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Abstract— Time-series prediction plays a crucial role in the
Industrial Internet of Things (IIoT) to enable intelligent process
control, analysis, and management, such as complex equipment
maintenance, product quality management, and dynamic process
monitoring. Traditional methods face challenges in obtaining
latent insights due to the growing complexity of IIoT. Recently,
the latest development of deep learning provides innovative solu-
tions for IIoT time-series prediction. In this survey, we analyze
the existing deep learning-based time-series prediction methods
and present the main challenges of time-series prediction in
IIoT. Furthermore, we propose a framework of state-of-the-art
solutions to overcome the challenges of time-series prediction
in IIoT and summarize its application in practical scenarios,
such as predictive maintenance, product quality prediction, and
supply chain management. Finally, we conclude with comments
on possible future directions for the development of time-series
prediction to enable extensible knowledge mining for complex
tasks in IIoT.

Index Terms— Deep learning, industrial intelligence, Industrial
Internet of Things (IIoT), neural network, time-series prediction.

I. INTRODUCTION

INDUSTRIAL Internet of Things (IIoT) [1], [2] has
emerged as a powerful tool for aggregating data from vari-

ous production devices and smart terminals, with the continued
development of cutting-edge information and communication
technologies, including cloud computing [3], big data [4],
artificial intelligence (AI) [5], and 5G [6]. By connecting
cloud datacenter, edge computing technologies, and industrial
control networks, IIoT is able to provide sufficient computing
capability and in-time manufacturing services, and further
enable more efficient and flexible production.

Since time series is the most collected data from IIoT,
such as sensor signals and smart terminal monitoring signals,
time-series prediction is emerging as a vital component in
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IIoT. The key tasks that require time-series prediction include
effective process and condition monitoring, such as prognostic
and health management (PHM) [7], fault diagnosis (FD) [8],
product quality prediction [9], and product lifecycle manage-
ment (PLM) [10]. By modeling, analyzing, and predicting IIoT
time-series, the insights of complex industrial issues can be
captured. Therefore, there is an increasing need to explore the
patterns and laws underlying industrial time series to provide
intelligent insights and solutions.

In recent years, deep learning-based time-series predic-
tion methods have emerged as a promising alternative to
conventional data analysis techniques, because of several
key technological breakthroughs. These methods offer sev-
eral advantages to IIoT, including end-to-end processing that
extracts implicit features, eliminating the need for mechanism
modeling [11], [12]. These methods do not rely on expert
experience and only require sufficient training data to extract
deep, abstract information from the data and generate accurate
representations. The model’s representation capability can be
further enhanced by increasing the width and depth of the
neural network (although this necessitates additional data
and computational resources). As a result, deep learning has
garnered significant interest among researchers in the field.
Deep learning models enable the extraction and analysis of
interfeature spatiotemporal correlations from IIoT temporal
data. These models capture a range of temporal correlations,
including periodic temporal correlations, temporal degrada-
tions, intervariable correlations, and so on. Through their
ability to identify and analyze these correlations, deep learning
models provide a powerful means of understanding the com-
plex relationships between different features of IIoT temporal
data.

Although deep learning methods have demonstrated signif-
icant potential in IIoT time-series prediction, the increasingly
complex nature of modern manufacturing tasks, equipment,
and processes has posed significant challenges. As the indus-
try demands greater flexibility in manufacturing, tasks are
subject to constant change. Multivariety, small-lot mixed-line
manufacturing has become more common, involving multi-
ple, ever-changing processes [13]. Consequently, monitoring
data have become increasingly heterogeneous, nonlinear, high
noise, and non-Gaussian, thereby making associated mon-
itoring, detection, and scheduling tasks more challenging.
Moreover, in contrast to IoT, IIoT temporal data are broadly
sourced, high-throughput, low-value intensive, and highly
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TABLE I
COMPARISON WITH THE EXISTING RELATED SURVEYS

dynamic. These data often exhibit unsatisfactory quality,
characterized by imbalances, missing, unlabeled, unseen, and
heterogeneous information. For instance, data from complex
industrial processes may be heterogeneous and time-varying,
while data from smart grids often suffer from widespread
missing data. Similarly, operation and maintenance data from
mechanical equipment may exhibit imbalances and lack labels.

Conventional methods struggle to effectively handle the
complexity, multimodality, and dynamic nature of IIoT tem-
poral data. However, as IIoT-enabled industrial applications
demand greater accuracy, security, and low latency, intelli-
gent instruments are required to process data accurately and
efficiently. Specifically, there is a need for models that are
highly generalizable, robust, and evolvable. Deep learning
methods possess these characteristics and offer a promising
solution to these challenges. Deep learning methods are par-
ticularly well-suited to address the unique demands of IIoT
temporal data, thanks to their ability to extract and analyze
complex features and correlations from this type of data. These
characteristics make deep learning models highly effective in
handling the complexity and dynamism of IIoT temporal data.
In Section II, we will introduce commonly adopted models and
paradigms for deep learning-based solutions to these problems,
followed by a specific description of their applications in
industrial contexts.

After reviewing the existing literature on deep
learning-based IIoT applications and time-series
prediction [14], [15], [16], [17], [18], [19], we have
identified a gap in the literature regarding the application of
deep learning-based time-series prediction in IIoT, particularly
in its specific challenges. While some studies have focused
on time-series prediction methods, some have focused on a
particular method applied in industry, and others have focused
on the application of deep learning in specific industrial
settings, none have specifically examined the challenges and
prospects of using deep learning for time-series prediction
in IIoT. Therefore, this survey aims to address this gap by
exploring the potential of deep learning methods in this area,
as well as the challenges associated with low-quality data.
We provide a comparison between this survey and existing
surveys in Table I.

The subsequent sections are organized as follows.
In Section II, the commonly applied deep learning methods
and modeling paradigms in general time-series prediction
tasks are presented. In Section III, the main challenges of
low-quality IIoT temporal data are presented. In Section IV,
various challenges in IIoT time-series prediction and their

solutions are comprehensively reviewed. In Section V, the typ-
ically applications are presented. The discussion and prospects
are given in Section VI. Section VII is conclusion.

II. GENERAL DEEP LEARNING MODELS AND PARADIGMS
FOR TIME-SERIES PREDICTION

A. General Deep Learning-Based Models

Deep learning has gained widespread attention in
time-series prediction applications, with typical represen-
tative methods, including convolutional neural networks
(CNNs) [20], [21], recurrent neural networks (RNNs) [22],
autoencoders (AEs) [8], [23], restricted Boltzmann machines
(RBMs) [24], [25], attention-based neural networks [26], [27],
and graph neural networks (GNNs) [28], [29], among oth-
ers. Compared with traditional methods, deep learning-based
approaches have demonstrated superior performance in terms
of capturing tendencies, singularities, and scale similari-
ties [30].

1) CNN-Based Models: CNN has been extensively
researched and widely employed in various deep-learning
methods, making it a prominent technique of time-series
prediction. Its ability to capture local data characteristics and
exhibit strong generalization capabilities has contributed to
its popularity. Moreover, CNN is particularly effective when
dealing with process data structured in an array-like topology.
By integrating convolutional computations of multiple scales
and channel numbers in a sequential and parallel manner, it is
possible to construct a neural network capable of capturing
periodic and trending temporal features across different scales.
This enables efficient processing of temporal data. In recent
years, temporal convolutional networks (TCNs) have emerged
as a specialized approach for handling temporal data [31]. The
utilization of CNN-based methods for temporal data prediction
has become a significant research focus within the field.

2) RNN-Based Models: RNNs can effectively model
sequential data by employing directed graphs [32], generating
outputs for each input time step. RNNs are particularly adept
at capturing intrinsic information from time series. To over-
come the challenge of handling long-term dependencies,
several variants of RNNs have been introduced, including long
short-term memory (LSTM) and gated recurrent unit (GRU).
These variants incorporate gating mechanisms to selectively
retain or discard long-term memory information, enabling
the maintenance of dependencies overextended time periods
within the hidden states. Currently, there remains a fervent
interest in academic research focused on the application of
RNN-like neural networks [33], [34].

3) AE-Based Models: AE is an unsupervised neural net-
work model capable of extracting implicit features from data
without relying on labeled information [35]. Comprising an
encoder and a decoder, AE extracts significant features from
the data while reconstructing the original input data. The
reconstructive nature of the decoder aids the encoder in
capturing more accurate representations of the original data.
AE’s modular structure enhances interpretability compared
with other models. Furthermore, stacked AEs (SAEs) [23],
[36] can be created by layering multiple AEs, enabling the
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extraction of deeper levels of hidden information. Various AE
variants, such as sparse AEs [37], [38], VAE [39], [40], and
denoising AEs (DAE) [41], [42], are employed in time-series
prediction. AE has gained popularity as a common model
for time-series prediction [43]. It facilitates the exploration
of implicit representations associated with temporal aspects.

4) RBM-Based Models: The restricted Boltzmann machine
(RBM) [44] is another deep learning method widely used. Its
objective is to reduce the output of the visible layer as much
as possible to the original input, making the hidden layer an
alternative representation of the visible layer. This allows the
RBM to extract essential features from the training dataset
and avoid the problem of local minima. Extensions of the
generic RBM include deep belief networks (DBNs) and deep
Boltzmann machines (DBMs). RBM technology is invaluable
for time-series prediction, with its efficiency and accuracy
greatly improving the latter in terms of production, operational
safety, and overall system reliability [45], [46], [47].

5) Attention-Based Models: The attention mechanism
enables models to allocate computational resources to more
crucial information. Recently, the attention mechanism has
attracted considerable interest from scholars in the field of
deep learning due to the proposal of transformer [48], a neural
network that utilizes this mechanism and has demonstrated
superior performance. As a result, the attention mechanism has
become a highly popular topic in deep learning research [49],
[50]. Apparently, attention-based neural network mechanisms
have gradually become the hottest research in academia for
time-series prediction issues in recent years.

6) GNN-Based Models: Big data are usually represented
in the form of graphs. Due to the complexity of graph data,
it is difficult for most existing deep learning methods to
process it effectively. GNNs can obtain information about the
associative features of data from non-Euclidean spaces and
be used to capture knowledge about the correlation between
data features [51], thus gaining the interests of scholars in
academia. Actually, by capturing correlations among features
and constructing association graphs, GNN performs well in
processing sequence data [29], [52].

B. Modeling Paradigms

Regular time-series prediction issues can be effectively
addressed using discriminative models, which involve directly
mapping the prediction target to the data features. Discrim-
inative models are widely utilized and encompass a broad
range of prediction and classification tasks. Thus, this survey
focuses on other modeling approaches and does not delve
into discriminative models separately. With the development
of advanced AI technologies, a series of novel neural network
modeling paradigms have been developed, such as transfer
learning [53], [54], [55], generative learning [56], contrastive
learning [57], [58], and adversarial learning [59], [60], which
provide solutions for the increasingly complex applications.
The architectures and objectives of these paradigms are shown
in Fig. 1.

1) Transfer Learning: Actually, transfer learning has
become a popular and promising area in time-series prediction
due to its wide application prospects [61], [62].

Fig. 1. Architectures and objectives of the modeling paradigms. Among
them, transfer learning enables knowledge transfer by migrating modules
or parameters of the model; generative learning encodes the input into an
explicit vector and reconstructs the input with it; contrastive learning captures
insights by contrasting the similarity of the latent vectors; and adversarial
learning improves model performance by adversarial gaming among modules
or optimizing targets.

Transfer learning aims to improve the performance of the
learner in the target domain by leveraging knowledge from
different but correlated source domains. As a result, transfer
learning has become a popular modeling paradigm. Transfer
learning can be classified into two types: data-based and
model-based [63].

Model-based transfer learning, on the other hand, focuses on
knowledge transferring through the adaptation or replacement
of neural network modules. The submodules, such as classi-
fiers, extractors, or encoders, may be changed by model-based
transfer learning.

Data-based transfer learning aims to transfer knowledge by
adapting and transforming data. This type of transfer learning
is primarily used to transfer knowledge between application
scenarios. Homogeneous knowledge migration is a common
approach that focuses on reducing distribution discrepancies
between the instances of the source and target domains. There
are typically two strategies to achieve this goal: instance
weighting and feature transformation. A representative weight-
ing strategy can be expressed as follows [64]:

E(x,y)∼PT [L(x, y; f )] = E(x,y)∼P S

[
PT (x, y)

P S(x, y)
L(x, y; f )

]
= E(x,y)∼P S

[
PT (x)

P S(x)
L(x, y; f )

]
(1)

where P S and PT are the distribution probabilities of the
source and target domain data in the feature space, respec-
tively. The upper and lower parts of the equation represent
supervised and unsupervised policies, respectively.

