
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Neural Improvement Heuristics for Graph
Combinatorial Optimization Problems

Andoni I. Garmendia , Josu Ceberio , Member, IEEE, and Alexander Mendiburu , Member, IEEE

Abstract— Recent advances in graph neural network (GNN)
architectures and increased computation power have revolution-
ized the field of combinatorial optimization (CO). Among the
proposed models for CO problems, neural improvement (NI)
models have been particularly successful. However, the existing
NI approaches are limited in their applicability to problems
where crucial information is encoded in the edges, as they only
consider node features and nodewise positional encodings (PEs).
To overcome this limitation, we introduce a novel NI model
capable of handling graph-based problems where information is
encoded in the nodes, edges, or both. The presented model serves
as a fundamental component for hill-climbing-based algorithms
that guide the selection of neighborhood operations for each
iteration. Conducted experiments demonstrate that the proposed
model can recommend neighborhood operations that outperform
conventional versions for the preference ranking problem (PRP)
with a performance in the 99th percentile. We also extend the
proposal to two well-known problems: the traveling salesman
problem and the graph partitioning problem (GPP), recommend-
ing operations in the 98th and 97th percentile, respectively.

Index Terms— Combinatorial optimization (CO), graph neural
networks (GNNs), hill-climbing (HC), preference ranking, rein-
forcement learning.

I. INTRODUCTION

COMBINATORIAL optimization problems (COPs) are
present in a broad range of real-world applications,

such as logistics, manufacturing, or biology [1], [2]. Due
to the NP-hard nature of most COPs, finding the optimal
solution applying exact methods becomes intractable as the
size of the problem grows [3]. As a result, in the past few
decades, heuristic and meta-heuristic methods have arisen as
an alternative to approximate hard COPs in a reasonable
amount of time. Initial works in the field proposed constructive
heuristic methods that iteratively build a candidate solution.
In general, constructive methods are developed ad hoc for
the problem at hand, based on criteria and rules provided by

Manuscript received 5 December 2022; revised 15 May 2023; accepted
8 September 2023. Andoni I. Garmendia acknowledges a predoctoral grant
from the Basque Government (ref. PRE_2020_1_0023). This work has been
partially supported by the Research Groups 2022-2024 (IT1504-22) and
the Elkartek Program (KK-2022/00106, SIGZE, KK- 2021/00065) from the
Basque Government, the PID2019-104933GB-10, PID2019-106453GA-I00
and PID2022-137442NB-I00 research projects from the Spanish Ministry
of Science. Finally, we acknowledge the support of NVIDIA Corporation
with the donation of a RTX A5000 GPU used for this work. (Corresponding
author: Andoni I. Garmendia.)

The authors are with Intelligent Systems Group, University of the
Basque Country (UPV/EHU), San Sebastian, 20018 Gipuzkoa, Spain (e-mail:
andoni.irazusta@ehu.eus).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3314375.

Digital Object Identifier 10.1109/TNNLS.2023.3314375

expert knowledge. Later on, the constructive proposals were
outperformed by meta-heuristic algorithms that introduced
general purpose and easy-to-apply optimization paradigms.

Although meta-heuristics have become the main tool to
adopt, contrary to constructive heuristics, they are evaluation-
intensive algorithms, i.e., they need to exhaustively evaluate
thousands or even millions of candidate solutions before
arriving at a decision, making them impractical for scenarios
with limited budget or online-streaming optimization [4].

Algorithms based on neural networks (NNs) play a crucial
role in this regard. In recent years, deep learning (DL) tech-
niques have exhibited remarkable performance across various
machine learning tasks, drawing the attention of researchers
from diverse domains, including optimization. As outlined in
different reviews [5], [6], [7], DL-based approaches have been
proposed as standalone solvers, parameter and/or operation
selection methods, or as a component of more powerful hybrid
algorithms. Our focus in this work is on standalone (end-to-
end) models, highlighting their capabilities and the avenues
for further research aimed at enhancing their performance.
Once trained, these models can rapidly make decisions, such
as determining the next change required. The first works in the
topic proposed models, known as constructive methods, which
generate a unique solution incrementally by iteratively adding
an item to a partial solution until it is completed [8], [9], [10].
Conversely, later papers have introduced improvement methods
that take a candidate solution and suggest a modification to
improve it [11], [12], [13]. In fact, this improvement process
can be repeated iteratively, using the modified solution as
the new input of the model. The reported results, although
less competitive than the state-of-the-art meta-heuristics for
the most trending problems [14], [15], have captured the
attention of the optimization research community as they were
unimaginable some years ago. In fact, many of these proposals
have outperformed the classical constructive heuristics.

However, looking at the progress of the research, we realize
that the majority of the works have mainly illustrated their
contributions on the travelling salesman problem (TSP) [18]
and other similar routing problems. Particularly, most models
work on the idea that when considering the graph representa-
tion of the COPs, the information is embedded nodewise [9],
[10]. However, there are problems such as preference ranking
problem (PRP) [16] or graph partitioning problem (GPP) [17],
where the relevant information of the problem is edgewise or
even both nodewise and edgewise. In these scenarios, node-
wise proposals do not use all the available (and meaningful)
information.

2162-237X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-7243-6116
https://orcid.org/0000-0001-7120-6338
https://orcid.org/0000-0002-7271-1931

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I
ANALYSIS OF THE MOST RELEVANT NI WORKS IN THE LITERATURE

In line with the idea that future generation algorithms
will come from the combination of meta-heuristic algorithms
alongside machine learning models [7], we propose a new
optimization framework which can replace and improve the
traditional local-search-based methods by incorporating neural
improvement (NI) models. Specifically, our contribution is
twofold: 1) we present an NI model to solve problems where
the information is stored in the nodes, in the edges, or in both
of them and 2) we show that the model can be used alone or
can be incorporated as a building block, for example, for hill-
climbing-based algorithms, to efficiently guide the selection
of neighborhood operations.

To demonstrate the versatility and efficacy of the pro-
posed framework, we conducted experiments across various
optimization problems, including PRP, TSP, and GPP. The
NI model, trained on node and edge features, demonstrated
outstanding performance across all the three problems, with
exceptional results for PRP. It consistently recommended the
best or near-best neighbors for each problem and outperformed
traditional methods in all the cases.

The rest of this article is organized as follows. Section II
introduces the most prominent works tackling the development
of NN models for CO, both in a constructive and improvement
manner. With illustrative purposes, we present the PRP in
Section III and propose an NI model in Section IV. A set of
experiments are carried out in Section V and the generalization
of the model to other problems is discussed in Section VI.
Finally, Section VII concludes this article.

II. RELATED WORK

Although NNs have been used since the decade of the 80s
to solve COPs in the form of Hopfield networks [19], it is
only recently [6], [7] that advancements in computation
power and the development of sophisticated architectures have
enabled more efficient and increasingly competitive applica-
tions. As mentioned previously, the NN-based optimization
methods can be divided into two main groups according to
their strategy.

A. Neural Constructive Methods

Most of the DL-based works develop policies to learn a con-
structive heuristic. These methods start from an empty solution
and iteratively add an item to the solution until it is completed.
In one of the earliest works in the neural combinatorial

optimization (CO) paradigm, Bello et al. [8] used a pointer
network model [20] to parameterize a policy that constructs a
solution, item by item, for the TSP. Motivated by the results
in [8], and mainly focusing on the TSP, DL practitioners have
successfully implemented different architectures such as graph
NNs (GNNs) [21], [22] or attention-based networks [9], [10].

