
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Multivariate Time Series Forecasting Using
Multiscale Recurrent Networks With Scale

Attention and Cross-Scale Guidance
Qiang Guo , Member, IEEE, Lexin Fang , Ren Wang , and Caiming Zhang

Abstract— Multivariate time series (MTS) forecasting is
considered as a challenging task due to complex and nonlin-
ear interdependencies between time steps and series. With the
advance of deep learning, significant efforts have been made to
model long-term and short-term temporal patterns hidden in
historical information by recurrent neural networks (RNNs) with
a temporal attention mechanism. Although various forecasting
models have been developed, most of them are single-scale
oriented, resulting in scale information loss. In this article,
we seamlessly integrate multiscale analysis into deep learning
frameworks to build scale-aware recurrent networks and propose
two multiscale recurrent network (MRN) models for MTS fore-
casting. The first model called MRN-SA adopts a scale attention
mechanism to dynamically select the most relevant information
from different scales and simultaneously employs input attention
and temporal attention to make predictions. The second one
named as MRN-CSG introduces a novel cross-scale guidance
mechanism to exploit the information from coarse scale to guide
the decoding process at fine scale, which results in a lightweight
and more easily trained model without obvious loss of accuracy.
Extensive experimental results demonstrate that both MRN-SA
and MRN-CSG can achieve state-of-the-art performance on five
typical MTS datasets in different domains. The source codes will
be publicly available at https://github.com/qguo2010/MRN.

Index Terms— Attention mechanism, cross-scale guidance,
multiscale decomposition, recurrent neural networks (RNNs),
time series forecasting.

Manuscript received 25 November 2021; revised 2 December 2022 and
12 March 2023; accepted 15 October 2023. This work was supported in part
by the National Natural Science Foundation of China under Grant 61873145
and Grant 61802229, in part by the NSFC Joint Fund with Zhejiang under Key
Project under Grant U1609218, in part by the Natural Science Foundation of
Shandong Province for Excellent Young Scholars under Grant ZR2017JL029,
in part by the Special Funds of Taishan Scholars Project of Shandong Province
under Grant tstp20221137, and in part by the Science and Technology
Innovation Program for Distinguished Young Scholars of Shandong Province
Higher Education Institutions under Grant 2019KJN045. (Corresponding
author: Qiang Guo.)

Qiang Guo is with the School of Computer Science and Technology
and the Shandong Provincial Key Laboratory of Digital Media Technology,
Shandong University of Finance and Economics, Jinan 250014, China (e-mail:
guoqiang@sdufe.edu.cn).

Lexin Fang and Ren Wang are with the School of Software, Shandong
University, Jinan 250100, China (e-mail: fanglexin@mail.sdu.edu.cn;
rwang@mail.sdu.edu.cn).

Caiming Zhang is with the School of Software, Shandong University,
Jinan 250100, China, and also with the Shandong Provincial Laboratory of
Future Intelligence and Financial Engineering, Yantai 264005, China (e-mail:
czhang@sdu.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3326140.

Digital Object Identifier 10.1109/TNNLS.2023.3326140

I. INTRODUCTION

T IME series data, as a sequence of observations taken
sequentially in time order [1], are ubiquitous in a

wide range of real-world applications such as economic and
financial analysis, supply chain forecasting, electric power
consumption study, audio and video processing, traffic flow
prediction, and other similar areas. In most cases, the collected
data are multivariate [2]. For instance, electricity consumption
forecasting involves the times series of consumption records
collected from multiple clients. These consumption data are
correlated due to the shared transmission infrastructure and
weather. Multivariate time series (MTS) forecasting aims to
accurately predict future value by jointly considering intra-
and inter-series correlations among historical data. However,
due to complex underlying generation process, the observed
data are nonstationary and nonlinear, which makes MTS
forecasting very challenging. Especially, complex dynamic
interdependencies among multiple variables further complicate
the forecasting task.

Many methods have been developed to address the
above challenges in the past, e.g., statistical model-based
methods [3], matrix factorization-based methods [4], machine
learning-based methods [5], deep learning-based methods
[6], [7], and hybrid methods [8]. Among these methods,
vector autoregression (VAR) is one of the most popular
model for MTS forecasting, which generalizes the classical
autoregressive (AR) statistical model by allowing for more
than one evolving variable. Although VAR shows significant
effectiveness in modeling the linear dependencies, it fails
to capture the high-order dependencies of MTS data [9].
To address this issue, Gultekin and Paisley [10] treat MTS as a
matrix, and predict future values by solving a low-rank matrix
factorization problem. Indeed, tensor factorization provides an
effective technique for extracting valuable structure informa-
tion from tensorial data [11]. In [9], tensor factorization was
integrated with AR model to obtain two different multilinear
AR forecasting models. Despite their success, such models
are known to suffer from poor computational efficiency.

Recently, deep neural networks have received a substantial
amount of attention from the research community. In particu-
lar, the recurrent neural networks (RNNs), e.g., long short-term
memory (LSTM) [12] and gated recurrent unit (GRU) [13],
have shown promising performance in MTS forecasting
due to their ability to model nonlinear interdependencies.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0003-4219-3528
https://orcid.org/0000-0003-3243-851X
https://orcid.org/0000-0002-5877-5023
https://orcid.org/0000-0003-0217-1543

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

By integrating both the input attention and temporal attention
mechanisms into RNN, Qin et al. [14] proposed a dual-
stage attention-based RNN (DA-RNN), which can adaptively
select the most relevant deriving variables to make more accu-
rate predictions. After that, various temporal attention-based
forecasting models including long- and short-term time-series
network (LSTNet) [8], temporal pattern attention based LSTM
(TPA-LSTM) [2], and dual self-attention network (DSANet)
[15] have been proposed to improve the prediction accuracy.
However, most prior works pay little attention to capture the
scale dependencies among multiscale features of MTS.

In this article, we incorporate the attention mechanism into
an LSTM by two different schemes to capture the scale
dependencies and adaptively fuse the features from different
scales. We also fine-tune the wavelet filter banks used in
multiscale decomposition to fit the data by end-to-end training.
These changes allow us to significantly improve the prediction
performance. In summary, the main contributions of this article
lie in the following four aspects.

1) We seamlessly integrate multiscale analysis into deep
learning frameworks to build scale-aware recurrent net-
works, and explore the scale attention and cross-scale
guidance mechanisms. To the best of our knowledge, this
is the first work to adopt multiscale recurrent networks
(MRNs) with these two mechanisms for time series
forecasting.

2) We propose an MRN to predict future samples of time
series, which simultaneously employs input attention,
temporal attention, and scale attention. Due to the
explicit usage of these attentions, this model obtains
more accurate prediction.

3) We propose a novel MRN with cross-scale guidance
mechanism, which exploits the information from coarse
scale to guide the decoding process at fine scale. This
design brings us a lightweight and more easily trained
model without loss of accuracy.

4) We conduct extensive experiments on five benchmark
datasets for MTS forecasting. The experimental results
and comparisons demonstrate the superior performance
and efficiency of our proposed models.

The remainder of this article is organized as follows.
In Section II, we first discuss the related studies. Then,
Section III briefly describes the problem of MTS forecast-
ing and reviews the stationary wavelet transform (SWT)
used in multiscale time series decomposition. In Section IV,
we present the proposed MRN with scale attention (MRN-
SA) and MRN with cross-scale guidance (MRN-CSG) models
that are equipped with the scale attention module and the
cross-scale guidance module, respectively. Section V reports
our experimental results that confirm the significant advantage
of our models. Finally, we conclude this work in Section VI.

II. RELATED WORK

A large number of MTS forecasting methods have been
proposed in the literature. These methods can be roughly clas-
sified into two broad categories: traditional methods and deep
learning-based methods. We briefly review some representative

works in this section. For more details on this topic, we refer
the reader to the recent comprehensive survey [16] and the
references therein.