Feature transformation approaches intend to find shared
latent features and use them as a medium for transferring
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knowledge. Such approaches transform each original feature
into a new feature representation for knowledge transfer. The
objectives of constructing representations include minimizing
marginal and conditional distribution differences, preserving
the attributes or underlying structure of the data, and finding
correspondences among features. One of the main objectives
is to reduce the discrepancies in the distribution of source
and target domain instances. Maximum mean discrepancy
(MMD) [65] is an extensively applied measure.

2) Generative Learning: Generative learning methods,
which can approximate and generate a joint distribution of
target and training data, generate samples similar to real data.
It has, therefore, become an important branch in time-series
prediction [7], [66]. Generative learning allows modeling the
substrate distribution of real data and generating data or
features in an unsupervised manner for augmentation of real
samples [18]. Generative models estimate the approximate
distribution of the data by conditional density. The prob-
abilistic generated model parameters allow the uncertainty
of the data to be captured. By combining the probabilistic
distribution of the data with the generative process, generative
models can provide data support for inference, prediction, and
decision making. Such modeling paradigms are also robust to
uncertainty and the time-varying nature of data distribution.

Generative learning captures the uncertainty of the data by
estimating the approximate distribution of the data to model
p(x |y) and p(y). Commonly adopted generative learning
models are variational AEs (VAE) and generative adversarial
networks (GANs) [67].

VAE assumes that both the prior p(z) and the approximate
posterior q(z|x) follow Gaussian distributions. VAE is an
extension of AE that models the output of the encoder as
the mean and variance of the target distribution. The VAE
comprises two encoders, for computing the mean and the
variance, respectively. The output of the decoder is expected
to be variance-free, and co-evolution is achieved through an
implicit confrontation between the decoder and encoder 2.
In variational inference, the evidence lower bound on the
log-likelihood of the data is maximized

log p(x) ≥ Eq(z|x)[log p(x |z)] − DK L(q(z|x)∥p(z)) (2)

where p(x), p(z), and p(x |z) are evidence probability, prior,
and likelihood probability, respectively.

GAN comprises the generator and discriminator modules.
The discriminator aids the generator in obtaining realistic data
generation by playing against it. The generator captures the
data distribution and aims to maximize the discriminator’s
error probability. Through iterative adversarial training, both
modules, especially the generator, improve their performance.
The discriminator attempts to minimize its loss D(x), while
the generator attempts to maximize the loss of the discrimina-
tor 1−G(D(z)). It can be described by the following equation:

max
G

min
D

Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − G(D(z)))].

(3)

3) Contrastive Learning: Currently, methods based on
contrastive learning are extensively utilized for time-series

prediction [68], [69], [70]. Contrastive learning is a typical
discriminant self-supervised learning, thereby mining prop-
erties of the dataset itself to help the model learn without
labels [71], [72]. It aims to learn similarities and differences
among samples through representation learning [73], [74],
[75]. Contrastive learning obtains mappings of certain pseu-
dolabels by comparing input samples and their reconstructions.
On the other hand, contrastive learning can learn by comparing
multiple samples of the same signal [67].

Contrastive learning objectives can be divided into two
types, i.e., context-instance contrast and instance–instance
contrast. Context-instance contrast, also known as global–local
contrast, aims to model the attribution relationship between
the local and global representations of the sample. A repre-
sentative optimization objective for context-instance contrast
is mutual information (MI). The objective is to capture the
direct attribution of local features to global semantics. MI is
obtained by maximizing the association between two relevant
variables. Noise contrastive estimation (NCE) [76] is one of
the typical loss functions. NCE and its variant InfoNCE [71]
can be utilized to learn MI

LNCE = − log
esim(zi ,z j )/τ∑2N

k=1 Ik ̸=i esim(zi ,zk )/τ
. (4)

Each sample x is mapped into two augmented views (i.e.,
x+ and x−); thus, there are 2N augmented pairs, in which there
are 2N −1 negative instances correspondingly. In this way, the
latent representations of similar samples can be kept close to
each other in the feature space, and the latent representations
of dissimilar samples can be made away from each other. The
mathematical representation of InfoNCE loss is as follows,
which distinguishes zi from its k negative pairs:

LInfoNCE = − log
esim(zi ,z+)/τ

esim(zi ,z+)/τ +
∑k

j=1 esim(zi ,z−

j )/τ
. (5)

Instance–instance contrastive learning directly studies the
relationship between instance-level local representations of
various samples, i.e., metric learning. For example, the
multivariate monitoring signals associated with predictive
maintenance of equipment may contain information about the
remaining useful life (RUL) of bearings and information about
possible faults. For the RUL prediction task, however, the fault
type information is relatively unimportant. The model should
focus on important sensing signals or sequence segments. One
representative approach is MoCo [74], which distinguishes
instances by momentum contrast. For a sample x , an instinc-
tive representation q = fq(x) is learned by a query encoder
fq(·) that distinguishes x from other instances. For the other
samples, an asynchronously updated key encoder f k(·) is used
to generate k+

= fk(x) and ki = fk(xi ) with the following
optimization objectives:

LMoCo = − log
eq·k+/τ∑K
i=1 eq·ki /τ

. (6)

4) Adversarial Learning: Due to the demand for time-
series prediction, adversarial learning has gradually gained
the spotlight of scholars in related fields in recent years.
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TABLE II
ADVANTAGES AND DISADVANTAGES OF GENERAL DEEP LEARNING MODELS AND PARADIGMS FOR TIME-SERIES PREDICTION

Adversarial learning is a widespread research strategy for
neural network modeling in deep learning, which applies the
ideas of game theory in order to make full utilization of
data resources [77] and to improve model robustness and
completeness. Adversarial training is generally implemented
in two ways. One is neural networks represented by GAN [78],
domain adversarial neural networks (DANNs) [79], and so on,
which are implemented by adversarial gaming between various
modules or optimization objectives. It is noted that there is no
difference between the GAN here and the previous GAN in
the generative learning part, where there are both generative
and adversarial learning paradigms in GAN. Such adversarial
learning generally acts as an auxiliary to other tasks, such
as transfer learning or generative learning, improving the
performance of the model for the main task. The other is
represented by strategies, such as projected gradient descent
(PGD) [80] and fast gradient method (FGM) [81], which
are realized with adversarial samples [82]. Such adversarial
tasks aim at improving the model’s robustness with minor
perturbations.

C. Summary

In general, most of the time-series prediction methods
are constructed with these extensively adopted models and
modeling paradigms. Deep learning models for time-series
analytics applications have unique strengths and constraints,
as shown in Table II, that can make it challenging to handle
complex time-series prediction tasks. CNNs capture local
feature correlations well and are robust, but deeper CNNs can
have slow convergence and high computational complexity.
RNNs excel in processing sequence data but have difficulty
with long-term dependencies and are computationally ineffi-
cient for parallel computing. AEs have low complexity and
are robust to noise and missingness, but may not be useful
for problem-oriented applications. RBMs are unsupervised
and have robustness to ambiguous data, but have excessive
computational loss. Attention-based neural networks have
strong representation abilities, capture correlations between
features at arbitrary locations, and have some interpretability,
but have slow convergence and are not universal computation.
In some scenarios, conventional deep learning methods may
be invalid, and advanced modeling paradigms need to be

employed. Specifically, transfer learning is the most prevalent
paradigm for distribution shifting. Domain knowledge from
different data domains can be fused with each other to
transfer the complete solution to the scenario with low-quality
data. However, it requires high-quality source data related to
the target domain data. Generative learning and contrastive
learning, two paradigms of self-supervised learning, can be
applied to obtain insights by learning the features of the
data itself. However, it is difficult to obtain favorable results
when the self-supervised task is not well defined or has little
suitability to the downstream task. Adversarial learning is
generally used as an auxiliary to other modeling paradigms
and is rarely used alone. It is worth noting that these paradigms
are not mutually exclusive and more powerful models can be
constructed through their collaboration. Although each model
offers distinct advantages, they may face challenges when
addressing complex time-series prediction tasks.

III. MAIN CHALLENGES OF TIME-SERIES PREDICTION IN
IIOT

IIoT time-series refers to the collection of historical data
over a period of time in an industrial setting, such as a man-
ufacturing plant, power station, or chemical plant. These data
are often gathered by sensors and other measurement devices
that monitor various aspects of the industrial processes, such
as temperature, pressure, flow rate, and vibration.

One of the primary challenges in effectively representing
IIoT time series lies in its complex characteristics, which
are generally nonlinear and non-Gaussian. Besides, errors and
malfunctions in sensor operations, data collection, transmis-
sion, storage, and environmental factors may contribute to
low-quality industrial data that is highly noisy and incomplete.
Another significant challenge in time-series prediction in IIoT
applications is the high variability and unpredictability of
industrial processes. These factors can lead to imbalanced,
unlabeled, and unseen industrial temporal data, further compli-
cating the prediction process. An additional challenge lies in
addressing the heterogeneity and multisource of the data. Due
to the involvement of multiple sensor types and devices that
generate large volumes of temporal data in various formats
and from diverse sources, fusing time-series data in IIoT can
be challenging.
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Fig. 2. Main challenges of time-series prediction in IIoT.

These issues of low-quality data-related challenges of
time-series prediction in IIoT can be summarized as follows
and shown in Fig. 2.

A. Challenges in IIoT Multisource Heterogeneous
Time-Series Fusion

The data involved in industrial intelligence applications are
generally characterized by multisources, heterogeneity, and
multimodal, due to the gradual development of intelligent
manufacturing toward complexity, distribution, and dynamism.
Data from various sources with various structures are to be
processed jointly. For example, the monitoring signals in the
manufacturing workshop come from various sensors, such as
sound, light, electricity, acceleration, and pressure. The sensors
are placed at various locations, and the signals may be hetero-
geneous, for instance, signals may be with different sampling
periods, with large frequency differences, carry different global
or local information, and so on. If these signals are processed
separately, the coupling and correlation between them will be
ignored. Intelligent methods for efficient fusion of industrial
multisource heterogeneous data are urgently needed [83], [84].
Industrial data fusion models need to be transitioned to hybrid,
dynamic and distributed [85], and the efficient fusion and
accurate characterization of heterogeneous data in industry is
an essential task.

B. Challenges in IIoT Low-Quality Time-Series Processing

High-quality data is not always available in IIoT due
to various factors, such as environmental conditions, equip-
ment failure, sensor malfunctions, data transmission errors,
incompatible data formats, and maintenance and downtime.
For instance, in power production and transmission pro-
cesses, monitoring data may have missing elements due to
various factors, such as communication interruptions, sen-
sor failures, power outages, or equipment maintenance. And
the high-intensity power fluctuations bring about unfilterable
noise. The noise and missing values can significantly degrade
the efficiency and effectiveness of subsequent data prediction
and analysis. Besides, inaccurate or incomplete data not only

increases the risk of errors or malfunctions in industrial
systems but also reduces their overall reliability. Therefore,
productive processing of noisy and missing data has become
hit subject in IIoT temporal data processing [86]. To provide
high-quality data input for subsequent intelligent industrial
time-series prediction models, efficient processing of industrial
data is necessary after data acquisition to improve and enhance
data quality.

C. Challenges in IIoT Complex Time-Series Representation

The complexity of industrial scenarios, equipment, and
processes is on the rise, leading to increasingly complex
sensing signals collected in IIoT. These data are typically high-
throughput, multidimensional, nonlinear, and non-Gaussian,
making it challenging to extract the insights hidden in indus-
trial data. For instance, in the iron and steel smelting process,
which involves high temperatures, high pressures, and com-
plex chemical reactions, monitoring data encompasses various
dimensions such as temperature, pressure, flow, and chemical
composition. These data often exhibit nonlinear and non-
Gaussian distributions, exemplified by variations in oxygen
content and furnace temperature during converter steelmaking.
Traditional statistical and signal processing methods may
analyze a specific statistical indicator or signal trend. These
methods may struggle to describe the temporal and spatial
correlations present in raw sensor data. As a result, there is
a growing need to develop high-performance representation
learning methods for time-series in IIoT.

D. Challenges in IIoT Time-Series Distribution Shift
Alignment

The multivariate, small-batch customization characteristic of
modern discrete manufacturing makes the operating conditions
of industrial processes highly variable, the independent, and
identically distributed assumption does not always hold in for
the monitoring data. Besides, as Industrial Internet-enabled
manufacturing paradigms, such as cloud manufacturing, are
often loosely federated, the data may not be publicly avail-
able [87]. For example, the lifecycle of complex equipment is
usually in normal operation; thus, fault data is scarce for FD
tasks. Besides, the security of production data is also a limit
on modeling [87]. Thus, if industrial AI is deployed in a new
scenario, it may not maintain satisfied effectiveness. Moreover,
the different operating environments and equipment conditions
often result in expensive and inaccessible data, which may
also be unlabeled [45] and imbalanced [88]. These challenges
can be attributed to the distribution shifts of industrial data,
making it difficult for models to accurately capture the dis-
crepancies in data domains and leading to poor robustness of
IIoT time-series prediction models [89]. Conventional methods
heavily rely on large amounts of high-quality data and may
not be applicable in such scenarios.

