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Abstract— Accurately extracting buildings from aerial images
has essential research significance for timely understanding
human intervention on the land. The distribution discrepancies
between diversified unlabeled remote sensing images (changes in
imaging sensor, location, and environment) and labeled histori-
cal images significantly degrade the generalization performance
of deep learning algorithms. Unsupervised domain adaptation
(UDA) algorithms have recently been proposed to eliminate the
distribution discrepancies without re-annotating training data
for new domains. Nevertheless, due to the limited informa-
tion provided by a single-source domain, single-source UDA
(SSUDA) is not an optimal choice when multitemporal and
multiregion remote sensing images are available. We propose
a multisource UDA (MSUDA) framework SPENet for building
extraction, aiming at selecting, purifying, and exchanging infor-
mation from multisource domains to better adapt the model to
the target domain. Specifically, the framework effectively utilizes
richer knowledge by extracting target-relevant information from
multiple-source domains, purifying target domain information
with low-level features of buildings, and exchanging target
domain information in an interactive learning manner. Extensive
experiments and ablation studies constructed on 12 city datasets
prove the effectiveness of our method against existing state-of-
the-art methods, e.g., our method achieves 59.1% intersection
over union (IoU) on Austin and Kitsap −→ Potsdam, which
surpasses the target domain supervised method by 2.2%. The
code is available at https://github.com/QZangXDU/SPENet.

Index Terms— Building extraction, deep learning, information
constraint, multisource, unsupervised domain adaptation (UDA).
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I. INTRODUCTION

THE building extraction task aims to identify the building
region in images, which generally assigns a class label

for each pixel. In recent decades, the automatic extraction
of buildings from aerial images has been a hot research
topic. It is crucial in many applications, such as urban plan-
ning [37], natural resource protection [33], and land resource
monitoring [59]. With the continuous development of remote
sensing technology, many airborne and spaceborne images are
available for learning building extraction models. Thus, data-
dependent deep learning is gradually being applied to tackle
this task, showing more powerful representation capabilities
than traditional methods based on artificially designed features.

The success of deep learning depends heavily on having vast
amounts of labeled training data for optimization. Meanwhile,
the test data usually have a similar distribution with the
training data, which ensures the deep learning methods have
good generalization performances on test data. However, due
to variations of imaging mechanisms [optical and synthetic
aperture radar (SAR)], imaging sensors (spectrum and resolu-
tion), imaging environments (illumination and climate), and
imaging locations (city and urban), remote sensing images
show significant discrepancies between the labeled training
data and test data. In addition, the artificial buildings of
different regions exhibit significant cultural variation in style
and structural features. These differences significantly harm
the generalization capacity of deep learning methods. Thus,
adapting models learned on labeled training data to test data
without extra data annotation is one of the main challenges
for applying deep learning to building extraction.

Unsupervised domain adaptation (UDA) is an effective
method for solving the problem of distribution differences
(also known as domain shift) between a labeled source domain
and an unlabeled target domain, making the model trained
on the source domain adapt well to the target domain. For
the semantic segmentation of natural images, many UDA
methods have been proposed to reduce the shift between two
domains, via aligning the distribution at three levels, i.e., input
level [31], [35], [51], feature level [8], [9], [48], and output
level [40], [46], [61], or using pseudo-labels of the target
domain generated by models pretrained on the source domain
to retrain models, i.e., self-training [22], [60], [64]. Inspired by
these works, in remote sensing semantic segmentation, some
works [17], [44], [53] have gradually been proposed to narrow
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Fig. 1. Schematic of the framework comparison between the pro-
posed method and the existing MSUDA methods. (a) ColorMapGAN [45].
(b) MADAN [63]. (c) Multisource domain adaptation with collaborative
learning (MSDACL) [11]. (d) Ours (SPENet).

such domain shifts by aligning at different levels. Nevertheless,
these works merely focus on exploring source data from a
single domain. The information provided by single-source
domain is limited, so that aligning distributions is hard to
achieve, especially for remote sensing scenes with larger shifts,
such as those caused by sensor or cultural changes.

Fortunately, multitemporal and multiregional remote sens-
ing images are available, providing much richer labeled
source data. Training with multiple-source domains can further
encourage the model to learn essential information, enhanc-
ing its adaptability to the target domain. A straightforward
approach is to use multiple-source datasets by combining
them as a unified source domain. In that case, the model
ignores the complementary information contained in different
domains, so that it is restricted from learning stronger domain
adaptability. Hence, the current single-source UDA (SSUDA)
building extraction framework is no longer suitable for the
multisource scene.

Effective exploration of complementary information is the
key to multisource UDA (MSUDA). Several MSUDA methods
have recently been proposed for semantic segmentation of
natural and remote sensing images. They can be classified
into two streams: 1) domain alignment—align distributions
of multiple-source and target domains at a certain level
and 2) self-training—use pseudo-labels of the target domain
from different networks to retrain each network. The existing
alignment-based methods [45], [63] align multiple domains at
the input level by translating the image style, as shown in
Fig. 1(a) and (b). However, such alignment is not sufficient to
narrow shifts, because building scenes have variations in shape
and background except for style, and easily causes distortion of
complex remote sensing data. Besides, they ignore the mining
of target-specific knowledge (e.g., pseudo-label). Thus, this
article follows the self-training-based method. He et al. [11]
fuse high-quality pseudo-labels picked by the threshold to
retrain networks, weakening the interference of label noise
caused by shifts to training, as shown in Fig. 1(c). However,
the predictions of unadapted networks are so unreliable that
false high-quality ones are picked. Furthermore, the model is
forced to learn all data from multisource domains, introducing
some information irrelevant to the target domain, with negative
effects on the network’s learning efficiency. Therefore, it is
essential to adaptively select out information relevant to the
target domain from multisource domains.

To address these problems, this article innovatively proposes
an MSUDA framework called SPENet of building detection

Fig. 2. Comparison of adaptation using single-source domains versus
multiple-source domains. A randomly selected source domain may not be
suitable due to the large disparity with the target and limited information,
whereas multisource domains contain rich target-relevant information that is
beneficial to adaptation.

for the first time, selecting, purifying, and exchanging infor-
mation from multisource domains to better adapt to the target.
Our observation shows the case of target-relevant information
in building extraction. As shown in Fig. 2, the color and shape
of the building in the target are similar to the first and second
source domains, and the background is similar to the third
source domain. This information provides positive influence
for adaptation. In contrast, the redundant (source-specific)
information from the task-irrelevant factors may bring negative
effects for adaptation and produce uninformative gradients.
Moreover, as the number of source domains increases, more
source-specific information may be introduced, making
it challenging to extract target-relevant information from
different source domains. A multisource domain selection
module with domain recognition capabilities is designed to
guide the network to focus on more relevant regions in the
multisource domains. Due to the diversity of multisource
domains, the models trained on target-relevant information
of each source domain have specific advantages for the
target domain, making their predictions on the target data
complementary. An interactive learning strategy is proposed to
aggregate this complementary information. During interactive
learning, to purify noisy predictions of the target domain,
low-level building structural features are exploited, and an
uncertainty estimation module is designed to provide explicit
information constraints, generating reliable supervision signals
for networks. The main contributions can be summarized as
follows.