Since the performance of the baseline models is still far
from optimality (mostly in instances with more than a few
hundred nodes), they are usually enhanced with supplementary
algorithms, such as active search [8], sampling [9], or beam
search [20], which augment the solution diversity at the cost
of increasing the computational time. As will be seen in
the following, improvement methods offer a more efficient
alternative, directly learning the transition from the current
solution to a better one.

B. NI Methods

The NI methods depart from a given solution and iteratively
propose a (set of) modification(s) to improve it until the
solution cannot be further improved. The NI methods use
the learned policy to navigate intelligently across the different
neighborhoods.

To that end, the architectures previously used for construc-
tive methods have been reused for implementing improvement
methods. Chen and Tian [11] use long short-term memory
(LSTM) to parameterize two models: the first model outputs
a score or probability for each region of the solution to be
rewritten, while a second model selects the rule that modifies
that region. Lu et al. [12] use the attention-based model to
select a local operator among a pool of operators to solve
the capacitated vehicle routing problem (VRP). Using also
an attention network, Hottung and Tierney [23] propose a
neural large neighborhood search that suggests new solutions
destroying and repairing parts of the current solution.

Closer to our proposal, but limited to routing problems,
Wu et al. [13] train a policy that selects the node-pair to apply
a local operator, e.g., 2-opt. Similarly, da Costa et al. [24]
generalize the prior work to select k-opt operators.
Falkner et al. [25] propose an improvement method to tackle
the job scheduling problem which learns how to control the
local search in three aspects: acceptance of the solution, neigh-
borhood selection, and perturbations. We have summarized the
characteristics of the most relevant NI works in Table I.

Improvement methods do not only incorporate the stationary
instance data but also need to consider the present solution.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IRAZUSTA GARMENDIA et al.: NI HEURISTICS FOR GRAPH COPs 3

In fact, the difficulty of encoding the solution information
into a latent space is a major challenge for most of the
combinatorial problems.

As an example, there are various ways of representing
solutions in routing problems. Each node (or city) can maintain
a set of features that indicate the relative position in the
current solution, such as the location and distance to the
previously and subsequently visited nodes [12]. However,
this technique does not consider the whole solution as one,
as it only contemplates consecutive pairs of nodes in the
solution. A common strategy in this case is to incorporate
positional encodings (PEs), which capture the sequence of
the visited cities (nodes) in a given solution [9]. Recently,
Ma et al. [26] proposed a cyclic PE that captures the circularity
and symmetry of the routing problem, making it more suitable
for representing solutions than the conventional PE.

Nevertheless, in some graph problems the essential infor-
mation is codified solely in the edges, and thus, prior methods
that focus on node embeddings [12], [26] are not capable of
properly encoding the relative information.

Even though there are few works that consider edge weights
to encode problem-specific features [27], [28], they focus on
creating a heatmap of probabilities for each edge to belong to
the optimal solution and use it to construct (or sample) a (set
of) solution(s). In this work, similar to [27] and [28], we use
nodes and edges to represent graph data. However, what sets
our approach apart is its ability to encode both instance and
solution information, and then use this encoded information to
propose a local improving move. In addition, when compared
with [13], we provide some guidelines for generalizing to
different graph-based problems, by considering both the node
and edge features. Furthermore, unlike [13], we do not rely
on PEs to embed current solution information, as we naturally
embed it in the edge features. Finally, we propose a standalone
NI model and demonstrate how to combine it with classical
local search techniques such as multistart hill-climbing (HC),
tabu search (TS), or iterative local search.

In Section III, we will present an optimization problem
that illustrates the need to develop new NI models that also
consider edge features.

III. PREFERENCE RANKING PROBLEM

Ranking items based on preferences or opinions is, in gen-
eral, a straightforward task if the number of alternatives
to rank is relatively small. Nevertheless, as the number of
alternatives/items increases, it becomes harder to get full
rankings that are consistent with the pairwise item preferences.
Think of ranking 50 players in a tournament using their paired
comparisons from the best performing player to the worst.
Obtaining the ranking that agrees with most of the pairwise
comparisons is not trivial. This task is known as the PRP [16].
Formally, given a preference matrix B = [bi j]N×N where
entries of the matrix bi j represent the preference of item i
against item j , the aim is to find the simultaneous permutation
ω of rows and columns of B so that the sum of entries in the
upper triangle of the matrix is maximized [see (1)].

Note that row i in B describes the preference vector of
item i over the rest of N − 1 items, while column i denotes

Fig. 1. Example of a PRP instance of size N = 5. (a) Preference matrix of
size N = 5 ordered as the identity permutation ωe = (1 2 3 4 5). Entries of
the matrix contributing to the objective function are highlighted in grey, and
the sum of the entries in the upper diagonal gives the objective value, which
is 51. (b) For this instance, the optimal solution is given by the permutation
ωopt = (4 1 2 5 3) with an objective value of 60. (c) Equivalent graph
representation of the optimal solution. Edge weights denote the preference
given by the optimal solution.

the preference of the rest of the items over item i . Thus,
to maximize the upper triangle of the matrix, preferred items
must precede in the ranking [see Fig. 1(a)]

f (ω) =

N−1∑
i=1

N∑
j=i+1

bω(i)ω(j). (1)

In addition to the matrix representation [Fig. 1(a)], the
problem can be formulated as a complete bidirected graph
where nodes represent the set of items to be ranked and the
weighted edges denote the preference between items. A pair
of nodes i and j have two connecting edges (i, j) and (j, i),
with weights bi j and b j i that form the previously mentioned
preference matrix B. A solution (permutation) to the PRP can
also be represented as an acyclic tournament on the graph,
where the node (item) ranked first has only outgoing edges,
the second in the ranking has 1 incoming edge, the rest are
outgoing, and so on until the last ranked node, which only has
incoming edges [see Fig. 1(b) and (c)].

Ranking from pairwise comparisons is a ubiquitous prob-
lem in modern machine learning research. It has attracted
the attention of the community due to its applicability in
various research areas, including, without being limited to:
machine translation [29], economics [30], corruption percep-
tion [31] or any other task requiring a ranking of items, such
as sport tournaments, web search, resource allocation, and
cybersecurity [32], [33], [34].

IV. METHOD

The idea of solving a graph problem iteratively with an NI
model can be formulated as a Markov decision process (MDP),
where a policy π is responsible for selecting an action a at
each step t based on a given state st of the problem. The main
entities of the MDP in this work can be described as follows.

1) State: A state st represents the information of the envi-
ronment at step t . In this case, the state gathers data
from two information sources: 1) stationary data, i.e.,
the instance to be solved and 2) dynamic data, that is,
the current solution ωt for the problem at step t .

2) Action: At every step, the learnt policy selects an
action at , which involves a pair of items of the cur-
rent solution that, according to the policy, need to be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. High-level design of the NI model architecture. Node and edge features are linearly projected and fed to the encoder (GNN). Edge embeddings
computed through L NN layers are passed to the decoder (MLP) and this outputs the edge probabilities, which will be later used to select the pair of nodes
in which an operator is applied.

modified. Once selected, an operator will be applied,
modifying the current solution. Note that one of the
items, both, or more may be involved in the modifi-
cation, depending on the operator.

3) Reward: The transition between states st and st+1 is
derived from an operator applied to a pair of items
given by at . The reward function (RF) represents the
improvement of the solution quality across states. Dif-
ferent function designs can be used, as will be explained
in Section IV-B.

