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Abstract— Artificial intelligence (AI) is entering medical
imaging, mainly enhancing image reconstruction. Nevertheless,
improvements throughout the entire processing, from signal
detection to computation, potentially offer significant benefits.
This work presents a novel and versatile approach to detector
optimization using machine learning (ML) and residual physics.
We apply the concept to positron emission tomography (PET),
intending to improve the coincidence time resolution (CTR).
PET visualizes metabolic processes in the body by detecting
photons with scintillation detectors. Improved CTR performance
offers the advantage of reducing radioactive dose exposure for
patients. Modern PET detectors with sophisticated concepts and
read-out topologies represent complex physical and electronic
systems requiring dedicated calibration techniques. Traditional
methods primarily depend on analytical formulations successfully
describing the main detector characteristics. However, when
accounting for higher-order effects, additional complexities arise
matching theoretical models to experimental reality. Our work
addresses this challenge by combining traditional calibration with
Al and residual physics, presenting a highly promising approach.
We present a residual physics-based strategy using gradient tree
boosting and physics-guided data generation. The explainable Al
framework SHapley Additive exPlanations (SHAPs) was used to
identify known physical effects with learned patterns. In addition,
the models were tested against basic physical laws. We were able
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to improve the CTR significantly (more than 20%) for clinically
relevant detectors of 19 mm height, reaching CTRs of 185 ps
(450-550 keV).

Index Terms— Coincidence time resolution (CTR), explain-
able artificial intelligence (XAI), gradient boosted decision tree
(GBDT), positron emission tomography (PET), residual physics,
time-of-flight (TOF).

I. INTRODUCTION

ARTIFICIAL intelligence (Al) is finding its way more
and more into medical imaging [1], [2], including the
research field around positron emission tomography (PET) [3].
In contrast to computed tomography (CT) [4] or magnetic
resonance imaging (MRI) [5], PET is a functional imaging
technique that does not reproduce anatomical structures but
can visualize metabolic processes in the body. PET uses the
effect of electron—positron annihilation to obtain information
about processes within the object of interest. A radioac-
tive tracer is administered to the patient, accumulating in
highly metabolic regions and emitting positrons [6]. These
positrons annihilate with the surrounding tissue, producing two
~v-photons emitted back-to-back defining a line-of-response
(LOR). The ~-photons are subsequently registered in coinci-
dence by a PET scanner (see Fig. 1) equipped with scintillation
detectors, which convert the v-photons into many optical
photons in the visible light range that can be measured with
a photosensor [7]. Analog silicon photomultipliers (SiPMs)
utilizes an application-specific integrated circuit (ASIC) to
digitize the signal pulses, whereas digital SiPMs performs
digitization at a single photon avalanche diode (SPAD) level.
Based on the detection information, especially the spatial and
the temporal information, a PET image can be reconstructed.
While the application of neural networks in medical imaging
usually focuses on the image reconstruction process [8], [9],
[10], improvements along the complete imaging chain, from
detecting physical signals [11] to processing the resulting
data, can improve the resulting image to facilitate medical
diagnoses. In this work, we show the application of learning
algorithms in the context of residual physics at the detector
level to significantly improve the achievable coincidence time
resolution (CTR). Especially in medical and physical applica-
tions, it is desired to get insights into the inner workings of
models to ensure that the algorithms can capture meaningful
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Fig. 1. Principle of PET. A radioactive tracer (red blob) is administered to
a patient (bluish). By detecting the created back-to-back ~y-photons, defining
many LORs (red lines), with the detector ring (grayish), spatial and temporal
information can be inferred to reconstruct a PET image. Modern scanners
utilize TOF information to estimate the annihilation point on the LOR.

relations. Therefore, we use eXplainable Al (XAI) [12], [13],
[14], [15] methods to check whether trained models can repli-
cate simple physical constraints implied by the data generation.

State-of-the-art clinical PET scanners combine high spatial
resolution (SR) with precise time-of-flight (TOF) informa-
tion (see Fig. 1). Including the timing information in the
image reconstruction process provokes an improvement in
the signal-to-noise ratio (SNR) of the image [16] without
increasing the radioactive dose and therefore improves also
lesion detectability [17]. Most PET systems [18], [19] uti-
lize segmented scintillator topologies (see Fig. 2) due to
the readout simplicity and very good timing performances.
Contrary to this, (semi-)monolithic detector concepts spread
the light over multiple channels. Recently, they have gained
attention [20], [21] as they provide high SR [22], [23], [24]
but also offer intrinsic depth of interaction (DOI) capabilities
[25], [26], thus reducing parallax errors at reduced costs
compared to segmented topologies. While, for example, the
~-positioning strongly profits from the spread detection infor-
mation, it creates disadvantages for the timing performance
due to an enhancement of timewalk effects [27], [28], [29]
and jitter in signal-propagation times [30], [31], which dete-
riorate CTR. Therefore, monolithic detector concepts demand
advanced readout algorithms and calibration routines to infer
the needed information from the detected optical information.
Due to the light-spreading characteristic of (semi-)monolithic
detectors, many approaches use machine- or deep-learning
techniques, for example, to infer the v-interaction position
within the scintillator volume. This strategy suggests itself
since the detected optical photons represent abstract patterns
that can easily be recognized by learning algorithms. However,
applying machine learning (ML) for time skew calibration and
estimation still remains experimentally a hard task since skew
effects can vary in their magnitude and also in the incorporated
nature on an event basis without the need for a spatial relation.
Besides this, supervised learning demands labeled data, which
is a priori not accessible without using simulation techniques,
and unsupervised learning is often used in the context of
clustering and association algorithms [32] unsuitable for the
proposed problem. Recently, we proposed an analytical timing
calibration technique [33] suitable for traditional segmented
and light-sharing-based scintillator topologies. This analytical
calibration aims to reduce sequentially major skew effects
by using a convex optimization of a matrix equation. When
applying the technique, one observes that the skew effects are
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iteratively reduced. Within each iteration, the experimenter
can address different characteristics of the time skews, for
example, by choosing a different separation into subvolumes
(called voxels) of the scintillation crystals. At a certain number
of iterations, we see that the reported correction values ¢
oscillate around the baseline and that the CTR does not
improve further, indicating that the linear formulation of the
problem, with M denoting the matrix and Ar the estimated
mean time difference between the calibration objects