1) A novel MSUDA framework SPENet is developed
for building extraction. The framework improves the
efficient utilization of rich information by selecting,
purifying, and exchanging information from multisource
domains, boosting the model’s adaptation performance
to the target domain.

2) In this framework, a multisource domain selection mod-
ule is designed to provide positive support for adaptation
by select the target-relevant information from multi-
source domains. An uncertainty estimation module is
designed to purify pseudo-labels of the target domain
by exploiting building structural features.

3) Extensive experiments are conducted on multiple public
datasets, proving that the proposed framework signifi-
cantly outperforms the existing state-of-the-art methods.
Our framework is more robust to the target domain and
improves the generalization ability of the network.
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II. RELATED WORK

A. Building Extraction Task
In the early years, many methods separate buildings from

the background based on low-level features, such as geom-
etry and texture [1], [5], [7], [15], [20], [43]. Among these
methods, Huertas and Nevatia [15] assume that the build-
ing’s shape is a regular rectangle “L” or “T” and employ
geometric constraints to extract buildings from aerial images.
Lorette et al. [27] propose a chain-based Gaussian model to
analyze texture information and incorporate the obtained tex-
ture parameter into the Markov segmentation model. Sirmacek
and Unsalan [43] use color features to extract shadow infor-
mation, which is subsequently used to determine building
locations. Li et al. [21] leverage the relationship between
buildings and their cast shadows to implement the extraction
of buildings. These methods promote the development of
building extraction technology. However, the features extracted
manually in traditional methods are less discriminative and
cannot perform well in complex scenes.

In recent years, deep learning has gradually been applied in
many methods [2], [3], [14], [16], [24], [26], [36], [38], [54],
[58]. Li et al. [24] use adversarial learning for building extrac-
tion from remote sensing images. They adopt an autoencoder
network as a discriminator to stably learn the high-order struc-
tural features of buildings. Hui et al. [16] apply the separable
convolution module Xception to U-Net to independently con-
sider remote sensing images’ spectral and spatial correlation.
Yuan [58] integrates multiple activation layers and uses the
signed distance function of building contour as the final output.
Ye et al. [57] introduce reweighted attention to adaptively
integrate shallow features into deep features, which enhances
the usage of shallow features in convolutional neural networks.
Although various improvements promote the performance of
building extraction, the trained network could not be directly
generalized to unlabeled images with domain differences from
the training data. Our method aims to address the problem of
how the model extracts buildings from the unlabeled image
when there is a domain shift between unlabeled images and
labeled images.

B. Single-Source UDA
The SSUDA aims to narrow the domain gap between the

labeled source dataset and the unlabeled target dataset. Some
methods directly align the two domains’ distributions in the
original input space, based on style transfer techniques [10],
[23], [31], [35], [51], [55]. These studies reduce the image
style discrepancy between different domains. On the other
hand, Hoffman et al. [12] propose to align the global distribu-
tion of the source and target domains at the feature space by
adversarial training, but the improvement is relatively limited.
Inspired by this idea, many works try to improve the feature
alignment method in semantic segmentation. One improve-
ment direction is to alleviate the problem of difficult alignment
in high-dimensional space. In [13] and [41], they propose to
align the two domains in the transformed low-dimensional
space. Then, Tsai et al. [46], [47] directly treat the output of
the classifier as the transformed space, expecting to align the
class layout of the two domains at the output space. Another
improvement direction is to align the feature distribution in a
fine-grained fashion. Chen et al. [4] and Du et al. [6] turn
the feature distribution into a class distribution and design

multiple class discriminators to align the feature distributions
of each class separately. Wang et al. [49] turn it into an
instance distribution and align the distribution by matching
the distribution statistics of the features. The abovementioned
works focus on inter-domain alignment, and some methods
also use the self-training strategy for intra-domain adaptation,
which uses pseudo-labels of the target domain obtained from
network inference as training supervision [22], [25], [60], [64].

Recently, some methods have been proposed for semantic
segmentation in the remote sensing. Yan et al. [53] first apply
the UDA method for remote sensing semantic segmentation to
align distributions of source and target domains at the output
level. However, since the specific spatial layout structure in
natural images does not exist in remote sensing images, it is
hard to find a reliable optimization goal for aligning distribu-
tions at the output level. Thus, Iqbal and Ali [17] propose to
learn the weak label of target data (whether there are buildings
in the image) for building extraction and align distributions
at the feature level and the output level. Weak labels provide
additional constraint for improving the representation capacity
of the network, but their requirement for manual annotation
still increases the cost. Tang et al. [44] align distributions at the
input level and output level, but the style translate for input dis-
tribution alignment easily causes distortion for remote sensing
data captured in diverse sensors and complex scenes. Besides,
the information from one domain exploited by these methods
is limited. The multitemporal and multiregion characteristics
of remote sensing make data in multiple domains available,
providing richer information. Thus, we use data from multiple-
source domains to improve the adaptability of the network to
the target domain.

C. Multisource UDA
Involving multiple-source domain datasets can expand the

information repository for fostering the segmentation model in
the target domain. Recently, some MSUDA methods for image
classification have been proposed [34], [52], [62]. The UDA
algorithms designed for image classification perform poorly
on the semantic segmentation task, because the latter requires
dense pixel-level prediction, which increases the difficulty
of adaptation. Zhao et al. [63] propose a multisource adver-
sarial domain aggregation network (MADAN) for semantic
segmentation. The process first translates each source domain
style to the target and then aggregates them. The final aggre-
gated domain and the target are aligned in the feature space.
Tasar et al. [45] design a color mapping generative adversarial
networks (ColorMapGANs), which makes each source domain
and target domain have similar spectral distribution. He et
al. [11] align the distribution in the input space through
style transfer and force multiple-source models to produce
consistent predictions on the target domain.