In what follows, a detailed description of the NI model is
provided. Even though the design is general for any graph-
based problem, for the sake of clarity, we provide illustrative
examples based on the PRP. Extensions to other problems will
be discussed later in Section VI.

A. NI Model

We will parameterize the policy π as an NN model with
trainable parameters θ . Considering the case study presented
in Section III, the model architecture needs to meet some
requirements: 1) it needs to codify graph structure data; 2)
it needs to be invariant to input permutations; 3) it needs to
invariant to input size changes; and 4) it needs to consider
the solution information. Considering that we opted to use
a GNN encoder, capable of gathering both the node and
edge features, and a multilayer perceptron (MLP) decoder,
a simple and fast architecture that interprets the embedded
features and generates a probability distribution over the set
of possible actions. Fig. 2 presents the general architecture of
the model. Apart from the presented model, we have analyzed
two different encoder and decoder architectures and tested
various hyperparameters. The outcomes of these experiments
are presented in Appendix A.

1) Encoder: Given a fully connected graph with N nodes,
there are N × N edges or node pairs, and each edge (i, j) has
a weight bi j that represents the relative information of node i
with respect to node j . Note that only N × (N − 1) edges

need to be considered since edge (i, i) does not provide any
useful information. As previously noted, the policy considers
both instance information (stationary) and a candidate solution
at time step t (dynamic). For this purpose, we will use a
bidimensional feature vector xi j ∈ R2 for each edge (i, j).
The first dimension represents whether node i precedes node j
in the solution. If this is the case, it is set to bi j (edge
weight) or it is set to 0 otherwise. Similarly, the second dimen-
sion denotes the opposite, that is, whether node j precedes
node i .

For the PRP, nodes do not reflect any problem-specific infor-
mation, and thus all the nodes are initialized with the same
value. In fact, following a similar strategy to that proposed by
Kwon et al. [35], we use the identity vector as node features,
n ∈ RN . Even though all the nodes are initiated with the
same value, their participation is required, as they spread edge
features across the graph in the encoding: node i will gather
information from edges (i, k) and (k, i), k = 1, . . . , N .

Node and edge features will be linearly projected to pro-
duce d-dimensional node hi ∈ R1×d and edge ei j ∈ R1×d

embeddings

hi = ni ∗ Vh +Uh (2)
ei j = xi j ∗ Ve +Ue (3)

where Ve ∈ R2×d , and Vh , Ue, and Uh ∈ R1×d are learnable
parameters.

The encoding process consists of L GNN layers (denoted
by the superscript l) that perform a sequential message-passing
between nodes and their connecting edges. This enables the
GNN layers to learn rich representations of the graph structure
and capture complex relationships, such as precedence of items
in the solution (see left part of Fig. 2). Equations (4) and (5)
define the message-passing in each layer, where W l

1, W l
2, W l

3,
W l

4, and W l
5 ∈ Rd×d are also learnable parameters, BN denotes

the batch normalization layer, σ is the sigmoid function, and

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IRAZUSTA GARMENDIA et al.: NI HEURISTICS FOR GRAPH COPs 5

⊙ is the Hadamard product

hl+1
i = hl

i + ReLU

BN

W l
1hl

i +

N∑
j=1

(
σ
(
el

i j

)
⊙W l

2hl
j

)
(4)

el+1
i j = el

i j + ReLU
(
BN

(
W l

3el
i j +W l

4hl
i +W l

5hl
j

))
. (5)

The output of the encoder, which is fed to the decoder,
consists of the edge embeddings of the last layer eL

i j .
2) Decoder: Edge embeddings are fed to the decoder,

an MLP that converts the edge embeddings into logits uij in
a format that can be used to select the next operator

uij =

{
MLP

(
ei j

)
, if i ̸= j

−∞, otherwise.
(6)

The logits are then normalized using the Softmax function
to produce a matrix p ∈ RN×N which gives the probability of
modifying the pair of items (i , j) in the candidate solution.

B. Learning

The improvement policy will be learned using the REIN-
FORCE algorithm [36]. Given a state st = (B, ωt) which
includes an instance B and a candidate solution ωt at step
t , the model gives a probability distribution pθ (at |st) for all
the possible pairs of items to be modified. After performing
an operation O(ωt |at) with the selected pair, a new solution
ωt+1 is obtained. The training is performed minimizing the
following loss function:

L(θ |s) = Epθ (s,ωt)

[
−Rt log pθ (s, ωt)

]
(7)

by gradient descent, where Rt =
∑T−1

i=0 γ i (rt+i − rt+i−1)

corresponds to the sum of cumulative rewards ri with a decay
factor γ in an episode of length T .

This artifact is a key piece of the model. It has been
conceived to avoid myopic behaviors, permitting short-term
and long-term strategies, as a different number of operations
are allowed (T) before evaluating the quality of the movement
sequence. In addition, the decay factor offers the practitioner
a way to weight every movement, paying, for example, more
attention to the earliest movements.

1) Reward Functions: Different RFs have been proposed
in the literature for obtaining r . Lu et al. [12] use a reward
function (RF1) that takes the objective value of the initial
solution as the baseline, and, for each subsequent action, the
reward at step t is defined as the difference between f (ωt) and
the baseline. The drawback of this function is that rewards may
get larger and larger, and moves that worsen the sequence can
be given positive reward (as they are better than the baseline).

Alternatively, the most common approach in recent
works [13], [26] is to define the reward (RF2) as rt =

max[f (ωt+1), f (ω∗t)] − f (ω∗t), where f (ω∗t) is the objective
value of the best solution found until time t . Note that this
alternative yields only nonnegative rewards, and all the actions
that do not improve the solution receive an equal reward
rt = 0. In our case, we propose a simple but effective reward
function (RF3) rt = f (ωt+1) − f (ωt), which defines the

Fig. 3. Comparison of the three RFs RF1, RF2, and RF3. Model has been
trained for 100 epochs, and at each epoch a model checkpoint is saved and
used to solve a test benchmark of 512 randomly generated PRP instances of
size 20. Obtained objective values are saved to form the curves.

reward as the improvement of the objective value between
steps t and t + 1, and also considers negative values. RF3 RF
yields a faster convergence with less variability, as can be seen
in the comparison of the mentioned RFs depicted in Fig. 3.

2) Automated Curriculum Learning: Curriculum learning is
a training strategy that involves controlling the difficulty of the
samples throughout the process, where the difficulty level is
manually increased [37]. In this context, difficulty is measured
by calculating the percentage of moves that worsens the
objective value in relation to all the possible moves. However,
in our approach, we do not use a manual curriculum learning
strategy like the one used by Ma et al. [26]. Instead, we use
an iterative approach where the model receives the solution
that has been modified in the previous iteration. As the model
improves and suggests better moves for the current instances
during training, the number of improving moves decreases,
leading naturally to increase the difficulty level. This iterative
approach enables an automated curriculum learning, which is
valid for prior optimization problems and does not require
neither any problem knowledge nor external intervention.

However, learning is performed with a batch of instances
and not all of them reach a local optimum in the same number
of steps. Thus, we save the best average reward obtained by
the model, and we consider the algorithm to be stuck when it
does not improve the best average reward for Kmax iterations.
A large value of Kmax should give the model more chances to
visit higher quality solutions, but can also introduce undesired
computational overheads.