¢ = argmin ||Ar —
¢

M-, (D

has limited capability of completely describing the physical
situation. This challenge can theoretically be addressed by
changing the mathematical formulation representing also the
effects of higher order. However, this requires prior knowledge
of the precise optical processes [34] taking place in the chosen
scintillator topology, to change the mathematical formulation
[35]. Furthermore, depending on the readout infrastructure and
the detector concept, the problem might depend on numerous
variables and parameters [36], [37] which are hard to deter-
mine in advance. Hence, covering the effects of higher order
can become arbitrarily complicated. In addition, detectors can
vary in response such that an optimized representation might
only fit the specific detector. A statistical approach using
maximum likelihood was presented by van Dam et al. [38],
focusing on differences between timestamps. We propose to
use an ML approach instead and furthermore utilize a special
way of experimental data generation to propose simple prior
physical knowledge to the model by shifting a radiation
source to different known positions [39]. We intend to apply
this technique on top of the conventionally used analytical
approach, forcing the algorithm to learn the effects of higher
order, which we understand as residual physics [40], [41].
By following this, we free ourselves from precisely modeling
and catching all nonlinear effects in the complete scintillation
and detection processes. In this work, we employed gradient-
boosted decision trees (GBDTs) as learning algorithm since
it can handle missing data [42] and allows usage in (near)
real-time processing systems [43] due to the simplicity of the
model’s architecture.

The proposed approach is studied using experimental data
acquired with a coincidence setup equipped with a semi-
monolithic (3.9 x 31.9 x 19.0 mm3) and a one-to-one
coupled (3.9 x 3.9 x 19.0 mm>) detector array concept.
We trained multiple models on the acquired data and studied
their performance based on the physics-related learning task,
the agreement with theoretical expectations and bias effects,
and the obtained CTR values.

II. RELATED WORKS
A. Approaches Toward Residual Physics

To the authors’ knowledge, the first popular mention of
“residual physics” in the context of Al was by Zeng et al. [40].
In their work, they investigated whether a robotic arm can
pick up arbitrary objects and throw them into selected target
boxes. While the problem of throwing can be described suf-
ficiently well in theory by Newtonian physics, the real-world
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implementation for arbitrary objects is very challenging due
to numerous additional variables that affect the throw.

Similar works have been [44], [45], [46], [47], [48] and
are still being published [49] in the context of “hybrid con-
trollers.” All of the studies have in common that they exploit
the residuals between well-understood idealized physics and
actual measurement.

Alternative approaches aiming to combine physics domain
knowledge and Al are given by “physics-informed learning”
[50], [51], [52], [53], where the utilized loss function is
often modified to guide the model to physics-meaningful
predictions.

B. Timing Capabilities of PET Detectors

In recent publications [42], [54], [55], [56], it has been
shown that (semi-)monolithic detectors can provide good per-
formances. Especially their timing capabilities have been stud-
ied under various experimental settings. Van Dam et al. [38]
were able to reach sub-200 ps CTR for a monolithic crystal
(24 x 24 x 20 mm?) using a maximum likelihood approach
and a measurement temperature of —20 °C, challenging to
implement in a PET system designed for the clinical domain.
Séanchez et al. [57] developed a new ASIC (HRFlexToT)
with redesigned energy measurement for linear time-over-
threshold (ToT) behavior while reducing power consumption
and improved timing response and achieved 324 ps CTR for
a big monolithic crystal (25 x 25 x 20 mm?). In a recent
simulation study, Maebe and Vandenberghe [58] reported
141 ps. In their simulation, they used a monolithic detector
(50 x 50 x 16 mm?®) and a convolutional neural network
(CNN), while the network’s input is given by the digitized
waveforms truncated to a window of 3 ns using a step size of
100 ps.

Zhang et al. [55] reported a timing resolution of about
718 ps with thick semi-monoliths (1.37 x 51.2 x 20 mm?)
digitized with the TOFPET2 ASIC at measurement tem-
peratures of 28 °C. Using energy-weighted averaging of
timestamps reported by the TOFPET2 ASIC, Cucarella
et al. [59] achieved a CTR of 276 ps for slabs with a volume
of 254 x 12 x 0.95 mm>.

In a proof-of-concept study performed by Berg and Cherry
[60] using two small lutetium fine silicate crystals (5 x 5 x
10 mm?) coupled to a single photomultiplier tube, a timing
resolution of about 185 ps was achieved using the CNNs.
Onishi et al. [61] proposed a simple method for unbiased TOF
estimation by applying a combination of a CNN and an leading
edge discriminator (LED) to an oscilloscope equipped with a
pair of single scintillation Lutetium—yttrium oxyorthosilicate
(LYSO) crystal of dimensions 3 x 3 x 10 mm?® reaching
159 ps.