The above methods align the styles of multiple domains
for adaptation, which is not enough for building extraction,
because building scenes have variations in shape and back-
ground except for style differences. Also, these methods force
the model to learn from all source domains data, creating a
risk that irrelevant information will negatively influence the
model’s learning. Our method devises a information selec-
tion module to explore target-relevant information from each
source domain. Furthermore, inspired by traditional unsu-
pervised methods for extracting buildings using low-level
features, we introduce low-level features into deep neural
networks to focus on building structures in different domains.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. An overview of the proposed SPENet. First, the encoded features of the source and target images are fed into the domain selection network. Then,
the domain selection network generates adaptable maps for source images, and these adaptable maps are weighted on the losses Lseg

S1
, Lseg

S2
. Second, the

pseudo-labels generated for the target images by segmentation networks trained on multisource domains are exchanged in an interactive learning way. Third,
the uncertainty estimation module further purifies the pseudo-labels by generating uncertainty maps for them, and these maps are used to reweigh the loss
Ltdu

T . Besides, the subscripts of f and p indicate the feature maps and predicted probability scores produced by different segmentation networks for source or
target images, respectively. The solid lines in different colors indicate the forward inference processes on different input images, and the dotted lines indicate
the calculation flow of different losses. During testing, we integrate the results of all networks y = (ŷi + ŷ j )/2 as the prediction result.

III. PROPOSED METHOD

In this section, we introduce the technical details of the
proposed MSUDA framework for building extraction. The
formula setting is as follows.

Preliminaries: We assume the training data consist of I
source domains Dsi (i ∈ [1, I ]) and a target domain Dt .
The i th source domain contains samples {x(si , j)}

Nsi
j=1 and their

corresponding pixel-level labels {y(si , j)}
Nsi
j=1. The target domain

contains samples {x(t,k)}
Nt
k=1. Nsi and Nt are the number of

samples in the i th source domain and the target domain,
respectively. The categories in each source domain are the
same as those in the target domain. Given these training data,
we aim to adapt I segmentation networks {Gi }

I
i=1 trained

on each source domain to the target domain. In general, G
consists of a feature extractor F and a classifier C. F maps
the sampled image x ∈ Dsi ∪ Dt to the feature space and
obtains a feature map f = F(x) ∈ Rh×w×c, where h, w, and
c stand for the height, width, and channel numbers of f . Then,
C classifies each point in f to obtain a probability score map
p = C(F(x)) ∈ RH×W , where H × W stands for the size of
the input image x .

A. Overview of Framework
To effectively explore multiple-source domains, we propose

a novel framework for building extraction based on selecting,
purifying, and exchanging information from different source
domains, namely, SPENet. As shown in Fig. 3, for each source
domain, SPENet builds a segmentation network with the same
structure but different parameters to extract diverse domain
information. Three components corresponding to the above
three goals are introduced as follows.

1) Source Domain Information Selection: We first design
a domain selection network, which is optimized to

identify domain identifiers of input features. For each
source image, an adaptable map is then generated to
evaluate its relevance against the target domain, ensuring
each segmentation network focuses on target-relevant
information (the technical details will be introduced in
Section III-B).

2) Information Exchange Among Domains: An interactive
strategy is devised to aggregate complementary informa-
tion of different domains, through making segmentation
models teach each other on unlabeled target domain
images (the technical details will be introduced in
Section III-C).

3) Purification of Target Domain Information: We design
an uncertainty estimation method to purify the target
domain information, which is used for relieving the
influence of uncertain predictions for each network (the
technical details will be introduced in Section III-D).

B. Source Domain Information Selection
In general, for the network of each source domain, infor-

mation extraction is achieved by forcing the distribution of
the output class probability and the corresponding label to be
close, i.e., optimizing the pixel-level cross-entropy loss Lseg

S

Lseg
S = −

1
|Ds |

I∑
i=1

Nsi∑
j=1

[y(si , j) log(p(si , j,i)) + (1 − y(si , j))

× log(1 − p(si , j,i))]

where

p(si , j,i) = Ci (Fi (x(si , j))). (1)

p(si , j,i) is the prediction generated by the i th network trained
on the source domain si for the j th image in si . Cross entropy
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is a well-known measure of information. The principle of
minimizing cross entropy is the inference of an unknown
distribution p under the guidance of a prior distribution y [42].
Also, by this means, all source domain information is regarded
equally. However, the information in each source domain may
be only partially relevant to the target domain (e.g., color,
shape, and background), which is conducive to adaptation.
Thus, we focus on extracting target-relevant information in
multisource domains. A source domain selection network D
with domain recognition capabilities is designed, generating an
attention map that has larger values on target-relevant regions
for each source image. To achieve this, D is forced to perform
a pixel-level domain recognition task, in which the features in
the input feature map f are identified as the source or target.

Specifically, the domain selection network D is composed of
four convolutional blocks with sliding step of 2 and a sigmoid
layer. Given the training samples Ds of multisource domains
and the training samples Dt of the target domain, D classifies
the domain to which the feature maps of these samples belong.
Formally, the domain selection network D is trained with the
source domain adaptable loss Lsda

(S,T )

Lsda
(S,T ) = −

1
|Dt |

I∑
i=1

Nt∑
k=1

log(D(Fi (x(t,k))))

−
1

|Ds |

I∑
i=1

Nsi∑
j=1

log(1 −D(Fi (x(si , j)))). (2)

Under this supervision, D has the ability to evaluate the
probability score of the domain identifier corresponding to
the input feature. Then, for source domain features that are
predicted to be the target domain with high probability scores,
they are more relevant to the target domain and should be
stressed with higher importance during the adaptation process.

Based on this, the probability score maps output by D is
further used as adaptable maps Asi = {a(si , j)}

Nsi
j=1 ∈ RH×W for

each image x(si , j) of multisource domains

a(si , j) = β +D(Fi (x(si , j))) (3)

where β is a hyperparameter to balance the network’s learning
of target-irrelevant information and maintain a neutral focus
on them. This map indicates the relevance between each pixel
in images and the target domain. When the probability value
in the map is larger, it indicates that the pixel at that position is
more relevant to the target domain. In this way, target-relevant
information is effectively selected from multisource domains
by the network D.

Then, we combine the generated adaptable maps Asi to
reweight the loss function Lseg

S . The modified Lseg
S is used to

supervise labeled samples from multisource domains, which
is defined as follows:

Lseg
S = −

1
|Ds |

I∑
i=1

Nsi∑
j=1

a(si , j)[y(si , j) log(p(si , j,i)) + (1 − y(si , j))

× log(1 − p(si , j,i))]. (4)

In this way, the regions whose representations are more
adaptable are weighted with larger attention values, thus
allowing the segmentation networks Gi to focus on those more
relevant regions during learning. Meanwhile, target-irrelevant
information is adaptively filtered out to prevent the networks
from being interfered by redundant information.