IV. CURRENT SOLUTIONS TO THE CHALLENGES OF
TIME-SERIES PREDICTION IN IIOT

Sufficient high-quality industrial data are not always avail-
able. For instance, in time-varying industrial systems, due to
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Fig. 3. Framework of state-of-the-art solutions to the challenges of time-series prediction in IIoT.

variations in equipment, operating, environments, and pro-
duction tasks, monitoring data varies accordingly, making
it difficult to collect sufficient and well-labeled historical
data, resulting in unlabeled and imbalanced data. In power
systems, unexpected data transmission interruptions, sensor
failures, network delays, and extreme environmental factors
may result in high-noise and widespread data missing. In a
loose industrial alliance like cloud manufacturing, production-
related industrial AI needs to be mutually supported and
maintained by individual users, yet their respective data is
unseen to each other. Supply chain data can come from
different sources such as suppliers, logistics providers, and
shipping companies, which may have various structures and
formats. These problems make it difficult for conventional
deep learning methods to meet the needs of current temporal
data prediction issues in IIoT.

Nevertheless, with the develop of neural networks and
advanced paradigms, these issues can be effectively managed.
This section analyses the corresponding deep-learning solu-

tions for these issues. The main challenges and their solutions
are shown in Fig. 3 and Table III.

A. Methods for IIoT Multisource Heterogeneous Time-Series
Fusion

Since the data collected by IIoT are usually multisource
and heterogeneous, it is difficult to model accurately by
simple models. It is clearly unreasonable to treat data of
different modalities or structures separately, because highly
correlated data between different modalities may reserve valu-
able insights. Thus, multisource heterogeneous time-series
need to be effectively aggregated and fused.

1) Aggregation of Multisource Time-Series: Monitoring
data may be collected from various sources in IIoT. And
constructing and training industrial data analysis models with
data from a single source may prove challenging. There-
fore, integrating data from multiple sources is necessary to
build more comprehensive models that can generalize well.
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TABLE III
TYPICAL STATE-OF-THE-ART SOLUTIONS TO THE CHALLENGES OF TIME-SERIES PREDICTION IN IIOT

Guo et al. [90] proposed a method for extracting features from
multisource data and predicting the RUL of cutting tools
in real time, in which the data are fed into a multiscale
convolutional attention network (MSAN) to learn the features
and fuse the multisource data. Ren et al. [91] proposed an FD
method LM-CNN, for multisource data fusion. A multiinput
multioutput strategy is introduced for implicit data augmenta-
tion, and a label-spit method is proposed for label sampling
space enlarging to fuse the latent insights of the multisource
data.

The effective resolution of conflicting information from
multiple sources, while leveraging the complementary
nature of heterogeneous information sources, is anticipated.
An important aspect is to analyze the relative relationship
of data from each source in the feature space. For instance,
Wang et al. [92] proposed a bearing FD method based on
multilocal model decision conflict resolution (MLMF-CR).
The high conflict situation that may occur in the decision
fusion process is considered, and the trust degree distribution
is introduced to reduce the information conflict.

To address the challenges of complex operating con-
ditions in variable sources, transfer learning can be
adopted in knowledge transferring among the sources. For
instance, Zhou et al. [93] proposed a dynamic transfer learn-
ing approach for industrial process prediction with limited
data. The historical data from similar equipment or conditions
are utilized as an auxiliary in target models’ training. A mul-
tisource transfer learning framework with dynamic maximum
mean difference loss is built based on the distribution distance
among each historic data. Yang et al. [131] propose a trans-
fer learning-enabled edge CNN framework for 5G industrial
edge networks with privacy-preserving characteristics. The
proposed architecture allows for fine-tuning of the edge CNN
model without training it from scratch. Wang et al. [94] pro-
posed a federated transfer learning framework with a central
server and smart devices to address data scarcity and privacy
challenges in cross-domain predictions in smart manufactur-

ing. The central server shares knowledge and edge devices
transform the base model into target domain models with task-
specific data.

2) Fusion of Heterogeneous Time-Series: Advanced solu-
tions to such problems are generally based on data fusion and
multimodule collaboration [84]. Heterogeneous temporal data
are extensively fused by hybrid models, in order to create a
more complete and accurate view of a process or system.
For instance, Ren et al. [9] propose a wide-deep-sequence
(WDS) model-based data-driven prediction approach. This
approach allows the fusion representation of heterogeneous
features, such as multiprocess and multidimensional data of
production processes, and multicategory data originating from
the supply chain. It provides reliable quality predictions for
industrial processes with different types of industrial data.
Zhang et al. [95] proposed a Siamese time-series and differ-
ence network (STS-D network), which includes the Siamese
time-series and various modules, for froth flotation process
performance monitoring. The former module is adopted to
extract valid and uniform representations for the input time
series at the current and previous moments; afterward, the later
combines the representations of the two inputs with the tagged
performance at the previous moment to predict the perfor-
mance at the current moment in an incremental manner.
Mezair et al. [96] propose a deep learning framework for
processing heterogeneous data for the task of fault detection
of multisensor signals, combining LSTM, CNN, and graph
convolution, and using a branch-and-bound procedure to guide
the inference process. These collaborative approaches can
process data in multiple formats on a single device. Shao et
al. [97] proposed a multisignal FD method based on wavelet
transform and CNN, capable of simultaneously taking sensor
signals from multiple modalities. The acquired sensor signals
are converted into time-frequency signals by wavelet transform
as input to an FD model, after which a CNN is used to obtain
representations of the faults from the time-frequency maps to
predict the condition of the motor.
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Generative learning and contrastive learning can be adopted
as an auxiliary for knowledge fusion in heterogeneous data.
For example, Liang et al. [66] proposed a multitimescale deep
convolutional GAN to handle anomaly detection of industrial
time series. The multivariate time series is first transformed
into multichannel signature matrices by mutual correlation
computation, and then the hidden features of the multichannel
signature matrices are captured by unsupervised adversarial
training. Deldari et al. [98] propose a cross modality sensor
data contrastive learning method, with a novel objective func-
tion that computes intercorrelations between multisensor data
to learn qualitative representations of different data patterns
and minimizes similarities between uncorrelated instances.

B. Methods for IIoT Low-Quality Time-Series Processing

1) Processing of High Noise in IIoT Time-Series: The
IIoT time-series data often contains a significant amount of
noise, which can obscure useful information and degrade
the performance of data analysis models. There are typically
two approaches to addressing this problem: one is to filter
out noise through data preprocessing. Yao et al. [99] devel-
oped a mechanical fault detection method that employs a
recursive learning strategy to effectively mitigate noise. Their
approach introduces a novel multilevel attention mechanism,
which recursively tracks the noise components and gradually
denoises them in a coarse-to-fine manner, leading to satisfied
noise suppression performance. Yan et al. [100] introduced a
denoising GRU (DGRU) [100] to mitigate the effect of noise
by adding a denoising gate to the GRU and applied it for sinter
ore burn-through point prediction.

The other is to reduce the impact of noise by enhancing the
robustness of the model to noise. For instance, Xu et al. [101]
proposed a multireceptive field denoising (MFD) residual
convolutional network (MF-DRCN) for FD in strong noise
conditions, in which an MFD block is designed to enhance
the deep features extracted by the CNN model and filter out
the interference feature information. Liu et al. [37] propose a
complex industrial process fault identification scheme, stacked
sparse denoised AE (SSDAE)-Softmax, which can automat-
ically and adaptively learn the potential intrinsic features
of fault data with noise contamination. Chang et al. [102]
proposed a CC-Net-based soft sensor method for denitrifi-
cation and desulfurization processes. Contrastive learning is
adopted for separate normal samples and anomalies to obtain
robustness to the anomaly.

2) Processing of Missing Value in IIoT Time Series:
The most intuitive solution for missing values in data is
imputation, i.e., artificially generated data to fill in the missing
positions. Traditional data imputation is generally achieved by
statistical methods. However, these methods usually require a
defined optimization objective. If the optimization objective
is deviated, then such imputation methods will be ineffec-
tive. Besides, such imputation methods can also reduce the
robustness of the model. Thus, more “intelligent” methods are
needed.

The paradigm of generative learning becomes a viable
solution. It is also the most extensively adopted method.
Yao and Zhao [103] propose a downstream task-oriented

customized soft sensor data imputation method, fine-tuned
imputation GAN. This method customizes data imputation by
discriminating key variables of quality relevance and interpo-
lating them precisely. Pseudolabeling is applied to overcome
the problems of interactive optimization of data imputation
and label prediction. Gao et al. [105] propose a soft sensor
data augmentation method combining stacked variational AEs
(SVAEs) and Wasserstein GANs (WGANs) for the process
industry. Depth features are extracted by stacking of SVAE
and generative models are constructed by combining SVAE
and WGAN for generating missing data and prediction. Pan et
al. [104] proposed an adaptive-learned median-filled deep AE
for missing values imputation, which continuously replaces
the missing values by the median of the input data and its
reconstruction. And it pays more attention to the reconstruction
learning of nonmissing values or missing values in different
iteration periods.

Graph-based techniques can enhance the robustness of
models to missing data and mitigate their impact on down-
stream tasks by extracting structural information. For instance,
Kang [106] proposed a graph-based method that employs
GNNs for data-driven product fault detection with missing
values. The graph represents the variables and their pairwise
relationships to improve the robustness of the prediction
model. Kavianpour et al. [107] proposed a semisupervised
approach based on ARMA graph convolution, adversarial
adaptive, and multilayer multikernel local MMD. These tech-
niques extract structural information from data, align classes,
reduce differences in the structural distribution in domains,
and address the problem of missing data.

C. Methods for IIoT Complex Time-Series Representation

1) Representation of Intervariants Correlations: In manu-
facturing systems, IoT aggregates a wide range of dissimilar
data. However, the excessive size of the data can lead to a
waste of computational and storage resources, while redundant
information can deteriorate the performance of data analy-
sis models [132]. For instance, Yuan et al. [23] proposed a
product quality prediction method adopting a stacked quality-
driven self-encoder (SQAE) to generate quality-dependent
feature representations. With a quality-driven AE, irrelevant
information from raw input data is reduced through reconstruc-
tion using input and quality data. This approach enables a deep
SQAE network to learn hierarchical quality-related features
by progressively reducing irrelevant features layer by layer.
Wang et al. [108] proposed an optimized condition prediction
method based on a Gaussian–Bernoulli DBN (GDBM) model.
The model introduces extreme value perturbations and simple
particle swarm optimization methods to optimize the model
hyperparameters. This method can balance efficiency and
accuracy to some extent.

Moreover, the various signals may be highly coupled and
correlated. While the information may be redundant, it can
provide important industrial insights that are essential for
industrial AI. Therefore, it is necessary to perform feature
extraction and representational modeling of high-dimensional
industrial data to compress the volume of data while capturing
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as many industrial insights as possible. For instance, Yao
and Ge [109] proposed an industrial quality predictor based
on cooperative depth dynamic feature extraction and variable
time delay estimation with a semisupervised dynamic feature
extraction (SSDFE) network to extract nonlinear dynamic fea-
tures to build a regression model for quality prediction. Chen
et al. proposed a fault prediagnosis framework to obtain fault
association graphs and constructed FD models using graph
convolutional networks with the weight coefficients [29].

2) Representation of Temporal Correlations: The periodic
changes and degradation of time-series signals collected in
IIoT can be applied to interpret the state change trends of
equipment. These time-series are crucial for improving the
accuracy of analytical models, making it extremely important
to capture temporal features in IIoT time-series. The temporal
correlations can be captured by several neural network mod-
ules, such as CNN, LSTM, and attention mechanism. Singh
Chadha et al. [133] proposed an FD method based on CNN,
exploiting the temporal dependencies in process data. Liu et
al. [110] propose a future capacity method for lithium-ion
batteries RUL prediction by fusing LSTM and Gaussian
process regression (LSTM + GPR). The method decomposes
raw battery capacity data using empirical mode decomposition
(EMD) into intrinsic mode functions (IMFs) and a residual.
An LSTM submodel estimates the residual, while a GPR
submodel fits the IMFs with uncertainty estimation. Ren et
al. [111] proposed a multiscale dense GRU (MDGRU) for
the RUL prediction of rotating bearings, which captures serial
attributes and integrates information from different time scales.
Song et al. [186] introduced an RUL prediction method
based on attention mechanisms, which captures long-term
dependencies within sequence data by modeling the rela-
tionships between different time series. Zhang et al. [112]
introduced DeepHealth, a self-attention-based framework for
predictive operation and maintenance. DeepHealth comprises
two submodels for health perception and sequence predic-
tion. To capture temporal correlations, an enhanced attention
mechanism captures global dependencies in vibration signals,
facilitating both long-term and short-term sequence predictions
for timely maintenance decisions.

