This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Combining Optimal Path Search With
Task-Dependent Learning in
a Neural Network

Tomas Kulvicius™, Minija Tamosiunaite”, and Florentin Worgotter

Abstract— Finding optimal paths in connected graphs requires
determining the smallest total cost for traveling along the graph’s
edges. This problem can be solved by several classical algorithms,
where, usually, costs are predefined for all edges. Conventional
planning methods can, thus, normally not be used when wanting
to change costs in an adaptive way following the requirements of
some task. Here, we show that one can define a neural network
representation of path-finding problems by transforming cost
values into synaptic weights, which allows for online weight
adaptation using network learning mechanisms. When starting
with an initial activity value of one, activity propagation in this
network will lead to solutions, which are identical to those found
by the Bellman—Ford (BF) algorithm. The neural network has the
same algorithmic complexity as BF, and, in addition, we can show
that network learning mechanisms (such as Hebbian learning)
can adapt the weights in the network augmenting the resulting
paths according to some task at hand. We demonstrate this by
learning to navigate in an environment with obstacles as well as
by learning to follow certain sequences of path nodes. Hence, the
here-presented novel algorithm may open up a different regime
of applications where path augmentation (by learning) is directly
coupled with path finding in a natural way.

Index Terms— Graph neural networks (GNNs), navigation,
reinforcement learning (RL), sequences, shortest path problem.

I. INTRODUCTION

HIS study addresses the so-called single-source shortest-

path (SSSP) problem. Possibly, the most prominent goal
for any path-finding problem is to determine a path between
two vertices (usually called source and destination) in a graph,
such that the total summed costs for traveling along this path
are minimized. Usually, (numerical) costs are associated with
the edges that connect the vertices, and in this way, costs are

Manuscript received 24 May 2022; revised 12 July 2023; accepted
15 October 2023. This work was supported in part by the European Com-
munity’s H2020 Program [Future and Emerging Technologies (FET)] under
Grant 899265 (ADOPD) and in part by the German Science Foundation (DFG)
under Grant WO 388/16-1. (Corresponding author: Tomas Kulvicius.)

Tomas Kulvicius is with the Department for Computational Neuroscience,
and the University Medical Center Gottingen, Systemic Ethology and
Developmental Science, Child and Adolescent Psychiatry and Psychother-
apy, University of Gottingen, 37073 Gottingen, Germany (e-mail: tomas.
kulvicius @phys.uni-goettingen.de).

Minija Tamosiunaite is with the Department for Computational Neuro-
science, University of Goéttingen, 37073 Gottingen, Germany, and also with
the Faculty of Computer Science, Vytautas Magnus University, 53361 Kaunas,
Lithuania.

Florentin Worgotter is with the Department for Computational Neuro-
science, University of Gottingen, 37073 Gottingen, Germany.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3327103.

Digital Object Identifier 10.1109/TNNLS.2023.3327103

accumulated when traveling along a set of them. In the SSSP
problem, the aim is to find the shortest paths (SPs) from one
vertex (source) to all other remaining vertices in the graph.

The SSSP problem has a wide range of applications, e.g.,
in computer networks (SP between two computers), social
networks (SP between two persons or linking between two
persons), trading and finance (e.g., currency exchange), mul-
tiagent systems, such as games, task, and path planning in
robotics, and so on, just to name a few.

The most general way to solve the SSSP problem is the
Bellman-Ford (BF) algorithm [1], [2], [3], which can also deal
with graphs that have some negative cost values. In this work,
we present a neural implementation, which is mathematically
equivalent to the BF algorithm with an algorithmic complexity,
which is the same as for BE.

The neural implementation relies on the multiplication of
activities (instead of adding of costs). As a consequence, it is
directly compatible with (Hebbian) network learning, which
is not the case for any additively operating path-planning
algorithm. To demonstrate this, we are using Hebbian-type
three-factor learning [4], [5], [6] to address SSSP tasks
under some additional constraints, solved by the three-factor
learning.

Our paper is structured as follows. First, we will provide
an overview of the state-of-the-art methods and state our
contribution with respect to that. Next, we will describe the
details of the BF algorithm and the proposed neural network
(NN-BF). This will be followed by a comparison between the
BF algorithm and NN-BF and by examples of combining NN-
BF-based planning with three-factor learning. Finally, we will
conclude our study with a summary and provide an outlook
for future work.

II. RELATED WORK
A. State of the Art

There are mainly two types of approaches to solve the
SSSP problem: classical algorithms and approaches based
on artificial neural networks. Classical algorithms exist with
different complexity and properties. The simplest and fastest
algorithm is breadth-first search (BFS) [7], [8]. However,
it can only solve the SSSP problem for graphs with uniform
costs, i.e., all costs equal to 1. Dijkstra’s algorithm [9] as
well as the BF algorithm [1], [2] can deal with graphs that
have arbitrary costs. From an algorithmic point of view,
Dijkstra’s algorithm is faster than the BF algorithm; however,

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0003-3390-6418
https://orcid.org/0000-0003-2996-3612
https://orcid.org/0000-0001-8206-9738

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Dijkstra only works on graphs with positive costs, whereas the
BF algorithm can also solve graphs where some of the costs
are negative. Furthermore, Dijkstra is a greedy algorithm and
requires a priority queue, which makes it not so well suited
for parallel implementation as compared with BF.

It is worth noting that there are two versions of the BF
algorithm (see [3]). Both versions have the same basic algo-
rithmic complexity but version 2 operates on graph nodes and
not on graph edges (as version 1), which allows implementing
version 2 in a totally asynchronous way where computations at
each node are independent of other nodes [3]. In spite of this,
version 2 is largely ignored in the literature, and users will
usually be directed to version 1 when doing a (web-)search.

Some heuristic search algorithms, such as A* [10] and its
variants (see [11], [12], [13], [14]), exist, which are faster
than Dijkstra or BF, but they can only solve the single-source
single-target SP problem.

The most general, but slowest, algorithm to solve the SSSP
problem is the Floyd—Warshall algorithm [15], [16], which
finds all-pairs SPs (APSPs), i.e., all SPs from each vertex to
all other vertices. Another way to solve the APSP problem
is by using Johnson’s algorithm [17], which utilizes BF and
Dijkstra’s algorithms and is—under some conditions—faster
than the Floyd—Warshall algorithm (essentially, this is the case
for sparse graphs).

Many different algorithms exist, which utilize artificial
neural networks to solve SP problems. Some early approaches,
which were dealing with relatively small graphs (below
100 nodes), were based on Hopfield networks [18], [19],
[20] or Potts neurons and a mean field approach [21]. These
approaches, however, may not always give optimal solutions
or may fail to find solutions at all, especially for larger graphs.

Some other bioinspired neural networks were proposed [22],
[23], [24], [25], [26], [27], [28] for solving path-planning
problems. These approaches work on grid structures, where
activity in the network is propagated from the source neuron
to the neighboring neurons until activity propagation within
the whole network is finished. SPs can then be reconstructed
by following the activity gradients. The drawback of these
approaches is, however, that they are specifically designed for
grid structures and cannot be applied at general graphs with
arbitrary costs.

Several deep learning approaches were proposed to solve
SP problems, for example, using a deep multilayer perceptron
(DMLP; [29]), fully convolutional networks [30], [31], [32],
or a long short-term memory (LSTM) network [33]. Inspired
by classical reinforcement learning (RL) algorithms, e.g.,
Q learning, SARSA [34], some deep RL algorithms had been
employed [35], [36], [37] too. These approaches are designed
to solve path-planning problems in 2-D or 3-D spaces and
cannot deal with graphs with arbitrary costs.

