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Abstract— Voice assistants overhear conversations, and a
consent management mechanism is required. Consent manage-
ment can be implemented using speaker recognition. Users that
do not give consent enroll their voice, and all their further
recordings are discarded. Building speaker recognition-based
consent management is challenging as dynamic registration,
removal, and reregistration of speakers must be efficiently
handled. This work proposes a consent management system
addressing the aforementioned challenges. A contrastive-based
training is applied to learn the underlying speaker equivari-
ance inductive bias. The contrastive features for buckets of
speakers are trained a few steps into each iteration and act as
replay buffers. These features are progressively selected using
a multi-strided random sampler for classification. Moreover,
new methods for dynamic registration using a portion of old
utterances, removal, and reregistration of speakers are proposed.
The results verify memory efficiency and dynamic capabilities of
the proposed methods and outperform the existing approaches
from the literature in terms of convergence rate and number of
required parameters.

Index Terms— Consent management, contrastive embedding
replay, dynamic learning, multi-strided sampling, voice assistant
systems.

I. INTRODUCTION

MANY recent Internet of Things (IoT) applications, such
as smart homes, smart transport systems, or smart

healthcare, rely on voice assistants as primary user interface.
This is due to the fact that end users prefer to communicate
with IoT devices more naturally, using voice commands rather
than classical interfaces, such as a touch screen [1]. Conse-
quently, consent management is now becoming a concern. For
example, the recent European Union legislation, general data
protection regulation (GDPR), requires all parties’ consent
for personal data collection. In the context of voice assistant
systems, providing this feature is essential to protect users
from being recorded without giving consent. If not giving
consent, users should at least be able to communicate dissent,
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such that their voice is not recorded. Implementing such a
consent/dissent management system for voice assistants is
challenging. The existence of voice assistant systems to nearby
users may initially not be evident. Also, there is no obvious
interface to articulate consent or dissent.

Recent initial ideas to implement consent management can
be divided in two broad categories: the consent management
without and with voice assistant support. The first category
assumes that the operators of a voice assistant ecosystem do
not support the implementation of consent management, while
the second approach assumes collaboration of a provider, e.g.,
Amazon in the case of the Echo voice assistant. In the first
category, denial of service approaches have been proposed;
the voice assistant is prevented to collect voice samples
by a nonconsenting party. Specifically, an acoustic jamming
device can be used to prevent all voice assistant systems in
the vicinity of a user to record [2]. While such approach
is possible, it is difficult to implement reliably in practical
settings. In the second category, more options are available.
One approach is to add information to the acoustic channel
that can subsequently be detected by a back end. A sound
signal, i.e., a tag, is embedded in the audio stream via a speaker
that can be used by the voice assistant’s back end for consent
management [3]. This approach faces challenges, in particular
when consent of multiple users should be handled, requiring
collision management of tag signals.

A second approach in this category is the use of speaker
recognition for consent management. However, the direct use
of such approaches in the context of consent management is
not practical as will be briefly discussed. In [4], [5], and [6],
few-shot learning methods are used to generalize on the classes
with similar features never seen during the training mode
for speaker recognition. However, in the context of consent
management for voice assistant systems, such a generalization
actually hurts the consent management as a privacy measure.
This is due to the fact that there is a possibility for generalizing
to speakers that are already providing their consent according
to the samples from the speakers that do not. In [7], [8], and
[9], replay-based buffer methods for continually learning a
set of tasks are proposed, such that each time the network
only has full access to the data for the current task. However,
these approaches usually require difficult ways to generate the
replay, learn the parameters of a target network, and sample
the buffer in the input space leading to slow convergence,
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performance degradation, computationally complex opera-
tions, and large memory requirements. Moreover, it is assumed
that the entire data for each task are provided sequentially, and
the network is fully trained for the current task using the replay
buffer of the previous tasks to avoid catastrophic forgetting.
This is not necessarily the case for the consent management
systems, as generally only a small portion of dataset for each
bucket of speakers may be provided during each iteration.

In [10], [11], [12], [13], [14], and [15], different methods
are applied for speaker verification systems. Such applications
usually require large batch size, larger models, and full access
to the entire utterances of speakers during training. However,
this leads to slow convergence, large memory requirements,
and performance degradation with partial access to utterances
of speakers for consent management in voice assistant systems.
Moreover, the main concern for speaker verification systems
is the existence of speakers in a pool of previously registered
speakers. This can be useful for certain applications that only
need to screen a set of speakers and verify their existence [16].

In the context of consent management for voice assistant
systems, the main concerns are about the dynamic manage-
ment of consent for “the specific speakers” in “the specific
buckets,” efficient use of their utterances, and not storing their
private information unnecessarily in the back end during new
registrations. Moreover, it is totally possible for speakers not
to provide their consent for certain attributes, e.g., gender, but
providing their consent for other attributes, e.g., transcribing
their speech. In other words, “identifying” the speakers who
do not provide consent is of particular interest, as they may
provide their consent for certain attributes. In conclusion, it is
not a zero-sum game to verify the existence of speakers or
screen a given set of speakers, but rather a dynamic process
to manage their consent and identify them.

The specific contributions are summarized as follows.
1) A training process based on the contrastive embeddings

as a way to learn speaker equivariance inductive bias is
proposed. The proposed approach is efficient in terms of
convergence speed and accurate prediction of speakers
that do not provide consent. This is mainly due to
learning the underlying speaker equivariance inductive
biases and using them as replay buffer continuously
during the training for classification.

2) A progressive multi-strided random sampling of the
contrastive embedding replay buffer is proposed. The
proposed sampling strategy starts with the large number
of utterances from the initial buckets to fill up the
memory size. Then, it sparsely samples the buckets of
speakers to preserve enough memory for the buckets
seen so far. This leads to memory efficiency, progressive
increase of task difficulty, and avoiding parameter shift
to the buckets of speakers with more samples.

3) A dynamic algorithm for registering new speakers in
different buckets is proposed. The new speakers are
registered, using only a portion of the utterances of old
speakers, in the unique buckets, obtained according to
L2 pairwise distance from the prototypes of the previous
registrations, in each round. This is achieved using a
dynamic programming with linear time complexity.

Fig. 1. Process for the proposed training with contrastive embedding replay
for an agent.

4) A dynamic algorithm for removing the previously reg-
istered speakers from the pool of speakers is proposed.
The proposed algorithm is capable of selectively for-
getting the previously learned contrastive features for
speakers in different buckets with the reduced elapsed
time. Also, the proposed method can quickly reregister
the removed speakers in case this is required.

5) All the aforementioned points are applied for both
supervised and unsupervised modes. In particular, the
proposed method for the supervised contrastive learning
is explained, and the results for both supervised and
unsupervised cases are provided in the experiments.