3) Operator: The model is flexible, allowing the practi-
tioner to define the operator that best fits the problem at hand.
In the particular case of the PRP, there are several operators
that could be applied to perform the pairwise modification,
such as insert, swap, adjacent-swap, and reverse operators.1

Previous works [38] have demonstrated that the insert operator

1Given an edge (i, j), denoting the items in positions i and j in the
solution: the insert operator consists of removing the item at the position i and
placing it at position j , the swap exchanges the items at both the positions,
the adjacent-swap is a swap that only considers adjacent positions, and the
reverse operator reverses the subpermutation between positions i and j .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Training curves using different pairwise operators. Each operator
is used in a training procedure of 200 epochs executed five times with a
different random seed. The model output is masked so that, for each operator,
only feasible pairs can be selected.

yields the best results for the PRP. In fact, we confirm it
in Fig. 4, where we show the comparison of the training
convergence curves for the mentioned pairwise operators.

4) Training Algorithm: The implemented training algorithm
is presented in Algorithm 1. The state st represents the instance
and a candidate solution at time step t . At each epoch,
a random state is generated with a random solution (line 3).
Then, the model gives the probability vector (line 7), and an
action is sampled and applied to the current solution (lines
8 and 9). The best found reward is saved (line 10) and the
process is repeated until the model does not improve the
best known solution for a specified number of steps (Kmax)
consecutively. For the sake of clarity, Algorithm 1 shows the
training with one instance, even though a batch is used. To use
a batch of instances, states st , probabilities pθ , actions at , and
rewards rt will be vectors and the average of rt will be used
to control the improvement condition (line 11).

C. Applications of the NI Model

The HC heuristic is a procedure that continuously tries
to improve a given solution performing local changes (for
example, swapping two items) and looking for better candidate
solutions in the neighborhood. Examples of conventional HC
procedures include, among others, best first HC (BFHC),
which selects the first found candidate (neighbor) that
improves the present solution; steepest-ascent HC (SAHC),
which exhaustively searches all the neighborhood and selects
the best candidate solution from it; or stochastic HC (SHC),
which randomly picks one solution from the neighborhood.

1) Neural Hill Climber: With the goal of reducing the
large number of evaluations needed by the conventional HC,
we propose the neural hill climber (NHC), which attempts to
suggest the best neighbor based on a given solution and then
uses this neighbor as the starting point for the next iteration.
This cycle is repeated until the best possible solution is found.
In general, HC heuristics do not allow the objective value to
decrease. In our approach, to ensure that the selected action
is an improving move, we sort the probability vector given by

Algorithm 1 Training Algorithm for the NI Model
Require: total number of epochs nepochs , stopping criterion

Kmax , operator O , episode length T , learning rate α, and
discount factor γ .

1: Initialize the policy πθ with random weights θ

2: for epoch = {1, . . . , nepochs} do
3: State s0 ← RNDMGEN., step t ← 0, count k ← 0
4: rbest ← COMPUTEREWARD(s0)
5: while k ≤ Kmax do
6: t ← t + 1
7: pθ ← πθ (st−1)

8: at ← SAMPLEACTION(pθ)
9: st ← O(st−1, at)

10: rt ← COMPUTEREWARD(st)
11: (rbest , k)← UPDATEBEST(rt , rbest , k)
12: if t mod T = 0 then
13: R = 1

T

∑t
i=t−T (

∑t
j=i γ j−i (ri − ri−1))

14: ∇θ J (θ)←−R∇θ log pθ (at)

15: θ ← θ + GRADIENTCLIP(α∇θ J (θ))
16: end if
17: end while
18: end for

the model and select the first action that improves the solution.
Of course, other strategies could also be adopted.

2) Advanced Hill Climbers: Eventually, just as the con-
ventional HC procedures, the NHC will get stuck in a local
optimum where an improving move cannot be found. More
advanced algorithms have been proposed in the literature
that try to escape the local optima by performing a restart
or a perturbation to the current solution [39]. One of the
many examples is the multistart HC (msHC), which restarts
the search departing from another random candidate solution
whenever an improving move cannot be found.

An alternative to msHC is the iterated local search
(ILS) [41]. Once the search gets stuck in a local optimum,
instead of restarting the algorithm, ILS perturbs the best
solution found so far and the search is resumed in this new
solution. The perturbation level is dynamically changed based
on the total budget left (number of evaluations or time).

The third example considered in this article is the TS [40],
which enhances the performance of the HC method allow-
ing worsening moves whenever a local optimum is reached.
To avoid getting trapped in cycles, TS maintains a tabu
memory of previously visited states to prevent visiting them
again in the next m moves.

We will use the NI model to guide the local moves of a
multistart neural HC (msNHC), a neural ILS (NILS), and a
neural TS (NTS) and analyze their performance compared with
the conventional versions in Section V.2

2For TS, a short-term memory of size 200 is used. For ILS, once a local
optima is reached, the solution is perturbed with n random swaps, n being
calculated based on the remaining evaluations (REs) in the execution: n =
⌊(N/2)∗(RE/E)⌋, where N is the problem size and E denotes the evaluation
budget.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IRAZUSTA GARMENDIA et al.: NI HEURISTICS FOR GRAPH COPs 7

V. EXPERIMENTS

In this section, we present a thorough experimentation of
the proposed NI model. First, we analyze the performance
of the NI model in the short-term (one-step) and long-term
(multistep) basis. Afterward, we test the efficiency of the
NI model implemented as a building block of HC algorithms.

A. Setup

For the experiments, we deploy a three-layer GNN as
the encoder, being the embedding dimension 128. As the
decoder, we use an MLP of four layers with hidden dimensions
(128, 64, 32, and 1) and ReLU activation. Regarding the
training hyperparameters, a learning rate is set to 1e-4, the
episode length to T = 20, the decay factor to γ = 0.1, and
the maximum number of consecutive nonimproving moves to
Kmax = 5. Further details on the selection of the hyperparam-
eters can be found in Appendix A. To train the NI model,
we adopt a common practice of using randomly generated
instances. Each epoch, a different batch of 64 instances is
used, and gradients are averaged across this batch to update
the model parameters. Due to limited computational resources,
two different models have been trained using sizes N = 20 and
N = 40, respectively. Both the models have been trained for
5000 epochs.3

Related to the size of the instances used for training
DL-based models, a common drawback is the lack of scal-
ability: most of the DL-based models need to be trained with
instances of the same size to those used later for inference.
However, the introduced model can be trained with a computa-
tionally affordable instance size, and then be used for solving
larger size instances (discussed later in this section). If not
mentioned differently, for large sizes, the model trained with
instances of size (N = 20) will be used.

We have implemented the algorithms using Python 3.8.
Neural models have been trained in an Nvidia RTX A5000
GPU, while methods that do not need a GPU are run on
computers with Intel Xeon X5650 CPUs and 64 GB of
memory.

B. NI Model Performance Analysis

During the optimization process, obtaining solutions that
improve the current one becomes harder at each step. With
the aim of testing the ability of the model, we present
two scenarios: 1) one-step, that is, departing from a random
solution, is the model able to find the best neighbor and
2) multistep, departing from a random solution, is the model
able to propose a better solution repeatedly, improving the
previously found solution in a consistent way throughout the
optimization process.

1) One-Step: We focus on the capability of the NI model to
provide a solution that outperforms the present one. In terms
of neighborhood, we expect the NI model to be able to
identify the best or at least one of the best neighboring moves.

3Even though we use instances of the same size to train each model, note
that, due to the elementwise operations performed in the encoder, it is possible
to combine instances of different sizes.