In addition to this, deep learning approaches based on
graph neural networks (GNNs) have been employed to solve
path problems, too [38], [39], [40], [41], [42], [43], mostly
in the context of relation and link predictions. While deep
learning approaches may lead to a better run-time performance
as compared with classical approaches due to fast inference,
all deep learning-based approaches need to learn their (many)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

synaptic weights before they are functional. This usually
requires a large amount of training data. Another disadvantage
of these approaches is that optimal solution is not guaranteed,
since networks intrinsically perform function approximation
based on the training data. Moreover, in some of the cases,
networks may even fail to find a solution at all, especially,
in cases where training data are quite different from new cases
(generalization issue for out-of-distribution data).

Recently, graph-based neural networks have been proposed
too, such as spatial-temporal graph convolutional networks
(ST-GCN) for skeleton-based action recognition [44],
spatial-temporal graph network for video supported
machine translation [45], and graph transformer network
for zero-shot temporal activity detection (TN-ZSTAD) from
videos [46]. Other deep networks are based on scene graph
generation (SGG), e.g., conditional random field (CRF)-based
SGG [47], TransE-based SGG [48], convolutional neural
network (CNN)-based SGG [49], recurrent neural network
(RNN)/LSTM-based SGG [50], [51], [52], and GNN-based
SGG [53], [54]. While these approaches have been mostly
applied for text and image/video analysis, such as text-to-
image generation, image/video captioning, image retrieval,
scene understanding, and human-object interaction (for a
comprehensive survey, see [55]), none of them have been
exploited to specifically address SP/SSSP problems.

Furthermore, some approaches exist for an automated search
(tuning) of generative adversarial network (GAN) architec-
tures, such as neural architecture search (NAS) [56], [57],
AutoGAN [58], and automated generative adversarial net-
work (AGAN) [59], and for the simultaneous learning of
network architecture parameters and weights (ZeroNAS, [60]).
Although these approaches are related to our proposed method,
there are two principle differences. First, the aforementioned
approaches are used to optimize network architectures or
architecture and weights to perform discriminating tasks,
e.g., image classification or object detection, whereas in our
approach, we are dealing with the SSSP problem, where we
build the network architecture and update connection weights
based on local learning rules. Hence, we do not specifically
optimize network architecture and weights to map input to
outputs. Second, in contrast to NAS approaches, weights in
our network correspond to costs, which allow using activity
propagation within the network to find optimal solutions for
the SSSP tasks.

B. Contribution

The comparison of the above discussed approaches for solv-
ing SP/SSSP problems is graphically summarized in Fig. 1,
and details are provided in Table I. Here, we compare our
approach with respect to the following criteria: 1) ability to
deal with positive and negative costs; 2) solution optimality;
and 3) algorithmic complexity. Given these criteria, one can
see that our approach most closely relates to the neural
approaches by Xia and Wang [61] and Zhang and Li [62]. The
approach by Xia and Wang [61] utilizes a relatively complex
RNN architecture. It can deal with optimal and negative costs
and find optimal solutions, but it has a higher complexity



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULVICIUS et al.: COMBINING OPTIMAL PATH SEARCH WITH TASK-DEPENDENT LEARNING 3
TABLE I
COMPARISON OF DIFFERENT METHODS FOR SOLVING SP AND SSSP PROBLEMS
. Problem: Numerical Algorithmic .. . . . .
Algorithm SP/SSSP calculation basis Cost type procedure Training | Optimality Complexity Online learning
. Additive . . .
*
A* [10] SP Cost values Only positive cost summation NO Optimal O(bd) Not directly possible
O(EI+ VD)
.. . Additive . or . .
Dijkstra [9] SSSP Cost values Only positive cost summation NO Optimal OB+ Not directly possible
_ _ [V]log|V])
BF [1], [2] SSSP Cost values Positive and |- Additive NO Optimal o(V||E)) Not directly possible
negative cost summation
Recurrent
. _ . . T 2
neural Sp Weight values = Positive and Additive/Multiplicative NO Optimal O(\AV| ) ) Not shown
network cost values negative activity propagation per interation
Xia, 2000 [61]
Neural . - - -
network SSSp X:g\k]l;]l\l/ziues - E:S::;i/ee and ﬁgdg“;eﬁsﬁuv“y NO Optimal Not stated Not shown
Zhang, 2017 [62] & propag
DMLP [29] SP Weight values* n/a AdflelVC/MU]tlplllcallve YES Optimality not Not stated n/a
activity propagation guaranteed
FCN [30][32] SP Weight values® | n/a Additive/Multiplicative |y pq Optimality not | i g1aeq n/a
activity propagation guaranteed
LSTM [33] SP Weight values* n/a Ad'dl}‘.lVC/Mu]llph.CallVe YES Optimality not Not stated n/a
activity propagation guaranteed
. Rewards or Reward Optimality not | O(n?) or . . .
RL [34] SSSP Value tables punishments propagation NO guaranteed** o (ns) 63] Reinforcement learning
Deep-RL [35]-[37] SSSP Weight values* n/a Ad.dl.twe/Mump h.cauve YES Optimality not Not stated Reinforcement learning
activity propagation guaranteed
GNN [38]-[43] SSSP Weight values* | n/a Additive/Multiplicative |y pq Optimality not |y g1aeq nfa
activity propagation guaranteed
T-POOL [28] SSSP Weight values = Onl_){ positive Ad_(h_tlve/Muluph_cauve NO Optimal o(VvIIL) wa
cost values (uniform) activity propagation
Weight values = . - .. . .
NN.-BF SSSP inverse of Posmye and Mulllpllc{allve activity NO Optimal o(VIIEl) He!;blan learning, ]
(this study) . negative propagation Reinforcement learning
cost values
SP — single-source — single-target; SSSP — Sigle-Source Shortest Paths (single-source — multi-targets)
b — branching factor; d — depth of the solution: |V'| — number of nodes, | E| — number of edges, |L| — number of layers
*Weight values do not correspond to the costs
**RL usually does not converge to optimal solutions in high dimensional spaces within reasonable time

SP / SSSP

Dijkstra [9] B;Lll[]3,4[]2]
A* [10
positive | 1-pog 1281 Deep-RL 3511371 positve and
costs only DMLP [29] gg Nz[o?’g(%[[gi’]] negative costs
FCL’;T[:AOE%] Zhang, 2017 [62]
NN_BF
BF [1], [2]
Not always DeepRRLL[[334E}] (37] Xia, 2000 [61] | Always
1 - i Zhang, 2017 [62 i
optimal | =200 [38]-[43] anl%lN o [62]| optimal
Algorithmic BF [1], [2] Algorithmic
complexity | Xia, 2000 [61] Zhang, 2017 [62]| complexity
> BF NN_BF =BF
BF [1], [2]
Zhang, 2017 [62] NN_BF
No online learning Online learning
Fig. 1. Comparison of different methods for solving SP and SSSP problems.

as compared with the BF algorithm. Zhang and Li [62],
as in our approach, proposed a neural implementation of the
BF algorithm with the same complexity; however, it uses
additive activity propagation (akin to additive cost propagation
in the BF algorithm) as compared with multiplicative activity
propagation as proposed by our algorithm. Moreover, neither
Xia and Wang [61] nor Zhang and Li [62] show a combination
of addressing the SP problem together with neural learning.