II. METHOD

In this section, first, the framework for training of speakers
for consent management is explained in an algorithmic way.
Then, a mechanism for dynamic registration of new speakers’
consent is proposed. Finally, a method for removing the
previously registered speakers’ consent is developed.

A. Training

The framework for the entire training process is described
by an agent interacting with groups of speakers, i.e., buckets.
Each agent is responsible for training a windowed stream
of buckets in a modular manner. This way, it is possible to
distribute the training process among different agents. Fig. 1
shows the overall pictorial viewpoint of the proposed training
with contrastive embedding replay in the supervised mode.
The extension of the proposed approach to the unsupervised
mode is provided in the results.

The proposed method starts the training with the selection
of buckets of speakers that do not provide consent, i.e.,
a windowed bucket stream, for each agent. Subsequently, each
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bucket of speakers is fed to a supervised contrastive learning
framework where feature extraction is achieved by running the
supervised contrastive learning for each bucket individually
only a few steps into the training. Note that contrastive
feature extraction in each run of the training process requires
only a few steps, e.g., epochscont = 5. In other words, the
proposed method does not wait for the full convergence of the
supervised contrastive learning for each bucket during each run
of the training process. The individual supervised contrastive
loss L(b)

sup for bucket b ∈ bi , where bi = [i, i+1, . . . , B+i−1]
denotes the list of B buckets for the agent i , is defined as
follows:

L(b)
sup =

∑
(s,u)∈Ib

L(b)
sup,s,u (1)

where Ib denotes all the speakers’ utterances in the batch for
the bucket b during training and L(b)

sup,s,u is defined as follows:

L(b)
sup,s,u =

−1∣∣Ps,b(u)
∣∣

×

∑
p∈Ps,b(u)

log

 exp
(

z(u)
s,b · zp

/
τ
)

∑
a∈As,b(u) exp

(
z(u)

s,b · za
/
τ
)
 (2)

where As,b(u) and Ps,b(u) are defined as follows:

As,b(u) := Is,b\{u} (3)
Ps,b(u) := Ps,b\{u} (4)

in which Is,b and Ps,b denote all the utterances of other
speakers s̃ ̸= s in the bucket b, and all the utterances of
speaker s in the bucket b, respectively. The operation \{u}
excludes the anchor utterance u from the corresponding set,
and |Ps,b(u)| denotes the corresponding cardinality of the set
of utterances for speaker s in bucket b excluding anchor
utterance u. The parameter τ is a positive scalar denoting
the temperature. The embedding terms in (2) are obtained as
follows:

zs,b = Projθproj,b

(
Embθe,b

(
xs,b

))
= Encθb

(
xs,b

)
(5)

where Embθe,b(·) and Projθproj,b
(·) denote the embedding net-

work and the projection head, respectively. The notation
Encθb(·) is used for the encoder containing the embedding
network followed by the projection head. The projection head
is implemented using the attention pooling layer to obtain
the embeddings for speaker s in bucket b, zs,b, with the
parameter set θb = {θe,b, θproj,b}. The embedding zs,b contains
the elements z( j)

s,b for the j th utterance, zp/za denotes the
corresponding positive/negative embedding, and xs,b denotes
the input features obtained as described in the simulations.

Subsequently, the contrastive embedding buffer is sam-
pled according to a progressive multi-strided random sam-
pling algorithm, described by a collection of functions in
Appendix A. Finally, the classifier is trained using the sam-
ples provided by the aforementioned progressive multi-strided
random embedding buffer sampling algorithm. In other words,
the contrastive training provides an inductive bias for speaker
classification during training as the main task. Presenting the
contrastive inductive bias to the main classification task during

Fig. 2. Pictorial viewpoint of the proposed method in the inference mode
for a given agent.

training results efficient use of data and fast convergence as
will be discussed in the simulations. Fig. 2 represents the
proposed method after training in the inference mode. In this
mode, utterances of unknown bucket of unknown speaker(s)
are provided to the trained agent. Using the supervised con-
trastively trained feature extraction, a bank of d vectors is
achieved that can be used as the inputs to the trained classifier
for inferring the speaker(s) together with the corresponding
bucket. To simplify the notation, the subscript i for the bucket
list bi is dropped for the rest of the manuscript.

The entire process of consent management is proposed in
Algorithm 1. After initializing the parameters of contrastive
feature extraction encoder Enc{θb}(·), {θb}, and classifier
Clsφ(·), φ, the list nreg

b ∈ {0, 1}B containing the number
of new speakers per buckets, with the values selected from
the set {0, 1}, as will be explained in dynamic registration
procedure, is set to zero. This is due to the fact that there are
no new registered speakers in the pool of speakers for consent
management. In step 1, the number of utterances per speaker
nspk,utt is obtained as follows:

nspk,utt = numspk,utts
(
maxmem, nb, nreg

b

)
(6)

where the function numspk,utts(·), defined in Appendix A,
computes nspk,utt according to the maximum allowed memory
size maxmem for training. The argument nb ∈ ZB

≥0 denotes
a list of length B containing a non-negative set of integers
representing the number of speakers per buckets. The training
iterations over the specified range of epochs start at step 2.
Prior to starting the registration of speakers in the buckets,
a dictionary, with the keys of bucket b and values of the
flattened list of indices of utterances per speakers per bucket b,
is obtained in step 3 as follows:

Cindx = collectionindx
(
ns,utt, nspk,utt, nb, nreg

b

)
(7)
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Algorithm 1 Consent Management With Contrastive
Embedding Replay

1 Compute nspk,utt according to equation (6).
2 for epoch in range(epochs) do
3 Obtain Cindx according to equation (7).
4 zyinit = ([], [])
5 for _, b in enumerate(b) do
6 Load a random shard of dataset for speakers in

b with nutt.
7 if !(early-stopb) then
8 Train Encθb(·) for epochscont contrastively

and save checkpoints.
9 end

10 Return the embeddings in equation (5) for
latest checkpoints and corresponding labels.

11 Zmaxmem
buff , ymaxmem

buff = sampleint−bkt(Cindx[b], zyb,
zyinit)

12 Train Clsφ(·) using {Zmaxmem
buff , ymaxmem

buff } for
epochscls and save checkpoints.