III. LEARNING ALGORITHM AND MATERIALS
A. Gradient-Boosted Decision Trees

While we utilized GBDT in this work, the presented
calibration approach is also applicable to different learning
architectures, for example, deep neural nets. GBDT is a
supervised learning algorithm based on an ensemble of binary

decision trees, where each tree is trained on the residuals of the
already established ensemble (additive training). In this work,
we use the GBDT implementation of XGBoost [62], with the
model ¢

K
¢=> fi )
k=1

being given as the superposition of the K trees (weak learners)
Jx- Each tree f; is an element in the CART [63] space €2

Je € Q. 3)

In its design, GBDT is a relatively simple architecture com-
pared to widely used deep neural networks [64], [65], [66].
However, it has proven high predictive power in many appli-
cations [67], [68], [69], [70], [71], and due to its simplicity,
GBDT allows usage in high-throughput software [43] suitable
for complete PET systems or even the application directly
on the detector level [72], [73]. Regarding the scope of
this work, two hyperparameters of GBDT models are of
particular importance, namely the maximal depth d, denoting
the maximal number of decisions within an ensemble, and
the learning rate /r, measuring the residual influence on the
learning of the following tree. The learning rate must be
optimized in most cases to find a compromise between training
duration and accuracy. A third prominent hyperparameter is
the number of trees n of an ensemble. We excluded n from
the hyperparameter search in this work since we used an early
stopping criterion.

B. SHapley Additive exPlanations

The SHapley Additive exPlanations (SHAP) framework
[74], [75] is used as an explainable Al technique to analyze
feature importance to search for correlations between physical
effects and patterns the model has learned. In particular,
in this work, we utilized the TreeExplainer implementation
[76] because of the chosen learning architecture. The frame-
work uses mathematical game theory. Each input sample and
corresponding prediction is connected by assuming a coalition
game. The players in the game are represented by the feature
values of the input sample, where each feature influences the
model’s prediction. These influences are called contributions
and are expressed in the same physical unit as the predictions.
Contribution values are mathematically either positive or neg-
ative, while the model’s output is equal to the sum of the
contributions. The magnitude of a given contribution indicates
the level of its importance.

SHAP uses Shapley values [77], which are a measure to
quantify the contribution of a feature regarding the specific
model’s output. In a mathematical sense, SHAP combines
three concepts essential for providing a consistent picture
concerning feature importance. Firstly, the SHAP values must
satisfy local accuracy, meaning that for a given input sample,
the sum of the estimated feature contributions must be equal to
the corresponding model’s prediction that should be explained.
If a feature is missing, it cannot be attributed to importance,
which is covered in SHAP using the concept of missingness.
Lastly, consistency is required, ensuring that when changing



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4
1 —
J One-to-one coupled Slab
H \ I
e
.
2 7
7
— Z Sensor tile
7 7 7 7 7 i
L | pixel
— VA4 74
—~“— digital SiPM @ /_Q/
f L—= 14
Fig. 2. Used scintillator topologies and photosensors. The incoming

v-photon, as well as a part of the optical photons, are illustrated as red lines.
The sensor tile consists of 4 x 4 digital SiPMs (DPC3200-22, PDPC), each
one holding four pixels and a twin time-to-digital converter. A triggered SiPM
reports four pixel count values and a timestamp.

a model such that a particular feature has a larger impact on
the model, the corresponding attribution cannot decrease.

Practically, for each feature value f; of a given input
sample X = {fi}, an associated SHAP value SV (f;) can
be computed, reporting a local explanation that connects the
feature value with its contribution to the model’s output y.
By combining many local explanations, one can conclude a
global understanding of the model.

C. PET Detectors

The study is conducted using two different detector types,
where one detector is based on a one-to-one coupled scintilla-
tor design, and the other detector is based on a semi-monolithic
scintillator design (see Fig. 2).

Each scintillator concept is glue-coupled (Meltmount,
Cargille Laboratories) to a sensor tile holding 4 x 4 dig-
ital SiPMs (DPC3200-22, Philips Digital Photon Counting
(PDPC), Aachen [78]). Each SiPM is formed by 2 x 2
readout channels (also called pixels) and a twin time-to-digital
converter, where one readout channel consists of 3200 SPADs.
Each SiPM of a sensor tile works independently and follows
a configured acquisition sequence if a predefined internal
two-level trigger scheme is fulfilled. After the reception of
a trigger, it is checked during the validation phase if the
geometrical distribution of discharged SPADs met the con-
figured requirement. If both trigger thresholds are fulfilled,
the acquisition is continued. Each triggered SiPM provides
information that encloses a timestamp and four-pixel photon
count values, called a hit.

Both scintillators use LY SO as scintillation material (Crystal
Photonics, Sanford). Concerning the scintillator architecture,
an array of 8 x 8 LYSO segments of 4.0 mm pitch and
19.0 mm height is utilized in the one-to-one coupled design.
Each segment is wrapped with enhanced specular reflector
(ESR) foil and covers the pitch of one pixel.

The semi-monolithic detector concept comprises eight
monolithic LYSO slabs, each having a volume of 39 x 31.9 x
19.0 mm?. Each slab aligns with one row of pixels. ESR foil is
located between every second slab and on the lateral walls to
reduce light sharing between the trigger and readout regions.
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Fig. 3. Used coincidence setup for the acquisition of labeled data. The source
mounting is connected to the translation stage system allowing motion along
all three axes (indicated as red arrows).