3) Representation of Temporal–Spatial Correlations: The
simultaneous acquisition of intervariants and sequence correla-
tion in industrial multivariate time-series is also a feasible and
effective method. Yang et al. [113] proposed a spatiotemporal
graph-based feature extraction method called SuperGraph for
rotating machinery FD. The spatiotemporal graph is con-
structed with spectral analysis and feature vectors based on
Laplace matrices are extracted from it. Each node of the graph
represents a spatiotemporal graph, which is called SuperGraph.
Classifying the nodes in SuperGraph enables graph classifi-
cation. Ren et al. [114] proposed a multichannel temporal
attention-based network (MCTAN) for health indicator pre-
diction of aircraft engines. The contribution of data collected
by various sensors is measured by channel attention and
the potential long-range temporal relationships are effectively
extracted by a multiheaded local attention mechanism. Yuan
et al. [22] proposed a spatiotemporal attention-based LSTM
for quality prediction. To select variables associated with

quality prediction at each time step and identify hidden states
for quality prediction at various time steps, the spatial and
temporal variable attention are introduced.

4) Representation of Significant Local Correlations: The
information in IIoT data is often sparse, and for a given
industrial issue, critical insights may exist mainly in data
related to a specific time and space. Therefore, it is expected
to focus more on obtaining the crucial feature significantly
relevant to the current task, which is extremely important for
both the accuracy and speed of industrial prediction models.
For instance, Dong et al. [26] proposed PGA-Net, a pyramid
feature fusion and global contextual attention network. Multi-
scale features are extracted and then fused into five resolutions
with dense skip connections in a pyramid feature fusion
module. The global contextual attention module facilitates
effective information propagation from low-resolution to high-
resolution fused feature maps. Jang et al. [115] proposed
an adversarial AE (AAE)-based process monitoring system
capable of generating features that adhere to a specified
prior distribution, capturing high-dimensional data information
manifold. Geng et al. [116] introduced a gated convolutional
neural network-based transformer (GCT), a dynamic soft sen-
sor, considering the nonlinearity, dynamics, and noise present
in industrial time-series data. GCT utilizes a modified gated
convolutional neural network to adaptively filter important
features and employs a multihead attention mechanism to
model correlations between different time moments.

D. Methods for IIoT Time-Series Distribution Shift Alignment

Gaining insights into data distribution and labeling space
is crucial for effectively aligning distribution shifts in IIoT
time series. Thus, addressing the challenges of data imbalance,
unlabeled, and unseen data requires considering both aspects.

1) Processing of Imbalanced Data: Data imbalanced is one
of the most general issues in industrial data analysis, especially
in IIoT time-series analysis. Traditional methods are usually
realized by simple downsampling and oversampling. Obvi-
ously, these methods may lead to bias in resampling samples.
There are two broad advanced solutions to this problem, one is
to improve the robustness and generalization of the model by
learning domain invariance or domain generalization, and the
other is to change the distribution of data by data augmentation
with “pseudodata.” The former is generally realized with
transfer learning and the latter with generative learning.

Transfer learning is one of the favored approaches to
data imbalance, by decreasing the dependence of the con-
structed deep learning models on the huge amount of target
domain data. For instance, Chen et al. [117] proposed a
hierarchy-guided transfer learning (HGTL) framework for
small sample fault identification. It constructs category affini-
ties using domain knowledge, label semantics, and interclass
distances, forming a hierarchical cluster structure. The hier-
archical feature learning network is pretrained on source
domain majority class samples with high similarity to extract
transferable fault information. By leveraging information about
similar faults, this framework enables feature extraction from
minority sample classes. Cao et al. [118] proposed a trans-
fer learning model combining pseudocategorized maximum
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mean difference (PCMMD) and multiinput multioutput con-
volutional networks (MIMOCNs). A domain-shared encoder
and classifier are trained with labeled data from the source
domain. Then, the MIMOCN is trained with both the source
data and target data, incorporating pseudolabeling to assess
cross-domain distribution differences within classes.

Generative learning-based approaches for data generation
and data augmentation have been seen as a viable way to
address data imbalanced. For instance, Zhou et al. [119] pro-
posed a distribution bias-aware collaborative GAN, to mitigate
distribution bias in imbalanced IIoT data. It incorporates a
supplementary classifier for data augmentation and a condi-
tional generator with random labels to augment samples in
the minor classes. Generators, discriminators, and classifiers
are collaborative adversarial trained using a weight-sharing
scheme. Yang et al. proposed a GAN-based data generation
method to address the problem of data imbalance in FD [120].
Various GANs were used to generate various fault spectrum
data, and a data selection module (DSM) was used to filter
and purify the data. The filtered generated data is combined
with real data to form a balanced dataset for FD. To address
the inconsistency between dimensionality reduction and fea-
ture retention in imbalanced IIoT time-series, Zhou et al. [33]
propose a variational LSTM (VLSTM) model for intelligent
anomaly detection using reconstructed feature representation.
Zhang et al. [7] propose an RUL prediction framework with
data self-generation for acyclic and cyclic degenerate models.
By employing a convolutional recursive GAN, photorealistic
time-series data are generated. Furthermore, a hierarchical
framework is introduced to integrate the generated data into
the existing RUL estimation method.

Contrastive learning also can be adopted in concert with
transfer learning to extract similarity features cross domain to
deal with imbalanced data. For instance, Kuang et al. [121]
proposed a class imbalance adversarial transfer learning
(CIATL) network to learn domain invariants and knowledge
for FD tasks with imbalanced data. Zhang et al. [70] propose
CDG, a contrastive decoder generator for Few-shot quality pre-
diction in multistage manufacturing processes. CDG addresses
the lack of annotation and handles previously unseen tasks
without additional training. It comprises a machine feature
encoder for encoding machine feature dependencies, a con-
trastive stage and task feature generator for self-supervised
generation of task and stage vectors using contrastive learning,
and an instance-specific decoder generator for generating
weight and deviation parameters based on query-support vec-
tor correlation, facilitating quality prediction.

2) Processing of Unlabeled Data: Industrial data unlabeled
is a typical task for transfer learning. In traditional approaches,
unlabeled data are generally processed by clustering methods.
It is inefficient and the inconsistency of clustering goals
and downstream tasks may lead to unsatisfied performance.
Thus, some semisupervised and self-supervised methods have
become of interest to researchers.

By applying semisupervised or self-supervised methods,
domain knowledge in the source domain can be transferred
to the target domain. Thus, the most extensively applied
method for data unlabeled is transfer learning. For instance,

Mao et al. [122] propose a transfer learning method for RUL
prediction of rolling bearings across operating conditions.
After the prediction model is trained in the original domain,
transfer component analysis is applied to calibrate the original
model to a model applicable to the target domain. Chen
et al. [123] proposed DATN, a domain adversarial trans-
fer network, to transfer fault-related knowledge across large
domain shifts. It employs two asymmetric encoder complexes
with deep CNN to learn hierarchical representations from
the source and target domains. The network trained on the
source task is transferred to enhance training on the target
task. To minimize interdomain differences, domain adversarial
training with inverted label loss is incorporated. However,
though transfer learning addresses the transfer of knowledge
among different scenarios or tasks, the diversity of devices
and sensors in IIoT causes the types of data and labels in the
origin and target domains to be potentially different [134].

Contrastive learning is another viable solution [135]. It can
learn usable features from unlabeled data on its own. Ding
et al. [68] propose a bearing fault prognosis method with
self-supervised pretraining using contrastive learning. Their
method utilizes SSPCL representation learning to enhance
generalization and obtain discriminative depth features from
unlabeled bearing datasets. Based on this, a semisupervised
intelligent early fault detection method is proposed to fur-
ther enhance generalization by leveraging a large amount of
unlabeled data. Ragab et al. [57] propose a cross-domain
mechanical RUL prediction method based on contrast adver-
sarial domain adaptive (CADA). InfoNCE [72] is used as
one of the indicators of domain alignment to maximize the
representation of the MI among domains.

Generative learning-based methods can also be an effective
approach to such issues. For instance, Ko and Kim [56]
proposed a semisupervised deep generative model for fault
classification with unlabeled data. To decrease the reliance
on labeled anomaly data and leverage the abundance of
normal data in normal working conditions, Zuo et al. [34]
propose a semisupervised multivariate time-series predic-
tion method combining LSTM-AE and OCSVM. Kong et
al. [124] proposed an AMBi-GAN-based deep generative
model for industrial multidimensional time-series anomaly
with unlabeled data. Abdel-Basset et al. [125] proposed a
privacy-preserving federated semisupervised class-rebalanced
framework for anomaly detection, in which a semisupervised
generative network is introduced to enhance the generated
samples and model the relationships between labeled and
unlabeled data.

3) Processing of Unseen Data: In general, unseen industrial
data is addressed through domain randomization or domain
generalization. The former focuses on data by eliminating
domain specificity through augmentation, while the later
emphasizes model robustness across multiple domains via
specific construction ideas and optimization objectives like
domain alignment, semantic matching, and regularization.

Domain randomization can be realized by generative learn-
ing and contrastive learning, by generating synthetic data
and capturing the MI of the tasks and the generated data to
prevent unknown domain shifts. For instance, Xing et al. [25]
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proposed distribution invariant DBN (DIDBN) for machinery
FD, which can directly extract distribution-invariant features
from raw machinery vibration data. Yu and Zhao [21] proposed
a broad CNN-based incremental FD model to represent the
fault process and update the diagnosis model to include
emerging anomalous samples and fault classes. Zhao and
Shen [126] proposed an adversarial MI-guided approach for
FD in unknown conditions. A domain generation module is
utilized to generate synthetic target data, enhancing general-
ization capability. And MI between the domain generation
module and task diagnosis module is captured to mitigate
unknown domain shifts. Peng et al. [127] tackle the challenge
of classifying unknown faults as normal conditions by employ-
ing supervised contrastive learning. This approach enables the
learning of discriminative and compact embeddings for known
normal and fault conditions. The method involves comparing
given samples as well as comparing normal samples with their
own negative augmentations generated through soft Brownian
offset sampling.

The domain generalization-based methods can be induced
into unsupervised transfer learning without target data. In these
methods, contrastive learning can also be adopted to cap-
ture MI capturing and domain invariants. For instance,
Ren et al. [128] proposed a domain generalization framework
for FD in an unseen condition called Meta-GENE. A gradient
aligning algorithm is introduced to learn domain-invariant
strategy for robust prediction and a semantic matching
technique is proposed to alleviate low-resource problems.
Sun et al. [129] proposed an environmentally adaptive and
contrastive representation learning method for condition mon-
itoring in variational environments and volatile operations.
Li et al. [130] proposed an adversarial domain generalization
network to diagnose faults in unknown operating environ-
ments. The classification boundary is detected by maximizing
the classifier differences, and better feature mapping functions
and domain-invariant features are obtained by adversarial
training.

V. TYPICAL APPLICATIONS OF TIME-SERIES PREDICTION
IN IIOT

A. Prognostics and Health Management of Complex
Equipment

By analyzing process monitoring data from the production
and manufacturing line, as well as real-time equipment status
data, PHM aims to uncover system failure characteristics,
proactively detect potential anomalies during system oper-
ation, diagnose the root cause of anomalies, and predict
the RUL of the equipment [136], [137]. It is crucial for
the safe and reliable operation of the equipment Fig. 4
shows a schematic architecture of complex equipment PHM
system [138]. Ren et al. [138] proposed an IIoT complex
equipment RUL prediction framework. The edge plane collects
the monitoring data and preprocesses the data for denoise and
imputation. Real-time prediction results are obtained on the
edge plane, higher accuracy prediction results are obtained by
historical information on the cloud plane, and parameters are
updated through continuous learning.

Fig. 4. Schematic architecture of IIoT complex equipment PHM sys-
tem [138].