13 end
14 Progressively evaluate evalmetric,b(.) for b ∈ b.
15 Update “early-stopb” parameters according to

evalmetric,b(.).
16 if early-stopb[−1] then
17 Break the training.
18 end
19 end

where the function collectionindx(·) is defined in Appendix A
and ns,utt denotes the number of selected utterances per
speaker. The iterations over b start in step 5 where the
enumerate(·) generates a specific bucket b for each iteration.
In step 6, a random shard of dataset for nutt utterances per
speakers in b for each epoch is loaded. In case the early stop-
ping status obtained according to the progressive evaluation
of a given metric, e.g., accuracy or loss, up to bucket b ∈ b
is not “true,” denoted as !(early-stopb), where !(·) negates the
logical statement in parenthesis, train Encθb(·) for epochscont
steps contrastively, shown in steps 7–9. This is due to the fact
that the task difficulty is progressively increased during each
iteration. In particular, the number of speakers is increased
by providing samples from each bucket progressively, and the
number of utterances per speaker is decreased as a result of the
maxmem memory budget. In other words, if the classifier is able
to distinguish different classes with sufficiently high accuracy
for harder tasks, according to the corresponding contrastively
trained features, it is also able to classify the simpler tasks
prior to that task.

Next, the speaker embeddings are obtained according to
(5) for the latest available checkpoints, and the corresponding
labels are returned for b in step 10. Using the interbucket
sampling function sampleint−bkt(·), described in Appendix A,
the progressive features Zmaxmem

buff and corresponding labels
ymaxmem

buff with maxmem memory size are obtained in step 11.
The progressive features and the corresponding labels are

used to train Clsφ(·) in step 12 for epochscls steps, and the
corresponding checkpoints are saved. After the completion of
iterations over b̃, i.e., steps 5–13, the metrics, e.g., accuracy
and loss, are evaluated progressively using evalmetric,b(·) for
b ∈ b for the holdout utterances in each epoch in step 14.
Subsequently, the parameters of early-stopb, e.g., the internal
counter, score, and status, are updated according to the pro-
gressive metrics from the previous step in step 15. In case
the hardest progressive task has a “true” early stopping status,
the training will be stopped as described in steps 16–18. The
hardest progressive task is the task after registering the last
bucket b[−1] with the largest number of classes, i.e., the total
number of speakers N , and the fewest utterances per speaker,
due to the limited allowed memory of maxmem.

B. Dynamic Registration of Speakers’ Consent

The dynamic registration of new speakers’ consent to the
pool of previously registered buckets of speakers is described
in this section. For the dynamic process of registering new
speakers’ consent, it is required to optimally allocate the
Euclidean space for new speakers. To this end, the shortest
L2 pairwise distance is used as a metric to find the optimal
buckets for new speakers; see Appendix B. In other words,
registering new speakers into the buckets with shortest L2 pair-
wise distance requires less Euclidean space. Consequently, it is
possible to register more new speakers in the disjoint updated
feature space of the buckets. This property is essential for
bucket prediction that requires disjoint buckets in the feature
space. According to the above explanations, the buckets with
the shortest L2 pairwise distance from the new speakers are
referred to as optimal buckets in this article.

As the number of buckets is usually smaller than the
number of new speaker registrations, there are at least two new
speakers registered in the same bucket during each iteration.
However, the registration of a new speaker in a bucket changes
the contrastive feature state of that bucket, such that it may
no longer be the optimal bucket for registering the subsequent
new speaker. As a result, new speakers in the subsequent round
may select different optimal buckets, according to the shortest
L2 pairwise distance, after registrations of new speakers in the
current round.

Fig. 3 shows the overall process for the dynamic reg-
istration of new speakers for two subsequent rounds. The
process in the evaluation mode is shown by dotted line, while
the registration itself is shown by solid line. The proposed
approach starts dynamic registration by finding optimal buck-
ets and the corresponding new speakers in the evaluation mode
for each round. This is achieved using opt_spk_bkt(·) (see
Appendix C)

b∗reg, s∗reg, b∗sofar, s∗sofar = opt_spk_bkt
(
z̄eval, b, sreg, nround

)
(8)

where b∗reg and s∗reg denote unique optimal buckets and cor-
responding new speakers to be dynamically registered for
the round nround. The terms b∗sofar and s∗sofar represent optimal
buckets and corresponding new speakers that are already
registered so far, i.e., prior to the round nround. In (8), the
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Fig. 3. Process for the proposed dynamic registration of new speakers. The
evaluation mode is shown by dotted line, and the registration process is shown
by solid line. The optimal buckets/speakers are obtained by opt_spk_bkt(·).
The properties for registrations are obtained by prop_reg(·) and used for
d-vector contrastive training and progressive multi-strided sampling. For the
next round, the latent features and optimal buckets/speakers of current round
are used as arguments for next round using args.

function arguments z̄eval and sreg denote a tuple of speaker
embeddings in the evaluation mode according to the previously
registered speakers and new speakers, and the list of new
speakers to be registered, respectively. This is achieved using
the args block in Fig. 3.

For the initial round, i.e., the new registration round
nround = 0, s̃reg is set to an empty list [], and the list of new
speakers to be registered sreg is initialized as [N , . . . , N +
Nreg − 1], where N and Nreg are the number of old and
new speakers, respectively. The list containing the number
of speakers per buckets for dynamic registrations ñb is set
to the initial state nb, i.e., a list containing the old number
of speakers per buckets prior to dynamic registrations. The
latest available checkpoints of Enc{θb}(·) for ∀b ∈ b, and
Clsφ(·) in the current round are loaded. For nround = 0, the
aforementioned checkpoints, except the last linear layer of the
classifier with the output dimension of N + Nreg, are loaded
from the trained network with Algorithm 1 for the old N
speakers. Subsequently, the parameters for optimal buckets
and corresponding new speakers are obtained as described
in (8). For the next round, sreg is updated as sreg ← sreg\s∗reg.
In other words, new speakers to be registered in the current
round are excluded from sreg for the next round. This is shown
by an arrow from the output of the opt_spk_bkt(·) block in the
current round to compute the arguments of the opt_spk_bkt(·)
block in the subsequent round using the args block
in Fig. 3.

Fig. 4. Process for the proposed dynamic removal of speakers. The evaluation
mode is shown by dotted line, and the removal process is shown by solid
line. The properties for removal are obtained by prop_unreg(·) and used for
d-vector contrastive training and progressive multi-strided sampling.