A. Traditional Methods

Statistics-based methods are classical time series forecasting
models. They assume that the time series are generated by a
linear aggregation of random shocks. A representative method
is the AR moving average (ARMA) model, i.e., a combination
of the AR and moving average (MA) models. Its extension to
nonstationary time series forecasting, known as AR integrated
MA (ARIMA) that incorporates a differencing technique to
eliminate the influences of trend components of data, is one
of the most popular linear models due to its great flexibility.
Another one is exponential smoothing (also known as ETS)
that relies on the weighted average of past observations [17].
In fact, ARIMA and ETS can be represented in state-space
models (SSMs) that provide a unified and powerful framework
for time series modeling [18]. Various SSMs have been
presented to deal with more complex tasks [19]. However,
this type of methods relies heavily on parametric settings and
some assumptions of the underlying data distribution [20],
which make such models unsuitable for many practical usages.
In addition, they are originally limited to linear univariate time
series and do not scale well to the multivariate setting. To cope
with MTS forecasting, VAR was proposed, which generalizes
the univariate AR-based model by allowing for more than one
evolving variable. But it fails to capture the nonlinearity of
MTS data and also suffers from poor computational efficiency.

Unlike the above models that require certain assumptions
on time series data, singular spectrum analysis (SSA) is a
useful nonparametric technique of time series analysis and
forecasting [21]. It embeds the original time series that approx-
imately satisfy some linear recurrent formula (LRF) into a
Hankel matrix (also called trajectory matrix), and produces
a prediction of the future values of time series via the LRF
coefficients that are calculated from a spectral decomposition
of the Hankel matrix. To simultaneously handle multiple
time series, Patterson et al. [22] extended the SSA to a
multivariate SSA, in which the joint trajectory matrix of MTS
is block-Hankel rather than simple Hankel. However, these
SSA-based methods usually require access to noise-free and
fully observed data. As a result, their performance is highly
sensitive to data contamination such as corruptions, outliers,
and missing values. To address this limitation, Gillard and
Usevich [23] formulated the problem of forecasting a given
time series as the structured low-rank matrix completion of
a Hankel matrix. A prediction of the future values of time
series can be obtained by minimizing the nuclear norm of
this Hankel matrix. In [4], a temporal regularized matrix
factorization framework was developed for MTS forecasting,
which uses a novel AR regularizer on the temporal factor
matrix to model temporal dependency among time series
data. Jing et al. [9] integrated tensor factorization with AR
model to derive two different multilinear AR forecasting
models. Despite the success of factorization based models, it is
ineffective in modeling highly nonlinear time series, and also

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUO et al.: MTS FORECASTING USING MRNs WITH SCALE ATTENTION AND CROSS-SCALE GUIDANCE 3

very computationally expensive for applications that require
real-time performance [24].

B. Deep Learning-Based Methods

Driven by the success of deep learning in various tasks,
many recent works leverage deep neural networks to address
the aforementioned limitations. In particular, RNNs have
achieved remarkable performance due to their flexibility in
capturing nonlinear relationship. As pointed out in [25], for
reconstructing state-space trajectories of dynamic systems,
RNNs are universal approximators in theory, thus making
them suitable candidates for modeling nonlinear time series.
Thus, they have been successfully employed for various pre-
diction tasks [26]. However, the standard RNN suffers from
the vanishing gradient and exploding gradient problems [27],
which limits its capability in capturing temporal long-term
dependencies in sequential data.

To mitigate this problem, LSTM and GRU have been
designed with gating units. Meanwhile, incorporating attention
mechanisms into RNNs also has achieved great success in
many natural language processing tasks [28], [29]. The atten-
tion mechanism allows the network to dynamically select the
relevant parts of the input. Hence, it is natural to consider
the gated RNNs and attention mechanisms for time series
prediction. In [14], by equipping an LSTM with the temporal
attention and input attention layers, a DA-RNN was devel-
oped to select the relevant driving series for making more
accurate predictions. Unlike DA-RNN, DSANet [15] employs
two parallel convolution modules, i.e., global temporal con-
volution and local temporal convolution, to, respectively,
capture global and local temporal patterns. It then applies
a self-attention module to model the dependencies among
variables. Cinar et al. [30] presented a position-based attention
model to capture patterns of (pseudo-) periods in time series.
Besides, Lai et al. [8] proposed an LSTNet for MTS forecast-
ing, which utilizes the convolutional layer to capture the local
dependencies among input variables and the recurrent layer to
model complex long-term dependencies. It also introduces a
recurrent-skip structure based on temporal attention to discover
very long-term dependency patterns. Several variants of this
framework, such as [2], [31], and [32], have been proposed.

Besides, as shown in [33], integrating wavelet transform
into RNNs enables us to boost the prediction performance.
Based on the transformed data, RNNs can effectively capture
multiscale patterns of time series [34], [35]. However, most
of the existing works decompose a time series into multiple
sequences with different scales by using the wavelet transform
with fixed filter banks, and indiscriminately combine the
features learned by RNNs to produce a prediction of the time
series. To the best of our knowledge, there is no work focusing
on the scale dependencies among multiscale features of MTS.
To fill this gap, we propose two network models by integrating
scale attention and cross-scale guidance mechanisms with an
LSTM, and fine-tune the wavelet filter banks to fit the data
by end-to-end training. As a result, our models can capture
the scale dependencies and adaptively fuse the features from
different scales, achieving highly competitive performance.

III. PRELIMINARIES

In this section, we first introduce the notations used in this
article, and then formulate the problem of MTS forecasting.
This is followed by giving a brief review of the SWT, which
motivates us to decompose a time series into multiscale
components.

A. Problem Formulation

In this work, we are interested in the task of MTS fore-
casting. Given a series of fully observed time series signals,
we represent them in a matrix form as X = (x1, x2, . . . , xT) ∈

Rn×T , where T is the length of the input window size, and
xt = (x1

t , x2
t , . . . , xn

t)⊤ ∈ Rn denotes the time series at
time t , where n is the number of driving series. Assuming
that historical observations of all series are available, MTS
forecasting is to estimate a series of future signals from the
known X, which can be formulated as learning a function that
maps X to the value of the next time stamp T + τ , i.e.,

yT+τ = f (X) (1)

where f (·) is typically a nonlinear mapping function that we
aim to learn, and τ is the desirable horizon ahead of the current
time stamp. yT+τ may either be the driving series xT+τ or be
any one of the variables x i

T+τ (i = 1, . . . , n). In this article,
we only focus on the latter case, i.e., yT+τ = x i

T+τ . In fact,
for the former, we can predict xT+τ by repeatedly learning n
individual mapping functions.

B. Stationary Wavelet Transform

The wavelet transform is a powerful tool for signal pro-
cessing, which can provide analysis of a signal in both time
and frequency domains. Thus the discrete wavelet transform
(DWT), a discrete version of the wavelet transform, has been
widely used to extract multiscale time-frequency features from
a time series. However, the decimation step in the stan-
dard DWT results in different lengths of wavelet coefficient
sequences at different scales, making it difficult to relate
information at a given time point at the different scales [36].
To overcome this problem, it is common to resort to the SWT,
also known as algorithme à trous [37], in which the length of
wavelet coefficients computed at each scale equals the length
of the input time series. Furthermore, SWT has a valuable
role in the exploration and spectral analysis of nonstationary
time series [38]. These properties enable SWT to model a
nonstationary time series and predict its future value.

The basic idea of the SWT is to modify the wavelet filters
at each scale by inserting a zero between every adjacent pair
of elements of the filter [37]. This leads to an overdetermined
representation of the original sequence. More specifically, for
the low-pass filter (LPF) l[n] used in the DWT, we denote as
l j [n] the filter obtained by inserting 2 j

−1 zeros between each
sample of l[n]. Similarly, for the high-pass filter (HPF) g[n]
of the DWT, g j [n] can be derived by the same way. Given the
lowest scale J , the SWT decomposition of the input signal a0

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Architecture of the proposed MRN-SA. HPF and LPF denote the high-pass filter and low-pass filter, respectively, which are initialized by db2 wavelet
filters and then fine-tuned on the training data.

is defined as [39]

a j+1[n] =
(
l̄ j ∗ a j

)
[n] =

∑
k

l j [k]a j
[
n + 2 j k

]
d j+1[n] =

(
ḡ j ∗ a j

)
[n] =

∑
k

g j [k]a j
[
n + 2 j k

]
(2)

where ∗ is the convolution operator, l̄ j [n] = l j [−n], ḡ j [n] =
g j [−n], and j = 0, . . . , J−1. The signal can be reconstructed
by the following synthesis operation [39]:

a j [n] =
1
2

[(
l̃ j ∗ a j+1

)
[n]+

(
g̃ j ∗ d j+1

)
[n]

]
where l̃ j and g̃ j are the corresponding synthesis filters of the
analysis filters l j and g j , respectively.