Fig. 5. Histogram that shows the ranking of the action selected by the
model among all the possible actions on 2000 different instances of size
N = 20. The first rank denotes the best possible action (based on the one-step
improvement). Note that the x-axis is cut since none of the proposed actions
has been ranked between the 50th and 361st positions.

We perform one-step predictions for 2000 instances of size
N = 20. The results are depicted in Fig. 5 in the form of
a histogram. Specifically, we calculated the ranking of the
predicted move among all the available actions ((N−1)2, 361).
Note that the model selects the best neighbor in more than 35%
of the times. Considering all the possible insert operations,
on average, the action that the model takes is in the 99th
percentile, ranked fourth out of 361.

In larger instance sizes, even if trained with N = 20, the
NI model is not only able to maintain the good performance,
but also improves the percentile rank of the selected action.
It selects, on average, the 13rd best action out of 2401 for
N = 50 and the 32nd out of 9801 for N = 100.

2) Multistep: Once tested that the NI model successfully
learns to select one of the best possible actions (one-step),
we still need to verify whether it obtains increasingly better
solutions in a multistep scheme. For that purpose, we let the
model make consecutive moves, being fed, at each iteration,
with the solution obtained in the previous one. Fig. 6 illustrates
the behavior of the model for consecutive steps. The figure
shows that: 1) as expected the maximum obtainable reward
decreases over the improvement steps, presumably increasing
the difficulty, and 2) the action selected by the model is closer
to the maximum reward than the minimum reward, which
confirms the good performance of the model when several
steps are completed.

C. Neural HC Performance Analysis

In this section, we compare the performance of NHC to two
conventional approaches: steepest ascent (SAHC) and best first
(BFHC). We let the algorithms run until they get trapped in a
local optima and repeat the optimization for 2000 different
instances. During the optimization run, we computed the
gap (%) to the optimum objective value of the instance and
the consumed evaluations.

Fig. 7 shows the results of the experiment. NHC, SAHC,
and BFHC obtain an average gap of 0.28%, 0.29%, and 0.28%,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. Line plot of 20 different executions of the NHC. Each purple line
represents the reward, or the improvement of the objective value (y-axis),
given by the selected action over consecutive steps (x-axis). The minimum
and maximum rewards that could be obtained in each step are also shown.
Instances of N = 20 are solved using models trained with randomly generated
instances of the same size.

Fig. 7. Bicriteria analysis regarding the gap (%) to optimal value and the total
number of objective value evaluations. The lower left corner is best. Instances
of N = 20 are solved using models trained with randomly generated instances
of the same size.

respectively. Regarding the number of solution evaluations,
NHC is the cheapest among all the three procedures evaluating
on average 355 solutions. In all, 948 solutions are explored
by BFHC, and 6293 by SAHC, being the most expensive
procedure since it needs to evaluate all the possible actions
(entire neighborhood) before performing a move. All the
solutions in the Pareto front belong to NHC (see the red line).
In summary, NHC performs as well as SAHC and BFHC, but
requires a significantly lower number of evaluations.

D. Advanced Hill Climbers’ Performance Analysis

We expand here the analysis of the advanced algorithms
explained in Section IV-C. The performance is measured
for several instance sizes (20, 50, 100, and 500) setting
three different maximum numbers of evaluations: 10, 100,
and 1000 N, with N being the size of the instance. We incor-
porate the following algorithms for comparison: msHC with
conventional search strategies, such as best first (msBFHC),
steepest ascent (msSAHC), and stochastic (msSHC); the neural

version, guided with an NI model trained using instances of
20 and 40 (msNHC-20, msNHC-40); and TS algorithm with
an underlying best-first strategy (BFTS), the NTS algorithm,
an ILS algorithm with a best-first selection (BFILS), and
its neural version (NILS). As a baseline method, we also
add the Becker constructive method [42]. The performance
is measured by means of the average gap percentage to the
best known objective value, given by the state-of-the-art meta-
heuristic [43]. For each size, we use 512 randomly generated
instances.

The results are presented in Table II. As we can see, the
neural variants (msNHC, NTS, and NILS) outperform
the respective conventional ones in all the cases. While the
conventional methods perform similarly, the neural multistart
method shows the largest improvement compared with its
conventional variant.

Training this kind of DL-based models for large size
instances becomes computationally demanding. Thus, design-
ing a model that can be trained on small sizes and later applied
to larger instances becomes advisable or, depending on the
context, even mandatory. As shown in Table II, models trained
for sizes 20 and 40 are able to outperform their traditional
counterpart on larger instances (up to 500). Particularly, even
though msNHC-40 shows a better behavior compared with
msNHC-20, the differences between them are quite small,
demonstrating proper generalization of the model in larger
sizes. We further evaluate the generalization of the model
trained with randomly generated instances to other types of
instances in Appendix B.

E. Computational Time

A common discussion in the optimization area is whether
the number of evaluations or the computational time should
be used when comparing different algorithms. However, it is
important to note that different programming languages and
hardware platforms may produce varying results. Therefore,
this section has been added to supplement the previous one,
by offering information on the required computational times
for both training and inference of the presented model.

1) Inference Time: The performance of the HC algorithms
has been measured using a maximum number of solution
evaluations as a limit. However, one could argue that neural
methods have, for an equal number of evaluations, a higher
time cost compared with the conventional ones, i.e., getting
the next movement from the NN is more costly than choos-
ing a movement randomly or selecting the next movement
of a greedy sequence. Nevertheless, the reduced amount of
evaluations of NHC compensates this, obtaining a far better
performance, especially for larger instances.

In fact, as can be seen in Fig. 8, NI-based heuristics
outperform conventional heuristics under the time criterion.
Neural variants obtain a major advantage in the beginning
of the execution, where the decrease in the optimality gap
is steeper. Note that to fairly compare with the conventional
search strategies, we do not make use of a batch of instances
for the model inference; instead, we only feed a unique
instance simultaneously. Otherwise, NHC would greatly

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IRAZUSTA GARMENDIA et al.: NI HEURISTICS FOR GRAPH COPs 9

TABLE II
COMPARISON OF IMPROVEMENT METHODS. AVERAGE GAP (%) TO THE BEST KNOWN VALUE FOR DIFFERENT MAXIMUM NUMBERS

OF SOLUTION EVALUATIONS (E). BEST RESULTS AMONG EACH KIND OF ALGORITHMS ARE HIGHLIGHTED IN BOLD

Fig. 8. Average optimality gap % of 512 executions solving instances of
N = 20. The x-axis denotes the computation time.

benefit from using a batch of instances, as done in training,
due to parallelization.

2) Training Time: When evaluating a learning framework,
apart from the inference time, considering training time is
also a crucial factor. While computation time for inference is
well-researched in the literature, training time is often given
less attention. This can pose a challenge when, for example,
a model must be trained very frequently, and it is applied to
solve a few instances each time. The RL frameworks typically
require a large amount of computation time for training, which
can be expensive in terms of resources and time. If a pretrained
model is not available, conventional methods may be more
suitable for solving a single instance since training time is
much longer than the execution time required by conventional
methods. However, if a pretrained model is accessible through
open-source platforms or from prior practices, and generalizes
well to the specific instance being solved, practitioners can still
benefit from using the model.

