIRST
detection methods, we develop a multiframe infrared small
and dim target dataset (i.e., NUDT-MIRSDT), and the targets
in it come in different sizes, trajectories, and SNR values. The
experimental results on the dataset demonstrate the superiority
of our method compared to other state-of-the-art methods.
Finally, we explore the point-level supervision on the NUDT-
MIRSDT dataset and propose the hard mining point (HPM)
loss function for network training. The performance of the net-
work trained with the HPM loss under point-level supervision
can exceed 90% or even 100% of the performance of fully
supervised methods.
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