For an input sequence, the low-frequency components a j

preserve the information of its long-term temporal patterns,
and the high-frequency components d j preserve the short-term
temporal patterns. Multiple frequency components achieved by
the SWT are helpful for capturing inherent different temporal
patterns that can improve the prediction performance. Inspired
by this, we employ multiple RNNs to simultaneously extract
features from different scales, and then fuse them to generate
a prediction, achieving significant performance improvement.

IV. PROPOSED METHODS

In this section, we propose two novel MRN architectures
that perform time series prediction by exploiting multi-
scale hidden features extracted from multiple attention-based
LSTMs. The first one is called MRN-SA, which adopts a scale
attention mechanism to adaptively fuse hidden states across all
scales. While the second one is referred as MRN-CSG, which
gradually fuses the hidden features from coarse scale to fine
scale. Extensive experiments show that both models obtain
high accuracy for MTS forecasting on several public datasets.

A. MRN With Scale Attention

Fig. 1 provides an architecture overview of the proposed
MRN-SA with three scale components, which works in an
end-to-end manner. The MRN-SA consists of four main parts:
the multiscale decomposition that hierarchically decomposes
an MTS into several subseries with different frequencies, the
scale component encoding that extracts the hidden state of
each subseries by successively applying an input attention

encoder (IA-Encoder) and a temporal attention encoder (TA-
Encoder), the scale attention fusion encoding that explicitly
fuses the hidden states extracted from different scales by a
scale attention fusion encoder (SAF-Encoder), and the tem-
poral attention decoding that generates a prediction by a
temporal attention decoder (TA-Decoder). In the following,
we present some details of the network components used in
the MRN-SA.

1) Multiscale Decomposition: As discussed before, the
short-term prediction of time series depends more on its
high-frequency pattern while the long-term prediction tends to
focus more on the low-frequency pattern. Therefore, we use
the SWT to decompose MTS into a group of subseries with
different scales, and learn multiple frequency patterns from
these subseries for prediction.

Specifically, we perform an HPF g and an LPF l on each
time series xk of X along time axis to obtain a fine-scale
component Xfs and a coarse-scale component Xcs, respectively.
This can be formulated as

Xfs(k, :) = ḡ ∗ X(k, :)

Xcs(k, :) = l̄ ∗ X(k, :) (3)

where X(k, :) = xk
= (xk

1 , . . . , xk
T) represents the kth row

of X, and k = 1, . . . , n. The filtering process can be carried
out recursively on the previous coarse-scale component. For
ease of description, we refer to the components at different
scales as X j , as shown in Fig. 1.

Note that different from existing wavelet-based approaches
for time series forecasting, which use the HPF and LPF with
fixed filter coefficients, our methods first apply the commonly
used db2 wavelet to initialize these filter coefficients, and then
fine-tune them on the training data in an end-to-end manner.

2) Scale Component Encoding: The attention mechanism
is significantly important to select relevant information for
the task of MTS forecasting. The input attention is able
to adaptively select the relevant driving series at each time
step, while the temporal attention is suitable to select the
relevant hidden states across all the time steps. Therefore,
we adopt a two-stage encoding strategy to extract the most
relevant information from each scale component for prediction,
which includes an IA-Encoder for selecting the input
sequences, and a TA-Encoder for capturing the long-term
dependencies.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUO et al.: MTS FORECASTING USING MRNs WITH SCALE ATTENTION AND CROSS-SCALE GUIDANCE 5

Fig. 2. Graphical illustration of various attention-based encoders and decoders used in MRN-SA. (a) IA-Encoder. (b) TA-Encoder. (c) SAF-Encoder.
(d) TA-Decoder.

a) Input attention encoder: The encoder and the decoder,
commonly used for time series prediction, are essentially an
RNN (e.g., LSTM and GRU) that encodes the input sequences
in the hidden state of an RNN in such a way that a decoder
could reconstruct them. Fig. 2(a) shows a detailed graphical
illustration of IA-Encoder. Given the j th scale component
of MTS data X j = (x1, j , x2, j , . . . , xT, j), where xt, j ∈ R

n

denotes the time series at time t and scale j , the IA-Encoder
uses an LSTM unit to learn a mapping from xt, j to latent
representation hia

t, j ∈ R
m at time step t . Formally, we denote

the memory cell state of LSTM as sia
t, j , the internal sigmoid

gates as fia
t, j , iiat, j , and oia

t, j . The update of an LSTM unit can
be formulated as follows:

fia
t, j = sigmoid

(
Wia

f, j

[
hia

t−1, j ; xt, j
]
+ bia

f, j

)
iiat, j = sigmoid

(
Wia

i, j

[
hia

t−1, j ; xt, j
]
+ bia

i, j

)
oia

t, j = sigmoid
(
Wia

o, j

[
hia

t−1, j ; xt, j
]
+ bia

o, j

)
sia

t, j = fia
t, j ⊙ sia

t−1, j + iiat, j ⊙ tanh
(
Wia

s, j

[
hia

t−1, j ; xt, j
]
+ bia

s, j

)
hia

t, j = oia
t, j ⊙ tanh

(
sia

t, j

)
(4)

where [·; ·] represents the concatenation operator, ⊙ means
the elementwise multiplication, Wia

k, j ∈ R
m×(m+n) and bia

k, j ∈

Rm(k = f, i, o, s) are learnable parameters.
In order to enable the encoder to selectively focus on the

relevant input driving series, we integrate an input attention
mechanism into the encoder. Currently, there exist various
forms of attention weights, among which we use the most
widely used one [14], [29]. Given the kth driving series at
scale j , xk

j = (xk
1, j , xk

2, j , · · · , xk
T, j)
⊤
∈ RT , the previous

hidden state hia
t−1, j , and the internal state sia

t−1, j , we feed
them into a single neural network layer to output an relevant
scores ek

t, j . Then, a softmax function is applied to generate the
attention weight αk

t, j . This can be summarized as follows:

ek
t, j = v⊤e, j tanh

(
We, j

[
hia

t−1, j ; s
ia
t−1, j

]
+ Ue, j xk

j + be, j
)

αk
t, j = softmax

(
ek

t, j

)
, for k = 1, . . . , n (5)

where ve, j , We, j , Ue, j , and be, j are learnable parameters.
The attention weight quantifies the importance of each driving
series for prediction. Taking these weights as the coefficients,
we can update the input and the hidden state at time t as

x̃t, j =
(
α1

t, j x
1
t, j , α

2
t, j x

2
t, j , . . . , α

n
t, j x

n
t, j

)⊤
hia

t, j = f1
(
hia

t−1, j , x̃t, j
)

(6)

where f1 is an LSTM unit as defined in (4) with xt, j replaced
by x̃t, j .

b) Temporal attention encoder: To capture the long-term
dependencies in time series, we utilize the TA-Encoder shown
in Fig. 2(b) to further learn temporal patterns useful for better
forecasting, in which the temporal attention mechanism is used
to adaptively weight the IA-Encoder hidden states across all
time steps. The attention weights β i

t, j of each IA-Encoder
hidden state hia

t, j are computed as

ωi
t, j = v⊤ω, j tanh

(
Wω, j

[
hta

t−1, j ; s
ta
t−1, j

]
+ Uω, j hia

i, j + bω, j
)

β i
t, j = softmax

(
ωi

t, j

)
, for i = 1, . . . , T (7)

where hta
t−1, j and sta

t−1, j are, respectively, the hidden state
and the cell state of the LSTM unit f2 that will be defined in
the following. Similar to (5), vω, j , Wω, j , Uω, j , and bω, j are
learnable parameters.

After obtaining the temporal attention weight β i
t, j that

indicates the importance of the i th IA-Encoder hidden state
hia

i, j , we can easily calculate the context vector ct, j at time t
and scale j as

ct, j =

T∑
i=1

β i
t, j h

ia
i, j . (8)

In essence, the context vector ct, j is a weighted fusion of all
the IA-Encoder hidden states, which further encodes the latent
representations of the input data adaptively.