Consequently, the necessary properties for registering new
speakers are obtained using prop_reg(·) defined as follows (see
Appendix D):

ñb, ñreg
b ,Sreg,Preg = prop_reg

(
b, nb, b∗reg, b∗sofar, s∗reg, s∗sofar

)
(9)

where ñb denotes the updated number of speakers per buckets,
ñreg

b is the updated number of new speakers per buckets
containing the values of zero or one, since at most one
new speaker should be registered in each optimal bucket per
round, Sreg represents a dictionary of new speakers in buckets
with the keys of b ∈ b and values of new speakers per
buckets, and Preg denotes a dictionary of registration patterns
in which the new speakers are registered in the buckets with
the keys of b ∈ b and values of pattern status. The prop_reg(·)

block provides necessary information for both the contrastive
learning of d-vector bank according to Sreg and Preg and
progressive multi-strided sampler according to ñb and ñreg

b ,
as shown in Fig. 3. In particular, progressive multi-strided
sampler first obtains the updated number of utterances per
speakers ñspk,utt according to ñb, ñreg

b , and maxmem, based
on (6). Then, the functions collectionindx and sampleint−bkt are
used to obtain progressive samples for training the classifier
Clsφ(·). Moreover, the bank of d vectors for registration of new
speakers in optimal buckets is contrastively updated according
to the information provided by Sreg and the corresponding
patterns in Preg. More specifically, as the pattern1/3 represents
registration of the new speaker(s) in the corresponding optimal
bucket(s), it requires training of the contrastive feature encoder
accordingly. However, the pattern2/4 does not require training
of the contrastive feature encoder, as it represents the already
registered new speakers, pattern2, or previously registered old
speakers, pattern4; see Appendix D. The same process for early
stopping according to the progressive evaluation of metrics is
applied as in Algorithm 1. Finally, Algorithm 2 summarizes
different steps for the dynamic registration of new speaker(s)
to the previously registered buckets of speakers.

C. Dynamic Removal of Speakers’ Consent

The process for removing the previously registered speakers
from the buckets is shown in Fig. 4. The process in evaluation
mode is shown by dotted line, while the removal process is
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Algorithm 2 Dynamic Consent Management for New
Speaker Registrations

1 Follow the steps in equations (8) & (9).
2 Compute ñspk,utt according to equation (6).
3 for epoch in range(epochs) do
4 if len(b∗reg) ! = 0 then
5 Obtain Cindx according to equation (7).
6 zyinit = ([], [])
7 for _, b in enumerate(b) do
8 Load a random shard of old dataset for

speakers in b with nutt and pcntold.
9 Load a random shard of new dataset

according to Sreg[b] with nutt.
10 Combine the loaded old and new datasets

from the previous steps.
11 if !(early-stopb)&Preg[b] = pattern1/3 then
12 Train Encθb(·) for epochscont

contrastively using Preg[b] and save
checkpoints.

13 end
14 Return the embeddings in equation (5) for

latest checkpoints and corresponding
labels.

15 Zmaxmem
buff , ymaxmem

buff = sampleint−bkt(Cindx[b],
zyb, zyinit)

16 Train Clsφ(·) using {Zmaxmem
buff , ymaxmem

buff } for
epochscls and save checkpoints.

17 end
18 Progressively evaluate evalmetric,b(.) for b ∈ b.
19 Update “early-stopb” parameters according to

evalmetric,b(.).
20 if early-stopb[−1] then
21 Break the training.
22 end
23 end
24 end

shown by solid line. The properties of interest for removing the
given set of speakers from the pool of previously registered
speakers are obtained using the function prop_unreg(·) (see
Appendix E)

ñb,Sres,Punreg = prop_unreg
(
b, nb, bunreg, sres

)
(10)

where bunreg denotes the corresponding unique set of buckets
for removing the given set of speakers and sres represents
the set of residual speakers after removing the given set of
speakers. Consequently, the properties of interest, including
the updated number of speakers per buckets ñb, a dictionary
of updated residual speakers in buckets Sres with the keys
of b ∈ b and values of residual speakers per buckets, and a
dictionary of patterns for removing the speakers with the keys
of b ∈ b and values of pattern status, are used for contrastive
update of d-vector bank and progressive multi-strided sampler.
In particular, ñb is used to obtain the progressive samples for
training the classifier, and Sres is used for updating the bank of

Algorithm 3 Consent Management for Removing
Previously Registered Speakers

1 Compute the parameters based on equation (10).
2 Compute ñspk,utt according to equation (6).
3 for epoch in range(epochs) do
4 Obtain Cindx according to equation (7).
5 zyinit = ([], [])
6 for _, b in enumerate(b) do
7 Load a random shard of dataset according to

Sres[b] with nutt.
8 if !(early-stopb)&Punreg[b] = pattern1 then
9 Train Encθb(·) for epochscont contrastively

using Punreg[b] and save checkpoints.
10 end
11 Return the embeddings in equation (5) for

latest checkpoints and corresponding labels.
12 Zmaxmem

buff , ymaxmem
buff = sampleint−bkt(Cindx[b], zyb,

zyinit)
13 Train Clsφ(·) using {Zmaxmem

buff , ymaxmem
buff } for

epochscls and save checkpoints.
14 end
15 Progressively evaluate evalmetric,b(.) for

b ∈ b\bunreg, and per bucket for b ∈ bunreg.
16 Update “early-stopb” parameters according to

evalmetric,b(.).
17 if early-stopb\bunreg[−1]&all(early-stopb∈bunreg ) then
18 Break the training.
19 end
20 end

d vectors for removing specific speakers from given buckets
according to the corresponding pattern in Punreg.

Algorithm 3 summarizes different steps for the dynamic
removal of speaker(s). It is worth mentioning that the proposed
algorithm assumes the existence of at least two residual
speakers per bucket required for contrastive training. In the
results, it is explained how to deal with other cases. The
early stopping status is obtained according to the progressive
evaluation of all the buckets except the unique set of buckets
for removing bunreg, shown as b ∈ b\bunreg, and per bucket
evaluation of b ∈ bunreg for a given metric, e.g., accuracy or
loss. This is due to the fact that evaluation metric for the
bucket(s) comprising the unregistered speaker(s) is obtained
for the entire holdout utterances, including the unregistered
speakers. For example, if one speaker is removed from a given
bucket with five speakers, the expected metric for accuracy of
that bucket is around 80%. Consequently, if the early stopping
status is not true, i.e., !(early-stopb), and the removal pattern
follows pattern1, then Encθb(·) is trained for epochscont steps
contrastively according to the given pattern, steps 8–10. This is
due to the fact that pattern1 requires training of the contrastive
features excluding the samples of the unregistered speaker(s)
from the bucket for selective forgetting. On the other hand,
pattern2 does not require training of the contrastive features,
as it is related to the bucket(s) that do not include unregistered

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



SHAHMANSOORI AND ROEDIG: DYNAMIC RECOGNITION OF SPEAKERS FOR CONSENT MANAGEMENT 7

speaker(s); see Appendix E. In case the hardest progressive
task, excluding the bunreg and shown as early-stopb\bunreg[−1],
with the same definition as in Algorithm 1, together with all
the bucket(s) comprising the unregistered speaker(s), all(early-
stopb∈b̃unreg

), has “true” early stopping statuses, the training
will be stopped as described in steps 17–19. The process for
reregistering follows a similar procedure as in Algorithm 3 by
reregistering the unregistered speaker(s) in the corresponding
bucket(s).