To analyze the point where it becomes cost-effective to
train and use a neural method, the following experiment is
conducted. We assume that the practitioner does not possess
any pretrained model. It requires the practitioner to weight
the cost of training a neural model against the cost of using
traditional techniques (inference time) while also considering

Fig. 9. Plot illustrates the minimum number of instances to be solved to
compensate the training of the model, for each execution time. Trained model
sizes are differentiated with different colors, while different numbers of epochs
have different line styles (5000 epochs are used in this article).

the expected performance improvement that the neural model
can provide. For illustrative purposes, the total time required to
complete an execution of the conventional HC and the neural
HC is defined in (8) and (9), where yconv and yni are the total
time, an ttrain, tinfer, and tneigh denote the training and inference
time of the NI model and the time required by the conventional
SAHC to evaluate an entire neighborhood, respectively

yconv = tneigh ∗ nsteps (8)
yni = ttrain + tinfer ∗ nsteps. (9)

Let T be the number of steps performed in an execution,
(10) defines the minimum number of instances that need to be
solved, to compensate for the training time of the NI model

ncomp ≥

⌈
ttrain

T ∗
(
tneigh − tinfer

)⌉
. (10)

Based on our implementation and hardware used (an RTX
A5000 GPU and Intel Xeon X5650 CPUs), the conventional
SAHC requires an average of 0.40, 2.06, and 10.41 s to
explore an entire neighborhood of the PRP of size 50, 100,
and 200, respectively. The inference time of the NI model is
4.6, 13, and 48 ms for PRP instances of sizes 50, 100, and
200, respectively. Considering these values, Fig. 9 depicts,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

for these three problem sizes and three training budgets,
the variation in the minimum number of instances that need
to be solved to compensate for the training time. The red
vertical line represents the conventional stopping criteria (1000
N 2 evaluations, T = 1000) used in [44], and the red dots
depict the intersection with different curves. For the training
duration of 5000 epochs used in this article, the minimum
number of instances that need to be solved is 183, 35, and 7 for
sizes 50, 100, and 200, respectively. It is noteworthy that as
opposed to neural methods, the conventional methods require
a search in the quadratic neighborhood, and consequently, the
difference in execution times between these two approaches
becomes more pronounced with larger instance sizes and the
training time gets compensated with fewer instances. There-
fore, the advantage provided by using the NI model increases
dramatically as the instance size increases.

VI. EXTENSION TO OTHER PROBLEMS

In Section V, we have approached the PRP as an illustrative
problem where the instance information is exclusively stored
in the edges of graph representation of the problem. Never-
theless, the proposed model is not exclusive to the PRP and
can be extended to any problem that falls in this category.

In fact, the proposed NI model can be used for other
combinatorial problems performing only some minor changes.
The main change the practitioner needs to perform resides in
the edge feature selection. The NI model uses edges as the
main message-passing elements. Extracting instance stationary
information and dynamic solution information from edges
may not be trivial for every problem. Apart from that, the
practitioner needs to select the most efficient operator for the
problem at hand.

To illustrate the process, we give examples on how to adapt
the model to solve two different problems: the TSP [18]
and the 2-partition balanced GPP [17]. The reader is headed to
the corresponding papers for detailed information about these
problems.

A. Traveling Salesman Problem

Given a set of n cities and their coordinates in a 2-D space
s = {ci}

n
i=1 where each ci ∈ R2, the TSP consists of finding a

permutation ω that orders the cities in a tour that visits each
city once and has the minimum length. Formally, the TSP
can be defined as a fully connected graph where the nodes
represent the cities and weighted edges denote the pairwise
distances or costs between cities.

In the TSP, as opposed to the PRP, certain information is
contained in the nodes, namely, the city coordinates. Mean-
while, edge features (xij ∈ R2) are obtained directly by the
edge weights in a similar way as done for the PRP: the first
dimension in xij denotes the distance if the edge is part of
the current solution (cities i and j are consecutively visited)
and zero otherwise. Similarly, the second dimension is set
to nonzero (distance) for the edges that are not part of the
solution.

Regarding the operator, as seen in recent works [13], [26],
the 2-opt operator is better suited for routing problems than

Fig. 10. TSP. Histogram showing the rankings (x-axis) of the action selected
by the model among all the possible actions.

the insert or the swap operators. However, as done in Fig. 4,
a set of candidate operators should be considered and evaluated
for a few training epochs, to select the best one. In fact,
in the experiments we opted to use the insert operation since
it performs better than 2-opt.

B. 2-Partition Balanced Graph Partitioning Problem

Given a graph G(N , E, b) where N denotes the set of nodes
and E the set of edges with weights b, the 2-partition balanced
GPP consists of finding a 2-partition of N , where the number
of nodes is balanced among the sets, and which minimizes
the sum of the weights of edges going from the nodes of one
partition to the nodes in the other.

Regarding feature extraction, an identity vector is used as
node feature, as in the previous cases. Edge features xi j ∈

R2 are again obtained from the edge weights. xi j = (bi j , 0)

when edge (i, j) belongs to the cut, i.e., it is an edge between
clusters, and xi j = (0, bi j) if it is not.

Regarding the operator, in this case we propose to use swaps
between a pair of items in order to guarantee the balance
between the two clusters. Even though the model may choose
a pair of items in the same cluster, the solution would not
change, and thus, the improvement will be null, forcing the
model to pay attention to pairs of items that belong to different
clusters.

C. Preliminary Results on TSP and GPP

We evaluated the application of the NI model in the one-step
scenario for the described problems using 2000 instances. For
the TSP, we used instances of 20 cities, placed uniformly at
random in the unit square. For the GPP, we created random
graphs with 20 nodes and 50% of connectivity with weights
sampled from a uniform distribution between (0, 1).

We trained an NI model for each problem following the
setup described in Section V-A. In the TSP, the NI model
selects, on average, the action ranked fifth out of 361 (see
Fig. 10 for further details on the ranks of the selected actions).
In the GPP, the NI model selects, on average, the action ranked
tenth; however, among the 2000 instances, the model selected
an invalid swap (swap between two items in the same cluster)
in 89 cases (4%), and thus, some actions seem to be ranked

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IRAZUSTA GARMENDIA et al.: NI HEURISTICS FOR GRAPH COPs 11

Fig. 11. GPP. Histogram showing the rankings (x-axis) of the action selected
by the model among all the possible actions.

worse than usual (see Fig. 11). If we masked the invalid moves,
the NI selects, on average, the action ranked third.

VII. CONCLUSION

This article presents an NI model for graph-based problems
which, given a candidate solution, is able to propose a pairwise
modification that (almost) always generates a new better
solution. We have experimentally demonstrated that the NI
module could replace traditional local-search strategies, since
it requires less computational effort to obtain similar results,
it is more flexible, and it can efficiently guide a variety of
hill-climbing algorithms. This work has major implications for
most of the state-of-the-art meta-heuristics used to solve CO
problems, as they commonly include conventional local search
procedures.

The research presented in this article represents a promising
avenue for future investigation. In particular, we emphasize the
importance of investigating different training strategies, given
that the performance of the model is heavily influenced by the
instances used in training. To this end, we suggest exploring
advanced curriculum learning strategies that intelligently select
training instances, as well as real-world instance generators
that would allow to generate a broader range of instance closer
to the target distribution.

Although the model has shown good performance, local
search can be prone to becoming trapped in local optima, as is
the case with the conventional approaches. We think that a
more advanced model that can overcome this limitation should
be developed. In particular, we suggest incorporating strate-
gies such as curiosity-driven learning [45] and memory-based
learning [46] to improve the exploration of the NI model and
prevent the model from revisiting previously explored states.
By taking these steps, we believe that the potential of the NI
model can be fully realized, opening up exciting opportunities
for future research in this area.