The slab detector is able to provide intrinsic DOI information
due to its monolithic characteristics. Not all SiPMs that are
partly covered by a slab might be triggered and send hit
data corresponding to a ~y-interaction due to the independent
operation of the SiPMs.

D. Coincidence Setup

The experimental setup comprises a source mounting,
in addition to the detectors, and is located in a tempered dark
box. The source mounting is connected to a programmable
translation stage system, allowing motion in all three spatial
axes (see Fig. 3). The distance between the detector surfaces
is given to be 435 mm. The precision of the translation stage
considering the complete measurement range is given to be
10 pm which translates regarding a coincidence measurement
to an uncertainty in the time domain of about 0.067 ps. The
source mounting is equipped with a *’Na source with an
activity of approximately 12 MBq and a diameter of 0.5 mm.
Coincidences are acquired by utilizing flood irradiation and
moving the source to various positions between the detectors.

IV. EXPERIMENTS
A. Data Acquisition

The proposed calibration technique uses supervised ML
and therefore demands labeled data. The labels are generated
by moving the radiation source to specific positions between
the facing detectors and measuring coincidences. Thanks to
the known source position, one can calculate the expected
time difference E({Af}), and because of the different path
lengths, the y-photons have to travel until reaching the detec-
tor. The source was moved to 47 different z-positions (see
Fig. 4) with a step size of 5 mm ranging from —130 mm to
100 mm, while at each z-position, a grid of 5 x 5 positions
in the xy-plane with a step size of 6 mm was utilized to
acquire coincidences. Both, x and y positions ranged from
—12 mm to 12 mm. At each grid point, a measurement
time of 600 s was set, resulting in a total measurement
time of about 8 d. The acquired measurement data consisting
of 6.82x 108 coincidences (~5.80 x 10° coincidences per
position) is finally used to form three datasets for training,
validation, and testing during the model-building process com-
prising 3.29 x 108, 1.56 x 10%, and 1.97 x 10® input samples,
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respectively. We decided to evaluate the final CTR perfor-
mance (see Section V-B), using data from a measurement
conducted on a different day using the same conditions
and detectors to prove the predictive power and generalized
applicability of the trained models. This dataset comprises
4.20 x 10% coincidences acquired with the radiation source
located near the iso-center of the setup, as it is usually done for
CTR evaluations. To allow a clean separation in the naming,
the dataset used for the CTR performance evaluation is called
the performance dataset, while the three other datasets remain
in the usual naming (training, validation, and testing).

During both acquisitions, the sensor tile reported a constant
temperature of 2.1 °C for the one-to-one coupled detector
and 0.0 °C for the slab detector. Both sensor tiles were
operated in the first-photon trigger [79]. The excess voltage
was adjusted to 2.8 V, while the validation pattern was set
to scheme 16 (0x55:AND) demanding on average 54 + 19
optical photons [80].

B. Data Preprocessing and Preparation

1) Coincidence Clustering: Data associated with one
~-interaction has to be clustered due to the independent
readout of the DPCs. A cluster window of 40 ns is reasoned by
the timestamp difference distribution of the hits’ uncorrected
timestamps to combine all hits into a cluster correlated to
the same v-interaction. Measured raw data were corrected for
saturation effects, and the time-to-digital converters of each
DPC were linearly calibrated against each other, assuming a
uniform distribution of triggers regarding a clock cycle [31].
Clusters with less than 400 or more than 4000 detected optical
photons were rejected for noise reduction since the noncali-
brated photopeak of the 511 keV ~-photons was located at
2300 and 2800 for the slab and one-to-one coupled detector,
respectively. Coincidences were grouped on the cluster level
using a sliding coincidence window of 10 ns considering the
first timestamp of two clusters.

2) Position and Energy Estimation: A subset of the features
used during the proposed time skew calibration is given by the
v-interaction position inside the scintillator volume and by the
deposited and calibrated energy in units of kilo electronvolt.
To acquire the positioning and energy information of each
event, dedicated calibrations already established in previous
works [22], [25] were performed.

While the y-positioning in the one-to-one coupled detector
is given by the pixel’s position showing the highest photon
count, the semi-monolithic slab detector requires a calibration
procedure to estimate the 3-D interaction location. For this
purpose, GBDT [22], [25], [62] models are trained based on
data acquired with an external reference using a fan-beam
setup [81], which irradiates the scintillator at known positions.
While the positioning resolution of the one-to-one coupled
detector is given to be 2 mm, the slab detector’s resolution
is in the planar direction 2.5 mm and in the DOI direction
3.3 mm. The positioning resolution is determined by the full
width at half maximum (FWHM) of the positioning error
distribution [25].

The energy value associated with a 7 interaction is esti-
mated using a 3-D-dependent energy calibration utilizing an

averaged light pattern. The crystal volume is divided into
ny X ny X ndoi Voxels, where for each voxel, the mean
number of detected optical photons is estimated, based on
~v-events, whose interaction positions were located inside the
voxel volume. The slab detector is divided into 8§ x 8 x 4
voxels, while the one-to-one coupled detector is divided into
8 x 8 x 1 voxels. The energy resolution of the one-to-one
coupled detector was evaluated at 10.4%, while the energy
resolution of the slab was estimated to be 11.3%.

