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Abstract— Humans show a remarkable ability in solving the
cocktail party problem. Decoding auditory attention from the
brain signals is a major step toward the development of
bionic ears emulating human capabilities. Electroencephalog-
raphy (EEG)-based auditory attention detection (AAD) has
attracted considerable interest recently. Despite much progress,
the performance of traditional AAD decoders remains to be
improved, especially in low-latency settings. State-of-the-art AAD
decoders based on deep neural networks generally lack the
intrinsic temporal coding ability in biological networks. In this
study, we first propose a bio-inspired spiking attentional neural
network, denoted as BSAnet, for decoding auditory atten-
tion. BSAnet is capable of exploiting the temporal dynamics
of EEG signals using biologically plausible neurons and an
attentional mechanism. Experiments on two publicly available
datasets confirm the superior performance of BSAnet over other
state-of-the-art systems across various evaluation conditions.
Moreover, BSAnet imitates realistic brain-like information pro-
cessing, through which we show the advantage of brain-inspired
computational models.

Index Terms— Auditory attention, brain–computer interface
(BCI), cocktail party problem, electroencephalography (EEG),
spiking feature representation.

I. INTRODUCTION

HUMAN listening is characterized by an abundance of
sounds that compete for our attention. Humans have

the ability to attend to the sound of interest and follow it
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selectively over time, that is described as “cocktail party
effect” [1]. Understanding how the brain solves the cocktail
party problem can shed light on the biological process of
auditory attention, and pave the way toward more effec-
tive auditory prostheses [2]. Auditory attention has been
a long-lasting research topic in neuroscience, however, the
neural underpinnings of this cognitive capacity remain unclear.
Recent studies have predominantly focused on “selective neu-
ral speech tracking,” [3], [4] that is to track the brain activity
that attends to a speech stimulus while ignoring others [5], [6].
This neuroscientific insight lays the groundwork for decoding
auditory attention directly from the brain, which is generally
referred to as auditory attention detection (AAD).

The study of AAD on a number of neuro-recording
modalities, e.g., electrocorticography (ECoG) [5], magne-
toencephalography (MEG) [7], and electroencephalography
(EEG) [8], has attracted increasing interest. Among them,
EEG-based AAD emerges as a promising solution for the
cognitive control of hearing aids, i.e., neuro-steered hearing
aids, as EEG is a noninvasive, wearable, widely accessible, and
relatively low-cost technique [9], as summarized in [10]. The
AAD algorithms traditionally adopt a stimulus-reconstruction
approach [8]. Briefly, they first reconstruct the envelope cor-
responding to the attended speech from EEG signals and
evaluate the correlation between the reconstructed envelope
and the original single-speaker speech stimulus. The speech
stimulus with a high correlation is identified as the attended
one. Despite much progress [11], [12], [13], [14], [15], [16],
[17], [18], the AAD studies suffer from two limitations.

1) The single-speaker speech stimulus may not be available
in practice due to various reasons such as technological
constraints, interference, sound overlapping, and record-
ing circumstances. While it is possible to obtain single-
speaker speech stimulus from the recorded mixture of
sound sources using speech separation method [2], this
introduces an additional overhead [10].

2) The stimulus-reconstruction approach typically requires
a large decision window [19], [20], e.g., 10 s, to effec-
tively decode auditory attention, e.g., at an accuracy of
75%–85%, in a two-speaker scenario. Such technique
sees a notable accuracy drop with shorter decision
windows [8], [21], [22], thus limiting the scope of real-
time applications in brain–computer interfaces (BCIs)
[23], [24].

A recent study on auditory spatial attention detection
[19], [25], that is termed ASAD, does not involve the speech
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stimulus during the decoding, thus improving the practical
applicability of auditory attention for neuro-steered hearing
applications. In terms of system implementation, the convolu-
tional neural networks (CNNs) [26], [27], one of the popular
models in artificial neural networks (ANNs), are among the
most effective neural architectures for EEG-based ASAD that
achieve the state-of-the-art performance [20], [28], [29], [30].
However, we argue that CNN is not the most suitable neural
architecture for EEG signal processing.

Spiking neural networks (SNNs), a biologically inspired
computational model [31], offer a competitive alterna-
tive to ANNs. First, increasing evidence indicates that
time-asynchronous SNNs outperform layer-synchronous deep
ANNs for the classification of nonstationary signals [32], [33]
in terms of accuracy. Second, an SNN is potentially energy-
efficient where neurons process discrete events in the spiking
trains in an event-driven, time-asynchronous manner, that
follows the neuronal communication principles observed in the
human brain [6], [34], [35]. Furthermore, the low-frequency,
spiky EEG signals can be effectively encoded into spiking
trains as a way of feature representation. Therefore, SNNs
represent an alternative solution to the EEG-based ASAD
problem.

Neural circuits exhibit repetitive or recurrent temporal
dynamics, which is thought to play a key role in many
cognitive states in the human brain [36], [37]. Moreover,
the brain recurrently uses available sensory information in
the top-down and bottom-up processes of selective auditory
attention [38], [39]. We are particularly interested in exploring
whether a computational model with recurrently connected
spiking neurons is advantageous in decoding such attention
activities in the listening brain.