APPENDIX A
HYPERPARAMETER AND ARCHITECTURE SELECTION

To select the best model, we have experimented with several
options. As an encoder, we have evaluated two of the most
popular options, graph attention networks (GAT) [47] and

Fig. 12. Evaluation reward during training for different model architectures.
Three different architectures are tested: (1) GAT encoder and MHA decoder,
(2) GNN encoder and MHA decoder, and (3) GNN encoder and MLP decoder.

anisotropic GNN [48]. For the GAT encoder to be able to
consider edges, we have used the edge-featured GAT [49].
As the decoder, we have tested a multihead attention mecha-
nism (MHA) [50], which performs a self-attention pass over
the edge embeddings before generating the output probabil-
ities, and a simple MLP, which directly produces the output
probabilities without any attention.

For evaluating different encoder and decoder architectures,
we have trained three different models for 100 epochs and
evaluated on a set of test instances every epoch. Fig. 12
shows the reward curves for three different architectures:
1) GAT encoder and MHA decoder; 2) GNN encoder and
MHA decoder; and 3) GNN encoder and MLP decoder.
As shown in the figure, the GNN encoder obtains better
results compared with GAT, while there is not such dif-
ference between decoders. Moreover, the GAT encoder is
time-consuming (four times slower than GNN). As a result,
we have chosen GNN as the encoder. Among decoders,
we have selected the MLP, since it is slightly faster and more
stable than MHA.

Table III provides a description of the hyperparameters
used in the proposed model. We have set the embedding
dimension to 128, which is a commonly used power-of-two
value. Through experimentation, we determined that this value
provides the best tradeoff between performance and computa-
tional efficiency. In addition, we have set the number of layers
to L = 3. Fewer layers are insufficient for correctly encoding
the graph structure, while larger GNNs may encounter the
issue of oversmoothing. Parameters (3–4) have been set with
values reported with similar architectures [8], [22], [26]. The
discount factor is also a key aspect in the reward engineering
process. We found out that using a low discount factor
(γ = 0.1) yields better results. The episode length, denoted
as T , specifies how frequently the reward is updated. A model
trained using shorter episodes, such as T = 1, tends to learn
policies similar to SAHC. In contrast, longer episodes do not
necessarily promote greedy behavior; instead, they allow the
model to optimize for long-term rewards. The parameter Kmax
denotes the maximum number of steps the model can take

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE III
TRAINING AND MODEL HYPERPARAMETERS

TABLE IV
COMPARISON OF THE PERFORMANCE OF NHC AND THE BEST

CONVENTIONAL HC (BFHC) IN DIFFERENT INSTANCES OF
THE XLOLIB BENCHMARK. THE SHOWN VALUES ARE

AVERAGE GAPS TO THE OPTIMAL VALUE
TAKEN FROM 100 EXECUTIONS

without improving the best discovered reward. Increasing Kmax
can provide the model with more opportunities to explore
high-quality solutions. However, excessively large values are
computationally expensive and unnecessary.

APPENDIX B
GENERALIZATION TO OTHER INSTANCE TYPES

The proposed model has been designed for the PRP;
however, since there is no any widely used benchmark in
the PRP, we have opted for the linear ordering problem
(LOP) [51], a classical CO problem that can be seen as a
mathematical formulation of the PRP. To further validate the
proposal in real-world data, and demonstrate its ability to
generalize to different instance distributions, the NHC method
has been evaluated in the most popular library for the LOP,
the LOLIB [52]. Particularly, we selected the most challenging
instance type, the XLOLIB of size 250. Table IV summarizes
the average performance gap to the best known value obtained
by [43] in 100 executions limited by 1 min. NHC obtains better
average gap for 38 out of 39 instances compared with the best
performing conventional HC method (BFHC).

ACKNOWLEDGMENT

The authors acknowledge the support of NVIDIA Corpora-
tion with the donation of an RTX A5000 GPU used for this
work.

REFERENCES

[1] V. T. Paschos, Applications of Combinatorial Optimization, vol. 3.
Hoboken, NJ, USA: Wiley, 2014.

[2] G. Naseri and M. A. G. Koffas, “Application of combinatorial optimiza-
tion strategies in synthetic biology,” Nature Commun., vol. 11, no. 1, p.
2446, May 2020.

[3] M. R. Garey and D. S. Johnson, “Computers and intractability,” in
A Guide to the Theory of NP-Completeness. San Francisco, CA, USA:
Macmillan, 1979.

[4] J. Chen, C. Liu, and M. Tomizuka, “FOAD: Fast optimization-based
autonomous driving motion planner,” in Proc. Annu. Amer. Control Conf.
(ACC), Jun. 2018, pp. 4725–4732.

[5] E.-G. Talbi, “Machine learning into metaheuristics: A survey and
taxonomy,” ACM Comput. Surv., vol. 54, no. 6, pp. 1–32, Jul. 2022.

[6] N. Mazyavkina, S. Sviridov, S. Ivanov, and E. Burnaev, “Reinforcement
learning for combinatorial optimization: A survey,” Comput. Oper. Res.,
vol. 134, p. 105400, 2021.

[7] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinato-
rial optimization: A methodological tour d’horizon,” Eur. J. Oper. Res.,
vol. 290, no. 2, pp. 405–421, 2021.

[8] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neu-
ral combinatorial optimization with reinforcement learning,” 2016,
arXiv:1611.09940.

[9] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve routing
problems!” 2018, arXiv:1803.08475.

[10] Y.-D. Kwon, J. Choo, B. Kim, I. Yoon, Y. Gwon, and S. Min, “POMO:
Policy optimization with multiple optima for reinforcement learning,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 21188–21198.

[11] X. Chen and Y. Tian, “Learning to perform local rewriting for combi-
natorial optimization,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
p. 32.

[12] H. Lu, X. Zhang, and S. Yang, “A learning-based iterative method for
solving vehicle routing problems,” in Proc. Int. Conf. Learn. Represent.,
2019.

[13] Y. Wu, W. Song, Z. Cao, J. Zhang, and A. Lim, “Learning improvement
heuristics for solving routing problems,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 33, no. 9, pp. 5057–5069, Sep. 2022.

[14] L. Accorsi, A. Lodi, and D. Vigo, “Guidelines for the computational
testing of machine learning approaches to vehicle routing problems,”
Oper. Res. Lett., vol. 50, no. 2, pp. 229–234, Mar. 2022.

[15] A. I. Garmendia, J. Ceberio, and A. Mendiburu, “Neural combinatorial
optimization: A new player in the field,” 2022, arXiv:2205.01356.

[16] R. Heckel, M. Simchowitz, K. Ramchandran, and M. Wainwright,
“Approximate ranking from pairwise comparisons,” in Proc. Int. Conf.
Artif. Intell. Statist., 2018, pp. 1057–1066.

[17] K. Andreev and H. Räcke, “Balanced graph partitioning,” in Proc.
16th Annu. ACM Symp. Parallelism Algorithms Archit., Jun. 2004,
pp. 120–124.

[18] D. L. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Trav-
eling Salesman Problem: A Computational Study. Princeton, NJ, USA:
Princeton Univ. Press, 2011.

[19] J. J. Hopfield and D. W. Tank, “‘Neural’ computation of decisions
in optimization problems,” Biol. Cybern., vol. 52, no. 3, pp. 141–152,
Jul. 1985.