Intuitively, we can fuse the context vectors of different
scales and use them to produce a prediction. In practice,
however, such an MRN is hard to train due to a large number

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

of parameters that would need to be learned. To solve this
problem, inspired by the deep supervision mechanism recently
introduced in [40], [41], and [42], we deeply supervise the
learning process of each IA-Encoder and TA-Encoder at differ-
ent scales by using the given target series (y1, y2, . . . , yT−1),
which is beneficial to reduce gradient vanishing and acceler-
ate training convergence [43]. Specifically, we first fuse the
context vector and the decomposed target series as follows:

ỹt−1, j = w̃⊤j
[
yt−1, j ; ct−1, j

]
+ b̃ j (9)

and then use ỹt−1, j to learn an LSTM encoder f2 as

hta
t, j = f2

(
hta

t−1, j , ỹt−1, j
)

(10)

where f2 is defined by the following equations with the
learnable weight matrices Wta

f, j , Wta
i, j , Wta

o, j , Wta
s, j , and the bias

vectors bta
f, j , bta

i, j , bta
o, j , bta

s, j :

fta
t, j = sigmoid

(
Wta

f, j

[
hta

t−1, j ; ỹt−1, j
]
+ bta

f, j

)
itat, j = sigmoid

(
Wta

i, j

[
hta

t−1, j ; ỹt−1, j
]
+ bta

i, j

)
ota

t, j = sigmoid
(
Wta

o, j

[
hta

t−1, j ; ỹt−1, j
]
+ bta

o, j

)
sta

t, j = fta
t, j ⊙ sta

t−1, j + itat, j

⊙ tanh
(
Wta

s, j

[
hta

t−1, j ; ỹt−1, j
]
+ bta

s, j

)
hta

t, j = ota
t, j ⊙ tanh

(
sta

t, j

)
. (11)

Next, we obtain a prediction of the series at current time T
by an auxiliary decoder (AU-Decoder) with a simple structure.
Specifically, AU-Decoder maps a concatenation of the hidden
state vector hta

T, j and the context vector cT, j to the prediction
result by a linear function, i.e.,

ys
T, j = v⊤s, j

(
Ws, j

[
hta

T, j ; cT, j
]
+ bs, j

)
+ bv, j . (12)

Here again, vs, j , Ws, j , bs, j , and bv, j are parameters to learn.
In order to make the network training converge to a stable
solution, we introduce an auxiliary prediction loss

Laux =
1

N J

N∑
i=1

J∑
j=1

(
yi

T − yi,s
T, j

)2
(13)

where yi,s
T, j is the prediction value at scale j of the i th sample

produced by AU-Decoder, and N is the number of training
samples. The Laux loss is used as an auxiliary supervision
signal to train the MRN-SA network.

3) Scale Attention Fusion Encoding: SAF-Encoder aims to
fuse the information from different scale components, which
is illustrated in Fig. 2(c). Once we obtain the context vectors
series of each scale C j = (c1, j , c2, j , . . . , cT, j) ∈ Rm×T ,
we perform an 1-D convolutional filter on each context vector
ci, j for dimension reduction

C̄ j =
(
c̄1, j , c̄2, j , . . . , c̄T, j

)
= v⊤c, j C j , for j = 1, . . . , J (14)

where vc, j are parameters to learn. Then, we concatenate all
the reduced context vectors from different scales together into
a matrix C̄ = (c̄1, c̄2, . . . , c̄T), where c̄t ∈ R

J and J is the
number of scales. Next, we can further fuse them into a hidden
state vector hsa

t by

hsa
t = f3

(
hsa

t−1, c̄t
)
. (15)

Here, f3 is an LSTM unit that is defined as

fsa
t = sigmoid

(
Wsa

f

[
hsa

t−1; c̄t
]
+ bsa

f

)
isa
t = sigmoid

(
Wsa

i

[
hsa

t−1; c̄t
]
+ bsa

i

)
osa

t = sigmoid
(
Wsa

o

[
hsa

t−1; c̄t
]
+ bsa

o

)
ssa

t = fsa
t ⊙ ssa

t−1 + isa
t ⊙ tanh

(
Wsa

s

[
hsa

t−1; c̄t
]
+ bsa

s

)
hsa

t = osa
t ⊙ tanh

(
ssa

t

)
. (16)

However, since the importance of context vectors from
different scales is distinct, we introduce a scale attention
weight γ

j
t to measure the importance of the j th scale feature

at time t , which is calculated by

p j
t = v⊤p tanh

(
Wp

[
hsa

t−1; s
sa
t−1

]
+ Up c̄ j)

γ
j

t = softmax
(

p j
t

)
, for j = 1, . . . , J (17)

where c̄ j
= (c j

1, c j
2, . . . , c j

T)⊤ ∈ RT . Using the scale attention
weights, we can adaptively select the context vectors via

c̃t =
(
γ 1

t c̄1
t , γ

2
t c̄2

t , · · · , γ
J

t c̄J
t

)⊤
. (18)

And then we update the hidden states by

hsa
t = f3

(
hsa

t−1, c̃t
)

(19)

where f3 is the LSTM defined in (16) with c̄t replaced by the
weighted c̃t .

4) Temporal Attention Decoding: TA-Decoder, shown in
Fig. 2(d), is used to generate a prediction output by decoding
the fused information. To yield the prediction result, we again
resort to an LSTM unit like the one used in TA-Encoder to
decode the fused context vector with the given target series
(y1, y2, . . . , yT−1). Following the encoder with the attention
mechanism, a temporal attention is to guide the decoder
to select the relevant context vectors across all time steps.
Specifically, the temporal attention weight νi

t , representing
the importance of the i th hidden state for the prediction,
is calculated as

q i
t = v⊤q tanh

(
Wq

[
dt−1; st−1

]
+ Uqhsa

i

)
νi

t = softmax
(
q i

t

)
, for i = 1, . . . , T . (20)

Then, all the encoder hidden states hsa
i are weighted by νi

t to
obtain the context vector c′t , i.e.,

c′t =
T∑

i=1

νi
t hsa

i . (21)

After that, we integrate c′t−1 with the target series yt−1 as

ỹt−1 = w̃⊤
[
yt−1; c′t−1

]
+ b̃. (22)

Then, ỹt−1 is used to update the hidden state of the decoder
as follows:

dt = f4
(
dt−1, ỹt−1

)
(23)

where f4 is an LSTM unit that is formulated as

ft = sigmoid
(
W f

[
dt−1; ỹt−1

]
+ b f

)
it = sigmoid

(
Wi

[
dt−1; ỹt−1

]
+ bi

)
ot = sigmoid

(
Wo

[
dt−1; ỹt−1

]
+ bo

)
st = ft ⊙ st−1 + it ⊙ tanh

(
Ws

[
dt−1; ỹt−1

]
+ bs

)
dt = ot ⊙ tanh(st). (24)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUO et al.: MTS FORECASTING USING MRNs WITH SCALE ATTENTION AND CROSS-SCALE GUIDANCE 7

Algorithm 1 Training for MRN-SA
Input: MTS X , number of training iterations K
Output: Model parameter set 2

1: Initialize 2;
2: for epoch = 1, 2, . . . , K do
3: // Stage 1: Multiscale Decomposition
4: {X i }

J
i=1 ← Apply SWT to decompose X into a group

of sub-series with different scales, as described in (3);
5: // Stage 2: Scale Component Encoding
6: for i = 1, 2, . . . , J do
7: αt,i ← Compute input attention weights by (5);
8: hia

t,i ← Forward propagation of IA-Encoder with sub-
series X i by (6);

9: βt,i ← Compute temporal attention weights by (7);
10: ct,i ← Compute the context vector at time t and scale

i by (8);
11: ỹt,i ← Fuse the context vector and the decomposed

target series by (9);
12: hta

t,i ← Forward propagation of TA-Encoder with
ỹt−1,i by (10);

13: ys
T,i ← Obtain the prediction values of the sub-series

with different scales by (12);
14: end for
15: // Stage 3: Scale Attention Fusion Encoding
16: C̄← Compute the context matrix by (14);
17: γt ← Compute scale attention weights by (17);
18: hsa

t ← Fuse the context vector into the hidden state
vector by (18) and (19);

19: // Stage 4: Temporal Attention Decoding
20: νt ← Compute the temporal attention weights used in

TA-Decoder by (20);
21: c′t ← Compute the context vector by (21);
22: dt ← Update the hidden state of TA-Decoder by (22)

and (23);
23: ŷT ← Produce the final prediction by (25);
24: Laux ← Compute the auxiliary loss by (13);
25: Lmse ← Compute the final output loss by (26);
26: 2 ← Update the model parameters by minimizing

Laux + Lmse.
27: end for

At last, we use the following linear function to produce the
final prediction output:

ŷT = v⊤y
(
Wy

[
dT ; c′T

]
+ bw

)
+ bv (25)

where Wy , vy , bw, and bv are learnable parameters.
In order to learn the network parameters, the commonly

used mean square error (mse) is adopted as the final output
loss function, which can be formulated as

Lmse =
1
N

N∑
i=1

(
yi

T − ŷi
T

)2
(26)

where N is the number of training samples. Algorithm 1
summarizes the training procedure of the resulting MRN-SA.