In summary, we present a neural implementation of the
BF algorithm, which finds optimal solutions for graphs with
arbitrary positive and (some) negative costs with the same
algorithmic complexity as BF. The advantage of this is that,
different from BF and other neural implementations of the
BF algorithm [61], [62], we show that we can also directly
apply neuronal learning rules that can dynamically change
the activity in the network and lead to rerouting of paths
according to some requirements. We show this by two cases
where neuronal learning is used to structure the routing of the
paths in a graph in different ways.

ITII. METHODS
A. Definitions

We denote a weighted graph as G(V, E, C) with vertices V,
edges E, and corresponding edge costs C. In the first version
of the BF algorithm, a so-called relaxation procedure (cost
minimization) is performed for all edges, whereas in the
second version of the BF algorithm, relaxation is performed for
all nodes. The relaxation procedure is performed for a number
of iterations until convergence, i.e., approximate distances
are replaced with shorter distances until all distances finally
converge.

The BF algorithm is guaranteed to converge if relaxation
of all edges is performed |V| — 1 times.! After convergence,
SPs (sequences of nodes) can be found from a list of prede-
cessor nodes backward from target nodes to the source node.

'Note that this corresponds to the worst case. See also algorithmic com-
plexity analysis below.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 Pseudocode of Neural Network Algorithm

Input: list of neuron connections (i, j) with weights (w; ;), source neuron (s), and costs (c; ;)
Output: list of neuron activations (outputs), list of input nodes with maximal activity

for each neuron i do
wli, j1 < 1 —cli, j1/K
activations[i] < 0
max_inputs[i] < null

end for

activations[s] < 1

for k <~ 1to N—1do
for each neuron i do
for each input j of neuron i with weight w[i, j] do
weighted_input < activations[j] x wli, j]
if weighted_input > activations[i] then
activations[i] < weighted_input
max_inputs[i] < j
end if
end for
end for
activations[s] < 1
end for

return activations, max_inputs

> Initialise connection weights based on costs
> Initialise all neuron activations with 0
> Initialise all maximal input nodes with null

> Initialise activation of the source neuron with 1

> Repeat N — 1 times (N - number of neurons)
> For each neuron compute its activation

> Set activation of the source neuron to 1

> Return list of activations and list of max inputs

B. Neural Implementation of the BF Algorithm

In this section, we will describe our neural implementation
of BF algorithm. Similar to BF, the proposed neural network
finds SPs in a weighted graph from a source node (vertex)
to all other nodes; however, SPs here are defined in terms
of maximal activations from the source neuron to all other
neurons.

The neural network has N neurons, where N corresponds
to the number of vertices |V| in a graph, connections between
neurons i and j (i,j = 1,..., N) correspond to the edges,
and connection weights correspond to the (inverse) costs of
edges, which are computed by

w;, j= 1-— ?
where K > 0. We can prove that the solutions obtained with
the neural network are identical to the solutions obtained with
BF under certain constraints (see Section IV-Al).

We present the pseudocode of the neural network algorithm
(NN-BF) in Algorithm 1. Similar to BF version 2 (see [3]),
we run NN-BF for a number of iterations until convergence
operating on the graph nodes (neurons). In every iteration,
we update the activation (output) of each neuron by

(D

a; = mjax{ajwi,j} 2)
where a; corresponds to the inputs of neuron i and w; ; to
the connection weights between input neurons j and output
neuron i. To start this process, we set the activation of the
source neuron to 1. Thus, in this way, activity from the source
neuron is propagated to all other neurons until activation has

converged everywhere. After convergence, SPs (sequences of
neurons) can be found from a list of maximal input activations
backward from target neurons to the source neuron (similar to
BF algorithm).?

The NN-BF algorithm is guaranteed to converge if activity
of the network is updated N — 1 (N = |V|) times. This can
be shown by the worst-case scenario where neurons would be
connected in a sequence, i.e., | > 2 — 3 — ... — N. Thus,
to propagate activity from the first neuron to the last neuron
in the sequence, one would need to perform N — 1 updates.

A comparison of solving a simple graph using BF
(version 1) and NN-BF is presented in Fig. 2. Here,
we used a simple directed weighted graph with four nodes
and six edges with one negative cost and five positive
costs. We show the resulting distances in Fig. 2(a) and
network activations in Fig. 2(b) after each iteration (numbers
inside the nodes/neurons of the graph/neural network). Red
edges/connections denote distance/activity propagation from
the source node/neuron to all other nodes/neurons. For more
details, please refer to the figure caption. In this case, the
algorithm converged after two iterations when using BF and
after one iteration when using NN-BF.

C. Performance Evaluation of the Neural Planner

We evaluated the performance of the neural network and
compared it against the performance of the BF algorithm
(version 1) with respect to the following: 1) solution equality;
2) algorithmic complexity; and 3) number of iterations until
convergence.

2The source code is available at https://doi.org/10.5281/zenodo.10029797.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULVICIUS et al.: COMBINING OPTIMAL PATH SEARCH WITH TASK-DEPENDENT LEARNING 5

(b)

Initialization

(a) Bellman-Ford

Initialization 1

Iteration 1 1

Fig. 2.

Neural network

0.99 Iteration 1

Example of solving a directed weighted graph with four vertices and six edges using (a) BF and (b) NN-BF. Green circle denotes the source

vertex/neuron. Black numbers correspond to the edge/connection weights. Red numbers correspond to costs/activations from the source vertex/neuron for
the respective edges/inputs. Numbers inside graph vertices/neurons correspond to costs/activations from the source to the respective nodes/neurons. We used
K = 100 to convert edge costs to connections weights, i.e., w; = 1 —¢;/100 (i = 1-6). Green numbers in (a) correspond to the numbers of edges and the
order in which they were processed, whereas green numbers in (b) correspond to numbers of neurons and their order in which their were processed.

For the numerical evaluation, we generated random directed
weighted graphs of different density, from sparse graphs (only
few connections per node) to fully connected graphs (every
node connects to all other nodes). To generate graphs of dif-
ferent densities, we used the probability p, to define whether
two nodes will be connected or not. For example, a graph with
100 nodes and p, = 0.1 will obtain a 10% connectivity rate
and, thus, to ~10 edges per node and ~1000 edges in total.

Costs for edges were assigned randomly from specific
ranges (e.g., [—10, —1] and [1, 100]), where negative weights
were assigned with probability p, (e.g., p, = 0.1) and positive
weights with probability 1 — p,. The specific parameters for
each evaluation case will be provided in Section IV.

D. Combining Neural Planning Network With Neural
Plasticity

The neural implementation of the BF algorithm allows
us to use neuronal learning rules in order to dynamically
change connection weights between neurons in the network
and, thus, the outcome of the neural planner. The methods
applied to achieve this will be presented directly in front of
the corresponding results to allow for easier reading.

IV. RESULTS

A. Comparison of BF and NN-BF

In the following, we first provide a comparison between BF
and NN-BF, and then, we will show results for NN-BF also
on network learning.

1) Solution Equality: To prove equivalence, one can pair-
wisely compare two paths A and B between some source and
a target, where A is the best path under the BF condition and
B is any another path. Path A is given by nodes a; and B
by b;. As described above, for a BF cost of a;, we define the
weight of the NN-BF connection as w; = 1 — (a;/K) and
likewise for b;. We need to show that

n+m n

n n+m
it > a; <> b then [J(1- %) > (1—ﬁ). 3)
S <o [10-%) - TI(

i=1

Note that, in general, we can assume, for both sides, a path
length of n, because—if one path is shorter than the other—
we can just extend this by some dummy nodes with zero cost,
such that the BF costs still add up correctly to the total.