Attentive listening relies on the differentiated neural rep-
resentation between attended and ignored speech stimuli [6].
Specifically, an essential aspect of selective cortical representa-
tion entails the linking over time of responses produced by the
attended speech stimulus, whereas simultaneously separating it
from others produced by other stimuli [3], [4], [40]. Inspired
by how auditory attention shapes the internal representation
of speech stimuli, we further integrate a temporal attention
mechanism into the ASAD decoder. The mechanism is capable
of assigning weights to each recurrent encoded temporal slice
of EEG and aggregating the attentive temporal information to
form a final representation.

In this article, we study a bio-inspired spiking attentional
neural network, which is referred to as the BSAnet hereafter,
that does not require the individual speech stimulus and
performs ASAD on a short window, i.e., high time resolution,
of EEG signals. The main contributions of this study include
as follows.

1) We propose BSAnet, a novel modularized end-to-end
pipeline. The neural architecture allows us to understand
the effect of the intermediate latent representations, and
the contributions of individual modules analytically.

2) BSAnet is composed of biologically realistic leaky
integrate-and-fire (LIF) neurons and an event-driven
neural encoder. It also consists of a temporal atten-
tion mechanism and a recurrent spiking layer that are

biologically motivated. BSAnet is inherently well-suited
for modeling brain signals with a complex temporal
structure.

3) Through comprehensive experiments, for the first time,
we show that a biologically realistic SNN achieves state-
of-the-art performance in ASAD tasks.

The remainder of this article is organized as follows.
In Section II, we present a BSAnet pipeline for decoding
auditory spatial attention. Extensive experiments are con-
ducted in Section III. The experimental results are reported in
Section IV. We look into the results from different perspectives
in Section V. Finally, Section VI concludes the study.

II. BIO-INSPIRED SPIKING ATTENTION NET

We now formulate a BSAnet for decoding selective attention
in the listening brain. BSAnet consists of three main modules,
namely the neural encoder, the spiking temporal attention,
and the recurrent spiking layer. We next discuss each of the
modules in detail.

A. Neuronal Function

The spiking neuron is the elementary unit in a SNN.
The spiking neuron is defined by a neuronal function that
processes input signals and produces output spiking trains that
are relevant to the intended cognitive task. A spike train is
typically a binary time series with the spiking time carrying
the information. In the input layer, the spiking trains are ideally
generated by event-driven sensors [41]. In this study, the EEG
signals are seen as event-driven spiking trains. While the EEG
signal is spiky, it takes continuous real values rather than
binary ones. Therefore, the spiking neurons in the input layer
also play the role to transform the input real-valued EEG time
series into a binary spike train.

A number of spiking neuronal functions have been studied
that are inspired by how the human nervous system oper-
ates [42]. In general, the computational cost of a spiking
neuron model grows with increasing biological properties. The
LIF neuron is among the most common ones, which features
strong biology support and effective computation [43]. It is
devised to emulate the successive information propagation
through the spiking process of a biological neuron, as shown
in Fig. 1.

The membrane potential U l
i of LIF neuron i at layer l can

be formulated by

τm
dU l

i

dt
= −

[
U l

i (t) − U0
]
+ RI l

i (t) (1)

where τm denotes the membrane time constant of the neuron.
U0 and R denote the resting potential and the membrane resis-
tance of the spiking neuron, respectively. When U l

i reaches
the membrane threshold Uth, a spike is emitted. Then, U l

i (t)
resets to the reset potential Ur . In general, we set U0, Ur to
zero, and R to unitary [44], [45]. I l

i (t) represents the time-
dependent input current to the neuron i , which can be derived
from the spike trains of all presynaptic neurons j connected

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



CAI et al.: BSAnet FOR ATTENTIONAL SELECTION IN THE LISTENING BRAIN 3

Fig. 1. Output potential of a LIF neuron is driven by multiple input spike
trains Sl−1

j . Each spike in the input has a certain weight wl
i j that represents the

strength of the connection between the neurons. As the inputs are integrated,
they contribute to changing the neuron’s membrane potential U l

i . An output
spike is fired when the potential exceeds a threshold Uth. Once a neuron fires
a spike, its membrane potential is reset to the reset potential.

to neuron i as follows:

d I l
i

dt
=

∑
j

wl
i j Sl−1

j (t) (2)

Sl−1
j (t) =

∑
k

δ
(
t − tk

j

)
(3)

where wl
i j represents the feed-forward synaptic weight from

neuron j in layer l − 1 to neuron i in layer l. Spikes emitted
by the j th neuron in layer l − 1 at a finite set of times tk

j can
be described as a spike train Sl−1

j , which is defined by (3).
In practice, the LIF model needs to be discretized for

implementation. The square bracket is used to index variables
that change in a discrete time context [46], where t denotes a
continuous value in f (t) or an integer in f [t]. As we discretize
continuous time into successive time step 1t , the spikes can
only take place at the multiples of 1t . Therefore, the linear
differential equation for a LIF neuron can be approximated as
follows:

I l
i (t + 1t) = I l

i [t + 1] =

∑
j

wl
i j Sl−1

j [t + 1] + bl
i (4)

U l
i (t + 1t) = U l

i [t + 1] = αU l
i [t]

(
1 − Sl

j [t]
)
+ I l

i [t + 1]

(5)

Sl
i (t + 1t) = Sl

i [t + 1] = g
(
U l

i [t + 1]
)

(6)

where

g(x) =

{
1, x ⩾ Uth

0, x < Uth.
(7)

Here, α = exp(−1t/τm) denotes a leaking factor. I l
i [t + 1]

denotes the current contributions from presynaptic neurons to
the neuron i at time step t + 1. wi j represents the strength of
connection between the presynaptic neuron j and postsynaptic
neuron i . bl

i is the constant injecting current to the neuron i .
Sl

i ∈ {0, 1} represents the output of the i th neuron determined
by the step function g(·), where Sl

i = 1 denotes a spike activity
and Sl

i = 0 denotes otherwise.

Considering the discretization process in a LIF neuron,
we may see a spiking layer as three cascaded sub-layers: the
current from (4), the membrane potential from (5), and the
spike from (6). Therefore, the output spike trains of the J l

neurons in the j th layer can be expressed by a spiking linear
function η(·)

Sl
= η

(
Sl−1, Wl , Bl) (8)

where η(·) reflects the collective behavior of a set of LIF
neurons. A LIF neuron is defined in Fig. 1 and formulated
in (1)–(7). In particular, Sl denotes the J l output spike trains,
Wl denotes the feed-forward synaptic weight matrix from the
neurons at the (l − 1)th layer to those at the j th layer, and Bl

represents the constant injecting current to the neurons.

B. Neural Encoder

In a two-speaker scenario, AAD is a binary classification
problem [19], [20], [25], [28], [29], [30] that takes a window
of EEG data as input and makes a binary decision. An input
EEG signal is represented as a sequence of shifting decision
windows. Let E = [e1, . . . , ec, . . . , eN ] ∈ RN×T denote an
EEG window, where ec ∈ R1×T is a time series of T samples
from the cth EEG channel of a total of N channels.

As illustrated in Fig. 2, the proposed BSAnet pipeline takes
E as the input and is optimized to decide if the listener has
leftward or rightward auditory attention. For the SNN to take
the real-valued EEG signals E as the time-dependent input
currents, we design an input layer that converts the EEG
signals to spike trains. We further design an input layer, that
is called the neuron encoder, which is composed of Ns LIF
neurons as shown in Fig. 2(a) and expressed as follows:

Se = η(E, We, Be) (9)

where Se ∈ RNs×T denotes the encoded EEG with Ns streams
of output, each coming from one LIF neuron. Se is therefore
referred to as the spiking feature representation. Note that typ-
ically we set Ns < N . In this way, the neural encoder serves as
a learnable feature extractor to reduce the volume of the input
data. We ∈ RNs×Ns and Be ∈ RNs denotes the weights and the
biases that are the trainable parameters of the LIF neurons.
This neural encoding scheme is capable of converting real-
valued EEG signals into spike trains with enough precision
and high temporal resolution, as demonstrated in previous
research [47].

C. Spiking Temporal Attention

Attentional modulation serves an important role in human
cognitive processes, and the cocktail party effect is a typical
example [1], [5]. Simply speaking, selective listening is a
result of attentional filtering that separates relevant from
irrelevant stimuli [4]. Recently, there is an increasing interest
in adopting the neural attention mechanism in deep learning
approaches [48]. The idea is to model attentional modulation
by assigning differentiated weights to the incoming data points
in the time series at run-time dynamically. Such an attention
mechanism is expected to bias the allocation of available
resources toward the most informative part of a signal.
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Fig. 2. Schematic of the proposed BSAnet mainly consists of three components: a neuron encoder, a spiking temporal attention module, and a recurrent
spiking layer. Taking the EEG signal as input, the network is trained to detect auditory spatial attention via binary decisions. (a) Neural encoder. (b) Spiking
temporal attention. (c) Recurrent spiking layer.

In view of the fact that neural responses to auditory stimuli
are a temporal process [3], [4], [5], [6], [7], [8], a temporal
attention mechanism that models the temporal progression
of spike trains is desirable. Therefore, we design a spiking
temporal attention mechanism that facilitates the modulation
of spike trains by relating various EEG data points within
a decision window. This mechanism can be implemented in
three steps.