3) Analytical Timing Calibration: The first part of the cali-
bration is given by performing an analytical calibration, which
has been studied in previous publications [31], [82], [83]
and relies on well-known mathematical principles like convex
optimization. In this work, our calibration formalism [33] was
used. However, the principle of exploiting residual physics
remains functional for every other analytical calibration.

During the calibration process, multiple subcalibrations are
conducted, where in each subcalibration, different hyperpa-
rameters are applied such that one tries to address many
aspects of time skew effects. The same convex optimization
process is used within each subcalibration to find suitable
corrections ¢

¢ = arg min|[Af — M - &|? 4)

c

with ¢ and Ar denoting the calibration channel vector and the
mean time difference vector, respectively, and M encoding
different channel combinations in the form of a matrix. After
some number N of performed subcalibrations, a convergence
of the detector CTR value as well as the estimated corrections
{Ck} € ¢ is visible

CTR; — const. fori —> N (®)]
{¢x}i > Ops fori — N 6)

with i denoting the number of applied subcalibrations. For
this work, we used three subcalibration iterations (based on
time-to-digital converter (TDC) regions, readout channels, and
voxels as described in [33]) mainly addressing fixed skews
due to differences in the signal propagation and time jitter
introduced by the scintillator itself. At this point, it becomes
inconvenient to add more and more subcalibrations since the
benefit decreases strongly.

C. Residual Timing Calibration

We propose to use a data-driven approach on top of the
conventionally used technique to explore new corrections that
have not been covered by the analytical formulation and
improve the CTR. A suitable way of doing this is by using
Al to search for patterns in the acquired coincidence data.
We decided to employ the supervised algorithm GBDT (see
Section III-A), which was also used during the y-positioning
(see Section IV-B2). Using a supervised approach demands
labeled data (input samples and corresponding target values
known as labels) to train a model. However, for the pro-
posed problem of non-static time skew effects labeling is
difficult, since it is a priori not clear how many and how
strong the worsening effects are pronounced in each measured
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Fig. 4. Scheme of the labeling process to acquire data that can be used

for supervised learning. The radiation source (red cube) is shifted to different
positions zg along the centered coordinate system z. Varying source positions
lead to different travel times #; and t, of the «-photons. The expected time
difference E[ {f; — tp}] is used as label for the learning process.

coincidence. Using an analytical estimator to generate the
ground truth would limit the capabilities of the trained model
to the chosen estimator. To solve the problem of labeling,
we propose to shift the radiation source to different positions
and measure coincidences between the facing detectors. The
~-photons travel varying path lengths to the detectors resulting
in different expected time differences per source position.

The different path lengths of the ~-photons (see Fig. 4)
lead to different travel times #; and #,. One can conclude the
expected time difference E[ {r; — #2}], which is subsequently
used as label y

_2Zx

y=E[{t —n}] = N

Cair

with c,ir denoting the speed of light in air and z; denoting the
source offset under the assumption that the coordinate system
z is located at the iso-center of the setup (see Fig. 4). For
Gaussian distributions, the expectation value E is identical to
the mean value of the distributions. Data acquired with the
aforementioned scheme is further processed and finally used
to train GBDT models. The input features F can be grouped
into three categories: purely slab detector-related features F*,
purely one-to-one detector-related features F°, and features
associated with both detector concepts F*°. While F*° consists
only of the difference Afye,s between the first timestamps
from slab and one-to-one coupled detector, respectively, F*
and F° can be separated into the subsets timestamp informa-
tion F/°, energy information F/°, and position information
F3 (see Fig. 5).

Since the detector-specific feature sets F° and F° are
symmetrical in their content, we will explain the specific
features in a generalized way in the following. The subset
timestamp information .7-'}/0 contains the four (three) first
timestamp values reported by the slab (one-to-one coupled)
detector. A tradeoff between available information and needed
memory reasons for the choice of the different number of used
timestamps. For both detectors, the cumulative distribution of
the number of generated timestamps per cluster was analyzed
and determined to the value matching roughly 80% of all
clusters. Let 7; be the set of timestamps provided within a
cluster j by the photodetector

Ti={tjo,tj1, .. tjir-..} (8
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with 7;; denoting the ith timestamp of cluster j. Since
the photosensor consecutively reports the timestamp values
throughout the measurement, they need to be processed after
the coincidence search to be suitable for feeding into an ML
algorithm. Therefore, the very earliest timestamp #;o of a
cluster j is subtracted from the following timestamps ¢;; of
this cluster:

fji =tji =10 ©))

with 7;; denoting the processed timestamp i of cluster j
employed as input.

Furthermore, the origin of the respective timestamps is
used and represented by their SiPM ID number. Besides this,
information about the cluster’s timestamp spread (the dif-
ference between the first and the last timestamps) and the
number of timestamps (equals the number of hits) in the
cluster is utilized. The subset energy information F. 153/ ¢ contains
information about the deposited energy as estimated energy
value in keV, and as raw photon counts that have been detected
on the corresponding SiPMs. The ~y-positioning set flif)os holds
information about the interaction position of the ~-photon
within the scintillator volume. While this is given as a 3-D
position for the semi-monolithic case, the one-to-one coupled
design provides only planar (2-D) information.

To find suitable hyperparameters regarding the learning task,
a grid search was conducted considering the maximal tree
depth d and the learning rate Ir, with

d e {12, 15, 18,20}, and
Ir € {0.1,0.3,0.5).