First, we analyze the simple case of n = 2. The general
proof, below, makes use of the structural similarity to the
simple case. Thus, we show

ay+a, < by + by

A Y P 4
-(-%)(-%) @

We start from the second line in (4) and rewrite it as follows:

1

F[K2 — K(ar +a) + a1ar]

> K? — K(b1 + b)) + biby].  (5)

&l



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

We simplify and divide by K, where K > 0, to

a\ay biby

—al—a2+7>—b1—b2+7. (6)
Now, we let K — oo and get
a4+ ax < b, + by (N

which proves conjecture (4) for large enough K.
To generalize this, we need to show that (3) holds. For this,
we analyze the second inequality given by

n al n bl
1 — —) 1—2). 8
1:[( k)~ 1:[( K) ®
From the structure of (5), we can deduce that

10 -%)

i=l1

1
— ﬁ K" — anl Zai

1

+K”’22a;aj—K”’3 2 aiajap x - -- 9
i#] i#j#k

and likewise for b;, which allows writing out both sides of
inequality (3). When doing this (not shown to save space),
we see that the fore factor (1/K™) can be eliminated. Then,
the term K" also subtracts away from both sides. After this,
we can divide the remaining inequality as in (6), here using
K"~! as divisor. This renders

—Zai—i—%Zaiaj—% Z aajap = - --
i i#j i j#k
> —Zb,-—i—%Zbibj—% > bbbk
i i#] ij#k

(—)Zai+Da<Zb,’+Db

using the correct individual signs for D. Now, for K — oo,
the disturbance terms D vanish on both sides, and we get

Dai< Db (11)

(10)

as needed.

We conclude that for K — o0, the neural network is
equivalent to the BF algorithm.

In the following, we will show by an extensive statistical
evaluation that the distribution of K for different realistic
graph configurations is well behaved, and we never found any
case where K had to be larger than 10°.

Evidently, K can grow if > . a; &~ >, b;. This can be seen
easily, as, in this case, we can express > .b; = > .a; + €,
with € a small positive number. When performing this setting,
we get from (10) that ¢ > D, — D,, which can be fulfilled
with large values for K.

We have set the word “can” above in italics, because a
broader analysis shows that—even for similar sums—K gets
somewhat larger only for very few cases only as can be seen
from Fig. 3.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

30+

0
Contrast C

Fig. 3. Statistics for K computed from a large number of two-path
combinations. Contrast C = (3, a; — >, b))/(X; ai + >_; b;i). For K > Ko,
NN-BF renders identical results as BF.

For this, we performed the following experiment.
We defined two paths A and B with different lengths
L, and Lpg, where L was taken from L € {2,3,4,5,6,
7, 8,10, 20, 30, 40, 50, 100, 200}, and all combinations of L 4
and Lp were used. We evaluated 60 instances for each path
pair (in total 11760 path pairs). To obtain those, we generated
the cost for all edges in both paths using Gaussian distribu-
tions, where mean m and variance o are chosen for each trial
randomly and separately for A and B with 1 < m < 21 and
0<o <5

In Fig. 3, we are plotting on the horizontal axis the
“contrast” between the summed cost of paths A and B given by
C= (2 ai — 2, b))/ ai + 2>, bi)). This allows compar-
ing sums with quite different values. The vertical axis shows
Ky, where for K > K, the neural network renders identical
results as BE.

Note that we have truncated this plot vertically, but only
15 values of K, had to be left out, all with contrast values
C =~ 0, where the largest was Ky = 812 with a contrast of
C = 5.3349 x 107°. Hence, only, for small contrast, a few
larger values of K are found. Note also that the asymmetry
with respect to positive versus negative contrast is expected,
because fewer negative costs exist in paths A and B due to
our choice of 1 <m < 21.

Considering only pairwise paths is of limited practical use.
From such a perspective, it is better to consider different
graphs with certain cost ranges and different connection den-
sities where one should now ask how likely it would be that
results of BF and NN-BF are mismatched due to a possible K
divergence. To assess this, we had calculated the statistics for
three different graphs with sizes 500, 1000, and 2000 nodes
and randomly created costs taken from three different uni-
form cost distributions with intervals: [1, 10], [1, 100], and
[1, 1000]. We considered four different connectivity densities
for each graph with 5%, 10%, 50%, and 100% connections
each. Fig. 4 shows that the maximal K, found was 10°%; hence,
that in all cases K > 10° will suffice, where such a high value
is only needed for sparse graphs and large costs.

In addition, we have also performed experiments where
we analyzed the influence of the values of K on the success



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULVICIUS et al.: COMBINING OPTIMAL PATH SEARCH WITH TASK-DEPENDENT LEARNING 7
. [V] = 500 . [V] = 1000 . [V] = 2000
10 10 10
——[1, 10] —e—[1, 10] ——[1, 10]
[1, 100] [1, 100] [1, 100]
10° —=—[1, 1000] 4 104 —=—[1, 1000] 10% —e—[1, 1000]
o o \ o
X \'d '
102 102 oo 102 o0
10° 10° 10°
0 50 100 0 50 100 0 50 100

Graph density (%)

Graph density (%)

Graph density (%)

Fig. 4. Analysis of Ko values for graphs of different sizes (500, 1000, and 2000), different densities (5%, 10%, 50%, and 100%), and different cost ranges
([1, 101, [1, 100], and [1, 1000]). For cases |V| = 500 with graph densities 5% and 10% and cost range [1, 1000], and for |V | = 1000 with graph density
5% and cost range [1, 1000], 10000 random graphs were used, whereas in all other cases, 1000 graphs were used.

. [V] = 1000 =
5 V] = 1000
L ——1%
[0
2 ';? 14 ——10%
@ z 50%
%] ~ 0,
g 0.5 1% 2 —-—100%
g ——10% g 1.2
2 50% 2
—-100%  © \.\
0 s 1
10° 102 10* 108 = 100 102 104 108
Ko Ko
Fig. 5. Success rate of optimal solutions (left) and mean cost ratio (NN-BF

cost/BF cost) of suboptimal solution versus Ko value. The 1000 randomly
generated graphs with costs in range [1, 100] were used with four different
densities (1%, 10%, 50%, and 100%). Note that for the graphs with 1% density
and with Ko = 10, solutions were not found, and for the graphs with 10%
density and with Ko = 10, solutions were found for four graphs and were
optimal, whereas for all other remaining graphs, solutions were not found.

rate for finding optimal solutions and on the cost ratio of
the suboptimal solutions as compared with the solutions
found by the BF algorithm. For this, we randomly generated
1000 graphs with 1000 nodes and four different densities: 1%,
10%, 50%, and 100% connections (fully connected graph),
and cost range [1, 1000]. Statistics are shown in Fig. 5 where
we show success rate of optimal solutions (left) and mean
cost ratio (NN-BF cost/BF cost) of suboptimal solutions for
Ko = 10,10%, 10%, 10%, 10°, 10°. Results demonstrate that
Ko > 10* values will lead to convergence to optimal
solutions in all cases except for very sparse graphs (1%
and 10% connectivity); however, even in these cases, the
number of suboptimal solutions is very low (below 1% and
suboptimal solutions are very close to the optimal solutions
(cost ratio < 1.004). With K, = 10°, optimal solutions were
obtained in all cases. This shows that the choice of K is
noncritical in almost all cases.