Deep learning has eliminated the need for separate data
feature extraction and subsequent analysis, which were pre-
viously required for PHM tasks. This has allowed for the
direct use of collected data to predict health indicators.
Besides, the complexity of industrial mechanisms presents
challenges in discovering and accurately modeling them. As a
result, traditional methods often struggle to gain insights into
industrial processes and make precise analyses and predic-
tions of the health indicators. The industrial data analyzed
in PHM tasks include vibration signals, acceleration signals,
temperature data, optical signals, acoustic signals, electrical
properties of equipment, and so on. These signals are generally
collected and processed as time-series data, making PHM one
of the main application scenarios for time-series prediction
in IIoT [139], [140]. Zhu et al. [141] proposed an RUL
estimation method with time-frequency representation and
multiscale CNN. Wen et al. [142] developed a reinforcement
learning-based learning rate scheduler for efficiently and auto-
matically scheduling the learning rate of fault classification
models, which can adaptively implement the training of PHM
models. Liu et al. [143] developed a fault diagnosis framework
based on a dislocated time-series convolutional neural network
(DTS-CNN). Dislocation layers were added to the neural
network to extract relationships between signals in different
intervals of periodic mechanical signals, allowing multiscale
periodic features in signals with nonstationary conditions to
be captured.

B. Product Quality Management

In PLM, it is of significance to utilize product manufac-
turing process data and quality inspection data to manage
product quality, achieve product production traceability, and
optimize processes [140], [144]. Fig. 5 shows a typical product
quality prediction framework. By analyzing the correlation of
product quality with processing temporal signals, such as raw
material quality, equipment status parameters, process flow,
and workshop environment, the main factors affecting product
quality are identified. Furthermore, by constructing linear and
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Fig. 5. Typical product quality prediction framework in IIoT.

nonlinear mapping relationships between product quality and
these factors, accurate predictions of product quality can be
made. In addition, intelligent optimization algorithms can be
used to optimize the production process and achieve adaptive
product quality monitoring and optimization control.

In order to predict product quality, two main tasks are
typically undertaken. First, correlation analysis is conducted
between influencing factors and product quality indicators to
select features for big data analysis, resulting in a low-cost
and efficient prediction. Second, a data-driven model is con-
structed for the final quality indicator prediction. Traditional
data processing methods are used to analyze the correlations
between various factors and quality indicators to reveal the
causes of product quality problems. However, these meth-
ods use artificially defined correlation metrics that may not
provide a comprehensive and in-depth interpretation of the
relationship between factors and quality metrics. As a result,
the correlations analyzed may be biased, leading to inaccurate
identification of key factors. Deep learning techniques can
adaptively extract correlations between influencing factors and
product quality metrics, and are, therefore, of wide interest
in this area. Liu et al. [145] developed a domain-adaptive
extreme learning machine as a basis for soft sensor modeling
for product prediction for multilevel processes with limited
labeling data. Zhang et al. [146] proposed a material removal
rate prediction method for the chemical mechanical polishing
process with the use of residual CNN.

C. Supply Chain Optimization and Production Scheduling

The supply chain of a product involves the whole process
from production to sales and service, and the optimization
of the supply chain is of great value to reduce costs and
improve efficiency and is one of the dominant application
scenarios of IIoT time-series prediction [147]. Supply chain
optimization and prediction, as a system-level complex issue,
contains subproblems, such as demand prediction [148], risk
prediction [149], production resource scheduling [150], and
production planning scheduling [151]. Fig. 6 shows a typ-
ical framework of a supply chain system introduced by
Ivanov et al. [152] data from each node of the supply chain
is collected and fused for analysis, optimization, simulation,
and control of each link in the supply chain system, thereby
supporting the supply, manufacturing, and sales services of the
supply chain system.

Fig. 6. Typical framework of supply chain system in IIoT [152].

Supply chain optimization and prediction is one of the
core problems of enterprise operation and management.
A high-quality supply chain management system can allo-
cate production resources effectively and can demonstrate
high robustness to various unexpected situations. However,
traditional prediction and scheduling methods focus on the
optimal utilization of performance and resources in static
environments, which may lead to the deterioration or failure
of static progress.

Deep learning-based approaches [153] provide a series of
effective methods and tools for the optimization of produc-
tion planning and scheduling in dynamic environments. Deep
learning techniques can provide comprehensive information
support for supply chain prediction and scheduling decisions.
For example, Lima-Junior and Carpinetti [154] proposed an
artificial neural network-based prediction system to make
prospective diagnoses of supply chain performance and facili-
tate rational decision making. Shi et al. [155] proposed a deep
reinforcement learning method to schedule automated produc-
tion lines to avoid manual feature extraction and overcome
the lack of structured datasets, which improves the adaptability
and flexibility of automated production lines. Tong et al. [156]
proposed an effective task scheduling method DDQN-TS to
achieve high-quality service with limited resources, which
exploits the adaptive learning capability of dual DQN (DDQN)
to explore the optimal task scheduling policy.

D. Smart Grid

The application of time-series prediction for smart grids
has a wide range of benefits, including fault and anomaly
induced outage detection, load and generation prediction,
load management with demand response, and asset manage-
ment [157]. These capabilities have the potential to optimize
energy delivery by reducing costs and improving the overall
quality of energy services [158]. Fig. 7 shows a typical model
of a smart grid analytic system [159]. In the system proposed
in [159], IIoT time series are collected and analyzed. The
analysis results can be used for advanced maintenance, such
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Fig. 7. Typical model of smart grid analytic system in IIoT [159].

as automatic fault identification and preventive maintenance,
or to optimize the performance of assets and machines.

A smart grid is crucial for business and government
decision-makers. Smart grid management presents several
challenges. In addition to the high energy demands, speed
requirements, and the need for high-capacity storage, the
data resources in the smart grid are not centrally distributed
and the collected data is often heterogeneous. Traditional
methods can hardly address these issues. Many studies on
deep learning-based solutions have been conducted in this
area. For instance, a novel GRU model coupling two new
mechanisms of selective state updating and adaptive mixed
gradient optimization for accurate power time-series prediction
was proposed by Zheng and Chen [160]. Jia et al. [161]
proposed a retroactive scheduling regime in handling hetero-
geneous schedulable sources in small-scale microgrids.

VI. DISCUSSION AND PROSPECTS

Although deep learning has a wide range of applications for
time-series prediction in IIoT, current research still has much
room for improvement. Existing deep learning methods, which
still fail to meet the needs of industrial applications, face many
challenges and require urgent attention from researchers.

A. Lightweight Model for Industrial Edge Intelligence

Numerous time-series prediction models for IIoT applica-
tions have been proposed, primarily focusing on accuracy
in specific industrial applications. However, these models
often overlook the importance of efficiency and compu-
tational resource consumption [162]. In industrial settings,
AI applications often require low latency. For example, a high-
temperature furnace refinery monitoring system needs to make
predictions within tens of milliseconds. Additionally, comput-
ing devices in industrial sites typically have limited storage and
computational capacity, often in the range of megabytes, which
makes it challenging to accommodate large-scale industrial
AI models that require extensive computational and storage
resources. Therefore, there has been a significant research
and development trend in the field of industrial intelligence
toward lightweight and efficient deep learning models. These

models aim to strike a balance between accuracy and resource
efficiency, enabling effective deployment in industrial envi-
ronments. Currently, several compression methods for large
neural networks are being explored, including parameter com-
pression [163], pruning [164], and distillation [165]. These
techniques aim to reduce the model size and computational
requirements without significantly sacrificing predictive per-
formance.

Knowledge distillation can be seen as one of the mainstream
methods of neural network “slimming” in IIoT. For instance,
as industrial edge devices are limited in terms of computa-
tional and storage capacity, Xu et al. [165] proposed a novel
knowledge distillation framework called KDnet-RUL for com-
pressing complex LSTM models into structurally simple CNN
models without loss of accuracy. Fang et al. [166] proposed
an on-demand DNN model inference system for industrial
edge devices, called knowledge distillation and early exit on
edge (EdgeKE), in which large complex models are distilled
and supervised into compact edge models, and an early exit
strategy is utilized to provide flexibility to meet different
latency or accuracy requirements of edge applications.

The dynamic neural network presents a novel solution to
the issue. It possesses the ability to adaptively adjust its own
depth and width based on the difficulty of feature extraction
for each sample. This dynamic adjustment enables the simpli-
fication of the inference process while maintaining satisfactory
characterization capability. Meanwhile, this dynamic selection
mechanism of network modules indirectly contributes to the
interpretability of the model. Consequently, this has made
it attractive to researchers. Although the application of this
method in IIoT data processing is not yet widespread, the
authors believe it holds significant value and represents an
interesting area of research with broad potential.

Applying a fusion of these methods is the key to address-
ing the lightweighting of industrial intelligence models.
Lightweight construction and real-time computation algo-
rithms for industrial intelligence models will be essential
research areas in the future.

B. Cloud-Edge Distributed Industrial Intelligence

With the emergence of new manufacturing modalities and
paradigms, such as cloud manufacturing [167], industrial
applications have evolved toward a more distributed and
collaborative approach. Consequently, the edge layer is shoul-
dering an increasing number of functional and performance
tasks [168]. To address this challenge, the collaboration
between industrial cloud and edge computing has become
a critical technology and essential support in the current
Industrial Internet [169]. In response, academia has proposed
various cloud, edge, and fog computing-based industrial neural
networks, which have garnered significant interest from the
industry [138], [170], [171], [172].

However, despite the growing interest in distributed indus-
trial intelligence models, current research is still in its early
stages. Designing such models that cater to the unique
characteristics of industrial applications and the cloud-edge
distributed model of Industrial Internet data remains a chal-
lenge. On the one hand, in the industrial area, cloud-edge
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collaboration is still at the stage of conceptual framework and
lacks theoretical architecture for in-depth integration of indus-
trial AI. On the other hand, current distributed models take less
account of the specificity requirements of multiple edges in
the Industrial Internet and the distributed requirements of the
cloud and the corresponding multiple edges for data analysis
models. Therefore, the convergence of intelligence in the cloud
edge of the Industrial Internet is also an area of significant
research in the future.

C. Adaptive Learning for Varying Scenarios in Industry

Application scenarios in industrial manufacturing are highly
diverse and prone to various uncertainties. For example, sim-
ilar manufacturing tasks can yield varying outcomes under
various working conditions. Previously validated predictive
models for intelligent analysis of industrial data may not be
applicable to new working conditions when they are altered.
While training proprietary industrial deep learning models
with data specific to each scenario is a viable solution, it can
be resource-intensive in terms of manpower, funds, and time.
Moreover, it can lead to a degradation in the ability to
analyze previous problems encountered in different application
scenarios while deploying new industrial data intelligence
models, which is not desirable for users.

It requires deep learning models to be adaptive to the
attributes and regularities of new application scenarios while
maintaining the adaptive capabilities of previously existing
application scenarios [173], [174], [175]. Therefore, the indus-
trial models with adaptability and generalization capabilities
would greatly facilitate the application of IIoT time-series
prediction in the ever-changing industrial application scenar-
ios. One notable approach that has been extensively studied
in the field of deep learning is “learning without forget-
ting” [174], [176]. The aforementioned industrial intelligence
model, which exhibits strong generalization and self-adaptive
capabilities, can be seen as an integration and innovation of
transfer learning, multitask learning, and continual learning.
It represents a crucial research direction for the future.

D. Interpretable/Reliable/Credible Industrial Model

Many advanced deep learning techniques widely adopted
in industries today are considered “black-box” models. These
models offer superior performance in terms of accuracy and
deployment cost; however, they lack interpretability when it
comes to understanding their internal operations. With “black-
box” models, we can observe the input and output data, but
we cannot gain detailed insights into the workings of the deep
neural networks themselves. The complexity and opacity of
these industrial intelligence models make it challenging to
assess their reliability and trustworthiness [177]. In sectors,
such as aviation and nuclear industries, where reliability
and trustworthiness are paramount, even minor errors can
lead to severe consequences. Consequently, the widespread
adoption of highly complex and uncertain neural network
models becomes a challenge. Establishing trustworthiness in
AI models is a consensus in various fields, not just limited to
industrial manufacturing [178], [179].

As a result, there is a growing demand for industrial AI
models to be highly interpretable and credible. In recent years,
the physics-informed neural network (PINN) approach has
gained significant attention among researchers [180]. PINN
combines physical mechanics principles with neural networks,
offering a promising avenue to explore the credibility and
interpretability of industrial intelligence models.

E. Industrial Foundation Model

The various industrial intelligence technologies that have
emerged in recent years are mostly “mini-model” with a
strong correlation to domain-specific issues that originate from
the application needs of specific industrial fields. With the
integration of advanced information technology and indus-
trial manufacturing, the formation of increasingly complex
industrial cyber–physical systems (CPSs), and AI in indus-
trial manufacturing will face increasingly complex problems
at the system level. For instance, in the Industrial Internet
system, the analysis, prediction, and optimization issues of
the supply chain system of the large-scale intelligent manufac-
turing industry chain, involve cross-industry, cross-enterprise,
and cross-process multilayer industrial manufacturing systems
with complex correlation relationships. The acquisition of
the intrinsic operating mechanisms and pattern laws of such
complex systems will confront the problem of large-scale
integration of deep learning of large-scale subproblems driven
by super large-scale multisource heterogeneous industrial data.
The existing industrial intelligence “mini model” techniques
for single-subproblems in specific fields are not able to cope
with this, and there is an urgent need to explore new industrial
intelligence techniques for such large and complex industrial
system problems.