First, spike trains Se are transformed into query Sq , key Sk ,
and value Sv via spiking linear projections

Sq = η(Se, Wq , Bq)

Sk = η(Se, Wk, Bk)

Sv = η(Se, Wv, Bv). (10)

Second, the relationship between the query and key is
computed via a dot product

Wa =
ST

q Sk

ds
(11)

where Wa ∈ RT ×T is the temporal attention mask, as indicated
in Fig. 2(b), which assigns different weights to the spiking
trains Sv over time steps by Ia = SvWa . The spike train
Sa ∈ RNs×T can be obtained according to (5) and (6). ds is a
scale factor that keeps the weights, thus the number of spikes,
within a reasonable range.

Finally, an attention modulated spiking feature representa-
tion S′

e ∈ RNs×T can be calculated as follows:

S′

e = η(Sa, Ws, Bs). (12)

D. Recurrent Spiking Layer

Findings in psychoacoustic study and neuroscience sug-
gest that the human auditory system processes incoming
speech segment by segment, which facilitates temporal pre-
diction [34], and cognition in a recurrent fashion [36], [37],
[38], [39]. This inspires us to develop a recurrent spiking
layer to decode the auditory activities manifested in the human
brain.

While the spiking temporal attention answers where in
time the model should look at, the recurrent spiking layer

seeks to answer how the contextual history influences the
cognitive prediction. As illustrated in Fig. 2(c), a recurrently
connected layer is designed to process the modulated spike
trains S′

e. In this study, we adopt an LIF neuron driven by
decaying synaptic currents generated by its synaptic afferent
as a recurrent neuron [46], [49]

d I l
i

dt
= −

I l
i (t)
τs

+

∑
j

wl
i j Sl−1

j (t) +

∑
j

vl
i j Sl

j (t) (13)

where τs is the synaptic time constant, vl
i j denotes the recurrent

weight from neuron j in layer l to neuron i in layer l.
Then, the discretization for the current of a recurrent neuron

can be approximated as

I l
i [t + 1] = β I l

i [t] + ζ (14)

with

ζ =

∑
j

wl
i j Sl−1

j [t + 1] +

∑
j

vl
i j Sl

j [t + 1] + bl
i (15)

where β = exp(−1t/τs) is a leaking factor for the recurrent
neuron.

Finally, we can obtain the output spiking feature represen-
tation from the recurrent layer, S′′

e ∈ RNs×T , by iterating (5),
(6), and (14) over a number of time steps.

E. Optimization and Training

The neural architecture of BSAnet takes a window of EEG
signal as input and outputs an attention decision via an SNN
classifier, as shown in Fig. 2. BSAnet is trained in an end-
to-end manner. The SNN classifier is a linear readout layer
consisting of leaky integrator (LI) neurons that do not spike.
It was suggested [46], [47] that the LI neuron provides a
smooth learning curve, as it allows us to derive continu-
ous error gradients from the continuous output. Therefore,
we directly use the integrated membrane potential, V ′′

e , instead
of binary spike trains for neural decoding in this study. The
free aggregate membrane potential is averaged along time,
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V̄ ′′
e , and the binary cross-entropy loss is used as the learning

objective

L = −
1
M

M∑
m=1

[
ym · log Pm + (1 − ym) · log(1 − Pm)

]
(16)

with

Pm = softmax
(
V̄ ′′

e

)
(17)

where ym is the label of the mth decision window, Pm is its
corresponding predicted probability, and M is the number of
decision windows in a training batch.

To train a BSAnet model, we apply the backpropagation
through time algorithm [46], with which the prediction error
is back-propagated from the output to the input, including
the previous input, to update the parameters by gradient
descent. In view of the fact that (7) is nondifferentiable, the
backward pass needs to be modified. We follow the derivative
approximation method in [44] to have:

h(U l
i ) =

1
√

2πρ
e−

(Ul
i −Uth)2

2ρ (18)

where ρ determines the curve steepness, i.e., the peak width.
In this way, the network follows a step function as in (7) in
the forward pass, while in the backward pass, it follows a
Gaussian cumulative distribution function in (18).

During training, we use Kaiming uniform initialization [50]
for the weights wi j , the recurrent weights vi j and bias bi . The
training algorithm of BSAnet is summarized in Algorithm 1.

Algorithm 1 Training Algorithm of BSAnet
Input: EEG signals E, the class labels ym corresponding to

the EEG, and other model hyper-parameters
Output: The model parameters of BSAnet

1. Initialize the connection weights wi j , the recur-
rent weights vi j , and bias bi using Kaiming uniform
initialization.
2. Randomly initialize other model parameters in BSAnet.
Repeat

Forward Pass:
a. Encode EEG data E into spike trains Se according
to 9
b. Calculate the attention modulated spiking representa-
tion S′

e according to 10–12
c. Calculate the recurrent spiking layer and get the result
S′′

e according to 5, 6, and 14
d. Calculate the continuous free aggregate membrane
potentials V ′′

e according to 4 and 5
e. Calculate the average free aggregate membrane poten-
tial V̄ ′′

e at all time steps
f. Calculate the loss function according to 16
Backward Pass:
a. Update parameters by the back-propagation using the
approximate derivative 18

until The iteration satisfies the predefined algorithm con-
vergence condition

III. EXPERIMENTS

A. Data Specifications

Experiments are carried out on two popular EEG datasets,
which are hereafter referred to as KUL [51] and DTU [52]
for short. In both datasets, 64 channels of signals from
64 electrodes were recorded following the international 10/20
protocol and by a BioSemi ActiveTwo system.