2) Algorithmic Complexity of the Algorithms: In the fol-
lowing, we will show that all three algorithms have the same
algorithmic complexity.

BF version 1 consists of two loops (see [3]), where the outer
loop runs in O(]V|) time and the inner loop runs in O(|E]),
where | V| and | E| define the number of graph vertices (nodes)
and edges (links), respectively. In the worst case, BF needs to
be run for |V| — 1 iterations and in the best case only for
one iteration. Thus, the worst algorithmic complexity of BF is
O(|V||E]), whereas the best is O(|E|).

The algorithmic structure of the second version of the BF
algorithm (see [3]) is the same as that of our NN-BF algorithm
(Algorithm 1). Hence, their complexity is the same, and we

15¢ ——BF
® ——NN-BF
c
£10
o
L
—
© 5
H*
0

0 0.5 1 1.5 2 2.5
|E| 10’
Fig. 6. Results of convergence analysis. Maximal number of iterations until
convergence of BF version 1 (BF) or NN-BF versus number of edges |E|.

The 500 randomly generated graphs with 5000 nodes were analyzed for each
case.

will provide the analysis for the NN-BF algorithm. NN-BF
operates on neurons and their inputs and not on edges of the
graph as in BF version 1. Hence, NN-BF is similar to BF
version 2 that operates on the nodes. The outer loop, as in BF
version 1, runs in O(N), where N is the number of neurons
and corresponds to the number of vertices |V|. The second
loop iterates through all neurons, and the third loop iterates
through all inputs of the respective neuron and runs in O(N)
and O(;), respectively. Here, I; corresponds to the number
of inputs of a particular neuron j. Given the fact that N = |V/|
and Zj I; =|E| (j=1,..., N), we can show that the worst
and the best algorithmic complexity of the NN-BF algorithm
is the same as for BF version 2, i.e., O(|V||E|) and O(|E]),
respectively. Hence, this is the same complexity as for BF
version 1, too.

3) Convergence Analysis: The worst-case scenario would
be to run the algorithms for |V |—1 iterations, where | V| is the
number of graph nodes. However, in practice, this will be not
needed, and significantly, fewer iterations will usually suffice.
Thus, we tested how many iterations are needed until cost
convergence of the BF algorithm (version 1) as compared with
activation convergence of the neural network. In both cases,
we stopped the respective algorithm, as soon as its node costs
or neuron activations were not changing anymore.

For this analysis, we used 500 randomly generated graphs
with 5000 nodes with positive costs (p, = 0) from the range
[1, 10] and connectivity densities corresponding to approx-
imately 12.5 x 103, 25 x 10%, 250 x 103, 2.5 x 10°,
12.5 x 10°, and 24.995 x 10° edges.

The results are shown in Fig. 6, where we show the maximal
number of iterations obtained from 500 tested graphs until



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Fig. 7. Schematic of the learning architecture. /,—external input. R—reward
signal. Opre and Opos—output of presynaptic and postsynaptic neuron,
respectively. w—synaptic weight between pre- and postsynaptic neuron. The
multiplication symbol followed by a red arrow indicates that the synaptic
weight w is changed by a three-factor multiplicative (correlation) process
[see (12)].

convergence. One can see that in case of sparse graphs 16 for
BF and 15 for NN-BF iterations suffice for convergence and
for denser graphs (>10% connectivity), only three iterations
are needed. The resulting run time per one iteration on a sparse
graph with 5000 nodes and 12500 edges is 21 and 59 us for
BF (version 1) and NN-BF, respectively. Run time on a fully
connected graph with 24 995 000 edges is 26 and 14 ms for BF
and NN-BF, respectively.® Thus, relatively large graphs can be
processed in less than 100 ms.

B. Network Learning Rule

As described above, the SP in the network between a source
and a target neuron is given by that specific sequence of
connected neurons, which leads to the largest activation at
the target neuron. Hence, learning that modifies connection
weights (and, thus, also the resulting activations) can alter
path-planning sequences.

In this section, we, thus, define a Hebbian-type synaptic
learning rule to modify connection weights [4], [6], [64],
which will later be used in some examples.

In general, Hebbian plasticity is defined as a multiplica-
tive process where a connection between two neurons—its
synapse—is modified by the product of incoming (presynaptic)
with outgoing (postsynaptic) activity of this neuron [4]. Often,
a third factor R, by means of an additional incoming activation,
enters this correlation process also in a multiplicative way to
provide additional control over the weight change, leading
to a three-factor rule (see [5] for a discussion of three-
factor learning). We now first present our three-factor Hebbian
learning scheme and rule, and then, we present two learning
scenarios, namely, navigation learning and sequence learning.

To allow for learning (see schematic in Fig. 7), neurons
will also receive additional external input I, = 1 signaling
occurrence of specific events, for instance, if an agent is at
the specific location in an environment (otherwise, it will be
set to I, = 0). The network will receive external inputs I,
only during learning but not during planning. The output of
a postsynaptic neuron, Opq, i computed as described above
using (2). Hence, Opost = max{Op, I.}.

3C++ CPU implementation on Intel Core i9-9900 CPU, 3.10 GHz, and
32.0-GB RAM.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

The synaptic weight w between pre- and postsynaptic
neuron is then changed according to

Aw = & Opre Opost R (12)

where ¢ > 0 is the learning rate, usually set to small
values to prevent too fast learning. The driving force of
the learning process is the reward signal R, which can be
positive or negative and will lead to weight increase [long-term
potentiation (LTP)] or decrease [long-term depression (LTD)],
respectively. This learning rule represents, thus, a three-factor
rule [5], where, here, the third-factor is the reward signal R.

A diagram of the learning scheme is presented in Fig. 7,
where we show the components of the learning rule to change
the synaptic weight between two neurons in the planning
network.

Note that in our learning scheme, weights were bounded
between O and 1, ie., 0 <w < 1.

C. Combining Learning With Path Planning—Two Examples

In the following, we will show the examples of network
learning combined with path finding. Examples stem from
two common problem sets (navigation learning and sequence
learning), and we can demonstrate here the main advantage
of NN-BF, which is that learning and path finding rely on
the same numerical representation. To achieve the same with
BF (or any other additively operating algorithm), one would
have to transform costs (for path finding) to activations (for
network learning) back and forth. Examples are kept small,
but upscaling to large problems is straightforward.

1) Navigation Learning: In the first learning scenario,
we considered a navigation task in 2-D space, where an agent
had to explore an unknown environment and plan the SP from
a source location to a destination.

We assume a rectangular arena; see Fig. 8(a) and (b),
iteration 0, with some locations (blue dots) and obstacles
(gray boxes). The locations are represented by neurons in
the planning network, whereas connections between neurons
correspond to possible transitions from one location to other
neighboring locations. Note that some transitions between
neighboring locations, and, thus, connections between neurons
are not possible due to obstacles. The positions of locations
and possible transitions between them were generated in the
following way. The position of a location k is defined by

G yi) = (hi + &, b j +&))

where i,j = 1,2,...,m and & is noise from a uniform
distribution U (a, b). In this study, we used m =5 (k = m* =
25), h =0.2, a = —0.05, and b = 0.05.