The foundation model technique provides a potential solu-
tion to this problem [181], [182]. It should be noted that
the philosophy of the foundation model here is different
from ChatGPT, where the foundation model in the industry
focuses on common knowledge in cross-domain tasks. As the
latest research hotspot in the field of deep learning, the
foundation model provides a fundamental and homogeneous
“cornerstone” modeling technique that can support model pre-
training and fast adapting to downstream tasks and can break
through the accuracy limitations of current small models at
the structural level. The foundation models have continued to
break through thousands, millions, and even trillions of model
parameter scales in recent years and have been applied with
initial success in areas, such as natural language processing
and biocomputing. Examples of proposed models, such as
GPT-3 [183], switch transformer [184], and Alphafold [185],
have shown phenomenal astonishing capabilities. Currently,
there is still a gap in the exploration of foundation models in
industrial manufacturing, and foundation models for industrial
intelligence are expected to be one of the disruptive technolo-
gies to solve various highly complex problems in the process
of industrial manufacturing intelligence in the future.

VII. CONCLUSION

Deep learning has made remarkable achievements in the
field of industrial intelligence, especially in IIoT time-series
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prediction. In this survey, deep learning-based approaches to
the IIoT time-series prediction issues are discussed in the
following aspects.

1) Existing deep learning-based time-series prediction
methods are illustrated and summarized.

2) The practical challenges of time-series prediction in IIoT
are presented and analyzed.

3) A framework of state-of-the-art solutions for time-series
prediction in IIoT is proposed to address the challenges
and typical related works are categorized and reviewed.

4) Typical industrial application scenarios of time-series
prediction in IIoT are summarized and discussed.

5) Possible future directions and prospects of this promis-
ing area of industrial intelligence are put forward and
discussed.

It is anticipated that this survey will serve as a catalyst for
IIoT and deep learning researchers to delve deeper into this
fascinating research field and innovate more advanced and
sophisticated deep learning models tailored to IIoT applica-
tions.

REFERENCES

[1] H. Boyes, B. Hallaq, J. Cunningham, and T. Watson, “The industrial
Internet of Things (IIoT): An analysis framework,” Comput. Ind.,
vol. 101, pp. 1–12, Oct. 2018.

[2] E. Sisinni, A. Saifullah, S. Han, U. Jennehag, and M. Gidlund, “Indus-
trial Internet of Things: Challenges, opportunities, and directions,”
IEEE Trans. Ind. Informat., vol. 14, no. 11, pp. 4724–4734, Nov. 2018.

[3] M. Ali, S. U. Khan, and A. V. Vasilakos, “Security in cloud comput-
ing: Opportunities and challenges,” Inf. Sci., vol. 305, pp. 357–383,
Jun. 2015.

[4] K. Gu, D. Tao, J. Qiao, and W. Lin, “Learning a no-reference quality
assessment model of enhanced images with big data,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 29, no. 4, pp. 1301–1313, Apr. 2018.

[5] B. Cai et al., “Artificial intelligence enhanced reliability assessment
methodology with small samples,” IEEE Trans. Neural Netw. Learn.
Syst., early access, Nov. 25, 2021, doi: 10.1109/TNNLS.2021.3128514.

[6] L. Chettri and R. Bera, “A comprehensive survey on Internet of Things
(IoT) toward 5G wireless systems,” IEEE Internet Things J., vol. 7,
no. 1, pp. 16–32, Jan. 2020.

[7] X. Zhang, Y. Qin, C. Yuen, L. Jayasinghe, and X. Liu, “Time-series
regeneration with convolutional recurrent generative adversarial net-
work for remaining useful life estimation,” IEEE Trans. Ind. Informat.,
vol. 17, no. 10, pp. 6820–6831, Oct. 2021.

[8] S. R. Saufi, Z. A. B. Ahmad, M. S. Leong, and M. H. Lim, “Gearbox
fault diagnosis using a deep learning model with limited data sample,”
IEEE Trans. Ind. Informat., vol. 16, no. 10, pp. 6263–6271, Oct. 2020.

[9] L. Ren, Z. Meng, X. Wang, R. Lu, and L. T. Yang, “A wide-deep-
sequence model-based quality prediction method in industrial process
analysis,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 9,
pp. 3721–3731, Sep. 2020.

[10] S. Singh, S. C. Misra, and S. Kumar, “Identification and ranking of
the risk factors involved in PLM implementation,” Int. J. Prod. Econ.,
vol. 222, Apr. 2020, Art. no. 107496.

[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[12] L. Zhou, L. Zhang, and N. Konz, “Computer vision techniques in
manufacturing,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 1,
pp. 105–117, Jan. 2023, doi: 10.1109/TSMC.2022.3166397.

[13] I. Makhdoom, M. Abolhasan, J. Lipman, R. P. Liu, and W. Ni,
“Anatomy of threats to the Internet of Things,” IEEE Commun. Surveys
Tuts., vol. 21, no. 2, pp. 1636–1675, 2nd Quart., 2019.

[14] J. C. B. Gamboa, “Deep learning for time-series analysis,” 2017,
arXiv:1701.01887.

[15] Q. Wen et al., “Time series data augmentation for deep learning:
A survey,” 2020, arXiv:2002.12478.

[16] W. Zhang, D. Yang, and H. Wang, “Data-driven methods for predictive
maintenance of industrial equipment: A survey,” IEEE Syst. J., vol. 13,
no. 3, pp. 2213–2227, Sep. 2019.

[17] Z. Gao, C. Cecati, and S. X. Ding, “A survey of fault diagnosis and
fault-tolerant techniques—Part I: Fault diagnosis with model-based and
signal-based approaches,” IEEE Trans. Ind. Electron., vol. 62, no. 6,
pp. 3757–3767, Jun. 2015.

[18] S. De, M. Bermudez-Edo, H. Xu, and Z. Cai, “Deep generative models
in the industrial Internet of Things: A survey,” IEEE Trans. Ind.
Informat., vol. 18, no. 9, pp. 5728–5737, Sep. 2022.

[19] B. Maschler and M. Weyrich, “Deep transfer learning for industrial
automation: A review and discussion of new techniques for data-driven
machine learning,” IEEE Ind. Electron. Mag., vol. 15, no. 2, pp. 65–75,
Jun. 2021.

[20] B. Yang, R. Liu, and E. Zio, “Remaining useful life prediction based
on a double-convolutional neural network architecture,” IEEE Trans.
Ind. Electron., vol. 66, no. 12, pp. 9521–9530, Dec. 2019.

[21] W. Yu and C. Zhao, “Broad convolutional neural network based
industrial process fault diagnosis with incremental learning capability,”
IEEE Trans. Ind. Electron., vol. 67, no. 6, pp. 5081–5091, Jun. 2020.

[22] X. Yuan, L. Li, Y. A. W. Shardt, Y. Wang, and C. Yang, “Deep
learning with spatiotemporal attention-based LSTM for industrial soft
sensor model development,” IEEE Trans. Ind. Electron., vol. 68, no. 5,
pp. 4404–4414, May 2021.

[23] X. Yuan, J. Zhou, B. Huang, Y. Wang, C. Yang, and W. Gui, “Hierar-
chical quality-relevant feature representation for soft sensor modeling:
A novel deep learning strategy,” IEEE Trans. Ind. Informat., vol. 16,
no. 6, pp. 3721–3730, Jun. 2020.

[24] G. Wang, J. Qiao, J. Bi, Q. Jia, and M. Zhou, “An adaptive deep belief
network with sparse restricted Boltzmann machines,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 31, no. 10, pp. 4217–4228, Oct. 2020.

[25] S. Xing, Y. Lei, S. Wang, and F. Jia, “Distribution-invariant deep belief
network for intelligent fault diagnosis of machines under new working
conditions,” IEEE Trans. Ind. Electron., vol. 68, no. 3, pp. 2617–2625,
Mar. 2021.

[26] H. Dong, K. Song, Y. He, J. Xu, Y. Yan, and Q. Meng, “PGA-
Net: Pyramid feature fusion and global context attention network
for automated surface defect detection,” IEEE Trans. Ind. Informat.,
vol. 16, no. 12, pp. 7448–7458, Dec. 2020.

[27] Y. Qin, S. Xiang, Y. Chai, and H. Chen, “Macroscopic-microscopic
attention in LSTM networks based on fusion features for gear remain-
ing life prediction,” IEEE Trans. Ind. Electron., vol. 67, no. 12,
pp. 10865–10875, Dec. 2020.

[28] T. Li, Z. Zhao, C. Sun, R. Yan, and X. Chen, “Multireceptive field graph
convolutional networks for machine fault diagnosis,” IEEE Trans. Ind.
Electron., vol. 68, no. 12, pp. 12739–12749, Dec. 2021.

[29] Z. Chen, J. Xu, T. Peng, and C. Yang, “Graph convolutional network-
based method for fault diagnosis using a hybrid of measurement and
prior knowledge,” IEEE Trans. Cybern., vol. 52, no. 9, pp. 9157–9169,
Sep. 2022.

[30] L. Guo, Y. Lei, N. Li, T. Yan, and N. Li, “Machinery health indicator
construction based on convolutional neural networks considering trend
burr,” Neurocomputing, vol. 292, pp. 142–150, May 2018.

[31] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” 2018,
arXiv:1803.01271.

[32] A. Sherstinsky, “Fundamentals of recurrent neural network (RNN)
and long short-term memory (LSTM) network,” Phys. D, Nonlinear
Phenomena, vol. 404, Mar. 2020, Art. no. 132306.

[33] X. Zhou, Y. Hu, W. Liang, J. Ma, and Q. Jin, “Variational LSTM
enhanced anomaly detection for industrial big data,” IEEE Trans. Ind.
Informat., vol. 17, no. 5, pp. 3469–3477, May 2021.

[34] Z. Zuo, L. Ma, S. Liang, J. Liang, H. Zhang, and T. Liu, “A semi-
supervised leakage detection method driven by multivariate time series
for natural gas gathering pipeline,” Process Saf. Environ. Protection,
vol. 164, pp. 468–478, Aug. 2022.

[35] Y. Zheng, S. Chen, Y. Xue, and J. Xue, “A pythagorean-type fuzzy deep
denoising autoencoder for industrial accident early warning,” IEEE
Trans. Fuzzy Syst., vol. 25, no. 6, pp. 1561–1575, Dec. 2017.

[36] Y. Wang, C. Liu, and X. Yuan, “Stacked locality preserving autoen-
coder for feature extraction and its application for industrial process
data modeling,” Chemometric Intell. Lab. Syst., vol. 203, Aug. 2020,
Art. no. 104086.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1109/TNNLS.2021.3128514
http://dx.doi.org/10.1109/TSMC.2022.3166397


REN et al.: DEEP LEARNING FOR TIME-SERIES PREDICTION IN IIoT 17

[37] J. Liu et al., “Toward robust fault identification of complex industrial
processes using stacked sparse-denoising autoencoder with softmax
classifier,” IEEE Trans. Cybern., vol. 53, no. 1, pp. 428–442, Jan. 2023.

[38] J. Yu, X. Liu, and L. Ye, “Convolutional long short-term memory
autoencoder-based feature learning for fault detection in industrial
processes,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–15, 2021.

[39] R. Xie, N. M. Jan, K. Hao, L. Chen, and B. Huang, “Supervised
variational autoencoders for soft sensor modeling with missing data,”
IEEE Trans. Ind. Informat., vol. 16, no. 4, pp. 2820–2828, Apr. 2020.

[40] M. Keshk, B. Turnbull, N. Moustafa, D. Vatsalan, and K. R. Choo,
“A privacy-preserving-framework-based blockchain and deep learning
for protecting smart power networks,” IEEE Trans. Ind. Informat.,
vol. 16, no. 8, pp. 5110–5118, Aug. 2020.

[41] W. Yu and C. Zhao, “Robust monitoring and fault isolation of nonlinear
industrial processes using denoising autoencoder and elastic net,” IEEE
Trans. Control Syst. Technol., vol. 28, no. 3, pp. 1083–1091, May 2020.

[42] J. Yu, X. Zheng, and J. Liu, “Stacked convolutional sparse denoising
auto-encoder for identification of defect patterns in semiconductor
wafer map,” Comput. Ind., vol. 109, pp. 121–133, Aug. 2019.