Fig. 3. Architecture of the proposed MRN-CSG.

B. MRN With Cross-Scale Guidance

As described above, our MRN-SA model directly utilizes
three kinds of attentions (i.e., input attention, temporal atten-
tion, and scale attention) to select the appropriate driving
series, hidden state vectors, and context vectors, respectively.
Despite it is intuitive to understand and effective to adaptively
fuse various features for accurate prediction, MRN-SA is very
complex and computationally expensive. As an alternative to
MRN-SA, we further propose a simple and novel MRN model
called MRN-CSG for MTS forecasting.

Fig. 3 illustrates the architecture of the proposed MRN-CSG
with three scale components, which is composed of three
parts: multiscale decomposition, scale component encoding,
and cross-scale guided temporal attention decoding. However,
unlike the MRN-SA that employs two encoders to extract the
hidden states of each scale, the MRN-CSG only uses one
encoder (i.e., IA-Encoder) in the stage of scale component
encoding. Moreover, instead of explicitly fusing hidden states
by an SAF-Encoder and then generating a prediction by a
TA-Decoder in the stage of decoding, a novel cross-scale
guided temporal attention decoder (GTA-Decoder) is intro-
duced to directly decode the hidden states back a prediction,
which implicitly incorporates multiscale information in the
decoder and exploits the hidden states from coarse scale to
guide the decoding process at fine scale. This design brings us
a lightweight and easily trained model. As a result, the training
procedure of the MRN-CSG model does not need the deep
supervision. Compared with MRN-SA, several modifications
have been made in the architecture of MRN-CSG.

Modification 1 (Scale Component Encoding via Simpler
Encoder): Instead of using two encoders as in MRN-SA,
MRN-CSG removes the TA-Encoder from the stage of scale
component encoding and only relies on the IA-Encoder to
learn latent representations of time series data, which can
use the input attention to adaptively select the relevant input
driving series. Here the formulation of IA-Encoder is as same
as the one used in MRN-SA. This means that the j th scale
component X j of MTS data can be encoded as hia

t, j (see
Section IV-A2a).

Modification 2 (Temporal Attention Decoding via Cross-
Scale Guidance): Instead of generating a prediction by a
TA-Decoder, MRN-CSG adopts a novel cross-scale GTA-
Decoder to decode the hidden states back a prediction,
in which the multiscale information is used in an implicit man-
ner. Fig. 4 illustrates the GTA-Decoder. It is quite similar to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Graphical illustration of the GTA-Decoder used in MRN-CSG.

TA-Decoder used in the MRN-SA model. The only difference
is that GTA-Decoder exploits the hidden states from coarse
scale to guide the decoding process at fine scale. Specifically,
the decoder hidden state dt, j at time t and scale j is calculated
as follows:

dt, j = f5
(
dt−1, j ⊙ tanh

(
dt−1, j+1

)
, ỹt−1

)
(27)

where ỹt−1 is the updated target series by

ỹt−1 = w̃⊤
[
yt−1; ct−1, j

]
+ b̃. (28)

ct−1, j can be obtained by (8), and f5 is an LSTM unit defined
as

ft, j = sigmoid
(
W f, j

[
dt−1, j ⊙ dt−1, j+1; ỹt−1

]
+ b f, j

)
it, j = sigmoid

(
Wi, j

[
dt−1, j ⊙ dt−1, j+1; ỹt−1

]
+ bi, j

)
ot, j = sigmoid

(
Wo, j

[
dt−1, j ⊙ dt−1, j+1; ỹt−1

]
+ bo, j

)
st, j = ft, j ⊙ st−1, j + it, j

⊙ tanh
(
Ws

[
dt−1, j ⊙ dt−1, j+1; ỹt−1

]
+ bs, j

)
dt, j = ot, j ⊙ tanh

(
st, j

)
. (29)

Note that in the above definition the coarse-scale hidden state
vector dt−1, j+1 is used to decode the fine-scale hidden state
vector dt, j . Similar to (25), the final prediction output can be
obtained by

ŷT = v⊤y
(
Wy

[
dT ; cT,1

]
+ bw

)
+ bv (30)

where Wy , vy , bw, and bv are learnable parameters.
Modification 3 (Simple Supervision): We remove the deep

supervision used in MRN-SA, which avoids redundant com-
putation and makes the MRN-CSG more simple. That is,
unlike the MRN-SA model that is trained by simultaneously
minimizing the auxiliary prediction loss Laux defined in (13)
and the final output loss Lmse defined in (26), we only use the
loss Lmse to train MRN-CSG. Such a model is appealing due
to its simplicity and powerfulness in capturing different types
of dependencies.

The aforementioned modifications result in a lightweight
model without decreasing prediction accuracy, as verified in
our experiments in Section V-C. Algorithm 2 describes the
training procedure of this lightweight model.

V. EXPERIMENTS

In this section, we compare the proposed two models
with several recent state-of-the-art methods on five benchmark
datasets for MTS forecasting tasks. We first give some details
of the datasets used in our experiments, and then describe
the experimental settings. Finally, the comparison results are
reported to justify the effectiveness of our models.

Algorithm 2 Training for MRN-CSG
Input: MTS X , number of training iterations K
Output: Model parameter set 2

1: Initialize 2;
2: for epoch = 1, 2, . . . , K do
3: // Stage 1: Multiscale Decomposition
4: {X i }

J
i=1 ← Apply SWT to decompose X into a group

of sub-series with different scales, as described in (3);
5: for i = 1, 2, . . . , J do
6: // Stage 2: Scale Component Encoding
7: αt,i ← Compute input attention weights by (5);
8: hia

t,i ← Forward propagation of IA-Encoder with sub-
series X i by (6);

9: βt,i ← Compute temporal attention weights by (7);
10: ct,i ← Compute the context vector at time t and scale

i by (8);
11: // Stage 3: Cross-Scale Guided Temporal Attention

Decoding
12: dt,J−i+1 ← Compute the hidden state of

GTA-Decoder by (27);
13: ŷT ← Produce the final prediction by (30);
14: Lmse ← Compute the final output loss by (26);
15: 2 ← Update the model parameters by minimizing

Lmse.
16: end for
17: end for

A. Datasets

We conduct experiments on the following five datasets.
1) NASDAQ100: A collection of the stock prices of

81 major corporations under the NASDAQ 100 index
and the index value of the NASDAQ 100 from
July 26, 2016 to December 22, 2016. The data exhibiting
nonseasonality were sampled every minute.

2) Exchange-Rate: The daily exchange rates of eight coun-
tries (i.e., Australia, British, Canada, China, Japan,
New Zealand, Singapore, and Switzerland) were col-
lected from 1990 to 2016, which are nonseasonal time
series.

3) Traffic: A collection of the road occupancy rates
from 2015 to 2016, which was hourly measured by
different sensors on San Francisco Bay area freeways
and displays complex multiple seasonality.

4) Solar-Energy: The solar power production data with a
clear seasonal pattern were recorded every 10 min from
137 solar photovoltaic power plants in 2006.

5) Electricity: This dataset contains electricity consumption
records of 370 clients. The data that exhibit mul-
tiple seasonal patterns were recorded every 15 min
from 2012 to 2014.

The first dataset is collected by Qin et al. [14], and the last
four ones are published by Lai et al. [8]. These datasets are
widely used for MTS forecasting evaluation.