Possible transitions between neighboring locations and,
thus, possible connections between neurons were defined
based on a distance threshold 6; between locations, i.e., con-
nections were only possible if the Euclidean distance between
two locations dy; = ||(xg, &) — (x7, ¥1)|| < 64. In one case
[Fig. 8(a)], we used 6; = 0.25, and in another case [Fig. 8(b)],
we used 6; = 0.35.

Synaptic weights between neurons were updated after
each transition (called iteration) from the current location k
(presynaptic neuron) to the next neighboring location !/

13)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULVICIUS et al.: COMBINING OPTIMAL PATH SEARCH WITH TASK-DEPENDENT LEARNING 9

Iteration 0 Iteration 100 lteration 200 lteration 300
° . : ° ° °

Iteration 400 Iteration 600

Iteration 1000 lteration 1500

Iteration 100

Iteration 200 Iteration 300

(b) Iteration O

Iteration 1100

Iteration 1200 Iteration 2000

Fig. 8. Results of navigation learning. (a) Static environment. (b) Dynamic environment. Blue dots correspond to locations represented by neurons, and black
lines correspond to connections between neurons (paths between locations) where line thickness is proportional to the synaptic weight strength. Gray blocks
denote obstacles. Green and red dots correspond to the start point and the endpoint of the path marked by the red trajectory.

(postsynaptic neuron) according to the learning rule as
described above, where pre- and postsynaptic neurons obtain
an external input I, = 1 during this transition (otherwise
I, = 0). In the navigation scenario, the reward signal R was
inversely proportional to the distance between neighboring
locations dy, i.e., R = 1 — Bdy,; (here, we used g = 1).
Thus, smaller distances between locations lead to larger reward
values and larger weight updates, and vice versa. In the
navigation learning scenario, initially, all weights were set
to 0, and the learning rate was set to o = 0.02. The learning
and planning processes were repeated many times, where the
learning process was performed for 100 iterations, and then,
a path from the source (bottom-left corner) to the destination
location (top-right corner) was planned using current state of
the network.

We used two navigation learning cases. In the first case,
a static environment with multiple obstacles was used where
obstacles were present during the whole experiment [see
Fig. 8(a)], whereas in the second case, a dynamic environ-
ment was simulated, where one big obstacle was used for
some period of time and then was removed some time later
[see Fig. 8(b)].

Results for navigation learning in a static environment
are shown in Fig. 8(a), where we show the development
of the network’s connectivity (black lines; line thickness is
proportional to the weight strength) and the planned path
(red trajectory) based on the network’s connectivity dur-
ing the learning process. After 100 learning iterations, the
environment was only partially explored. Therefore, the full
path could not yet be planned. After 200 iterations, only
a suboptimal path was found, since the environment was
still not completely explored. As exploration and learning
process proceeds, connections between different locations
get stronger (note thicker lines in the second row), and
eventually, the planned path converges to the SP (after
400 iterations).

In Fig. 8(b), we show results for navigation in a dynamic
environment. Here, we first run the learning process until the
path has converged (see the top row) and then remove the
obstacle after 300 learning iterations. As expected, after obsta-
cle removal, the middle part of the environment is explored,
and new connections between neurons are built. Eventually,
as the learning proceeds, the output of the planning network
converges to the SP (after 1200 iterations).



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
Epoch 0 Epoch 1 Epoch 2 Epoch 3 Epoch 4
(a) B C B c B c B c B C
A
D
F E F E F E F E F E
Epoch 5 Epoch 6 Epoch 7 Epoch 8 Epoch 9
B C B C B C B C B C
D
F E F E F E F E F E
Epoch 0 Epoch 1 Epoch 2 Epoch 3 Epoch 4
B C B C B C B C B C
A A A
F E F E F E F E F E
Epoch 5 Epoch 6 Epoch 7
B B B
A A A
F E F E F E

Fig. 9. Results of sequence learning. (a) Learning of sequence A BC D E F. (b) Learning of sequence A C D F. Blue dots correspond to letters represented
by neurons, and black lines correspond to connections between neurons where line thickness is proportional to the synaptic weight strength. Green and red
dots correspond to the start point and endpoint of the sequence marked by the red trajectory.

Due to the learning rule used, in both cases, systems
converge to the shortest Euclidean distance paths.

2) Sequence Learning: In the second learning scenario,
we were dealing with sequence learning, where the task was
to learn executing a predefined sequence of arbitrary events,
which, in our study, were denoted by letters. For instance, this
could correspond to an action sequence in order to execute
some task by a robot and could be used for task planning
in robotics to generate optimal plans. Note that sequences do
not necessary have to be predefined (as in our example), but
optimal sequences can be learned based on obtained rewards
during action execution.

In this case, we used a fully connected network (without
self-connections) where neurons correspond to letters. In total,
we used six different events (letters), i.e., A—F [see Fig. 9(a)].
Initially, all weights were set to random values from a uniform
distribution ¢/(0, 0.5). Here, the planning and learning proce-
dures are performed in epochs, where we execute the sequence
based on the planner’s outcome always starting with letter A
and ending with letter F' and perform weight updates for each
pair in the planned sequence. Suppose that, at the beginning,
the planner generates a sequence A B F, then there will be
two learning iterations in this epoch, i.e., weight update for the

transition from A to B and from B to F. As in the navigation
learning scenario, pre- and postsynaptic neurons will receive
external input /[, = 1 whenever a certain transition from one
event to the next event happens, e.g., from A (presynaptic
neuron) to B (postsynaptic neuron).

Different from the navigation scenario, here, we used pos-
itive and negative rewards, i.e., R = 1 if a sequence pair is
correct and R = —1 otherwise. In case of our previous A B F
example, this would lead to an increase of the synaptic weight
between neurons A and B (correct) and to a decease of the
synaptic weight between neurons B and F (incorrect; after B
should be C). The learning procedure is repeated for several
learning epochs until convergence. Here, we used the relatively
high learning rate @« = 0.9, which allows fast convergence to
the correct sequence.

We performed two sequence learning cases, where in the
first case, we were learning a sequence consisting of all
possible six events ABC D E F, and in the second case,
a shorter sequence A C D F had to be learned.

Results for learning of the full sequence ABCDEF
and of the partial sequence AC D F are presented in
Fig. 9(a) and (b), respectively. As in the navigation learning
example, we show the development of the network’s



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

KULVICIUS et al.: COMBINING OPTIMAL PATH SEARCH WITH TASK-DEPENDENT LEARNING 11

connectivity during the learning process. In Fig. 9(a), we can
see that before learning (epoch 0), due to random weight
initialization, the generated sequence is A B F, which is
neither correct nor complete. However, after the first learning
epoch, we can see that the connection weight between
neurons A and B was increased (note thicker line between
A and B as compared with epoch 0), whereas the connection
weight between neurons B and F was decreased, which
then led to a different sequence A B D F. After epoch 3, the
connection weight between neurons E and F was increased,
since in previously generated sequence A E F (epoch 2), the
transition from E to F was correct. Finally, after learning
epoch 7, the network generates the correct sequence.
Similarly, in case of learning of the partial sequence
ACDF [see Fig. 9(b)], learning converges to the correct
sequence already after epoch 5, since the sequence is shorter.