[43] D. Hong et al., “Endmember-guided unmixing network (EGU-Net):
A general deep learning framework for self-supervised hyperspectral
unmixing,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 11,
pp. 6518–6531, Nov. 2022.

[44] N. Zhang, S. Ding, J. Zhang, and Y. Xue, “An overview on restricted
Boltzmann machines,” Neurocomputing, vol. 275, pp. 1186–1199,
Jan. 2018.

[45] R. A. Khalil, N. Saeed, M. Masood, Y. M. Fard, M. Alouini, and
T. Y. Al-Naffouri, “Deep learning in the industrial Internet of Things:
Potentials, challenges, and emerging applications,” IEEE Internet
Things J., vol. 8, no. 14, pp. 11016–11040, Jul. 2021.

[46] X. Yuan, Y. Gu, and Y. Wang, “Supervised deep belief network for
quality prediction in industrial processes,” IEEE Trans. Instrum. Meas.,
vol. 70, pp. 1–11, 2021.

[47] V. Pareek, S. Chaudhury, and S. Singh, “Hybrid 3DCNN-RBM network
for gas mixture concentration estimation with sensor array,” IEEE
Sensors J., vol. 21, no. 21, pp. 24263–24273, Nov. 2021.

[48] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 1–11.

[49] H. Zhang et al., “ResNeSt: Split-attention networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW),
Jun. 2022, pp. 2736–2746.

[50] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV),
Oct. 2021, pp. 9992–10002.

[51] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A compre-
hensive survey on graph neural networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 1, pp. 4–24, Jan. 2021.

[52] F. Zhou, Q. Yang, T. Zhong, D. Chen, and N. Zhang, “Variational graph
neural networks for road traffic prediction in intelligent transportation
systems,” IEEE Trans. Ind. Informat., vol. 17, no. 4, pp. 2802–2812,
Apr. 2021.

[53] X. Li and W. Zhang, “Deep learning-based partial domain adaptation
method on intelligent machinery fault diagnostics,” IEEE Trans. Ind.
Electron., vol. 68, no. 5, pp. 4351–4361, May 2021.

[54] Q. Wang, G. Michau, and O. Fink, “Missing-class-robust domain
adaptation by unilateral alignment,” IEEE Trans. Ind. Electron., vol. 68,
no. 1, pp. 663–671, Jan. 2021.

[55] X. Li, W. Zhang, and Q. Ding, “Cross-domain fault diagnosis of rolling
element bearings using deep generative neural networks,” IEEE Trans.
Ind. Electron., vol. 66, no. 7, pp. 5525–5534, Jul. 2019.

[56] T. Ko and H. Kim, “Fault classification in high-dimensional com-
plex processes using semi-supervised deep convolutional generative
models,” IEEE Trans. Ind. Informat., vol. 16, no. 4, pp. 2868–2877,
Apr. 2020.

[57] M. Ragab et al., “Contrastive adversarial domain adaptation for
machine remaining useful life prediction,” IEEE Trans. Ind. Informat.,
vol. 17, no. 8, pp. 5239–5249, Aug. 2021.

[58] C. Huang, Z. Wu, J. Wen, Y. Xu, Q. Jiang, and Y. Wang, “Abnormal
event detection using deep contrastive learning for intelligent video
surveillance system,” IEEE Trans. Ind. Informat., vol. 18, no. 8,
pp. 5171–5179, Aug. 2022.

[59] Z. Chai and C. Zhao, “A fine-grained adversarial network method for
cross-domain industrial fault diagnosis,” IEEE Trans. Autom. Sci. Eng.,
vol. 17, no. 3, pp. 1432–1442, Jul. 2020.

[60] T. Pan, J. Chen, J. Xie, Y. Chang, and Z. Zhou, “Intelligent fault
identification for industrial automation system via multi-scale convolu-
tional generative adversarial network with partially labeled samples,”
ISA Trans., vol. 101, pp. 379–389, Jun. 2020.

[61] G. Xu, M. Liu, Z. Jiang, W. Shen, and C. Huang, “Online fault
diagnosis method based on transfer convolutional neural networks,”
IEEE Trans. Instrum. Meas., vol. 69, no. 2, pp. 509–520, Feb. 2020.

[62] Z. Chen, K. Gryllias, and W. Li, “Intelligent fault diagnosis for rotary
machinery using transferable convolutional neural network,” IEEE
Trans. Ind. Informat., vol. 16, no. 1, pp. 339–349, Jan. 2020.

[63] F. Zhuang et al., “A comprehensive survey on transfer learning,” Proc.
IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021.

[64] J. Huang, A. Gretton, K. Borgwardt, B. Scholkopf, and A. Smola,
“Correcting sample selection bias by unlabeled data,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 19, 2006, pp. 1–8.

[65] K. M. Borgwardt, A. Gretton, M. J. Rasch, H.-P. Kriegel, B. Schölkopf,
and A. J. Smola, “Integrating structured biological data by kernel max-
imum mean discrepancy,” Bioinformatics, vol. 22, no. 14, pp. 49–57,
Jul. 2006.

[66] H. Liang, L. Song, J. Wang, L. Guo, X. Li, and J. Liang, “Robust
unsupervised anomaly detection via multi-time scale DCGANs with
forgetting mechanism for industrial multivariate time series,” Neuro-
computing, vol. 423, pp. 444–462, Jan. 2021.

[67] X. Liu et al., “Self-supervised learning: Generative or contrastive,”
IEEE Trans. Knowl. Data Eng., vol. 35, no. 1, pp. 857–876, Jan. 2023.

[68] Y. Ding, J. Zhuang, P. Ding, and M. Jia, “Self-supervised pretraining
via contrast learning for intelligent incipient fault detection of bear-
ings,” Rel. Eng. Syst. Saf., vol. 218, Feb. 2022, Art. no. 108126.

[69] A. L. Ellefsen, E. Bjørlykhaug, V. Æsøy, S. Ushakov, and H. Zhang,
“Remaining useful life predictions for turbofan engine degradation
using semi-supervised deep architecture,” Rel. Eng. Syst. Saf., vol. 183,
pp. 240–251, Mar. 2019.

[70] D. Zhang, Z. Liu, W. Jia, H. Liu, and J. Tan, “Contrastive
decoder generator for few-shot learning in product quality predic-
tion,” IEEE Trans. Ind. Informat., early access, Jul. 13, 2022, doi:
10.1109/TII.2022.3190554.

[71] A. Van Den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” 2018, arXiv:1807.03748.

[72] O. Henaff, “Data-efficient image recognition with contrastive predictive
coding,” in Proc. Int. Conf. Mach. Learn., 2020, pp. 4182–4192.

[73] P. Bachman, R. D. Hjelm, and W. Buchwalter, “Learning representa-
tions by maximizing mutual information across views,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 32, 2019, pp. 1–11.

[74] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick, “Momentum contrast for
unsupervised visual representation learning,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 9726–9735.

[75] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” in Proc. Int.
Conf. Mach. Learn., 2020, pp. 1597–1607.

[76] M. Gutmann and A. Hyvarinen, “Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models,” in Proc. 13th
Int. Conf. Artif. Intell. Statist., 2010, pp. 297–304.

[77] N. Ye and Z. Zhu, “Bayesian adversarial learning,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 31, 2018, pp. 1–10.

[78] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 27, 2014, pp. 1–9.

[79] Y. Ganin et al., “Domain-adversarial training of neural networks,”
J. Mach. Learn. Res., vol. 17, no. 1, pp. 2030–2096, Apr. 2016.

[80] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” 2017,
arXiv:1706.06083.

[81] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and
A. Criminisi, “Measuring neural net robustness with constraints,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016, pp. 1–9.

[82] M. Khoda, T. Imam, J. Kamruzzaman, I. Gondal, and A. Rahman,
“Robust malware defense in industrial IoT applications using machine
learning with selective adversarial samples,” IEEE Trans. Ind. Appl.,
vol. 56, no. 4, pp. 4415–4424, Jul. 2020.

[83] Z. Yang, P. Baraldi, and E. Zio, “A multi-branch deep neural network
model for failure prognostics based on multimodal data,” J. Manuf.
Syst., vol. 59, pp. 42–50, Apr. 2021.

[84] A. Diez-Olivan, J. Del Ser, D. Galar, and B. Sierra, “Data fusion
and machine learning for industrial prognosis: Trends and perspectives
towards Industry 4.0,” Inf. Fusion, vol. 50, pp. 92–111, Oct. 2019.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1109/TII.2022.3190554


18 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[85] D. Mourtzis, E. Vlachou, and N. Milas, “Industrial big data as a result
of IoT adoption in manufacturing,” Proc. CIRP, vol. 55, pp. 290–295,
Jan. 2016.

[86] J. Du, M. Hu, and W. Zhang, “Missing data problem in the monitoring
system: A review,” IEEE Sensors J., vol. 20, no. 23, pp. 13984–13998,
Dec. 2020.

[87] M. Serror, S. Hack, M. Henze, M. Schuba, and K. Wehrle, “Challenges
and opportunities in securing the industrial Internet of Things,” IEEE
Trans. Ind. Informat., vol. 17, no. 5, pp. 2985–2996, May 2021.

[88] A. Duan, L. Guo, H. Gao, X. Wu, and X. Dong, “Deep focus
parallel convolutional neural network for imbalanced classification of
machinery fault diagnostics,” IEEE Trans. Instrum. Meas., vol. 69,
no. 11, pp. 8680–8689, Nov. 2020.

[89] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy, “Domain
generalization: A survey,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 45, no. 4, pp. 4396–4415, Apr. 2023.

[90] L. Guo, Y. Yu, H. Gao, T. Feng, and Y. Liu, “Online remaining useful
life prediction of milling cutters based on multisource data and feature
learning,” IEEE Trans. Ind. Informat., vol. 18, no. 8, pp. 5199–5208,
Aug. 2022.

[91] L. Ren, Z. Jia, T. Wang, Y. Ma, and L. Wang, “LM-CNN: A cloud-
edge collaborative method for adaptive fault diagnosis with label
sampling space enlarging,” IEEE Trans. Ind. Informat., vol. 18, no. 12,
pp. 9057–9067, Dec. 2022.

[92] X. Wang, A. Li, and G. Han, “A deep-learning-based fault diagnosis
method of industrial bearings using multi-source information,” Appl.
Sci., vol. 13, no. 2, p. 933, Jan. 2023.

[93] X. Zhou, N. Zhai, S. Li, and H. Shi, “Time series prediction method of
industrial process with limited data based on transfer learning,” IEEE
Trans. Ind. Informat., vol. 19, no. 5, pp. 6872–6882, May 2023.

[94] K. I. Wang, X. Zhou, W. Liang, Z. Yan, and J. She, “Federated transfer
learning based cross-domain prediction for smart manufacturing,” IEEE
Trans. Ind. Informat., vol. 18, no. 6, pp. 4088–4096, Jun. 2022.

[95] H. Zhang, Z. Tang, Y. Xie, H. Yuan, Q. Chen, and W. Gui, “Siamese
time series and difference networks for performance monitoring in the
froth flotation process,” IEEE Trans. Ind. Informat., vol. 18, no. 4,
pp. 2539–2549, Apr. 2022.

[96] T. Mezair, Y. Djenouri, A. Belhadi, G. Srivastava, and J. C.-W. Lin,
“A sustainable deep learning framework for fault detection in 6G
Industry 4.0 heterogeneous data environments,” Comput. Commun.,
vol. 187, pp. 164–171, Apr. 2022.

[97] S. Shao, R. Yan, Y. Lu, P. Wang, and R. X. Gao, “DCNN-based multi-
signal induction motor fault diagnosis,” IEEE Trans. Instrum. Meas.,
vol. 69, no. 6, pp. 2658–2669, Jun. 2020.

[98] S. Deldari, H. Xue, A. Saeed, D. V. Smith, and F. D. Salim, “COCOA:
Cross modality contrastive learning for sensor data,” Proc. ACM Inter-
act., Mobile, Wearable Ubiquitous Technol., vol. 6, no. 3, pp. 1–28,
Sep. 2022.

[99] Y. Yao, G. Gui, S. Yang, and S. Zhang, “A recursive denoising learning
for gear fault diagnosis based on acoustic signal in real industrial noise
condition,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–15, 2021.

[100] F. Yan, C. Yang, and X. Zhang, “DSTED: A denoising spatial–temporal
encoder–decoder framework for multistep prediction of burn-through
point in sintering process,” IEEE Trans. Ind. Electron., vol. 69, no. 10,
pp. 10735–10744, Oct. 2022.

[101] Y. Xu, X. Yan, B. Sun, J. Zhai, and Z. Liu, “Multireceptive field
denoising residual convolutional networks for fault diagnosis,” IEEE
Trans. Ind. Electron., vol. 69, no. 11, pp. 11686–11696, Nov. 2022.