1) KUL Dataset [51]: The dataset was recorded from
16 individuals with normal hearing in an electromagnetically
shielded and soundproof room, where the subjects listened to
two competing speakers. They were instructed to pay attention
to one speech stream and ignore another. The two speech
streams were presented either 90◦ to the left or 90◦ to the
right to the subjects. Each trial lasted 6 min, and each subject
participated in eight trials. The EEG signals were sampled
at 8192 Hz.

2) DTU Dataset [52], [53]: The EEG signals were taken
from 18 subjects of normal hearing when the subjects attended
to one target speaker in a competing acoustic environment.
The two speech stimuli are narrated by one male and a
female speaker. They were presented either 60◦ to the left
or 60◦ to the right of the listening subject. Each trial last
around 50 s, and each subject performed 60 trials. The arriving
direction of the speech stimulus and the gender of the speaker
were randomized across trials. The EEG signals were sampled
at 512 Hz.

B. Data Preprocessing

The EEG data are first rereferenced to the average response
of all channels. Previous studies suggest that nonlinear ASAD
could benefit from a broader bandwidth [10], [13], [20], [30].
Therefore, all EEG data are bandpass filtered between 1 and
32 Hz, and downsampled to 128 Hz. It is worth noting that
the proposed BSAnet is a data-driven approach that neither
involves any manual removal of artifacts nor feature engineer-
ing. We believe the end-to-end learning offers a unique benefit
to the implementation of neuro-steered hearing aids, as well
as more generally BCI systems, where systems are required
to adapt to a new working environment with minimum human
supervision.

For rapid tracking of auditory attention, a short decision
window with a low-latency response is preferred [19]. Humans
can switch attention from one speaker to another within
2 s [14]. Therefore, we study four decision window sizes in
this work, i.e., 0.25, 0.5, 1.0, and 2.0 s.

C. Network Configuration

The performance of the proposed model is evaluated using
fivefold cross-validation (CV) in this study [54]. In accordance
with previous studies [20], [28], [29], and [30], the ASAD
accuracy is defined as the percentage of correctly classified
decision windows on the test set. The average performance of
the fivefold validation process is reported as the final results.
All models in this study are implemented with PyTorch.

Taking 1-s decision window as an example, BSAnet config-
uration is described as follows. As the input to the end-to-end
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TABLE I
PARAMETERS SET IN OUR EXPERIMENT

model, 1-s EEG signals are denoted as E ∈ R64×128 with
64-channel and 128 samples. The neuron encoder converts the
real-valued EEG inputs into spike trains Se ∈ R10×128. Then,
the spiking temporal attention mechanism modulates the spike
trains Se into S′

e ∈ R10×128. Specifically, the dimension of the
weight matrices Wq , Wk , and Wv is 10 × 10. The scale factor
ds is 10. Then the recurrent spiking layer, which consists of a
single layer of ten recurrent units, further modulates the spik-
ing feature representation and outputs S′′

e ∈ R10×128. Finally,
a readout layer, which consists of two LI neurons, is used
for making binary decisions. As the threshold-dependent batch
normalization (tdBN) technique [55] effectively alleviates the
problem of gradient vanishing or explosion in the SNN, a tdBN
layer is added after each spiking linear layer, except the
spiking temporal attention layer, i.e., Fig. 2(b). We set the
batch size M to 32.

During training, the adaptive moment estimation (Adam)
optimizer is implemented at the learning rate of 10−3. Most of
the model parameters are empirically chosen to be consistent
with the biological findings [44], [45], [46], as shown in
Table I. Additional hyper-parameters are chosen through a
fivefold CV grid search.

In an ablation study, we also implement a reduced version
of BSAnet by skipping the spiking temporal attention module,
which is referred to as the BSnet hereafter.

IV. RESULTS

A. BSnet versus CNN Decoder

The BSnet and the CNN decoder [20] adopt different
neuronal functions, i.e., spiking neuron versus rectified linear
unit (ReLU); they also represent different neural architec-
tures, i.e., recurrent spiking layer versus convolutional layer.
By comparing the two networks, we hope to answer the
question of whether recurrently connected spiking neurons are
advantageous in decoding auditory attention.

The CNN module is composed of one convolution layer
with the kernel size of 64 × 17, one average pooling layer,
and two fully connected layers (Input: 5, hidden: 5, output: 2).
It employs the ReLU activate function and the cross-entropy
loss. We follow the CNN implementation that is available
at [20], and fine-tune the hyperparameters in the same way
as BSnet on both datasets.