(10)
Y

During the model-building process, the maximal number of
estimators n within an ensemble was set to n = 500, where
the final number of used estimators was defined by the built-in
early stopping criterion considering ten early stopping rounds
to suppress possible overfitting. The learning task is performed
using XGBoost’s default squared error loss function [62].

D. MAE Evaluation and Linearity of Predictions

The mean absolute error (MAE) is used to evaluate the
performance of a trained GBDT model based on the testing
data

SN i (zs) — 9i(zs)l
N

with y;(zs;) denoting the label of sample i belonging to the
source position z;, and J;(zs) denoting the corresponding
model prediction. We utilize information about the test data
prediction distributions to verify their Gaussian shape using
a goodness-of-fit approach and to validate that the linearity
condition given by (7) is fulfilled. This validation ensures
that the trained models obey the physical principle and do
not compress the time differences since it would artificially
improve the CTR. Therefore, linear regression is performed
for each trained GBDT model and each grid point (xg, ys) in a
range from —75 mm to 45 mm, considering the fit mean value
of the prediction distributions ps and the associated source

MAE(z,) = 12)
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Fig. 5. Overview of the used features F to train the GBDT models. There are three different feature sets, given by purely slab detector-related features F*,
purely one-to-one coupled detector-related features F°, and features associated with both detector concepts F*°. F*° consists only of the difference Afmeas
between the first timestamps from slab and one-to-one coupled detector, respectively. The sets F* and F¢ are symmetrical in their content and can again be
grouped into the subset’s timestamp information ]:%/ ?, energy information ]—'g/ ¢, and position information .7-'1‘§<.”S. Information about the processed timestamps
(denoted as TS), the SiPM IDs of those timestamps, the timestamp spread (difference between the first and last timestamp of a cluster), and the number of
generated timestamps is given. The latter equals also the number of hits within the cluster. Besides this, the photon counts of the corresponding SiPMs, the

calibrated energy value, and the spatial interaction position are used.

position z;. We assumed a linear dependence following:

ns(zsle, by = —-e-zs+b

Cair

(13)
while in theory

e=1. (14)

All fitting procedures are performed using SciPy’s ODR
package [84]. The uncertainty o, on wus was based on the
uncertainty on the mean reported by the fit procedure. Fur-
thermore, an uncertainty on the translation stage position was
given to be the same for all source positions o;, = 0.1 mm.
Finally, the global linearity performance is given by the
averaged ¢ value for each model.

E. CTR Performance

To evaluate the timing performance, the FWHM of the
predicted time difference distribution is estimated by fitting
a Gaussian function. The error on the estimated timing reso-
lution is given by the uncertainty on the fit o-parameter of the
Gaussian. The input data is given by the performance dataset.
The CTR is estimated for unfiltered data, for coincidences
within a large energy window from 300 to 700 keV, and
coincidences within a smaller energy window from 450 to
550 keV.

F. SHAP Analysis

Due to computational costs, the SHAP analysis was per-
formed for the model showing the best MAE and CTR
performance using a subset of 23500 samples of the per-
formance data. The analysis was done without applying any
filters.

1501 = d Ir 1
e 12 e 01 1
140 1 15 = 03
— e 18 m 05 .
g0y . < 20 :
% 120
=
110 A
100 A
—-100 -50 0 50 100
z [mm]
Fig. 6.  Progression of the MAE for each source position z; contained

in the test dataset. No energy filter or restrictions on the measured light
distribution were applied. Models utilizing a small learning rate show the best
performances. Predictions located in the grayish areas (z ¢ [—75, 45]) mm are
excluded from the linearity analysis since the MAE progression indicates the
starting of the transition into the artifact-dominated region for these points.

V. RESULTS

A. MAE Evaluation and Linearity of Predictions

The MAE performance (see Fig. 6) is similar for all chosen
hyperparameter configurations. The distribution shows a sym-
metrical behavior around the median value of Z = —15 mm,
with a slight skewness that can be observed going from nega-
tive offset positions toward positive ones. While the prediction
quality strongly decreases at the borders of the presented data,
the models’ predictions work very well in the central region.
In general, one observes that models with a lower learning
rate perform slightly better than those with a learning rate
equal to or higher than 0.3. Furthermore, Table I reveals that
the MAE is reduced by restricting the allowed energy of
the test data. The model with hyperparameter configuration
(d = 18,1r = 0.1) achieved the best MAE performance. For
the linearity analysis, we excluded the predictions located
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Fig. 7. Depiction of the distribution of predictions of the model using the hyperparameters (d = 18, Ir = 0.1) using all 47 source positions along the z-axis.
The different source positions zg are encoded in color. The upper plot shows the different histograms and Gauss fits. The lower plot shows the goodness-of-fit
per number of degrees of freedom ( X2 /ndf) value for each position. For a large central region, the predictions are in very good agreement with a Gaussian
function. When moving toward the edges of the data, the distribution becomes skewed and deviates from the Gaussian shape. No energy filter or restrictions

on the measured light distribution were applied.

TABLE I

OVERALL MAE PERFORMANCE FOR DIFFERENT HYPERPARAMETER
CONFIGURATIONS AND ENERGY WINDOWS OF THE TEST DATA

MAE |[ps]
Model (d,1r) 300,700] keV  [450, 550] keV
(12, 0.1) 107.86  85.17 80.18
(12, 0.3) 107.50  84.90 79.75
(12, 0.5) 10832 85.61 80.41
(15, 0.1) 10692 84.40 79.32
(15, 0.3) 107.79  85.07 79.91
(15, 0.5) 108.84  85.99 80.80
(18, 0.1) 106.87 8423 79.09
(18, 0.3) 10840  85.42 80.23
(18, 0.5) 10947  86.23 80.93
(20, 0.1) 10730 84.45 79.24
(20, 0.3) 109.02  85.66 80.30
(20, 0.5) 11076 87.07 81.76

outside an interval of £60 mm around the median (grayish
areas in Fig. 6) to be able to give an unbiased evaluation of
the performance in the large central region of the data.