C. Information Exchange Among Domains
Different source domains have diverse building appearances

and backgrounds, so the target-relevant information selected
from multisource domains may be complementary. Therefore,
we propose an interactive learning strategy to take advan-
tage of the complementary target-relevant information from
different domains. This strategy enables the segmentation
network Gi trained on a certain source domain to teach other
networks. Since different networks learn the segmentation
capabilities of different target-relevant regions from multiple-
source domains, the proposed interaction method can fully
aggregate the specific advantages of different networks and
improve the adaptability of each network to the target domain.

Specifically, the target domain information (i.e., target
domain pseudo-label) learned from the segmentation network
Gi is exchanged to supervise other networks during training.
Given an image x(t,k) in the target domain Dt , it is fed into all
segmentation networks {Gi }

I
i=1, and the corresponding pseudo-

labels {ŷ(t,k,i)}
I
i=1 ∈ RH×W are calculated with (5)

ŷ(h,w)

(t,k,i) =

{
1, if p(t,k,i) ≥ 0.5
0, otherwise

where

p(t,k,i) = Ci (Fi (x(t,k))). (5)

p(t,k,i) is the prediction generated by the i th network trained
on arbitrary source domain si for the kth target image. Then,
in the interactive learning process, the pseudo-labels generated
by other networks {Gi }

I
i=1,i ̸=l for the target image x(t,k) super-

vise the network Gl’s prediction of it. For the lth network Gl ,
the objective function Ltd

T is as follows:

Ltd
T = −

1
|Dt |

I∑
i=1,i ̸=l

Nt∑
k=1

[ŷ(t,k,i) log(p(t,k,l)) + (1 − ŷ(t,k,i))

× log(1 − p(t,k,l))]

where

p(t,k,l) = Cl(Fl(x(t,k))). (6)

As the process of interactive learning continuously advances,
the gap between each source domain and the target domain
is gradually bridged. Furthermore, multiple segmentation net-
works {Gi }

I
i=1 are also encouraged to maintain consistent

predictions for the same target images, thus cooperating with
multiple networks to boost the network performance.

D. Purification of Target Domain Information
Due to domain differences, pseudo-labels generated by the

network of each source domain are impure, which seriously
affects the performance of interactive learning. A simple
approach to purification is to pick high-quality pseudo-labels
by setting a confidence threshold. However, the output proba-
bility of the unadapted network is unreliable, and the threshold
is hard to set. In this article, we utilize low-level structural fea-
tures of the building to design a novel uncertainty estimation
method to purify the pseudo-labels of the target domain.

Buildings have low-level structural characteristics, such
as small pixel variances in building blocks and large pixel
variances between buildings and backgrounds. Thus, some
traditional unsupervised building extraction works [15], [21]
adopt pixel intensity and spatial location of the building as
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structural features for describing the pixelwise visual features.
Such strong structural constraints and accurate building edge
information implied in low-level structural features can pro-
vide reliable cues for purification.

Inspired by these works, we introduce low-level structural
features of the building into deep neural networks in the
purification process and utilize their consistency to estimate
the accuracy of the network prediction. Specifically, given a
target domain image x(t,k), we first construct an affinity matrix
Wk ∈ RH W×H W to indicate the affinity between pixels in
the image. For two pixels (xn, yn) and (xm, ym) in x(t,k), the
affinity between their structural features is defined as follows:

W nm
k = exp

(
−

(xn − xm)2
+ (yn − ym)2

2σ 2
s

−
∥I (xn, yn) − I (xm, ym)∥2

2σ 2
i

)
(7)

where σs and σi represent the standard deviation of the spatial
domain and the intensity domain, respectively. I (xn, yn) and
I (xm, ym) denote the intensity of pixels n and m, respec-
tively. Based on the affinity matrix Wk , an uncertainty matrix
M(t,k,i) ∈ RH W×2 is generated by modeling the Wk and
the probability score map p(t,k,i) with (8), which estimates
unreliable regions of the pseudo-label ŷ(t,k,i)

P(t,k,i) = [p(t,k,i), 1 − p(t,k,i)]

M(t,k,i) = (Wk P(t,k,i)) ∗ P(t,k,i) (8)

where ∗ represents elementwise multiplication and P(t,k,i) is a
constructed matrix and is resized to H W × 2 for calculating
the uncertainty matrix. Specifically, the element M (h,w)

(t,k,i) with
the coordinate (h, w) in the matrix M(t,k,i) is obtained by dot
multiplying the elements in row h in Wk with the elements
in column w in P(t,k,i) and then adding them, which can be
represented as follows:

M (h,w)

(t,k,i) =
[(

W h1
k P1w + W h2

k P2w + · · · + W h(H W )
k P(H W )w

)
× Phw

]/
W h1

k + W h2
k + · · · + W h(H W )

k

=
(
W h1

k P1w Phw + W h2
k P2w Phw + · · · + W h(H W )

k

× P(H W )w Phw

)/
W h1

k + W h2
k + · · · + W h(H W )

k (9)

where W h1
k is the element at coordinate (h, 1) in affinity matrix

Wk and P1w is the element at coordinate (1, w) in constructed
matrix P(t,k,i). As shown in (9), for a pixel in the target image
x(t,k), the affinity matrix Wk imposes a positive constraint on
whether the network Gi classifies the pixel and other pixels
into the same class. That is, if Gi correctly classifies both
pixels, then the constrained value will be larger. Otherwise,
the value becomes smaller. We sum the elements of the matrix
{M(t,k,i)}

Nt
k=1 by rows and reshape them into H × W as the

uncertain maps U(t,k) = {u(t,k,i)}
I
(i=1,i ̸=l). Based on the maps

U(t,k), the Ltd
T is modified to generate the following objective

function Ltdu
T :

Ltdu
T = −

1
|Dt |

I∑
i=1,i ̸=l

Nt∑
k=1

u(t,k,i)[ŷ(t,k,i) log(p(t,k,l))

+ (1− ŷ(t,k,i)) log(1− p(t,k,l))] (10)

where u(t,k,i) is the generated uncertainty map for the kth target
image. Optimizing the Ltdu

T suppresses the negative effects
of uncertain pseudo-labels. Therefore, during the information

exchange, the target domain information can be positively
constrained to generate reliable supervision signals for other
segmentation networks.

E. Optimization Objective
For the proposed SPENet, the final optimization process is

composed of two parts, including the simultaneous optimiza-
tion of domain selection network D and semantic segmentation
network Gi . Specifically, the loss Lsda

(S,T ) is used for optimizing
the domain selection network and learns the ability to identify
the domain identifier of features. The loss Lseg

S on the labeled
source domains and the loss Ltdu

T on the unlabeled target
domain are used for optimizing the segmentation network. The
overall objective function for optimization can be expressed as
follows:

arg min
θD

λ
sdaLsda

(S,T ) + arg min
θGi

(
Lseg

S + Ltdu
T

)
(11)

where {θGi }
I
i=1 is the parameters of corresponding segmen-

tation networks {Gi }
I
i=1, θd is the parameters of the network

D, and λ sda is the trade-off coefficient of Lsda
(S,T ) to avoid the

interference caused by its poor recognition ability (especially
early training) on adaptation.