V. CONCLUSION AND OUTLOOK

Finding the optimal path in a connected graph is a classical
problem, and, as discussed in Section II-A, many different
algorithms exist to address this. Here, we proposed a neural
implementation of the BF algorithm. The main reason, as we
would think, for translating BF into a network algorithm is
the now-arising possibility to directly use network learning
algorithm on a path-finding problem. To do this with BF or
other cost-based algorithm, you would have to switch back and
forth between a cost- and a weight-based representation of the
problem. This is not needed for NN-BF. Given that BF and
NN-BF have the same algorithmic complexity, computational
speed of the path-finding step is similar, too, where learning
epochs can be built into NN-BF as needed. The examples
shown above rely on a local learning rule that alters the
weights only between directly connected nodes. Globally
acting rules could, however, also be used to address different
problems, too, and—as far as we see—there are no restric-
tions with respect to possible network learning mechanisms,
because NN-BF is a straightforward architecture for activity
propagation without any special limitations.

Hence, network algorithm with NN-BF allows for new
and different applications where learned path augmentation
is directly coupled with path finding in a natural way.

So far, we only investigated the performance of our method
on specific environments and tasks. Some of these task
addressed the problem of unseen environments using our
learning methods. In our future work, we will investigate
the capability of our approach to generalize across different
environments and/or different tasks, and we can also extend the
experiments into a deeper investigation of complex unknown
environments to even more strongly emphasize the power of
being able to combine path finding directly with learning.

REFERENCES

[1] R. Bellman, “On a routing problem,” Quart. Appl. Math., vol. 16, no. 1,
pp. 87-90, 1958.

[2] L. R. Ford, “Network flow theory,” Rand Corp., Santa Monica, CA,
USA, Tech. Rep. P-923, 1956.

[3] J. S. Baras and G. Theodorakopoulos, “Path problems in networks,”
Synth. Lectures Commun. Netw., vol. 3, no. 1, pp. 1-77, Jan. 2010.

[4] D. O. Hebb, The Organization of Behavior. New York, NY, USA: Wiley,
2005.

[5]1 L. Kusmierz, T. Isomura, and T. Toyoizumi, “Learning with three factors:
Modulating Hebbian plasticity with errors,” Current Opinion Neurobiol.,
vol. 46, pp. 170-177, Oct. 2017.

[6] B. Porr and F. Worgdtter, “Learning with ‘relevance’: Using a third
factor to stabilize Hebbian learning,” Neural Comput., vol. 19, no. 10,
pp. 2694-2719, 2007.

[7]1 E. F. Moore, “The shortest path through a maze,” in Proc. Int. Symp.
Theory Switching, 1959, pp. 285-292.

[8] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph traver-
sal,” ACM SIGPLAN Notices, vol. 47, no. 8, pp. 117-128, Sep. 2012.

[9]1 E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Math., vol. 1, no. 1, pp. 269-271, Dec. 1959.

[10] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. SSC-4, no. 2, pp. 100-107, Jul. 1968.

[11] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search,” Artif. Intell., vol. 27, no. 1, pp. 97-109, 1985.

[12] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong planning A*,” Artif.
Intell., vol. 155, nos. 1-2, pp. 93-146, 2004.

[13] X. Sun, S. Koenig, and W. Yeoh, “Generalized adaptive A*,” in Proc.
7th Int. J. Conf. Auto. Agents Multiagent Syst., 2008, pp. 469—476.

[14] D. D. Harabor and A. Grastien, “Online graph pruning for path finding
on grid maps,” in Proc. AAAI 2011, pp. 1114-1119.

[15] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5,
no. 6, p. 345, Jun. 1962.

[16] S. Warshall, “A theorem on Boolean matrices,” J. ACM, vol. 9, no. 1,
pp. 11-12, Jan. 1962.

[17] D. B. Johnson, “Efficient algorithms for shortest paths in sparse net-
works,” J. ACM, vol. 24, no. 1, pp. 1-13, Jan. 1977.

[18] M. K. M. Ali and F. Kamoun, “Neural networks for shortest path
computation and routing in computer networks,” IEEE Trans. Neural
Netw., vol. 4, no. 6, pp. 941-954, Nov. 1993.

[19] D.-C. Park and S.-E. Choi, “A neural network based multi-destination
routing algorithm for communication network,” in Proc. IEEE Int. Joint
Conf. Neural Netw., vol. 2, May 1998, pp. 1673-1678.

[20] F. Araujo, B. Ribeiro, and L. Rodrigues, “A neural network for
shortest path computation,” IEEE Trans. Neural Netw., vol. 12, no. 5,
pp. 1067-1073, Sep. 2001.

[21] J. Hékkinen, M. Lagerholm, C. Peterson, and B. Soderberg, “A Potts
neuron approach to communication routing,” Neural Comput., vol. 10,
no. 6, pp. 1587-1599, Aug. 1998.

[22] R. Glasius, A. Komoda, and S. C. A. M. Gielen, “Neural network
dynamics for path planning and obstacle avoidance,” Neural Netw.,
vol. 8, no. 1, pp. 125-133, Jan. 1995.

[23] R. Glasius, A. Komoda, and S. C. A. M. Gielen, “A biologically
inspired neural net for trajectory formation and obstacle avoidance,”
Biol. Cybern., vol. 74, no. 6, pp. 511-520, Jun. 1996.

[24] N. Bin, C. Xiong, Z. Liming, and X. Wendong, “Recurrent neural
network for robot path planning,” in Proc. Int. Conf. Parallel Distrib.
Comput., Appl. Technol., 2004, pp. 188-191.

[25] S. X. Yang and M. Meng, “Neural network approaches to dynamic
collision-free trajectory generation,” IEEE Trans. Syst., Man Cybern.,
B, vol. 31, no. 3, pp. 302-318, Jun. 2001.

[26] H. Qu, S. X. Yang, A. R. Willms, and Z. Yi, “Real-time robot
path planning based on a modified pulse-coupled neural network
model,” IEEE Trans. Neural Netw., vol. 20, no. 11, pp. 1724-1739,
Nov. 2009.

[27] J. Ni, L. Wu, P. Shi, and S. X. Yang, “A dynamic bioinspired neural net-
work based real-time path planning method for autonomous underwater
vehicles,” Comput. Intell. Neurosci., vol. 2017, pp. 1-16, Feb. 2017.

[28] T. Kulvicius, S. Herzog, M. Tamosiunaite, and F. Worgotter, “Find-
ing optimal paths using networks without learning—Unifying classical
approaches,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 12,
pp. 7877-7887, Dec. 2022.

[29] A. H. Qureshi, M. J. Bency, and M. C. Yip, “Motion planning networks,”
2018, arXiv:1806.05767.

[30] N. Pérez-Higueras, F. Caballero, and L. Merino, “Learning human-aware
path planning with fully convolutional networks,” in Proc. IEEE Int.
Conf. Robot. Autom. (ICRA), May 2018, pp. 5897-5902.

[317 Y. Ariki and T. Narihira, “Fully convolutional search heuristic learning
for rapid path planners,” 2019, arXiv:1908.03343.



[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

T. Kulvicius, S. Herzog, T. Luddecke, M. Tamosiunaite, and
F. Worgotter, “One-shot multi-path planning using fully convolutional
networks in a comparison to other algorithms,” Frontiers Neurorobotics,
vol. 14, p. 115, Jan. 2021.

M. J. Bency, A. H. Qureshi, and M. C. Yip, “Neural path planning:
Fixed time, near-optimal path generation via Oracle imitation,” 2019,
arXiv:1904.11102.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017,
pp. 31-36.

A. L Panov, K. S. Yakovlev, and R. Suvorov, “Grid path planning with
deep reinforcement learning: Preliminary results,” Proc. Comput. Sci.,
vol. 123, pp. 347-353, Jan. 2018.