Fig. 7 shows exemplarily the distribution of the predictions
considering the complete data range for the model (18, 0.1) in
combination with the goodness-of-fit per number of degrees of
freedom (x2/ndf) for a Gaussian function. Both distributions
are symmetrical. The model can infer the expected time
difference on a coincidence basis according to the input data.
Considering the goodness-of-fit, the shapes of the predicted
distributions are in very good agreement with the expected
Gaussian. A substantial deviation from the Gaussian shape is
observed when moving toward the far left and far right source
positions. A part of the linearity analysis for model (18, 0.1)
is exemplarily depicted for the position (xg, y5) = (12,0) mm
in Fig. 8. The global ¢ performance for each model is shown
in Fig. 9. The estimated ¢ parameters of all trained models are
within a 3o-interval in agreement with the theoretical value
of e =1.

B. CTR Performance

The CTR performances of the trained models, as well as
the performance of applying only the analytical corrections,

400 —— fit: £=0.999 + 0.002
— '{" Hs
& 200 -
3 ]
= 0
—200 -

—— x%ndf=1.73

Residuals [ps]

=20 0 20 40

zg [mm]

-60 —40

Fig. 8. Linear regression and residual plot of the linearity analysis of model
(18,0.1) for (xs, ys) = (12,0) mm. The Gaussian fitting procedure gives the
uncertainty on fs, while the uncertainty on the zg position is assumed to be
0.1 mm.

are listed in Table II. As one can see, the best CTR was
achieved by the model (18, 0.1), which also performed best
regarding the MAE evaluation. The model improved the CTR
by about 50 ps down to (185 +2) ps for an energy window
from 450 to 550 keV. Except for the models having a max.
depth of d = 12, all other models yield an improved CTR
performance when using lower learning rates. A comparison
of the time difference distributions before and after using the
model (18,0.1) is depicted in Fig. 10. Regarding the shape
of the emerging distribution especially coincidences in the
tails of the distribution have been recovered to smaller time
differences.

C. SHAP Analysis

The model (18,0.1) was chosen for the analysis using
SHAP [74], [75], [76] since it provided the best performance
regarding MAE and CTR. The mean absolute contributions of
the different feature sets F are depicted in Fig. 11. The most
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Fig. 9. Global linearity analysis for each trained model. The e-values

are based on the test dataset applying an energy window of 300-700 keV.
The thick errorbars represent 1o-deviation, while the thin errorbars illustrate
30 -deviation.
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Fig. 10. Time difference distributions before and after using the proposed

ML time skew calibration. The model (18, 0.1) was used. No energy windows
or restrictions regarding the light distribution are applied.

important feature set is F*°, which consists of the measured
time difference Atfyeas. Besides this substantial contribution,
timestamp information F3/°, and energy information Z/ ¢ also
seem to be crucial for good model performance. The feature
group Fp . shows a slightly higher contribution compared to
Fpos> due to the introduction of DOI information. The specific
contributions of the planer coordinates, however, differ only
marginally for the slab and the one-to-one coupled detector.
Furthermore, one observes a similar behavior comparing the
feature sets of the slab and the one-to-one coupled detector.
When looking at the progression of the SHAP values
SV (Atmeas) in dependence on the number of detected optical
photons for the SiPM providing the first timestamp (#OPB/ %),
one observes different developments. Fig. 12(a) shows a clear
separation between different SHAP values for a given feature

TABLE I

CTR PERFORMANCE OF THE TRAINED MODELS BASED ON THE
PERFORMANCE DATASET. THE RESULTS OF APPLYING ONLY
THE ANALYTICAL TIMING CALIBRATION IS DENOTED
AS “BEFORE ML”

CTR [ps]
Model (dIr) [300,700] keV  [450, 550] keV
before ML 249 + 6 238 + 5 235+ 5
(12, 0.1) 230+2 208 +2 197 + 2
(12, 0.3) MV4+2 20342 189 + 2
(12, 0.5) M5+ 204+ 1 191 + 2
(15, 0.1) 23+2 20342 190 + 2
(15. 0.3) 2542 206+ 2 193 + 2
(15, 0.5) 2242 20142 201 + 3
(18, 0.1) 20742 19842 185 + 2
(18, 0.3) 26+2 206+ 2 195 + 3
(18, 0.5) 233+2 20442 201 + 2
(20. 0.1) 20+2 201 +2 188 + 2
(20. 0.3) M5+ 204+ 2 190 + 2
(20, 0.5) 26+2 216+ 1 203 + 2
Fe0 338
Fr 54
© sl 1s
(0]
[%)]
g FE 42
©
L 7 46
Pos 12
Fg 71
I T T T T T T T
0 50 100 150 200 250 300 350

mean(|SV(F)|) [ps]

Fig. 11.  Mean absolute SHAP values mean(|SV (F)|) estimated from a
subset of the performance dataset for the different feature sets F explained
in Fig. 5. The strongest contribution comes from the shared feature set
FS°, which consists of the difference between the first timestamps Afmeas.
Furthermore, detector-specific information about the timestamps (.7-';/ %) and
energy information (F: i/ ) are of great importance.

value of Afpeas depending on the number of detected optical
photons. This is not observed for the slab detector since,
in Fig. 12(b), the strong separation regarding the number of
detected optical photons is not given.