In Algorithm 1, we illustrate the detailed training procedure
of SPENet. After the training is terminated, a set G of mul-
tiple optimal segmentation networks and an optimal selection
network will be obtained. During inference, the outputs of G
are averaged as the final prediction for the target domain.

IV. EXPERIMENTS

In this section, we conduct extensive experiments on five
datasets to evaluate the performance of the proposed method.
We first describe the datasets and the experimental setup.
Then, we carry out comparisons with the existing state-of-
the-art methods and elaborate ablation studies to validate the
effectiveness of each component.

A. Datasets and Experimental Setup
1) Datasets: Considering the differences in scene, sensor,

and resolution, we use 12 cities from five datasets to validate
the proposed method, i.e., Massachusetts dataset [30], Village
Finder dataset [32], Potsdam dataset [18], institut national de
recherche en infomatique et automatique (INRIA) dataset [29],
and Gaofen-2 (GF-2) dataset.

a) Massachusetts buildings dataset: This dataset consists
of 151 aerial images in the Boston area, the size of each
image is 1500 × 1500, and the resolution is 1.0 m. There
are differences in sensors, terrain, and resolution between this
dataset and the other four datasets. The Massachusetts dataset
is a single-source high-resolution dataset covering only built-
up areas in a single geographical location. We use 137 images
as the training set, four images as the validation set, and
17 images as the testing set. These datasets are available freely
at the website.1

b) Village finder dataset: The village finder dataset
is collected over areas covering more than 100 km2, con-
taining nucleated villages in 15 countries and spread over
four continents. This dataset has 60 satellite images of size
2400 × 2400 captured by different sensors from Google Earth;
25 images are provided for training, ten images for validation,

1[Online]. Available: https://www.cs.toronto.edu/~vmnih/data/
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TABLE I
DETAILS OF PUBLICLY AVAILABLE AND OUR OWN DATASETS BEFORE PREPROCESSING (M/P: NUMBER OF SQUARE METERS

PER PIXEL AND IMAGE SIZE: THE ORIGINAL SIZE PROVIDED BY THE DATASET)

Algorithm 1 Proposed SPENet
Input:

Multi-source domain data Dsi = {x(si , j)}
Nsi
j=1 (i ∈ [1, I ])

and labels Yi = {y(si , j)}
Nsi
j=1, target domain data

Dt = {x(t,k)}
Nt
k=1, total epoch: E .

Output:
Optimized multiple segmentation networks and a source
domain selection network: G = {Gi }

I
i=1, D

Gi = (Fi , Ci ).
1: Firstly, train multiple basic segmentation networks G

with Ds ;
2: for e = 1 to E do
3: Extract feature maps f(si , j), f(t,k) using the feature

extractor F ;
4: Get the prediction maps p(si , j,i), p(t,k,i) from the

networks G;
5: Source domain selection: generate the adaptable map

{Asi }
I
i=1 by the selection network D;

6: Calculate the source domain adaptable loss Lsda
(S,T )

based on f(si , j), f(t,k) with Eq. (2);
7: Exchange among domains: utilize the p(t,k,i) to

obtain pseudo-labels ŷt of the target domain data with
Eq. (5);

8: Calculate the segmentation loss Lseg
S based on p(si , j,i),

{Asi }
I
i=1, ysi

with Eq. (4);
9: Target domain purifying: generate the uncertain

map U(t,i) by modeling with Eq. (8) - (9);
10: Calculate the target domain uncertainty loss Ltdu

T
based on p(t,k,i), U(t,i), ŷt with Eq. (10);

11: L back propagation, update parameters.
12: end for
13: Return Trained model G

and 25 for testing. These are very high-resolution images with
a resolution of 0.54 m. These datasets are available freely at
the website.2

c) ISPRS 2-D semantic labeling Potsdam: The Inter-
national Society for Photogrammetry and Remote Sensing
(ISPRS) dataset is provided by the ISPRS 2-D Semantic

2[Online]. Available: http://cvlab.lums.edu.pk/villagefinder/

Segmentation Competition and has two sub-datasets. We only
use the Potsdam dataset in the ISPRS, containing 38 aerial
images collected in the Potsdam area. Each image has a size of
6000 × 6000 and the highest resolution of 5.0 cm; 16 images
are used for training, two images for validation, and 18 images
for testing. This dataset can be downloaded from the ISPRS
official website.3

d) INRIA aerial image labeling dataset: The INRIA
dataset is a very high-resolution dataset and has ten sub-
datasets covering the United States and Australia. Each
sub-dataset has 36 aerial images with 0.3-m resolution, and
the original image size is 5000 × 5000. Five sub-datasets
in the INRIA are used for our experiments, including high-
density (Chicago and Vienna) and low-density (Austin, Kitsap,
and Tyrol) city residential areas. All images are obtained
via the same sensor but with regional and built-up structure
differences. For each sub-dataset, 19 images are used as the
training set, two images as the validation set, and 15 images
as the testing set. These datasets are available freely at the
website.4

e) GF-2 built-up regions dataset: The GF-2 dataset is
a high-resolution dataset covering the four cities of Beijing,
Hangzhou, Wuhan, and Chongqing in China. This dataset
is provided by Aerospace Hongtu Information Technology
Company Ltd. and collected by the GF-2 satellite, which is
different from the other four datasets. GF-2 satellite is the first
civil optical remote sensing satellite independently developed
by China with a spatial resolution better than 1 m. It is
equipped with two high-resolution 1.0-m panchromatic and
4.0-m multispectral cameras. Due to changes in regions and
sensors, this dataset is fundamentally different from other pub-
lic datasets. The varying building structure size and appearance
make it very challenging. Each city consists of 64 satellite
images with 0.81-m resolution, and the size of each image
is 2500 × 2500. We use 35 images as the training set, five
images as the validation set, and 24 images as the testing set.