As shown in Fig. 3, the CNN model attains the mean ASAD
accuracy of 63.3% (standard deviation (SD): 5.96%) in the
DTU dataset and 84.1% (SD: 10.16%) in the KUL dataset
with 1-s decision window, respectively. BSnet, the reduced
version of BSAnet, consistently outperforms CNN model by
a large margin in both datasets. Specifically, BSnet achieves

Fig. 3. ASAD accuracy of CNN and BSnet among all subjects in the
DTU and KUL datasets with 1-s decision window. Statistically significant
difference: ∗∗∗p < 0.001.

an average improvement of 17.7% (mean: 81.0%, SD: 7.09%)
or an error reduction of 48.2%, i.e., from 36.7% to 19.0%,
on the DTU dataset, 6.7% (mean: 90.8%, SD: 5.05%) or an
error reduction of 42.1%, i.e., from 15.9% to 9.2%, on the
KUL dataset, respectively. Moreover, it is noteworthy that
the number of parameters of the BSnet is markedly lower
than that of the CNN model. Specifically, the CNN model
approximately consists of 5500 parameters [20], whereas the
proposed BSnet just has around 900 parameters. Given that
the dataset size of EEG signals is usually limited, the high-
representative and light-weighted BSnet provides a promising
solution to EEG-based BCIs.

Statistical analyses were performed using IBM SPSS statis-
tics software. Descriptive statistics were used for means and
SDs. A level of significance of 0.05 was used in this study.
Specifically, the average accuracy obtained by the BSnet
significantly outperforms the CNN model (paired t-test: p <

0.001) in both datasets. These results support our hypothesis
that BSnet effectively learns the temporal patterns of EEG
signals and generates discriminative features for the ASAD
tasks in a better way than CNN-based decoder.

B. Size of Decision Window

We now evaluate BSAnet with four decision windows, from
0.25 to 2 s, and report in Fig. 4.

On the KUL dataset, BSAnet obtains a relatively high
ASAD accuracy of 95.2% (SD: 3.08) for 2 s and
93.7% (SD: 4.02) for 1 s of window. These results are
consistent with the previous findings that decoding accuracy
positively correlates with the decision window size [10], [19],
[20], [25], [29], [30]. The ASAD accuracy degrades to 90.3%
(SD: 5.19) for a window of 0.5 s. It is worth noting that
BSAnet obtains an acceptable ASAD performance (mean:
84.7%, SD: 6.46) despite a very narrow window of 0.25 s
or 250 ms.

On the DTU dataset, BSAnet attains an average accuracy
of 75.3% (SD: 7.32) for a window of 0.25 s, 79.8% (SD:
6.99) for 0.5 s, 83.1% (SD: 6.75) for 1 s, and 85.6% (SD:
6.47) for 2 s. We observe that the performance on the KUL
dataset is generally better than that on the DTU dataset.
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Fig. 4. ASAD performance of BSAnet for four different decision window
sizes across all subjects in both DTU and KUL datasets.

Fig. 5. ASAD accuracy of the BSnet and BSAnet with 1-s decision window
on two datasets. (a) DTU dataset. (b) KUL dataset. Blue dots: individual
results. Gray lines: same subjects. Red triangles: mean accuracies of all
subjects. Statistically significant difference: ∗∗∗p < 0.001.

This could be affected by the psychological and physiolog-
ical characteristics of the individuals [56], [57], the acoustic
content and the environment, and the physical layout of the
experiments [51], [52].

As a narrow EEG window allows for decision at a high time
resolution, BSAnet is therefore suitable for low-latency and
real-time tracking of auditory attention in BCI, for instance,
neuro-steered hearing aids.

C. Effect of Spiking Temporal Attention

To validate the effectiveness of the spiking temporal atten-
tion, i.e., the self-attention mechanism, we conduct ablation
analysis on both datasets. As shown in Fig. 5, the ASAD
accuracy of the BSnet and BSAnet are reported across all
subjects with 1-s decision window.

On the KUL dataset, it is observed that the spiking tem-
poral attention improves the decoding accuracy from 90.8%
(SD: 5.05%) of BSnet to 93.7% (SD: 4.02%) of BSAnet for 1-s
decision window. With the BSnet, half of the subjects achieved
an average ASAD accuracy higher than 90%, while with
BSAnet, 13 of 16 subjects did. Moreover, ASAD accuracy is

significantly different between the BSnet and BSAnet (paired
t-test: p < 0.001).

On the DTU dataset, we observe similar results. BSAnet
achieves a relatively high ASAD accuracy (mean: 83.1%,
SD: 6.75%), which significantly outperforms BSnet with an
average improvement of 2.1% (paired t-test: p < 0.001).

The fact that BSAnet significantly outperforms BSnet on
two publicly available datasets confirms that the proposed
spiking temporal attention contributes to the performance gain
by assigning differentiated weights dynamically to the data
points in the spike trains during run-time inference.

V. DISCUSSIONS

We hypothesize that it is advantageous to model the tem-
poral dynamics of neural responses in the listening brain for
AAD. To validate our hypothesis, we compare the ASAD per-
formance and computational cost of the proposed BSAnet with
other competing models in the literature. We also visualize
the spiking feature representations at different stages of the
BSAnet pipeline to understand how the processing modules
operate.