[20] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in Proc.
Adv. Neural Inf. Process. Syst., vol. 28, 2015, pp. 2692–2700.

[21] Q. Cappart, D. Chételat, E. Khalil, A. Lodi, C. Morris, and P. Veličković,
“Combinatorial optimization and reasoning with graph neural networks,”
2021, arXiv:2102.09544.

[22] C. K. Joshi, Q. Cappart, L.-M. Rousseau, and T. Laurent, “Learning the
travelling salesperson problem requires rethinking generalization,” 2020,
arXiv:2006.07054.

[23] A. Hottung and K. Tierney, “Neural large neighborhood search for the
capacitated vehicle routing problem,” 2019, arXiv:1911.09539.

[24] P. da Costa, J. Rhuggenaath, Y. Zhang, A. Akcay, and U. Kaymak,
“Learning 2-opt heuristics for routing problems via deep reinforcement
learning,” Social Netw. Comput. Sci., vol. 2, no. 5, pp. 1–16, Sep. 2021.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IRAZUSTA GARMENDIA et al.: NI HEURISTICS FOR GRAPH COPs 13

[25] J. K. Falkner, D. Thyssens, A. Bdeir, and L. Schmidt-Thieme, “Learning
to control local search for combinatorial optimization,” in Proc. Eur.
Conf. Mach. Learn. Knowl. Discovery Databases, 2023, pp. 361–376.

[26] Y. Ma et al., “Learning to iteratively solve routing problems with dual-
aspect collaborative transformer,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 34, 2021, pp. 11096–11107.

[27] C. K. Joshi, T. Laurent, and X. Bresson, “An efficient graph convolu-
tional network technique for the travelling salesman problem,” 2019,
arXiv:1906.01227.

[28] Z. H. Fu, K. B. Qiu, and H. Zha, “Generalize a small pre-trained model
to arbitrarily large TSP instances,” in Proc. AAAI Conf. Artif. Intell.,
2021, vol. 35, no. 8, pp. 7474–7482.

[29] R. Tromble and J. Eisner, “Learning linear ordering problems for better
translation,” in Proc. Conf. Empirical Methods Natural Lang. Process.,
2009, pp. 1007–1016.

[30] W. Leontief, Input-Output Economics. London, U.K.: Oxford Univ.
Press, 1986.

[31] H. Achatz, P. Kleinschmidt, and J. Lambsdorff, “Der corruption percep-
tions index und das linear ordering problem,” in Proc. ORNews, vol. 26,
2006, pp. 10–12.

[32] P. Anderson, T. Chartier, and A. Langville, “The rankability of data,”
SIAM J. Math. Data Sci., vol. 1, no. 1, pp. 121–143, Jan. 2019.

[33] T. R. Cameron, S. Charmot, and J. Pulaj, “On the linear ordering
problem and the rankability of data,” 2021, arXiv:2104.05816.

[34] N. B. Shah, J. K. Bradley, A. Parekh, N. Wainwright, and K. Ramchan-
dran, “A case for ordinal peer-evaluation in MOOCs,” in Proc. NIPS
Workshop Data Driven Educ., vol. 15, 2013, p. 67.

[35] Y. D. Kwon, J. Choo, I. Yoon, M. Park, D. Park, and Y. Gwon, “Matrix
encoding networks for neural combinatorial optimization,” in Proc. Adv.
Neural Inf. Process. Syst. (NIPS), vol. 7, 2021, pp. 5138–5149.

[36] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3,
pp. 229–256, 1992.

[37] Y. Bengio, J. Louradour, and R. Collobert, “Curriculum learning,” in
Proc. Int. Conf. Mach. Learn., Aug. 2009, pp. 41–48.

[38] M. Laguna, R. Marti, and V. Campos, “Intensification and diversification
with elite Tabu search solutions for the linear ordering problem,”
Comput. Oper. Res., vol. 26, no. 12, pp. 1217–1230, Oct. 1999.

[39] C. Blum and A. Roli, “Metaheuristics in combinatorial optimization:
Overview and conceptual comparison,” ACM Comput. Surv., vol. 35,
no. 3, pp. 268–308, Sep. 2003.

[40] F. Glover and E. Taillard, “A user’s guide to Tabu search,” Ann. Oper.
Res., vol. 41, no. 1, pp. 1–28, 1993.

[41] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search:
Framework and applications,” in Handbook of Metaheuristics. Berlin,
Germany: Springer, 2019, pp. 129–168.

[42] O. Becker, “Das Helmstädtersche Reihenfolgeproblem—Die Effizienz
verschiedener Näherungsverfahren,” in Proc. Comput. Uses Social Sci.,
Berichteiner Work. Conf., Vienna, Austria, 1967.

[43] L. Lugo, C. Segura, and G. Miranda, “A diversity-aware memetic
algorithm for the linear ordering problem,” Memetic Comput., vol. 14,
no. 4, pp. 395–409, 2022.

[44] V. Santucci and J. Ceberio, “Using pairwise precedences for solving
the linear ordering problem,” Appl. Soft Comput., vol. 87, Feb. 2020,
Art. no. 105998.

[45] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-driven
exploration by self-supervised prediction,” in Proc. Int. Conf. Mach.
Learn., 2017, pp. 2778–2787.

[46] A. P. Badia et al., “Agent57: Outperforming the Atari human bench-
mark,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 507–517.

[47] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” 2017, arXiv:1710.10903.

[48] V. P. Dwivedi, C. K. Joshi, T. Laurent, Y. Bengio, and X. Bresson,
“Benchmarking graph neural networks,” 2020, arXiv:2003.00982.

[49] J. Chen and H. Chen, “Edge-featured graph attention network,” 2021,
arXiv:2101.07671.

[50] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 6000–6010.

[51] J. Ceberio, A. Mendiburu, and J. A. Lozano, “The linear ordering
problem revisited,” Eur. J. Oper. Res., vol. 241, no. 3, pp. 686–696,
Mar. 2015.

[52] G. Reinelt, “Linear ordering library (LOLIB),” Univ. Heidelberg,
Heidelberg, Germany, Tech. Rep., 2002.

Andoni I. Garmendia received the B.Sc. and M.Sc.
degrees in industrial engineering from the University
of the Basque Country (UPV/EHU), Donostia-San
Sebastian, Spain, in 2018 and 2020, respectively,
and the M.Sc. degree in computational engineering
from the Illinois Institute of Technology, Chicago,
IL, USA, in 2020.

Since 2020, he has been the Ph.D. student with the
Intelligent Systems Group, UPV/EHU. His current
research is on the use of reinforcement learning for
combinatorial optimization.

Josu Ceberio (Member, IEEE) received the Ph.D.
degree from the University of the Basque Coun-
try (UPV/EHU), Donostia-San Sebastian, Spain,
in 2014.

He is an Associate Professor with the Department
of Computer Science and Artificial Intelligence,
UPV/EHU. His main research areas are evolutionary
computation, combinatorial optimization problems,
and reinforcement learning.

Dr. Ceberio has been a member of the edi-
torial board of the IEEE TRANSACTIONS ON
EVOLUTIONARY COMPUTATION since 2022.

Alexander Mendiburu (Member, IEEE) received
the Ph.D. degree from the University of the
Basque Country (UPV/EHU), Donostia-San Sebas-
tian, Spain, in 2006.

He is a Full Professor with the Department of
Computer Architecture and Technology, UPV/EHU.
His main research areas are optimization, cyberse-
curity, and high-performance computing.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