B. Experimental Setup

1) Experimental Setting: For the assessment of the predic-
tion accuracy, we compare the two proposed models with five

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUO et al.: MTS FORECASTING USING MRNs WITH SCALE ATTENTION AND CROSS-SCALE GUIDANCE 9

recent competitors, including four deep learning-based models
(i.e., DA-RNN [14],1 LSTNet [8],2 TPA-LSTM [2],3 DSANet
[15]4), and one low-rank tensor model (i.e., BHT-ARIMA [44]
that employs a block Hankel tensor ARIMA to produce a
prediction5). For these competing methods, we use the publicly
available codes (or the codes shared by the authors) with the
hyperparameters suggested by the authors to run the exper-
iments. For our proposed models, we initialize the network
parameters by random initialization, and employ the Adam
optimizer [45] with the two momentum values set to β1 = 0.9
and β2 = 0.999. The models are trained for 50k iterations
with a mini-batch size of 128. The initial learning rate is set
to 0.0005, and then multiplied by 0.1 after every 10k iterations.
All experiments are conducted on a workstation equipped with
dual Intel Xeon E5-2643 3.4-GHz CPUs, 256 GB of memory,
and two NVIDIA GeForce GTX 1080 GPUs. The proposed
models are implemented in Python under the Tensorflow
framework [46].

In order to train all the aforementioned deep learning-
based models, we split each dataset into three disjoint sets
in chronological order, 60% for training, 20% for validation,
and the rest is for testing, following [8] and [14]. For the BHT-
ARIMA model, we use 80% for training and 20% for testing.
In the multistep prediction experiments, we consider three
horizon values, i.e., τ ∈ {1, 3, 5}, which means the horizon
values were set from 1 to 5 min for the prediction evaluation
on the NASDAQ100 dataset, from 10 to 50 min on the Solar-
Energy dataset, from 1 to 5 h on the Electricity and Traffic
datasets, and from 1 to 5 days on the Exchange-Rate dataset.
Besides, for all deep learning-based models, we train them
ten times and report the average prediction performance and
standard deviations over ten runs.

2) Evaluation Metrics: To measure the prediction quality of
the competing methods, we use five typical evaluation metrics,
including root mean squared error (RMSE), root relative
squared error (RRSE), mean absolute error (MAE), symmetric
mean absolute percentage error (sMAPE), and empirical cor-
relation coefficient (CORR), each of which captures a different
aspect of the quality of the prediction results.

1) RMSE: It describes the sample standard deviation of
the differences between the predicted and ground-truth
values, and is defined as

RMSE =

√
1
N

∑N

i=1

(
yi

T − ŷi
T

)2
(31)

where yi
T and ŷi

T are the ground-truth value and the
predicted one, respectively.

2) RRSE: It is a normalized version of the RMSE for
making more readable evaluation, regardless of the data

1The authors share their source codes with us.
2Code is available at https://github.com/laiguokun/LSTNet.
3Code is available at https://github.com/gantheory/TPA-LSTM.
4Code is available at https://github.com/bighuang624/DSANet.
5Code is available at https://github.com/yokotatsuya/BHT-ARIMA.

scale, i.e.,

RRSE =

√∑N
i=1

(
yi

T − ŷi
T

)2√∑N
i=1

(
yi

T − ȳT
)2

(32)

where ȳT represents the mean of the test target series.
3) MAE: Its definition is given as

MAE =
1
N

N∑
i=1

∣∣yi
T − ŷi

T

∣∣. (33)

4) sMAPE: It is a metric based on percentage errors and
widely used in many forecasting competitions

sMAPE =
1
N

N∑
i=1

∣∣yi
T − ŷi

T

∣∣∣∣yi
T | + |ŷ

i
T

∣∣+ ϵ
(34)

where ϵ is a small constant used to avoid division by
zero.

5) CORR: It indicates the degree of association between
two variables

CORR =
1
N

N∑
i=1

∑
T

(
yi

T − ȳi
)(

ŷi
T −
¯ŷi

)√∑
T

(
yi

T − ȳi
)2 ∑

T

(
ŷi

T −
¯ŷi

)2

(35)

where ȳ represents the mean of set y.
For the CORR metric, a higher value is better, whereas

for the other metrics, lower values means better prediction
performance.

C. Comparison With the State-of-the-Art

The averaged results and standard deviations over ten runs
for one-step ahead prediction (i.e., hori zon = 1), obtained
by all the competing methods on five MTS datasets, are
tabulated in Table I, which provide comparative analysis in
terms of all the above metrics.6 From Table I, we have
several observations. First, the deep learning-based forecast-
ing models outperform the low-rank statistical model except
on the NASDAQ100 dataset. This well demonstrates that,
by mapping the input time series to a hidden variable sequence,
deep recurrent networks can learn complex temporal patterns
much better than the statistical model. Second, MRN-CSG
and MRN-SA achieve very competitive results for all the
metrics on almost all datasets, which consistently demon-
strate the superiority of the proposed models. Comparing
with TPA-LSTM and LSTNet, two state-of-the-art forecast-
ing models, our models deliver superior performance on
the NASDQ100 and Exchange-Rate datasets. Third, although
TPA-LSTM can obtain slightly better prediction accuracy
than ours on Traffic and Electricity datasets, it fails to keep
its performance on other datasets. Fourth, the proposed two
models exhibit relative small values of standard deviations on
all datasets, which indicates that our models are more stable
than others. Finally, all the models report larger RMSE and

6Note that for each MTS dataset we use its last series as the target series
and all the others as the driving series, following [14].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I
ONE-STEP AHEAD FORECASTING PERFORMANCE COMPARISON OF DIFFERENT METHODS ON FIVE DATASETS (MEAN ± STANDARD DEVIATION)

MAE on Electricity and Traffic than the other three datasets,
while the RRSE and sMAPE values are small. It means that
there exist larger data variations on these two datasets. Despite
this, both MRN-CSG and MRN-SA still perform well on them.
To explicitly illustrate the performance, we show the one-step
prediction results of different methods over the NASDAQ100
dataset in Fig. 5(a) and also plot their error curves in Fig. 5(b).
We can observe that our models as well as DA-RNN fit the
ground truth significantly better than others, while LSTNet and
DSANet produce quite large errors in change points.

To further analyze the performance, we compare the mul-
tistep forecasting ability of all competing methods under
two different horizon values (3 and 5). Considering that
BHT-ARIMA is originally designed for one-step forecasting,
we thus perform the recursive prediction strategy on it to
achieve the multistep forecasting. For deep learning-based
methods, we train their direct multistep forecasting versions.
Tables II and III report the averaged results and standard
deviations over ten runs of different methods for multistep
forecasting. As shown in both tables, our two models are
also superior to other methods on most evaluation metrics.
The visual comparisons between the five-step ahead predic-
tion results (i.e., horizon = 5) and true values of various
forecasting methods on the Solar-Energy dataset are shown
in Fig. 5(c), and the corresponding error curves are plotted in
Fig. 5(d). According to the results shown in these two subfig-
ures, the following conclusions can be drawn. First, our two
models achieve significantly better results than the competing
methods, which indicates the effectiveness of our scale atten-
tion and cross-scale guidance schemes for learning the periodic
temporal patterns of time series data. Second, for forecasting

the nonperiodic data, e.g., NASDAQ100 and Exchange-Rate,
BHT-ARIMA can work well and even outperform DSANet
that is among the state-of-the-art deep forecasting models.
However, the experimental results shown in Fig. 5(c) and (d)
clearly indicate that BHT-ARIMA is incompetent for the
periodic forecasting task because it does not capture long-term
temporal patterns.

Additionally, to determine whether the performance of the
proposed models over the state-of-the-art models is statistically
significant, we apply the paired t-test with significance level
0.05 to assess the significance of our models against the
competing deep forecasting models. The p-values for the
RMSE metric are shown in Table IV. We can see that all
the p-values of the t-tests except MRN-SA are notably small,
which reveals that MRN-CSG statistically outperforms the
competing models. It also shows that there is no significant
difference between MRN-CSG and MRN-SA.

D. Effect of Parameters

There are three key parameters in the proposed models, i.e.,
the number of scales J , the input window size T , and the
dimension of latent representation vector h. In this section,
we evaluate the sensitivity of our models with respect to these
parameters by conducting some experiments on NASDAQ100.
It is necessary to point out that, although the following
evaluation results are obtained on the NASDAQ100 dataset,
similar observations can be made on other datasets.