A. Comparative Study

As summarized in Table II, we compare our models with
several baselines on DTU [52] and KUL [51] datasets.

On the KUL dataset, we start by comparing our models with
common spatial pattern (CSP)-based [19] and Riemannian
geometry classifier (RGC)-based [25] ASAD models, which
were reported with competitive results in low-latency settings.
It is clear that both BSnet and BSAnet outperform CSP and
RGC by a large margin. Specifically, BSnet gains an average
accuracy increase of 10.4% and 10.2% across all decision win-
dow sizes over CSP-based and RGC-based models. BSAnet
further improves the average accuracy by 13.0% and 12.8%
over CSP and RGC, respectively.

These results, in line with the previous studies [10], [12],
and [13], suggest that nonlinear approaches are advantageous
for rapid and reliable decoding auditory attention (spatial)
attention, especially with short decision windows. We then
compare our models with other state-of-the-art nonlinear
approaches. BSnet improves the accuracy with an increase
of 6.1% and 3.4% across all decision window sizes over the
CNN-based models [20], [29]. In addition, BSAnet further
enhances the accuracy and significantly outperforms previous
nonlinear models [20], [29], [30] (p < 0.001 for [20], p =

0.002, and [29], p = 0.023 for [30]), respectively.
Similar to the findings on the KUL dataset, the proposed

BSnet significantly outperforms other nonlinear models on the
DTU dataset across all decision window sizes (p < 0.001
for [20], p = 0.002, and [29], p = 0.006 for [30]). The
proposed BSAnet further improves over CNN [20], CNN with
channel mask (CNN-CM) [29], and spatiotemporal attention
network (STAnet) [30] by a large margin, i.e., 18.7%, 13.8%,
and 9.7% across all window sizes, respectively.

In summary, BSAnet outperforms all state-of-the-art mod-
els. We argue that the contributions come from the modeling
of the temporal dynamics of EEG signals and more effective
feature representation by the neural encoder.
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TABLE II
ASAD PERFORMANCE COMPARISON OF DIFFERENT MODELS ON BOTH DATASETS FOR FOUR DIFFERENT DECISION WINDOW SIZES. NOTE THAT

THE PROPOSED BSANET SIGNIFICANTLY OUTPERFORMS OTHER MODELS IN TERMS OF DECODING PERFORMANCE.
CSP = COMMON SPATIAL PATTERN, RGC = RIEMANNIAN GEOMETRY CLASSIFIER

Fig. 6. T-SNE visualization of the feature representations of the proposed BSnet and BSAnet from two randomly selected subjects (a) and (b) in the KUL
dataset. The colors denote the actual auditory attention, i.e., leftward or rightward.

B. Visualization of Feature Representation
Representation learning is commonly used in machine learn-

ing to automatically discover feature representations that are
useful for downstream tasks. Typically the live activations in
a neural architecture that respond to the input signals can be
used as the feature representation of the input. The ability
to interpret such representations, usually via visualization,
allows us to gain insight into the research problem and build
intuitions about how a neural architecture works. For example,
a hierarchical 2-D feature representation learned for visual
object recognition by a CNN at different layers captures
different levels of abstract features ranging from edges and
gradients to shapes and styles [58].

In the domain of auditory and speech perception, the
temporal patterns in neural responses offer valuable insights
into brain activities [3], [4], [5], [6], [7], [8]. Furthermore,
it has been observed that attention-related neural activity in the
human brain entrains rhythmically to the rhythmic stimulation
present in the acoustic environment [59]. However, EEG
signals are noisy because they reflect many concurrent brain
activities, also being corrupted by electronic noises during

signal acquisition. Effectively characterizing these temporal
patterns remains a significant challenge.

It is found that binary spike trains, which capture spike
time intervals, serve as salient features in representing infor-
mation [60], [61]. As a departure from the ANN of analog
neurons where a fixed dimension embedding is used as the
feature representation, in this article, we advocate for repre-
senting the input in different processed forms of spike trains
along the processing pipeline of the neural architecture, e.g.,
Se, S′

e as shown in Fig. 2. In other words, we consider the
intermediate processed forms of spike trains as the feature
representations of the input EEG signals.

We apply the t-stochastic neighbor embedding (t-SNE)
visualization [62] to understand how our networks perform
at different stages of the pipeline. As shown in Fig. 6, the
feature representations of two randomly selected subjects from
the KUL dataset are visualized for the BSnet and BSAnet. The
leftward and rightward auditory attention samples are colored
differently, which allows us to observe the distribution of the
feature representations. It is apparent that the output feature
distribution of the recurrent spiking layer in BSAnet is more
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Fig. 7. Bio-plausible visualization of BSAnet for one randomly selected subject. (a) Spiking feature representations of four 1-s EEG windows, i.e., ten
spike trains of 128 data points each, as the output of the neural encoder denoted as S1–S4. The “L/R” label denotes actual leftward or rightward auditory
attention. The spiking events in the spiking trains are represented in white. (b) Attention masks, Wa , are generated by the spiking temporal attention module
for the leftward/rightward EEG samples. The color of the cells represents the weights with lighter colors corresponding to larger weights. (c) Spiking feature
representations as the output of the spiking temporal attention module. The “L/R” indicates the detected leftward or rightward auditory attention by the BSAnet
model.

discriminative than that of the BSnet. This further confirms
the effectiveness of the spiking temporal attention.