It is worth noting that the bucket index may encode infor-
mation about the duration of dissent in practice. This way,
speakers that do not provide consent for a given time interval
are grouped in the buckets with the corresponding time stamps
stored as a decision tree in the back end. Consequently, the
problem boils down to a decomposable search algorithm that
is known to be a fully retroactive data structure via decision
trees with the overhead of O(log(B)) for B buckets [17].

III. EXPERIMENTS

The goal of the simulations is to answer the following
questions for both supervised and unsupervised modes.

1) Can the proposed method enable a fast training on
different datasets?

2) Can the proposed method dynamically register new
speakers efficiently?

3) Can the proposed method dynamically remove and
reregister the speakers efficiently?

4) Can the proposed method provide a good verification
performance?

All the experiments were run on a single NVIDIA GeForce
RTX 2070 GPU, and Python version 3.9.4 was used to
implement the algorithms. The code for the simulations is
available at [18].

A. Dataset

The LibriSpeech dataset is used for the results unless
otherwise stated [19]. In addition, the VoxCeleb dataset is con-
sidered to compare the performance of the proposed method
with the corresponding methods from the literature [20].
Different subsets of the aforementioned datasets are used for
training and testing. In particular, different agents are used for
the simulations each of which using N = 40 different speakers
selected from the set of speakers with lower word error rate,
denoted by “clean” in the LibriSpeech dataset, and randomly
selected for the case of VoxCeleb dataset according to the
agent index. In other words, for agent i , speakers (i × N ,
(i + 1) × N ) are selected and equally divided in B = 8
different buckets. For the registration of new speakers in the
previously trained contrastive buckets of speakers, Nreg =

20 speakers are selected from the set of speakers with higher
word error rate, denoted by “other” in the LibriSpeech dataset
and briefly referred to as new speakers with noisy utterances,
according to the agent index. In other words, for agent i , new
speakers (i × Nreg + N , (i + 1) × Nreg + N ) are dynamically
registered in the pool of previously registered speakers (i × N ,
(i + 1) × N ).

TABLE I
EMBEDDING NETWORK PER BUCKET Embθe,b (·)

TABLE II
CLASSIFIER NETWORK Clsφ(·)

B. Hyperparameters and Network Architecture

The log mel-filterbank (MFB) features with the feature
dimension of 40, the frame length of 25 ms, the stride of
10 ms, and the voice activity detection (VAD) of 20 dB are
used as the input features xs,b for the encoder Encθb(·) in (5).
Subsequently, the features are normalized and scaled by the
mean and variance, respectively, along the time axis. Finally,
the number of iterations for the contrastive feature extraction
is set to epochscont = 5, and the number of iterations for
the classifier is set to epochscls = 2 and epochscls = 1 for
the supervised and unsupervised cases, respectively, as they
provide optimal performance in terms of total elapsed time
for training.

The per bucket embedding network Embθe,b(·) in (5) is
implemented according to Table I, where −1 in the out-
put shape column denotes the batch dimension of a tensor.
In particular, the long short-term memory (LSTM) layer is
applied with feature dimension 40, cell dimension 128, and
number of layers 3. The group-norm layer with the number of
groups 4 and the number of channels set to the segmentation
length of 160 is used according to [21]. For the study on
VoxCeleb dataset, the group-norm layer is replaced by the
layer norm in the feature extraction [22]. The same embedding
network architecture was used to implement the algorithms
for the unsupervised case. For the classification using the
unsupervised learning, the first two layers of Clsφ(·) were
used with the same hyperparameters, and the output layer was
removed. It is worth noting that the performance, in terms of
accuracy for the unsupervised learning, is obtained according
to the “cosine similarity matrix” of the output features. Also,
the process to obtain positive and negative samples for the
unsupervised case is similar to [10]. For the study on VoxCeleb
dataset, layers 3 and 4 in Table II for the implementation of
Clsφ(·) are removed and replaced by the layer norm. To obtain
the attention weights in the projection head in (5) required
for the attentive pooling, the linear transformation with the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

input dimension 256 and output dimension 1 with the Softmax
activation is applied. Subsequently, the embedding terms zs,b

in (5) are obtained by multiplication of the attention weights
from the previous step with Embθe,b(xs,b), summation over the
segmentation length, and normalizing by the Euclidean norm
over the embedding dimension. For dynamic registrations, N is
replaced by N+Nreg in the last linear layer. The stochastic gra-
dient descent (SGD) and adaptive moment estimation (Adam)
optimizers are used for the supervised contrastive learning and
classifications, respectively. For the unsupervised contrastive
learning, both the embedding network and the latent feature
classification are optimized using SGD. To evaluate the perfor-
mance on VoxCeleb dataset, second-order clipped stochastic
optimization (Sophia) is used as the best choice, in terms of
convergence speed of training, for both the proposed and the
corresponding methods from the literature [23].

C. Baseline

The performance of the proposed approach is compared
with the baselines applying unsupervised and supervised con-
trastive learning [10], [11]. The main purpose of providing
a baseline is not about comparing different architectures for
contrastive learning, but to observe the effects of training
with the proposed algorithms. In other words, the effects of
the proposed methods on the training elapsed time, sample
efficiency, and performance are of particular interest. Con-
sequently, contrastive learning-based methods with different
architectures can benefit from the proposed algorithms in
terms of convergence speed, efficient sampling, and dynamic
capabilities [12], [13], [14]. For all the results, the baselines
and the proposed method follow a similar network structure
for speaker embedding. The hyperparameters for the baselines
are selected to provide comparable performance. In particular,
the number of hidden nodes is set to 512 with the projection
size of 256 and the three-layer LSTM as in [10]. Also, the
corresponding group norm and layer norm with the same
hyperparameters as the proposed method are applied for a fair
comparison and analysis on the LibriSpeech and the VoxCeleb
datasets, respectively.