1) Effect of the Number of Scales: We analyze the behavior
of the proposed multiscale forecasting models for varying
number of decomposition scales. Intuitively, the prediction
performance would improve if we increase the number of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUO et al.: MTS FORECASTING USING MRNs WITH SCALE ATTENTION AND CROSS-SCALE GUIDANCE 11

Fig. 5. Prediction results and prediction errors of different methods. From top row to bottom row, they are BHT-ARIMA, LSTNet, TPA-LSTM, DSANet,
DA-RNN, MRN-SA, and MRN-CSG, respectively. (a) One-step prediction results of different methods on the NASDAQ100 dataset. (b) One-step prediction
errors of different methods on the NASDAQ100 dataset. (c) Five-step prediction results of different methods on the Solar-Energy dataset. (d) Five-step
prediction errors of different methods on the Solar-Energy dataset.

scales at the cost of running time. To explore the relationship
between the prediction performance and the number of scales,
we train our models on the NASDAQ100 dataset with five dif-
ferent scales. The quantitative results obtained by MRN-CSG
with different scales and horizons are shown in the top row
of Fig. 6. It is clear that the prediction performance can
be improved by increasing the decomposition scale, which
justifies the intuition of a direct correlation between perfor-
mance and scales. The best prediction performance is achieved
when the number of scales is 2. When it increases more
than 2, the performance begins to drop slightly. The same trend
can also be observed for MRN-SA. Furthermore, when using
more scales, the computational complexity will significantly
increase. Therefore, in the following experiments, we set the
number of scales to 2.

2) Effect of the Input Window Size: We also study the effect
of the input window size T on the forecasting performance
by varying T . In the second row of Fig. 6, we plot the
quantitative results for different sizes of the input window.
It is easily observed that too small size of T results in a
worse performance. These results also show that our models
are insensitive to T when T > 10. That is, increasing the size
does not have further performance gains. Thus, we empirically
set the input window size to 10, which provides an appropriate
trade-off between prediction accuracy and inference speed.

3) Effect of the Dimension of Latent Vector: In our models
the dimension of latent vector h indicates the number of
features expected to learn from time series data. Generally, the
more expected features the model learns, the more complex
the model is. To investigate its effect on the performance,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II
THREE-STEP AHEAD FORECASTING PERFORMANCE COMPARISON OF DIFFERENT METHODS ON FIVE DATASETS (MEAN ± STANDARD DEVIATION)

TABLE III
FIVE-STEP AHEAD FORECASTING PERFORMANCE COMPARISON OF DIFFERENT METHODS ON FIVE DATASETS (MEAN ± STANDARD DEVIATION)

we conduct some experiments with various dimensions. The
results of our MRN-CSG model are illustrated in the bottom
row of Fig. 6. It can be seen that the model achieves the
best performance with 128-D latent vector. When increasing

the dimension of latent vector, the overfitting is observed.
Additionally, we also find that the CORR is not a very effective
metric to measure the prediction performance due to its limited
discrimination ability, as shown in the last column of Fig. 6.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUO et al.: MTS FORECASTING USING MRNs WITH SCALE ATTENTION AND CROSS-SCALE GUIDANCE 13

TABLE IV
P -VALUES OF THE t-TESTS BETWEEN MRN-CSG AND OTHER MODELS ON FIVE DATASETS

Fig. 6. Effect of different parameters of our models on the prediction performance on the NASDAQ100 dataset. Similar observations can be made on other
datasets. The first, second, and third rows, respectively, show the performance for varying number of decomposition scales, different window sizes, and various
dimensions of latent vector.

Fig. 7. Visual comparisons between the HPF and LPF of the fixed wavelet (db2) and ones of our learned wavelet. The initial db2 filters are shown in red
solid line, while the learned filters over training iterations are shown in dashed lines with different colors. Note that, for better visualization, we interpolate
the filter coefficients using the spline interpolation method.

E. Learned Wavelet Filter Versus Fixed Wavelet Filter
In our forecasting models, the wavelet filter is used to

decompose time series into multiple components with different

scales, which is beneficial for discovering the underlying
patterns from data. Fig. 7 shows visual comparisons between
the HPF and LPF of the fixed wavelet (db2) and the ones

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 8. Visual comparisons between different components obtained by fixed wavelets (db2) and ones obtained by learned wavelets on NASDAQ100. Top row
(from left to right): Outputs of the fixed db2 filters g0, l0, g1, and l1, respectively. Second row: Outputs of the learned filters with 10k iterations (from left to
right are the filters g0, l0, g1, l1). Third row: Outputs of the learned filters with 30k iterations. Bottom row: Outputs of the learned filters with 50k iterations.

learned from the training data. It can be seen that the learned
filters are highly structured, like the fixed wavelet filters. For
the filter g0, the shape of its learned versions from the training
data is almost entirely the same to that of the initial db2 filters,
while for the filter g1, the learned versions appear to shift
noticeably from its initial position along the vertical direction.
Different from g0 and g1, the learned filters l0 and l1 show
a consistent change, having a wider dynamic range than their
initial versions.

To investigate how the learned wavelet filters capture the
temporal patterns in data, we analyze the multiscale com-
ponents obtained by the learned wavelets and the fixed db2
wavelets, respectively. Specifically, given a time series,
we examine the structure information localized in its different
components. Fig. 8 shows the different components produced
by the fixed and learned wavelet filters on the NASDAQ100
dataset. In Fig. 8, the four columns from left to right relate to
the outputs of the filters g0, l0, g1, l1, respectively. From top to
bottom, the four rows show the results produced by the fixed
db2 filters, the learned filters with 10k, 30k, 50k iterations,
respectively. From Fig. 8, we make the following important
observations. The db2 wavelet filters produce an energetic
hierarchy of structures localized in its different components
due to the orthogonality of the wavelet bases. However, the
learned filters do not have this property. It is because we do
not impose an orthogonality penalty on the learned filters,

which makes them work in a different manner. The component
obtained by the fixed db2 filter g1 looks significantly different
from those by the learned filters g1 (see the third column of
Fig. 8). The former captures the high-frequency components,
while the latter exhibits a pattern-preserving behavior with a
higher volatility that is more beneficial for modeling inherent
temporal patterns of time series by the subsequent encoders.

VI. CONCLUSION

In this article, we aims at fully exploring the potential of
multiscale information within time series data and building
scale-aware deep recurrent networks for MTS forecasting.
To this end, we propose two MRN models, i.e., MRN-SA
and MRN-CSG. The former applies two encoders to extract
the hidden states of each scale, adaptively fuses them by a
scale attention mechanism, and then generate a prediction
by a decoder. The latter introduces a cross-scale guidance
mechanism to directly decode the hidden states back a pre-
diction, in which the hidden states from coarse scale is used
to guide the decoding process at fine scale. Our experimental
results on real-world datasets show that the proposed models
can obtain significant performance improvements over sev-
eral state-of-the-art forecasting methods, which reveals the
effectiveness of the scale attention and cross-scale guidance
mechanisms.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

GUO et al.: MTS FORECASTING USING MRNs WITH SCALE ATTENTION AND CROSS-SCALE GUIDANCE 15

ACKNOWLEDGMENT

The authors would like to thank Prof. Jiaye Wang with
Shandong University and the anonymous reviewers for their
insightful comments and suggestions which helped them
improve the quality of this article significantly.

REFERENCES

[1] S. Liu, H. Ji, and M. C. Wang, “Nonpooling convolutional neural
network forecasting for seasonal time series with trends,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 31, no. 8, pp. 2879–2888, Aug. 2020.

[2] S.-Y. Shih, F.-K. Sun, and H.-Y. Lee, “Temporal pattern attention for
multivariate time series forecasting,” Mach. Learn., vol. 108, nos. 8–9,
pp. 1421–1441, Sep. 2019.

[3] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time
Series Analysis: Forecasting and Control, 5th ed. Hoboken, NJ, USA:
Wiley, 2016.

[4] H.-F. Yu, N. Rao, and I. S. Dhillon, “Temporal regularization matrix
factorization for high-dimensional time series prediction,” in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 847–855.

[5] L. J. Cao and F. E. H. Tay, “Support vector machine with adaptive
parameters in financial time series forecasting,” IEEE Trans. Neural
Netw., vol. 14, no. 6, pp. 1506–1518, Nov. 2003.