A. Banino et al., “Vector-based navigation using grid-like representations
in artificial agents,” Nature, vol. 557, no. 7705, pp. 429-433, May 2018.
M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, 1. Titov,
and M. Welling, “Modeling relational data with graph convolutional
networks,” in Proc. Eur. Semantic Web Conf., 2018, pp. 593-607.

M. Zhang and Y. Chen, “Link prediction based on graph neural net-
works,” in Proc. NIPS, vol. 31, 2018, pp. 5165-5175.

P. Velickovic, R. Ying, M. Padovano, R. Hadsell, and C. Blundell,
“Neural execution of graph algorithms,” in Proc. Int. Conf. Learn.
Represent., 2020, pp. 1-14.

K. Teru, E. Denis, and W. Hamilton, “Inductive relation prediction
by subgraph reasoning,” in Proc. Int. Conf. Mach. Learn., 2020,
pp. 9448-9457.

Z. Zhu, Z. Zhang, L.-P. Xhonneux, and J. Tang, ‘“Neural bellman-
ford networks: A general graph neural network framework for link
prediction,” in Proc. Neural Inf. Process. Syst., 2021, pp. 1-15.

Y. Yang et al., “Graph neural networks inspired by classical iterative
algorithms,” in Proc. Int. Conf. Mach. Learn., 2021, pp. 1-11.

S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proc. AAAI Conf.
Artif. Intell., 2018, vol. 32, no. 1, pp. 1-9.

M. Li, P-Y. Huang, X. Chang, J. Hu, Y. Yang, and A. Hauptmann,
“Video pivoting unsupervised multi-modal machine translation,” /EEE
Trans. Pattern Anal. Mach. Intell., vol. 45, no. 3, pp. 3918-3932,
Mar. 2023.

L. Zhang et al., “TN-ZSTAD: Transferable network for zero-shot tempo-
ral activity detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45,
no. 3, pp. 3848-3861, Mar. 2023.

W. Cong, W. Wang, and W.-C. Lee, “Scene graph generation via
conditional random fields,” 2018, arXiv:1811.08075.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko,
“Translating embeddings for modeling multi-relational data,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 26, 2013, pp. 1-9.

S. Woo, D. Kim, D. Cho, and I. S. Kweon, “LinkNet: Relational
embedding for scene graph,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 31, 2018, pp. 1-11.

D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei, “Scene graph generation by
iterative message passing,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 3097-3106.

R. Zellers, M. Yatskar, S. Thomson, and Y. Choi, “Neural motifs: Scene
graph parsing with global context,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., Jun. 2018, pp. 5831-5840.

W. Gao, Y. Zhu, W. Zhang, K. Zhang, and H. Gao, “A hierarchical
recurrent approach to predict scene graphs from a visual-attention-
oriented perspective,” Comput. Intell., vol. 35, no. 3, pp. 496-516,
Aug. 2019.

Y. Li, W. Ouyang, B. Zhou, J. Shi, C. Zhang, and X. Wang, “Factorizable
Net: An efficient subgraph-based framework for scene graph generation,”
in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018, pp. 335-351.

J. Yang, J. Lu, S. Lee, D. Batra, and D. Parikh, “Graph R-CNN for
scene graph generation,” in Proc. Eur. Conf. Comput. Vis. (ECCV), 2018,
pp. 670-685.

X. Chang, P. Ren, P. Xu, Z. Li, X. Chen, and A. Hauptmann, “A com-
prehensive survey of scene graphs: Generation and application,” /[EEE
Trans. Pattern Anal. Mach. Intell., vol. 45, no. 1, pp. 1-26, Jan. 2023.
M. Zhang et al., “One-shot neural architecture search: Maximising
diversity to overcome catastrophic forgetting,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 43, no. 9, pp. 2921-2935, Sep. 2021.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

C. Li, G. Wang, B. Wang, X. Liang, Z. Li, and X. Chang, “DS-Net++:
Dynamic weight slicing for efficient inference in CNNs and vision
transformers,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 4,
pp. 4430-4446, Apr. 2023.

X. Gong, S. Chang, Y. Jiang, and Z. Wang, “AutoGAN: Neural archi-
tecture search for generative adversarial networks,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 3223-3233.

H. Wang and J. Huan, “AGAN: Towards automated design of generative
adversarial networks,” 2019, arXiv:1906.11080.

C. Yan et al., “ZeroNAS: Differentiable generative adversarial networks
search for zero-shot learning,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 12, pp. 9733-9740, Dec. 2022.

Y. Xia and J. Wang, “A discrete-time recurrent neural network for
shortest-path routing,” IEEE Trans. Autom. Control, vol. 45, no. 11,
pp- 2129-2134, 2000.

Y. Zhang and S. Li, “Distributed biased min-consensus with applications
to shortest path planning,” IEEE Trans. Autom. Control, vol. 62, no. 10,
pp. 5429-5436, Oct. 2017.

S. Koenig and R. G. Simmons, Complexity Analysis of Real-Time Rein-
forcement Learning Applied to Finding Shortest Paths in Deterministic
Domains. Pittsburgh, PA, USA: Carnegie-Mellon Univ., 1993.

B. Porr and F. Worgotter, “Isotropic sequence order learning,” Neural
Comput., vol. 15, no. 4, pp. 831-864, Apr. 2003.

Tomas Kaulvicius received the Ph.D. degree in
computer science from the University of Gottingen,
Gottingen, Germany, in 2010. His Ph.D. thesis was
on the development of receptive fields in closed-loop
learning systems.

From 2010 to 2015, he was a Researcher at the
University of Gottingen, where he worked on tra-
jectory generation and motion control for robotic
manipulators. From 2015 to 2017, he was appointed
as an Assistant Professor at the Centre for Bio
Robotics, University of Southern Denmark, Odense,

Denmark. He is currently a Research Assistant at the University of Gottingen.
His research interests include modeling of closed-loop behavioral systems,
robotics, artificial intelligence, machine learning algorithms, movement gener-
ation and trajectory planning, action recognition and prediction, and movement
analysis and diagnostics.

experimental

Minija Tamosiunaite received the Ph.D. degree
in informatics from Vytautas Magnus University,
Kaunas, Lithuania, in 1997.

She is currently working as a Senior Researcher
at the Bernstein Center for Computational Neu-
roscience, Third Institute of Physics, University
of Gottingen, Gottingen, Germany. Her research
interests include machine learning, biological signal
analysis, and application of learning methods in
robotics.

Florentin Worgotter received the Diplom degree in
biology with specialization in mathematics from the
University of Diusseldorf, Diisseldorf, Germany, in
1985, and the Ph.D. degree from the University of
Essen, Essen, Germany, in 1988, with a focus on the
visual cortex.

From 1988 to 1990, he was engaged in computa-
tional studies with the California Institute of Tech-
nology, Pasadena, CA, USA. From 1990 to 2000,
he was a Researcher at the University of Bochum,
Bochum, Germany, where he investigated the
and computational neuroscience of the visual system.

From 2000 to 2005, he was a Professor of computational neuroscience with
the Psychology Department, University of Stirling, Stirling, U.K., where his
interests strongly turned toward learning in neurons. Since July 2005, he has
been the Head of computational neuroscience at the Bernstein Center for
Computational Neuroscience, Third Institute of Physics, University of Gottin-

gen,

Gottingen, Germany. His current research interests include information

processing in closed-loop perception action systems, sensory processing,
motor control, and learning/plasticity, which are tested in different robotic
implementations.