VI. DISCUSSION

All models have been trained successfully. The predictions
follow a Gaussian function for a large area of the trained
data range, as it can be seen in Figs. 6 and 7, as well as
in Table I. When moving to the borders of the presented
data, the models’ outputs deviate from the expected shape,
and the prediction quality decreases. This effect is known for
many ML algorithms and can be reasoned by the inability
to extrapolate to values outside the training range. In future
studies, we want to address this issue with different strategies,
with using a higher sampling rate at the edges being one of
them.
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Fig. 12. Progression of the SHAP values SV (Afmeas) in dependence of the
feature value Afmeas itself. The number of optical photons detected on the
SiPM providing the first timestamp (#OPB/”) is encoded in the color (a) for
the one-to-one coupled detector and (b) for the slab detector.

Within the central region, where the models show stable
behavior, the means of the prediction distributions follow the
expected linear relation of (13) (see Fig. 8). No systematic
deviation from the linear relation between offset position zg
and predicted mean time difference us could be observed,
indicating that the trained models are capable of learning the
given physical problem. The averaged e-values are slightly
bigger than the expected value of gpeo = 1 (max({e; — &theo})
<39x 10’3), which consequently enlarges time differences,
and therefore produces an overestimation of the determined
CTR values, such that a rescaled resolution might be even
better than the here reported one. To compensate for this effect,
one could introduce a scaling function s(ug) which would
correct the slope to the desired value of ¢ = 1 for a given
mean time difference. Since the observed effect is insignificant
and the estimated slope factors ¢ agree for all models with
the theoretical value within a 3c-interval, this procedure is
unnecessary for the GBDT models used in this work.

All trained models can improve the achievable CTR values,
such that sub-200 ps resolution could be reached for an energy
window from 300 keV to 700 keV (see Table II). Minding the
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shape of the emerging distribution, especially coincidences
in the tails of the distribution have been recovered to more
minor time differences, indicating that the model can learn
physical effects and correct those. This observation underlies
the capability of this new approach and shows that the tim-
ing resolution can be improved beyond the usage of purely
analytical calibrations.

We used explainable AI (XAI) techniques to understand
which quantities the models are relying on. The analysis of the
SHAP values of the model (18, 0.1) reveals that the reported
timestamp difference Afpeas mainly, but also timing and
energy information is of great importance. This observation
agrees with human intuition, since Afpeys Would represent a
human’s first estimator if one tried to solve the task given
to the model. Furthermore, the results clearly indicate that
the model is learning timewalk effects for the one-to-one
coupled detector [see Fig. 12(a)], since for a given feature
value Afmeas, the SHAP value is increased or decreased
depending on whether a high or a low number of optical
photons has been detected. If a timestamp is affected by a
timewalk, the exact moment of timestamping is delayed due
to low deposited energy. In conclusion, the importance of
this timestamp has to be decreased since it would enlarge the
reported time difference and worsen the CTR. This observation
does not occur in the same clearness for the slab detector
(see Fig. 12(b)). However, for the one-to-one coupled detector,
the vast majority of information is contained in one channel,
whereas, for the semi-monolithic case, the information is
spread across multiple channels, making it hard to display the
effect in the chosen visualization. There is still an indication
that also for the slab detector, timewalk effects are caught by
the model since the feature set using energy-related quantities
shows a high absolute SHAP value (see Fig. 11) and that both
tails of the time difference distribution are reduced.

VII. CONCLUSION AND OUTLOOK

In this work, we demonstrated a new approach based on the
combination of residual physics and ML to address real-world
physics-based problems. We applied the concept to detector
calibration. We hope the work highlights the potential for
applications of learning systems along all computing steps of
complex acquisition and processing systems and, thus, may
inspire future research.

Since the formalism settles on previously linear corrected
timestamps [33], it can be seen as a first approach toward
residual physics in timing calibration. All models could be
trained successfully and are in a 30 agreement with the
underlying physical relation. The first results indicate that this
new calibration strategy has provoked a strong improvement
in the achievable CTR reaching from 238 ps down to 198 ps
for an energy window from 300 keV to 700 keV, and from
235 ps even down to 185 ps for a smaller energy window
from 450 keV to 550 keV. The SHAP analysis offers a strong
indication that the proposed technique has the capability to
build physics-informed models.

All results are based on experimentally acquired data from
two clinically relevant detector arrays. This work and the cor-
responding promising first results represent a proof-of-concept
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for future time skew calibration techniques relying on Al
Nevertheless, several studies have to be performed before
an application to a complete PET system is possible. The
presented technique is currently implemented for a pair of
detectors utilizing digital SiPMs. Research toward systems of
multiple detectors will be addressed in future works. Besides
this, we want to explore the performance of the concept
in different environmental settings (e.g., higher measurement
temperatures and different readouts), potentially enlarging the
learning system’s importance. Furthermore, the reduction and
study of the influence of the needed data acquisition time
and the bias effects toward the edges of the training data is
mandatory for possible usage in a clinical scanner. A possible
method to address this point would be an artificial enlargement
of the available training data found on only a few measured
data points. However, we expect the measurement time to
increase weaker than linearly with the number of detectors
since one source position can be used for many detectors.
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