[6] N. Passalis, A. Tefas, J. Kanniainen, M. Gabbouj, and A. Iosifidis,
“Deep adaptive input normalization for time series forecasting,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 9, pp. 3760–3765,
Sep. 2020.

[7] K. Bandara, C. Bergmeir, and H. Hewamalage, “LSTM-MSNet: Lever-
aging forecasts on sets of related time series with multiple seasonal
patterns,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 4,
pp. 1586–1599, Apr. 2021.

[8] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long- and short-
term temporal patterns with deep neural networks,” in Proc. 41st Int.
ACM SIGIR Conf. Res. Develop. Inf. Retr., Jun. 2018, pp. 95–104.

[9] P. Jing, Y. Su, X. Jin, and C. Zhang, “High-order temporal correlation
model learning for time-series prediction,” IEEE Trans. Cybern., vol. 49,
no. 6, pp. 2385–2397, Jun. 2019.

[10] S. Gultekin and J. Paisley, “Online forecasting matrix factoriza-
tion,” IEEE Trans. Signal Process., vol. 67, no. 5, pp. 1223–1236,
Mar. 2019.

[11] A. Cichocki, N. Lee, I. Oseledets, A.-H. Phan, Q. Zhao, and
D. P. Mandic, “Tensor networks for dimensionality reduction and large-
scale optimization: Part 1 low-rank tensor decompositions,” Found.
Trends Mach. Learn., vol. 9, nos. 4–5, pp. 249–429, 2016.

[12] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[13] K. Cho et al., “Learning phrase representations using RNN encoder–
decoder for statistical machine translation,” in Proc. Conf. Empirical
Methods Natural Lang. Process. (EMNLP), 2014, pp. 1724–1734.

[14] Y. Qin, D. Song, H. Chen, W. Cheng, G. Jiang, and G. W. Cottrell,
“A dual-stage attention-based recurrent neural network for time series
prediction,” in Proc. 26th Int. Joint Conf. Artif. Intell., Aug. 2017,
pp. 2627–2633.

[15] S. Huang, D. Wang, X. Wu, and A. Tang, “DSANet: Dual self-attention
network for multivariate time series forecasting,” in Proc. 28th ACM Int.
Conf. Inf. Knowl. Manage., Nov. 2019, pp. 2129–2132.

[16] F. Petropoulos et al., “Forecasting: Theory and practice,” Int. J. Fore-
casting, vol. 38, no. 3, pp. 705–871, Jul. 2022.

[17] E. S. Gardner, “Exponential smoothing: The state of the art—Part II,”
Int. J. Forecasting, vol. 22, no. 4, pp. 637–666, Oct. 2006.

[18] R. J. Hyndman, A. B. Koehler, J. K. Ord, and R. D. Snyder, Forecast-
ing with Exponential Smoothing—The State Space Approach. Berlin,
Germany: Springer-Verlag, 2008.

[19] J. Durbin and S. J. Koopman, Time Series Analysis by State Space
Methods, 2nd ed. London, U.K.: Oxford Univ. Press, 2012.

[20] D. T. Tran, A. Iosifidis, J. Kanniainen, and M. Gabbouj, “Tempo-
ral attention-augmented bilinear network for financial time-series data
analysis,” IEEE Trans. Neural Netw. Learn. Syst., vol. 30, no. 5,
pp. 1407–1418, May 2019.

[21] H. Hassani and D. Thomakos, “A review on singular spectrum analysis
for economic and financial time series,” Statist. Interface, vol. 3, no. 3,
pp. 377–397, 2010.

[22] K. Patterson, H. Hassani, S. Heravi, and A. Zhigljavsky, “Multivariate
singular spectrum analysis for forecasting revisions to real-time data,”
J. Appl. Statist., vol. 38, no. 10, pp. 2183–2211, Oct. 2011.

[23] J. Gillard and K. Usevich, “Structured low-rank matrix completion for
forecasting in time series analysis,” Int. J. Forecasting, vol. 34, no. 4,
pp. 582–597, Oct. 2018.

[24] Q. Guo, Y. Zhang, S. Qiu, and C. Zhang, “Accelerating patch-based low-
rank image restoration using Kd-forest and Lanczos approximation,” Inf.
Sci., vol. 556, pp. 177–193, May 2021.

[25] L. Jin, P. N. Nikiforuk, and M. M. Gupta, “Approximation of discrete-
time state-space trajectories using dynamic recurrent neural networks,”
IEEE Trans. Autom. Control, vol. 40, no. 7, pp. 1266–1270, Jul. 1995.

[26] H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent neural net-
works for time series forecasting: Current status and future directions,”
Int. J. Forecasting, vol. 37, no. 1, pp. 388–427, Jan. 2021.

[27] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 157–166, Mar. 1994.

[28] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proc. Int. Conf. Learn.
Represent., 2015, pp. 1–15.

[29] B. Zhang, D. Xiong, and J. Su, “Neural machine translation with deep
attention,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 1,
pp. 154–163, Jan. 2020.

[30] Y. G. Cinar et al., “Position-based content attention for time series
forecasting with sequence-to-sequence RNNs,” in Proc. Int. Conf. Neural
Inf. Process., 2017, pp. 533–544.

[31] C. Fan et al., “Multi-horizon time series forecasting with temporal
attention learning,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining, Jul. 2019, pp. 2527–2535.

[32] Y. Li, K. Li, C. Chen, X. Zhou, Z. Zeng, and K. Li, “Modeling temporal
patterns with dilated convolutions for time-series forecasting,” ACM
Trans. Knowl. Discovery from Data, vol. 16, no. 1, pp. 1–22, Feb. 2022.

[33] J. Wang, Z. Wang, J. Li, and J. Wu, “Multilevel wavelet decompo-
sition network for interpretable time series analysis,” in Proc. 24th
ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2018,
pp. 2437–2446.

[34] Y. Zhao, Y. Shen, Y. Zhu, and J. Yao, “Forecasting wavelet transformed
time series with attentive neural network,” in Proc. 18th IEEE Int. Conf.
Data Mining, 2018, pp. 1452–1457.

[35] G. Liu et al., “Multi-scale two-way deep neural network for stock
trend prediction,” in Proc. 29th Int. Joint Conf. Artif. Intell., Jul. 2020,
pp. 4555–4561.

[36] O. Renaud, J.-L. Starck, and F. Murtagh, “Prediction based on a
multiscale decomposition,” Int. J. Wavelets, Multiresolution Inf. Process.,
vol. 1, no. 2, pp. 217–232, Jun. 2003.

[37] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed.
New York, NY, USA: Academic, 2008.

[38] G. P. Nason and B. W. Silverman, “The stationary wavelet transform and
some statistical applications,” Wavelets and Statistics (Lecture Notes in
Statistics), vol. 103. New York, NY, USA: Springer, 1995, pp. 281–299.

[39] J.-L. Starck, J. Fadili, and F. Murtagh, “The undecimated wavelet
decomposition and its reconstruction,” IEEE Trans. Image Process.,
vol. 16, no. 2, pp. 297–309, Feb. 2007.

[40] C.-Y. Lee., S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
supervised nets,” in Proc. 18th Int. Conf. Artif. Intell. Statist., 2015,
pp. 562–570.

[41] Z. Shen, Z. Liu, J. Li, Y.-G. Jiang, Y. Chen, and X. Xue, “Object
detection from scratch with deep supervision,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 42, no. 2, pp. 398–412, Feb. 2020.

[42] A. Mustafa, S. H. Khan, M. Hayat, R. Goecke, J. Shen, and L. Shao,
“Deeply supervised discriminative learning for adversarial defense,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 9, pp. 3154–3166,
Sep. 2021.

[43] C. Li, M. Z. Zia, Q.-H. Tran, X. Yu, G. D. Hager, and M. Chandraker,
“Deep supervision with intermediate concepts,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 41, no. 8, pp. 1828–1843, Aug. 2019.

[44] Q. Shi et al., “Block Hankel tensor ARIMA for multiple short time
series forecasting,” in Proc. AAAI Conf. Artif. Intell., Apr. 2020,
pp. 5758–5766.

[45] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–15.

[46] M. Abadi et al., “TensorFlow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Conf. Operating Syst. Des. Implement.,
2016, pp. 265–283.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