To verify the stability and generalization of our method,
training and testing are conducted on the data of the above
12 cities. We randomly select two from 12 cities as the data
of multisource domains (i.e., Austin and Kitsap, Tyrol and
Chicago, and Kitsap and Vienna), and the other ten are used
as the target domain. The images of each dataset are further
cropped to 512 × 512 patches by a sliding window as the

3[Online]. Available: https://www2.isprs.org/commissions/comm2/wg4/
benchmark/semantic-labeling.html/

4[Online]. Available: https://project.inria.fr/aerialimagelabeling/
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standard image size for this work. Besides, there are different
domain gaps between the 12 cities. It can be found that Austin
and Chicago have dense buildings, narrow roads, and sparse
vegetation. Kitsap has abundant vegetation, and buildings are
scattered. A small proportion of the images in the Tyrol are
densely distributed buildings, while most of them are green
plains. Vienna and Massachusetts have many wide roads and
buildings. Potsdam has many roads and viaducts but fewer
buildings. The buildings in the Village Finder dataset are
mostly nucleated villages with diverse distributions. Four cities
of the GF-2 dataset have very irregular construction patterns,
with buildings next to rivers, forests, roads, and so on, and their
structures vary. The standard evaluation metric intersection
over union (IoU) is applied as the evaluation metric.

2) Network and Experimental Setup:
a) Segmentation network: U-Net [39] is a famous fully

convolutional network in remote sensing, which has been
verified to be effective in building detection tasks [17], [19],
[50]. It forms a symmetrical U-shape using skip connections,
combining the shallow and deep features of the network to
aggregate features of different scales. Benefitting from this,
we adopt U-Net as the primary segmentation network for
implementing UDA in building extraction. For a fair compar-
ison, we also reproduce other current UDA methods based on
the U-Net network and perform sufficient parameter tuning.

b) Domain selection network: The domain selection net-
work is designed based on a fully convolutional structure
similar to [46]. The network consists of five convolutional
layers with the kernel size of 4 × 4, where the number of
channels is 64, 128, 256, 512, and 1. The stride of the first
four layers is set to 2, and the stride of the last layer is set
to 1. Each of the first four layers is followed by a LeakyReLU
layer [28] parameterized by 0.2. Neither pooling layer nor
batch normalization is used.

c) Implementation details: The proposed algorithm is
implemented in PyTorch 1.8 on an NVIDIA Tesla P100 GPU
with 16 GB of memory. The batch size is set to 4. Stochastic
gradient descent (SGD) optimizer is used; the weight decay
rate is set to 1 × 10−8, and momentum is set to 0.9. The initial
learning rate is set to 5 × 10−3 and is decayed following a
polynomial learning rate scheduling with a power of 0.9 during
training. The hyperparameters λ

sda
(S,T ) and β are set to 0.1 and

0.5, respectively.

B. Comparison With the Existing Methods
In this section, our method SPENet is compared with the

existing SSUDA methods [17], [48], [53], [56] and MSUDA
methods [11], [45], [63]. All SSUDA methods in Table II
are reproduced under two settings. The first setting is to
train on two source domains, respectively. The second setting
is to mix two source domains as one domain for training.
In Tables III and IV, we use the best setting (i.e., mix two
source domains) in Table II to show the performance of
SSUDA methods. Fig. 4 demonstrates the visual comparison
results. We analyze and discuss all the above experimental
results below.

1) Austin and Kitsap → Ten Targets: In the single source of
Table II, the performance of different source domains adapting
to the target domain is different in SSUDA methods. For exam-
ple, when Austin is used as the source domain, the average IoU
of SSUDA methods on ten target domains is 41.6%, 40.5%,
43.0%, and 41.1%, respectively. When Kitsap is used as the
source domain, SSUDA methods only achieve the average IoU
of 34.8%, 33.4%, 33.7%, and 33.8%, respectively. This shows

that the domain gap between the ten target domains and Kitsap
is larger than that between them and Austin. In the source-
combination setting, the average performance of the four
SSUDA methods [i.e., triplet adversarial domain adaptation
(TriADA), weakly supervised domain adaptation (WSDA),
Advent, and Fourier domain adaptation (FDA)] is slightly
better than training with a single-source domain (i.e., only
1.8%, 1.8%, 1.7%, and 1.1%), which illustrates that the mixed
domain provides richer information. However, the information
cannot be fully mined in such a mixed manner.

In the multisource setting, MSUDA methods, ColorMap-
GAN [45] and MADAN [63], adapt to the target domain
by changing the style of the data. Their performance in the
building extraction task is not satisfactory, only achieving
the average IoU of 40.3% and 39.6%. This occurs because
the input-level style transfer easily leads to image distortion
on remote sensing images from different sensors, and lacks
adaptation to diverse backgrounds. The recently proposed
MSDACL [11] is a multisource domain UDA method based on
collaborative learning in computer vision community, which
shows better stability than other methods. Compared with
MSDACL, our method SPENet further boosts the perfor-
mance. We think the reason is that we select target-relevant
information from multiple-source domains, instead of learn-
ing all the information indiscriminately, and utilize low-level
structural features of buildings to reduce the interference of
label noise. As discussed in Section IV-A1, the distribution
of buildings in Village Finder and GF-2 datasets is irregular
(nucleated or variable), so the performance gains of our
method on these two datasets are limited compared with other
datasets. In summary, SPENet shows the best performance on
each target domain, and its average performance outperforms
the three MSUDA methods by 13.4%, 14.1%, and 4.7%,
respectively. In particular, when using Potsdam as the target
domain, our method even surpasses the supervised method by
2.2%. As shown in Fig. 4, our method can better recognize
buildings of different sizes and diversified backgrounds and
is more robust than other methods. The above analyses and
results illustrate the effectiveness of our method SPENet.

2) Tyrol and Chicago → Ten Targets: We also conduct
experiments by using Tyrol and Chicago as source domains.
The results are shown in Table III. The four SSUDA methods
trained on the mixed domain bring performance improvements,
and their average performance on the ten target domains
surpasses the mixed source-only model by 5.4%, 5.2%, 6.6%,
and 3.4%. In the three MSUDA methods, ColorMapGAN and
MADAN cannot be effectively used for the building extraction
task. Their performance improvement is limited, and the
average IoU is slightly lower than the four SSUDA methods.
MSDACL shows better adaptation performance than Col-
orMapGAN and MADAN. Compared with these two methods,
the performance of MSDACL is improved by 6.9% and 5.8%,
respectively. In contrast, our method SPENet outperforms the
existing SSUDA and MSUDA methods and achieves 48.3%
average IoU. Compared with the three MSUDA methods, the
average performance on the ten target domains is improved
by 13.0%, 11.9%, and 6.1%, respectively. Even though the
domain gap among the target domain Kitsap and source
domains (Tyrol and Chicago) is large, SPENet can main-
tain better building extraction performance. This verifies our
method’s effectiveness in selecting target-relevant information
from source domains and fully aggregating them.