D. Results

Fig. 5 shows the performance during testing in terms of
accuracy for different agents, using the proposed method
in supervised and unsupervised modes, together with the
corresponding methods from the literature, with respect to
the total elapsed time in minute (min) for training. It is
observed that for all the agents, the proposed method breaks
the training loop, by satisfying the early stopping mechanism
in Algorithm 1, much faster than the corresponding methods
from the literature. In particular, the methods from the liter-
ature approximately require {24.77, 19.89, 17.65, 30.03} and
{55.50, 34.34, 32.39, 47.62} min to complete the training in
supervised and unsupervised modes for the top to bottom plots
and from left to right, respectively. It is worth mentioning
that the supervised contrastive learning from the literature
[11] is optimized to provide a more stable performance

Fig. 5. Comparison between testing accuracies of different agents using
the proposed contrastive embedding replay, with multi-strided progressive
sampling in supervised and unsupervised modes, and the baselines with
respect to the elapsed time for training.

during training. In particular, it is observed that using the
mean values of latent features before applying the projection
head to obtain zp/za for the corresponding positive/negative
embedding, i.e., [11, eq. (2)], helps a more robust training
performance for this application. More specifically, the mean
values are obtained over the remaining utterances for each
anchor utterance of a given speaker for positive and the cor-
responding utterances of the remaining speakers for negative
latent features, before applying the projection head to obtain
zp/za , in a training batch for each iteration. The corresponding
values using the proposed method are approximately {13.52,
10.82, 7.32, 17.01} and {20.21, 13.73, 14.91, 18.94} min
for supervised and unsupervised modes, respectively. In other
words, the required elapsed time is reduced for the agents
by approximately {45.4%, 45.6%, 58.5%, 43.4%} in the super-
vised and {63.6%, 60%, 54%, 60.2%} in the unsupervised
modes, respectively. Moreover, the baseline methods require
large batch size of 20 × N for N = 40 speakers during
each iteration compared with the proposed approach that only
requires maxmem = 120. Also, the total required number of
parameters in the proposed method, to provide a comparable
performance with the baselines, is reduced by approximately
43% in the supervised and unsupervised modes. This is
mainly related to the smaller batch size requirements and
efficient use of speaker equivariance inductive bias provided
by contrastive features during the training. In conclusion, the
proposed approach converges much faster than the correspond-
ing baselines due to the following points:

1) dividing different sets of speakers in the buckets;
2) contrastive learning of speaker equivariance inductive

bias only a few steps into each training iteration;
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TABLE III
COMPARING THE TOTAL ELAPSED TIME (MIN) FOR TRAINING ON

VOXCELEB DATASET USING DIFFERENT METHODS

3) progressive increase of task difficulty by increasing
number of speakers and decreasing number of utterances
per speaker for a given memory budget;

4) per bucket early stopping of contrastive feature training
based on the progressive evaluation of a given metric.

Table III compares the performance of the proposed method
in the supervised and unsupervised modes with the cor-
responding methods from the literature in terms of total
elapsed time in min for training. It is observed that the pro-
posed method significantly outperforms the methods from the
literature in terms of the convergence speed of training. In par-
ticular, the total elapsed time is reduced for agents 0–4 by
approximately {61.7%, 70.5%, 77.1%, 73.9%, 74.4%} in the
supervised modes and {90.6%, 90.8%, 86.6%, 89.8%, 90%} in
the unsupervised modes, respectively. Also, the total required
number of parameters in the proposed method, to provide
a comparable performance with the baselines, is reduced by
approximately 32% in the supervised and unsupervised modes.
This is mainly due to the efficient use of contrastive inductive
bias, providing easy-to-hard features using the proposed multi-
strided sampling, bucketing contrastive features, and detaching
the already learned contrastive features for different buckets
during training. Moreover, the method [14] can benefit from
the fast convergence speed of training using the proposed
approach. In particular, after obtaining the pseudo-labels in the
unsupervised mode, or using the labels in the semisupervised
mode, the progressive multi-strided sampling and the training
mechanisms proposed in this article can significantly speed
up the training process. Finally, the simple framework for
contrastive learning of visual representations (SimCLR)-based
contrastive methods require large batch size, separate embed-
ding networks, and increased memory usage/GPU [12], [13].
Consequently, these types of methods are not of particular
interest for the specific application in this article.

Fig. 6 shows testing accuracy, for a given agent, with respect
to the required elapsed time to break the dynamic registration
training loop using the proposed method in Algorithm 2 for
different rounds of registrations. Only 50% of the utterances
of the previously registered 40 speakers are used for this
simulation. The performance for different percentages of old
utterances for previously registered speakers is provided sub-
sequently. The testing accuracy of each round is reported with
respect to the registration elapsed time, i.e., after breaking
the training by satisfying the early stopping condition in
Algorithm 2 for each round. The result is reported using dif-
ferent markers and colors for different rounds of registrations.

Fig. 6. Testing accuracies per round for dynamic (top) supervised and
(bottom) unsupervised registrations with respect to required elapsed time to
break the registration loop. Different markers and colors are used to distin-
guish between different rounds of dynamic registrations. The corresponding
values by retraining the network per rounds are reported by different markers.

The corresponding values by retraining the network during
each round, using Algorithm 1 for full utterances of old and
new speakers and without the dynamic registration mechanism
in Algorithm 2, are reported by different colors and markers.
It is observed that the proposed dynamic registration method
provides much faster registrations compared with retraining
the network for each round for both supervised and unsu-
pervised cases. In particular, by increasing the number of
rounds, the total number of speakers is increased; however,
due to the efficient mechanism for dynamic registrations using
the information from the previous rounds of registrations,
the elapsed time for subsequent registrations is decreased.
On the other hand, the elapsed time of retraining the network
by increasing the number of rounds is increased due to an
increase in the overall number of speakers. For instance, the
required elapsed times, to break the training loop, at the end of
dynamic registration rounds, i.e., round 3, are approximately
{5.5, 3.8} min while it requires retraining the network for
approximately {29, 75} min for supervised and unsupervised
cases, respectively.

Fig. 7 shows the testing accuracy per round for different
percentages of old speaker utterances for agents 0–4, using the
proposed dynamic consent management algorithm for register-
ing new speakers in the supervised, top plot, and unsupervised,
bottom plot, modes. The {10%, 30%, 50%, 70%, 90%} of old
utterances are color coded for each agent from left to right,
respectively. Moreover, different rounds of registrations are
shown using different markers. It is observed that for all the
agents, using pcnt ≥ 50% of old utterances provides the
required condition for breaking the dynamic registration loop
in Algorithm 2 in the supervised and unsupervised modes.
However, for some agents, even using pcnt = 30% of old
utterances is enough to provide a similar performance, e.g.,
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Fig. 7. Testing accuracies per round with the different percentages of old
utterances for different agents in the case of dynamic (top) supervised and
(bottom) unsupervised registrations. Different markers denote different rounds,
and the {10%, 30%, 50%, 70%, 90%} percentages of old utterances are color
coded for each agent from left to right, respectively. For visibility purposes,
the values using different percentages of old utterances are slightly shifted to
the right for each agent.

agents {0, 1, 3} in the supervised mode and agent {0} in
the unsupervised mode. The rest of agents using pcnt =
30% of old utterances provide a relatively good performance
for both supervised and unsupervised modes; however, their
performance is slightly degraded in certain rounds. The per-
formance starts to degrade by using only pcnt = 10% of
old utterances for all the agents and all rounds. This is,
in particular, due to the parameter shift toward the new speaker
utterances. Using a portion of old utterances during dynamic
registrations is extremely useful, as the old utterances are
not kept unnecessarily in the back end during new regis-
trations, hence providing improved privacy. In other words,
the proposed dynamic registration strategy provides efficient
use of data from the old speakers, such that only a portion
of the old utterances are required during the registrations of
the new speakers without sacrificing the performance leading
to improved privacy. Finally, it is possible to apply different
hyperparameter optimizations and choose different values for
metrics to update early stopping counter and achieve higher
testing accuracy. These points are not the main purpose of
this work.