We further visualize the feature representations of one
randomly selected subject in Fig. 7. In Fig. 7(a), we illustrate
the spike trains after the neural encoder in a 2-D display,
Se ∈ RNs×T , where the y-axis represents the spiking neurons,
and the x-axis represents the time index [63]. The biologically
motivated temporal attention mechanism is expected to attend
to salient data points in the EEG window relevant to the
ASAD task. As illustrated in Fig. 7(b), the attention mask Wa

assigns differentiated weights on the fly to the input EEG data
points over time. Consistent with biological observations [57],
leftward/rightward auditory stimuli are encoded into different
spiking patterns by BSAnet.

We further visualize the optimized spiking representation
of EEG signals, i.e., S′

e, to understand the binary decision of
BSAnet, as shown in Fig. 7(c).

Notably, we observe distinct and spatially clear spik-
ing patterns for S1 and S4, indicating positive detection.
Conversely, S2 and S3 exhibit noisy patterns, which corre-
spond to negative detection. These results suggest a potential
relationship between spiking patterns and AAD outcomes.
Moreover, these findings highlight the vital role of temporal
regularity in selective listening [35]. Additionally, the precise
timing of individual neuronal spikes emerges as a crucial factor
in facilitating prompt sensory responses in the human brain [6],
[34], [35].

Overall, it is encouraging to see that BSAnet shows the
temporal coding ability present in biological networks, which
mimics the human auditory attention mechanism [3], [4], [5].

C. Computational Cost
Apart from accuracy, energy consumption is also a critical

factor of consideration in system deployment. We further com-
pare the proposed bio-inspired decoders, BSnet and BSAnet,
with the CNN model [20] in terms of computational cost for
various decision windows.

TABLE III
COMPUTATIONAL COST (PJ) COMPARISON OF DIFFERENT ASAD

MODELS FOR DIFFERENT DECISION WINDOW SIZES

We use the total number of floating point operations as
the proxy of the calculation of computational cost, that is
formulated in [64] based on the standard 45 nm CMOS
process. As summarized in Table III, the computational cost of
both BSnet and BSAnet is much lower than that of the CNN
implementation across all window sizes. BSnet and BSAnet
achieve an average computational cost reduction of 83.5%,
and 81.4% over the basic CNN model, respectively. For 1-s
decision window, BSnet and BSAnet achieve an improvement
of 6.7% and 9.6% in terms of the ASAD performance, and a
reduction of 86.4% and 83.9% in terms of the computational
cost over the CNN model.

The SNNs, i.e., BSnet and BSAnet, provide rapid and
accurate decoding of the auditory spatial attention owing to
event-driven computation [65], where computation occurs only
when a neuron fires. In addition, a spiking neuron only requires
an accumulate operation for each input spike, while a standard
artificial neuron requires a multiply-and-accumulate operation
for each input.

Overall, the proposed bio-inspired decoders not only allow
for bio-realistic information processing, but also offer tremen-
dous energy-saving benefits for devices with limited resources,
such as neuro-steered hearing aids.

D. Future Study
One challenge in the implementation of neuro-steered hear-

ing aids is the complex and real-life acoustic environment,
i.e., several spatially separated speakers of different relevance.
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In this study, we have only studied a two-speaker scenarios
[52], [53]. Extending this study to multispeaker acoustic envi-
ronments could be an interesting direction for future research.

The precise neurophysiological mechanisms underpinning
the cocktail party effect are still not well understood. While the
proposed model draws inspiration from biological studies, the
neural architecture and functions are primarily based on exist-
ing findings, leaving room for further exploration to achieve
full biological plausibility. Moreover, neuronal oscillation also
plays a significant functional role in speech processing, which
has not been thoroughly explored yet. There is a need for
further research and development to gain better insight and to
consider these aspects in the study.

VI. CONCLUSION

We have proposed a novel neural architecture for the detec-
tion of auditory attention. The end-to-end BSAnet effectively
exploits the temporal information of EEG signals, extracts
discriminative EEG features, that leads to overall performance
gain. BSAnet shows the state-of-the-art performance on pub-
licly available datasets. Moreover, the computational cost of
the model is much lower than that of the ANN-based decoders.
We also introduce the idea of using intermediate spiking
trains as temporal feature representations that suggests a new
direction for EEG pattern classification. Overall, we develop a
rapid, accurate AAD decoder, that is suitable for low-latency
and real-time tracking of auditory attention. The proposed
BSAnet is a leap forward toward achieving energy-efficient
and bio-realistic neuro-steered hearing aids, which can also
be extended in the development of other EEG-based BCI
applications.
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