3) Kitsap and Vienna → Ten Targets: Table IV reports
the performance of each method using Kitsap and Vienna as
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TABLE II
COMPARISON RESULTS OF ADAPTING FROM AUSTIN AND KITSAP TO TYROL, CHICAGO, VIENNA, MASSACHUSETTS, POTSDAM, VILLAGE FINDER,

BEIJING, HANGZHOU, WUHAN, AND CHONGQING, RESPECTIVELY. AUSTIN, KITSAP, TYROL, CHICAGO, VIENNA, MASSACHUSETTS, POTSDAM,
VILLAGE FINDER, BEIJING, HANGZHOU, WUHAN, AND CHONGQING ARE ABBREVIATED AS “au ,” “ki ,” “t y ,” “ch ,” “vi ,” “ma,”

“ po,” “v f ,” “bj ,” “hz,” “wh ,” AND “cq ,” RESPECTIVELY. † DENOTES THAT WE REMOVE THE WEAK SUPERVISION
OF IMAGE-LEVEL LABELS IN WSDA [17] FOR A FAIR COMPARISON

TABLE III
COMPARISON RESULTS OF ADAPTING FROM TYROL AND CHICAGO TO AUSTIN, KITSAP, VIENNA, MASSACHUSETTS, POTSDAM, VILLAGE FINDER,

BEIJING, HANGZHOU, WUHAN, AND CHONGQING, RESPECTIVELY. SYMBOL ABBREVIATIONS ARE CONSISTENT WITH THOSE IN TABLE II.
† DENOTES THAT WE REMOVE THE WEAK SUPERVISION OF IMAGE-LEVEL LABELS IN WSDA [17] FOR A FAIR COMPARISON

TABLE IV
COMPARISON RESULTS OF ADAPTING FROM KITSAP AND VIENNA TO AUSTIN, TYROL, CHICAGO, MASSACHUSETTS, POTSDAM, VILLAGE FINDER,

BEIJING, HANGZHOU, WUHAN, AND CHONGQING, RESPECTIVELY. SYMBOL ABBREVIATIONS ARE CONSISTENT WITH THOSE IN TABLE II.
† DENOTES THAT WE REMOVE THE WEAK SUPERVISION OF IMAGE-LEVEL LABELS IN WSDA [17] FOR A FAIR COMPARISON

source domains. From Table IV, we can see that the proposed
method SPENet achieves the best performance among all the
comparison methods. Regardless the differences between the
target domain and each source domain, the performance of
our method is stable and maintains the best average IoU.

These results further demonstrate the effectiveness of our
method SPENet on the building extraction task.

In addition, from the results in Table II, the performance
of training on the mixed domain may be poorer than that on
a single-source domain. For example, when source domains
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Fig. 4. Qualitative comparison between our method and source only, WSDA [17], ColorMapGAN [45], and MADAN [63] when source domains Austin and
Kitsap are adapted to five target domains Tyrol, Chicago, Vienna, Massachusetts, and Potsdam, respectively.
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Fig. 5. Compare the results of our method and the SSUDA method TriADA
in source1, source2, and the mixed source domain.

Fig. 6. Visualization of information relevant to the target domain (Tyrol)
selected from source 1 (Austin) and source 2 (Kitsap). The “Adap.Map” is
the abbreviation of adaptable map. The brighter region in Adap.Map indicates
the higher relevance with the target domain.

Austin and Kitsap are mixed, the performance of the SSUDA
method TriADA on the target domain Potsdam is reduced.
In order to facilitate observation, we make a histogram,
as shown in Fig. 5, in which the three settings of two
source domains are used to adapt to the target domain
Potsdam, respectively. When one of the source domains has
poor adaption to the target domain, the performance in the
three settings is reduced by 1.62%, 2.02%, and 1.75% after
mixing source domains. This indicates that introducing much
information irrelevant to the target domain negatively affects
domain adaptation. In contrast, our method focuses on target-
relevant information in multisource domains and achieves the
best performance, which outperforms the three performances
trained on a single-source domain by 5.69%, 2.20%, and
5.18%, respectively. This further supports the conclusions
drawn in Tables II–IV.

C. Ablation Studies
In this section, we conduct adequate experiments with

several settings of multisource domain and target domain to
analyze the effectiveness of each component in the proposed
method.

1) Performance Impact of Each Module: Given that our
method consists of three modules, we first report the con-
tribution of each module to the performance of our method,
as shown in Table V. As the results shown, training on the
combination of source domains (Austin and Kitsap) achieves
limited performance on three target domains (Tyrol, Chicago,
and Potsdam), i.e., 37.12%, 46.51%, and 40.10%, respec-
tively. Replacing the combination of source domains with
the exchange of information among domains can improve
performance to some extent, but the performance is unstable.
Adding the purification of target domain information further

TABLE V
ABLATION STUDIES FOR EACH COMPONENT OF OUR PROPOSED METHOD

TABLE VI
PERFORMANCE VERIFICATION OF UP BRANCH, DOWN BRANCH,

AND ENSEMBLE MODEL FOR THE PROPOSED METHOD

boosts the performance on three target domains, which is
improved by 14.46%, 12.14%, and 22.68% on Tyrol, Chicago,
and Potsdam, respectively. Adding the selection of source
domain information also improves the adaptation performance
on three target domains by 15.15%, 13.70%, and 26.62%,
respectively. This result proves that the multisource domain
selection module brings more improvements than purifica-
tion of target domain information, especially when source
domains are very relevant to the target domain. Furthermore,
the full version of our method SPENet achieves the best
performance on target domains, i.e., 65.83%, 58.14%, and
59.12%, respectively. Thus, we can conclude that the three
modules are complementary, and each module contributes to
these improvements.

2) Analysis of Each Network in the Model: Since our
method consists of multiple segmentation networks, we then
report the performance of each network and the final ensem-
ble network on four target domains (i.e., Tyrol, Chicago,
Vienna, and Massachusetts). We define the networks trained
on the source domain Austin and Kitsap as A-Network and
K-Network, respectively. From Table VI, we can observe that
A-Network and K-Network achieve similar performance. The
IoU of the two networks on four target domains differs by
less than 1.00%. This proves that multiple networks achieve
consistent predictions for the same target domain data. In addi-
tion, the ensemble network further improves performance on
four target domains by 3.74%, 1.00%, 0.87%, and 0.86%,
respectively. Therefore, we report the performance of the
ensemble model in all experiments. Besides, one of multiple
networks can be randomly selected as the test network to save
time and memory for inference.