Fig. 8 shows the t-distributed stochastic neighbor embed-
ding (t-SNE) for the dynamically trained latent features after
the second linear layer of the classifier during the testing [24].
It is observed that the separation between latent features of
different speakers is almost perfect for the old speakers, new
registrations, and among old and new features as shown by dif-
ferent colors and markers. In particular, the new registrations

Fig. 8. Visualization of the trained latent features after the second linear
layer of the classifier during testing using t-SNE. The old previously registered
40 speakers and the new dynamically registered 20 speakers are shown with
different markers and colors.

are distributed in different regions of the Euclidean space, and
they are separable from the old speakers in different buckets.
It is worth mentioning that the number of new registrations
for each agent is upper bounded according to the limitations
imposed by the Euclidean space, i.e., it is not possible to
register arbitrarily large number of new speakers in each agent.
Consequently, it is recommended to either create new agents
or distribute new registrations between multiple agents in this
case.

Fig. 9 shows the testing accuracy with respect to the
required elapsed time for removal from and reregistration to
a given bucket, e.g., in this case, bucket 4. The speaker(s)
[20], [20, 21], and [20, 21, 22] are efficiently removed from
and reregistered to bucket 4 using the proposed method.
As the performance is measured on the testing utterances
for all the five speakers in the bucket, the testing accu-
racy drops by {20%, 40%, 60%} after removing one, two,
and three speakers from the bucket, respectively. In other
words, Algorithm 3 efficiently loads the already trained check-
points for feature extraction of all the other buckets and
the bucket for removing/reregistering speakers together with
the corresponding checkpoints for the classifier. This leads
to fast convergence and breaking the contrastive training for
extraction of speaker equivariance inductive bias especially
for the remaining buckets. In particular, removing and rereg-
istering the aforementioned speaker(s) require approximately
{1.71, 1.88, 1.91} min for removing and {1.6, 2.7, 3.95} min
for reregistering the speaker(s) [20], [20, 21], and [20, 21, 22],
respectively, for the supervised case. For the case of unsu-
pervised removal and reregistration, the elapsed times are
approximately {1, 2, 2.5} min for removing the speaker(s)
[20], [20, 21], and [20, 21, 22] and {2.5, 2.8, 3.3} min for
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Fig. 9. Testing accuracies with respect to total elapsed time per
removal/reregistration for (top) supervised and (bottom) unsupervised. The
accuracies for speakers in the bucket to be removed/reregistered are displayed
in a different color and different markers. For visibility purposes, the total
accuracy of the remaining buckets is displayed with a different color and
different markers.

reregistering the speaker(s) [20], [20, 21, 22], and [20, 21],
respectively.

For the case of removing the entire speakers from the
bucket, it is sufficient not to use the checkpoints of the trained
contrastive feature encoder of that bucket and proceed the
training without providing the data from that bucket according
to Algorithm 3. This results forgetting the contrastive induc-
tive bias of the speakers in the bucket after approximately
2.4 min and, consequently, protecting them against reidentifi-
cation. Reregistering the removed bucket takes approximately
2.6 min. For the case of removing four speakers from the
bucket, it is possible to reregister the remaining speaker in
another bucket if available or another agent with available
bucket. This leads to forgetting the inductive bias of the four
speakers in the bucket by not providing the data and the
corresponding checkpoints of that bucket for those speakers
during the training, and absorbing the remaining speaker in
another bucket. Consequently, the problem is reduced to the
case that all the speakers in the bucket are removed.

Table IV reports the verification performance for different
agents, i.e., agents 0–4, in terms of equal error rate (EER)
in percentage, minimum of the normalized detection cost
function (minDCF), and minimum cost of log likelihood ratio
calibration, minCllr, during the testing phase for the supervised
and the unsupervised methods. The performance is reported
after the completion of training procedure in Algorithm 1
for totally different holdout utterances during the test time.
To analyze the verification performance in the testing phase,
the entire test samples are used. It is observed that the

TABLE IV
VERIFICATION PERFORMANCE IN TERMS OF EER, minDCF, AND minCllr

supervised mode always outperforms the unsupervised mode
in terms of verification capabilities. This has to do with
the additional information provided by the labels during the
training. Moreover, the efficient use of the labeled data leads
to a generally faster convergence and a better generalization
capability during the inference and, hence, a better verification
performance.

IV. CONCLUSION

In this article, an efficient method for consent management
of speakers in the context of voice assistant systems is
proposed. The proposed algorithms significantly reduce the
convergence time of speaker recognition for consent manage-
ment and outperform the baselines. Moreover, the proposed
approach dynamically adapts to the consent status of each
speaker. In other words, the process for registering new
speakers, removing from the pool of registered speakers, and
reregistering the speakers during the consent management is
accomplished in a fast, dynamic, and memory efficient way.
Furthermore, the proposed approach only requires a portion of
utterances from the old registrations during new registrations
leading to an improved privacy preservation. Finally, the pro-
posed approach provides an improved verification performance
in the supervised mode.

APPENDIX A
PROGRESSIVE MULTI-STRIDED RANDOM

BUFFER SAMPLING

In Pseudocode 1, numspk,utts(·) computes the number of
utterances per speaker nspk,utt by dividing the maximum
allowed memory maxmem by the total number of speakers ntot,
finding the floor of the division, and converting the result to an
integer using ⌊·⌋. The function collectionindx(·) computes the
dictionary Cindx for the given key b and values of flattened list
of speaker(s) per bucket. The function sampleint−bkt(·) com-
putes the progressive features Zmaxmem

buff and the corresponding
labels ymaxmem

buff with the maximum allowed memory size of
maxmem.