3) Visualization of the Proposed Modules
Performance: To verify the effectiveness of the information
selection and purification modules, we visualize the output
of the two modules in Austin + Kitsap → Tyrol task,
respectively, as shown in Figs. 6 and 7. In the Adap.Map
of Fig. 6, these maps shows the relevance between the
images of source domains (Austin and Kitsap) and the
target domain (Tyrol). It can be seen that the target-relevant
information in Austin and Kitsap is effectively selected,
e.g., rivers, trees, and buildings. In the Uncer.Map of
Fig. 7, these maps show the estimation of the uncertainty
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Fig. 7. Visualization of information with low prediction reliability for the target domain (Tyrol). The “Net1” and “Net2” are the networks trained on source
domains Austin and Kitsap, respectively. The “Uncer.Map” is the abbreviation of uncertain map. The brighter region in the Uncer.Map indicates the less
reliable prediction.

Fig. 8. Trend of IoU with the uncertainty estimation module’s estimation
for the prediction results of the target domain.

of the target domain information (i.e., pseudo-label) by the
information purification module. By observing ground truth
and our prediction, we can find that the region where
the prediction is wrong corresponds to the brighter region
in Uncer.Map. This further illustrates that the information
purification module accurately estimates the unreliable regions
of pseudo-labels.

4) Quantitative Uncertainty Estimation of Prediction:
In order to further illustrate the performance of the information
purification module, we quantify this module’s estimation of
pseudo-labels in the target domain. We define the percentage
of pixels estimated to be above 0.5 in the pseudo-label as
a quantitative metric, i.e., the certainty score. As shown in
Fig. 8, we draw the line chart of IoU changes with certainty
score in Austin + Kitsap → Chicago task. These two curves
have similar changing trends. The performance of our method
is better when the certainty score is higher. This shows that
the information purification module can effectively estimate
unreliable regions of pseudo-labels in the target domain to
generate reliable supervision for other networks.

5) Verification of Model Generalization: To validate the
generalization of our method when introducing a new source
domain, we do the following experiments. From Fig. 5, we can
observe that the source domain Chicago is most conducive to
adapting the network to the target domain Potsdam. Therefore,
based on the source domain Chicago, we introduce the other
four source domains (Austin, Kitsap, Tyrol, and Vienna),
respectively. As shown in Fig. 9, the performance of the
four two-source settings on Potsdam further surpasses the
best single-source domain trained on Chicago by 5.52%,
2.35%, 2.20%, and 3.41%, respectively. Our method can
further improve performance when introducing other source
domains. This shows that our method effectively explores
more target-relevant information from the two source domains
and fully aggregates them to better adapt to the target domain.

Fig. 9. Performance of our method when source domain Chicago is
introduced into other four source domains (Austin, Kitsap, Tyrol, and Vienna),
respectively.

Fig. 10. Performance of our method when source domains Chicago and
Austin are introduced into other three source domains (Kitsap, Tyrol, and
Vienna), respectively.

Similarly, we conduct experiments of introducing a new
source domain into two source domains. As shown in Fig. 10,
based on the best two-source domain settings (i.e., Chicago
and Austin), we introduce the other three source domains
(i.e., Vienna, Kitsap, and Tyrol), respectively. Our method
further boosts the performance on the target domain Potsdam,
which is improved by 4.63%, 1.46%, and 0.77%. The above
sufficient experiments illustrate that our method effectively
utilizes target-relevant information in multisource domains and
has strong generalization.

6) Sensitivity Analysis of Hyperparameter λ
sda
(S,T ): Because

the source domain adaptable loss is adjusted by the hyperpa-
rameter λ

sda
(S,T ), we further analyze the sensitivity of λ

sda
(S,T ) to

the performance of our method. In this experiment, we use
Austin and Kitsap as source domains and randomly select
three datasets (i.e., Massachusetts, Potsdam, and Chicago) as
target domains, respectively. As can be seen from Fig. 11, our
method is not sensitive to the parameter λ

sda
(S,T ) in the range of

{0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. Moreover, the proposed
method achieves the best performance when the parameter
λ

sda
(S,T ) is 0.1. Therefore, in all other experiments of this article,

the value of hyperparameter λ
sda
(S,T ) is set to 0.1.
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Fig. 11. Sensitivity analysis for coefficient λ
sda
(S,T ) of the source domain

adaptable loss on three target domains, respectively.

TABLE VII
SENSITIVITY ANALYSIS FOR HYPERPARAMETER β ON

THREE TARGET DOMAINS, RESPECTIVELY

Fig. 12. Trend of the three losses, respectively, decreasing as training
progresses.

Fig. 13. Trend of the proposed method’s IoU and total loss as training
progresses.

7) Sensitivity Analysis of Hyperparameter β: The hyperpa-
rameter β is introduced to enlarge the score of the adaptable
map for the source image. Thus, we construct experiments
to verify the sensitivity of β on three tasks, i.e., Austin +

Kitsap → Massachusetts/Potsdam/Chicago. The results are
shown in Table VII. Our method is not sensitive to β, while
β lies between 0.3 and 0.5. When β is 0.1, the performance
of the model drops slightly. The performance drops clearly,
while β lies between 0.7 and 1.1. This demonstrates that
learning too much or barely learning from information that
is extremely irrelevant to the target domain is not conducive
to model optimization.

8) Stability of Training Process: We discuss the con-
vergence of losses in our method during training and the
effectiveness of joint training with the proposed three losses
to adapt to the target domain. As shown in Figs. 12 and 13,
we draw the loss curves with epochs and the IoU column
corresponding to each epoch in Austin + Kitsap → Potsdam
task. The Lseg

S , Ltdu
T , and Lsda

(S,T ) curves drop rapidly in the
early training and gradually tend to stabilize after the eighth

epoch. From the curve and IoU column in Fig. 13, we can
see that the total loss can converge stably when three losses
are jointly trained, and the IoU gradually increases as the total
loss decreases. This shows that the three losses proposed in
our method have strong adaptability and effectiveness to the
target domain.

V. CONCLUSION

In this article, we present an effective MSUDA framework
for building extraction. The framework utilizes multitemporal
and multiregional remote sensing images to enrich infor-
mation and boost the performance of building extraction
across diverse aerial imagery datasets. During the training pro-
cess, multiple segmentation networks focus on target-relevant
information in multisource domains to influence adaptation
positively. Target-relevant information is complementary due
to the diversity of multiple-source domains. To aggregate
complementary information, pseudo-labels of target images
inferred by one segmentation network supervise the learning
of other networks in an interactive learning manner. The seg-
mentation capabilities of different networks are fully utilized.
In addition, to overcome the label noise generated by the
difference between the target domain and the multisource
domains, the low-level features of the building are introduced
as a priori in the process of purifying pseudo-labels, thus
estimating the unreliable regions and boosting the performance
of the interactive learning process. Sufficient experiments are
constructed on 12 city datasets with different resolutions to
evaluate the performance of our framework. The proposed
framework evidently outperforms the existing state-of-the-art
methods and even approaches the supervised method in some
settings.
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