APPENDIX B
DISTANCE METRIC

In the low-dimensional setting of latent features, E[̃z, z],
where z̃ and z denote the latent features of new and old
registrations, respectively, inherits all the nice properties of
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Pseudocode 1. Functions for progressive multi-strided random buffer
sampling.

generalized energy distance and maximum mean discrepancy
(MMD) [25]. The term E[̃z, z] can be written as follows:

E[̃z, z]2
= tr

(
6̃

)
+ tr(6)+ ∥µ̃− µ∥2 (11)

where tr(6) and µ denote the trace of covariance matrix
6 and mean vector for z, and the corresponding terms for
z̃ are similarly defined. The first two terms in (11) can be
upper bounded by constants. This is due to the boundness
of the contrastive features in the latent space. Consequently,
the minimization of (11), to obtain the optimal buckets and
corresponding speakers, reduces to the minimization of the
last term. In other words, the shortest L2 pairwise distance is
used as the metric to find the optimal buckets.

On the other hand, the minimax rate optimal estimator
of MMD with the rate of m−0.5

+ n−0.5 can be written

Pseudocode 2. Compute optimal new speakers/buckets.

as follows [26]:

MMDn,m =
∥∥µ̃Pn

− µQm

∥∥
H (12)

where µ̃Pn
:= (1/n)6n

i=1k(., X̃i ) in which X̃i
i.i.d.
∼ P and

µQm
:= (1/m)6m

i=1k(., Xi ) in which Xi
i.i.d.
∼ Q for a con-

tinuous positive definite real-valued kernel k(., .) and the
corresponding reproducing kernel Hilbert space (RKHS) H.
It is observed that (12) provides a similar result in terms
of selecting the optimal bucket(s) in the low dimensional
setting. A similar argument holds for the U-statistic variant
of MMDn,m .

APPENDIX C
COMPUTING OPTIMAL NEW SPEAKERS/BUCKETS

FOR DYNAMIC REGISTRATION

In Pseudocode 2, opt_spk_bkt(·) provides a method to
compute b∗reg, s∗reg, b∗sofar, and s∗sofar. Different steps of the
aforementioned function are commented in Pseudocode 2.
To obtain the longest unique sequence of the optimal buckets
for registering new speakers in each round, dynamic program-
ming Algorithm 4 of decision type is used. It receives the
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Algorithm 4 Longest Unique Sequence of Optimal
Buckets per Registration

Input: The sequence of optimal buckets for new
speaker registrations breg and corresponding speakers
sreg.

Output: The sequence of longest optimal unique per
registration buckets b∗reg and the corresponding index
of new registered speakers s∗reg.

Subproblem: The sequence of longest optimal unique
per registration buckets b∗reg[: i] for the set of new
speakers in the interval [N , i) for
i ∈ {N , . . . , N + len(sreg)− 1}.

Relation: Recursive computations to obtain the
sequence of longest optimal unique per registration
buckets in (13).

Topological Order: Sub-problem b∗reg[: i + 1] only
depends on strictly smaller i , so it is acyclic, i.e.,
increase i for i = N , . . . , N + len(sreg)− 1.

Base Case: The empty set is always achieved for
b∗reg[: N ] = ∅.

Original Problem: The sequence of longest optimal
unique per registration buckets for the entire set of
new speakers, i.e., b∗reg[: N + len(sreg)].

full list of optimal buckets and corresponding speakers for the
current round as the inputs. Then, the longest unique sequence
of the optimal buckets is achieved according to the recursive
call as follows:

b∗reg[: i + 1] =

{
b∗reg[: i], b∗i ∈ b∗reg[: i]
b∗reg[: i] ∪

{
b∗i

}
, b∗i /∈ b∗reg[: i].

(13)

In (13), the optimal bucket at index i , b∗i , is added only if
it does not already exist in the set of new speakers in the
interval [N , i). The standard steps for the dynamic process
to find the solution for the subset of the original problem
using the subproblem for the base case and the relation in
(13) are described in Algorithm 4. Consequently, by increasing
the index i , the entire list of optimal buckets is covered
starting from the base case in the bottom-up way. The proposed
dynamic programming algorithm only requires the linear time
complexity of O(Nreg) for the worst case, i.e., len(sreg) = Nreg.
This is due to the fact that the sequence of new speaker
registrations is progressively reduced after each round.

APPENDIX D
COMPUTING PROPERTIES FOR REGISTERING

In Pseudocode 3, prop_reg(·) provides the required proper-
ties for dynamic registrations of the new speakers. For each
bucket b, there exist four different patterns/strategies provided
by the function strgreg(·). The function strgreg(·) first unifies
the specific arguments for different strategies through the
partial(·) operation, similar to the partial(·) in Python. The
aforementioned patterns are used as the keys for the strategy
dictionary s̃trg with the values representing different logics for
registration. Consequently, the appropriate pattern is selected
and returned if the corresponding logic is fulfilled.

Pseudocode 3. Compute properties for registering.

The first strategy strg1(·) is selected, if b belongs to b∗reg
and not to b∗sofar. The set of indices of new speakers in which
b ∈ b∗reg is obtained using find(·) operation as the first term to
return. The corresponding pattern status of pattern1 is returned
as the second term; the number of speakers per bucket in this
case nb is returned as the third term, and finally, the number of
new speaker to be registered in this bucket under this strategy
is one. The third strategy strg3(·) is selected, if b belongs to
both b∗sofar and b∗reg. The set of indices of new speakers in which
b ∈ b∗reg and b ∈ b∗sofar is obtained using find(·) operation as
the first term to return. The corresponding pattern status of
pattern3 is selected; the number of speakers per bucket in this
case nb+len(s∗sofar[find(b ∈ b∗sofar)]) is returned, and finally, the
number of new speaker to be registered in this bucket under
this strategy is one. Similarly, the rest of strategies are selected
based on the corresponding logic.

APPENDIX E
COMPUTING PROPERTIES FOR REMOVING

In Pseudocode 4, prop_unreg(·) provides the required prop-
erties for removing the given set of speakers from the pool
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Pseudocode 4. Compute properties for removing.

of already registered speakers. There exist two different
patterns/strategies provided by the function strgunreg(·). The
function strgunreg(·) first unifies the specific arguments for
different strategies through the partial(·) operation. The afore-
mentioned strategies are used as the keys for the strategy
dictionary s̃trg with the values representing different logics
for removal. Consequently, the appropriate pattern is selected
and returned if the corresponding logic is fulfilled.

The first strategy is selected, if b belongs to bunreg. The
set of indices of residual speakers in which b ∈ bunreg is
obtained using find(·) operation as the first term to return.
The corresponding pattern status of pattern1 is returned as
the second term, and the number of remaining speakers
per bucket ñb[b], in this case len(sres[find(b ∈ bunreg)]),
is returned as the last term. Similarly, the desired properties
are returned if the condition for the first strategy is not
fulfilled. In this case, ñb[b] is set to the initial state before
removal, i.e., nb.
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