[102] S. Chang, C. Zhao, and K. Li, “Consistent-contrastive network with
temporality-awareness for robust-to-anomaly industrial soft sensor,”
IEEE Trans. Instrum. Meas., vol. 71, pp. 1–12, 2022.

[103] Z. Yao and C. Zhao, “FIGAN: A missing industrial data imputation
method customized for soft sensor application,” IEEE Trans. Autom.
Sci. Eng., vol. 19, no. 4, pp. 3712–3722, Oct. 2022.

[104] Z. Pan, Y. Wang, K. Wang, H. Chen, C. Yang, and W. Gui, “Imputation
of missing values in time series using an adaptive-learned median-filled
deep autoencoder,” IEEE Trans. Cybern., vol. 53, no. 2, pp. 695–706,
Feb. 2023.

[105] S. Gao, S. Qiu, Z. Ma, R. Tian, and Y. Liu, “SVAE-WGAN-based soft
sensor data supplement method for process industry,” IEEE Sensors J.,
vol. 22, no. 1, pp. 601–610, Jan. 2022.

[106] S. Kang, “Product failure prediction with missing data using graph neu-
ral networks,” Neural Comput. Appl., vol. 33, no. 12, pp. 7225–7234,
Jun. 2021.

[107] M. Kavianpour, A. Ramezani, and M. T. H. Beheshti, “A class align-
ment method based on graph convolution neural network for bearing
fault diagnosis in presence of missing data and changing working
conditions,” Measurement, vol. 199, Aug. 2022, Art. no. 111536.

[108] J. Wang, K. Wang, Y. Wang, Z. Huang, and R. Xue, “Deep Boltzmann
machine based condition prediction for smart manufacturing,” J.
Ambient Intell. Humanized Comput., vol. 10, no. 3, pp. 851–861,
Mar. 2019.

[109] L. Yao and Z. Ge, “Cooperative deep dynamic feature extraction and
variable time-delay estimation for industrial quality prediction,” IEEE
Trans. Ind. Informat., vol. 17, no. 6, pp. 3782–3792, Jun. 2021.

[110] K. Liu, Y. Shang, Q. Ouyang, and W. D. Widanage, “A data-driven
approach with uncertainty quantification for predicting future capacities
and remaining useful life of lithium-ion battery,” IEEE Trans. Ind.
Electron., vol. 68, no. 4, pp. 3170–3180, Apr. 2021.

[111] L. Ren, X. Cheng, X. Wang, J. Cui, and L. Zhang, “Multi-scale dense
gate recurrent unit networks for bearing remaining useful life predic-
tion,” Future Gener. Comput. Syst., vol. 94, pp. 601–609, May 2019.

[112] W. Zhang, D. Yang, Y. Xu, X. Huang, J. Zhang, and M. Gidlund,
“DeepHealth: A self-attention based method for instant intelligent
predictive maintenance in industrial Internet of Things,” IEEE Trans.
Ind. Informat., vol. 17, no. 8, pp. 5461–5473, Aug. 2021.

[113] C. Yang, K. Zhou, and J. Liu, “SuperGraph: Spatial–temporal graph-
based feature extraction for rotating machinery diagnosis,” IEEE Trans.
Ind. Electron., vol. 69, no. 4, pp. 4167–4176, Apr. 2022.

[114] L. Ren, Y. Liu, D. Huang, K. Huang, and C. Yang, “MCTAN: A novel
multichannel temporal attention-based network for industrial health
indicator prediction,” IEEE Trans. Neural Netw. Learn. Syst., early
acces, Jan. 10, 2022, doi: 10.1109/TNNLS.2021.3136768.

[115] K. Jang, S. Hong, M. Kim, J. Na, and I. Moon, “Adversarial autoen-
coder based feature learning for fault detection in industrial processes,”
IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 827–834, Feb. 2022.

[116] Z. Geng, Z. Chen, Q. Meng, and Y. Han, “Novel transformer based on
gated convolutional neural network for dynamic soft sensor modeling
of industrial processes,” IEEE Trans. Ind. Informat., vol. 18, no. 3,
pp. 1521–1529, Mar. 2022.

[117] H. Chen, R. Liu, Z. Xie, Q. Hu, J. Dai, and J. Zhai, “Majorities
help minorities: Hierarchical structure guided transfer learning for
few-shot fault recognition,” Pattern Recognit., vol. 123, Mar. 2022,
Art. no. 108383.

[118] X. Cao, Y. Wang, B. Chen, and N. Zeng, “Domain-adaptive intelligence
for fault diagnosis based on deep transfer learning from scientific test
rigs to industrial applications,” Neural Comput. Appl., vol. 33, no. 9,
pp. 4483–4499, May 2021.

[119] X. Zhou, Y. Hu, J. Wu, W. Liang, J. Ma, and Q. Jin, “Distribution bias
aware collaborative generative adversarial network for imbalanced deep
learning in industrial IoT,” IEEE Trans. Ind. Informat., vol. 19, no. 1,
pp. 570–580, Jan. 2023.

[120] G. Yang, Y. Zhong, L. Yang, H. Tao, J. Li, and R. Du, “Fault diagnosis
of harmonic drive with imbalanced data using generative adversarial
network,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–11, 2021.

[121] J. Kuang, G. Xu, T. Tao, and Q. Wu, “Class-imbalance adversar-
ial transfer learning network for cross-domain fault diagnosis with
imbalanced data,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–11,
2022.

[122] W. Mao, J. He, and M. J. Zuo, “Predicting remaining useful life
of rolling bearings based on deep feature representation and transfer
learning,” IEEE Trans. Instrum. Meas., vol. 69, no. 4, pp. 1594–1608,
Apr. 2020.

[123] Z. Chen, G. He, J. Li, Y. Liao, K. Gryllias, and W. Li, “Domain
adversarial transfer network for cross-domain fault diagnosis of
rotary machinery,” IEEE Trans. Instrum. Meas., vol. 69, no. 11,
pp. 8702–8712, Nov. 2020.

[124] F. Kong, J. Li, B. Jiang, H. Wang, and H. Song, “Integrated generative
model for industrial anomaly detection via bidirectional LSTM and
attention mechanism,” IEEE Trans. Ind. Informat., vol. 19, no. 1,
pp. 541–550, Jan. 2023.

[125] M. Abdel-Basset, N. Moustafa, and H. Hawash, “Privacy-preserved
generative network for trustworthy anomaly detection in smart grids:
A federated semisupervised approach,” IEEE Trans. Ind. Informat.,
vol. 19, no. 1, pp. 995–1005, Jan. 2023.

[126] C. Zhao and W. Shen, “Adversarial mutual information-guided single
domain generalization network for intelligent fault diagnosis,” IEEE
Trans. Ind. Informat., vol. 19, no. 3, pp. 2909–2918, Mar. 2023.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1109/TNNLS.2021.3136768


REN et al.: DEEP LEARNING FOR TIME-SERIES PREDICTION IN IIoT 19

[127] P. Peng, J. Lu, T. Xie, S. Tao, H. Wang, and H. Zhang, “Open-set
fault diagnosis via supervised contrastive learning with negative out-
of-distribution data augmentation,” IEEE Trans. Ind. Informat., vol. 19,
no. 3, pp. 2463–2473, Mar. 2023.

[128] L. Ren, T. Mo, and X. Cheng, “Meta-learning based domain generaliza-
tion framework for fault diagnosis with gradient aligning and semantic
matching,” IEEE Trans. Ind. Informat., early access, Apr. 3, 2023, doi:
10.1109/TII.2023.3264111.

[129] S. Sun, T. Wang, H. Yang, and F. Chu, “An environmentally adaptive
and contrastive representation learning method for condition monitor-
ing of industrial assets,” IEEE Trans. Cybern., early access, Oct. 11,
2022, doi: 10.1109/TCYB.2022.3209707.

[130] J. Li, C. Shen, L. Kong, D. Wang, M. Xia, and Z. Zhu, “A new
adversarial domain generalization network based on class boundary
feature detection for bearing fault diagnosis,” IEEE Trans. Instrum.
Meas., vol. 71, pp. 1–9, 2022.

[131] B. Yang et al., “A joint energy and latency framework for transfer
learning over 5G industrial edge networks,” IEEE Trans. Ind. Informat.,
vol. 18, no. 1, pp. 531–541, Jan. 2022.

[132] J. Wang, P. Zheng, and J. Zhang, “Big data analytics for cycle
time related feature selection in the semiconductor wafer fabrication
system,” Comput. Ind. Eng., vol. 143, May 2020, Art. no. 106362.

[133] G. S. Chadha, M. Krishnamoorthy, and A. Schwung, “Time series
based fault detection in industrial processes using convolutional neural
networks,” in Proc. 45th Annu. Conf. IEEE Ind. Electron. Soc., vol. 1,
Oct. 2019, pp. 173–178.

[134] O. Fink, Q. Wang, M. Svensén, P. Dersin, W.-J. Lee, and M. Ducoffe,
“Potential, challenges and future directions for deep learning in prog-
nostics and health management applications,” Eng. Appl. Artif. Intell.,
vol. 92, Jun. 2020, Art. no. 103678.

[135] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep
neural networks: A survey,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 43, no. 11, pp. 4037–4058, Nov. 2021.

[136] T. Zonta, C. A. Da Costa, R. D. R. Righi, M. J. De Lima,
E. S. Da Trindade, and G. P. Li, “Predictive maintenance in the Indus-
try 4.0: A systematic literature review,” Comput. Ind. Eng., vol. 150,
Dec. 2020, Art. no. 106889.

[137] T. P. Carvalho, F. A. Soares, R. Vita, R. D. P. Francisco, J. P. Basto,
and S. G. S. Alcalá, “A systematic literature review of machine
learning methods applied to predictive maintenance,” Comput. Ind.
Eng., vol. 137, Nov. 2019, Art. no. 106024.

[138] L. Ren, Y. Liu, X. Wang, J. Lu, and M. J. Deen, “Cloud-edge-based
lightweight temporal convolutional networks for remaining useful
life prediction in IIoT,” IEEE Internet Things J., vol. 8, no. 16,
pp. 12578–12587, Aug. 2021.

[139] J. Chen, H. Jing, Y. Chang, and Q. Liu, “Gated recurrent unit based
recurrent neural network for remaining useful life prediction of nonlin-
ear deterioration process,” Rel. Eng. Syst. Saf., vol. 185, pp. 372–382,
May 2019.

[140] L. Ren, J. Dong, X. Wang, Z. Meng, L. Zhao, and M. J. Deen,
“A data-driven auto-CNN-LSTM prediction model for lithium-ion
battery remaining useful life,” IEEE Trans. Ind. Informat., vol. 17,
no. 5, pp. 3478–3487, May 2021.

[141] J. Zhu, N. Chen, and W. Peng, “Estimation of bearing remaining useful
life based on multiscale convolutional neural network,” IEEE Trans.
Ind. Electron., vol. 66, no. 4, pp. 3208–3216, Apr. 2019.

[142] L. Wen, X. Li, and L. Gao, “A new reinforcement learning based
learning rate scheduler for convolutional neural network in fault classi-
fication,” IEEE Trans. Ind. Electron., vol. 68, no. 12, pp. 12890–12900,
Dec. 2021.

[143] R. Liu, G. Meng, B. Yang, C. Sun, and X. Chen, “Dislocated time
series convolutional neural architecture: An intelligent fault diagnosis
approach for electric machine,” IEEE Trans. Ind. Informat., vol. 13,
no. 3, pp. 1310–1320, Jun. 2017.

[144] Y.-N. Sun, W. Qin, H.-W. Xu, R.-Z. Tan, Z.-L. Zhang, and W.-T. Shi,
“A multiphase information fusion strategy for data-driven quality
prediction of industrial batch processes,” Inf. Sci., vol. 608, pp. 81–95,
Aug. 2022.

[145] Y. Liu, C. Yang, K. Liu, B. Chen, and Y. Yao, “Domain adaptation
transfer learning soft sensor for product quality prediction,” Chemo-
metric Intell. Lab. Syst., vol. 192, Sep. 2019, Art. no. 103813.

[146] J. Zhang, Y. Jiang, H. Luo, and S. Yin, “Prediction of material removal
rate in chemical mechanical polishing via residual convolutional neural
network,” Control Eng. Pract., vol. 107, Feb. 2021, Art. no. 104673.

[147] S. Bag, L. C. Wood, L. Xu, P. Dhamija, and Y. Kayikci, “Big data
analytics as an operational excellence approach to enhance sustainable
supply chain performance,” Resour., Conservation Recycling, vol. 153,
Feb. 2020, Art. no. 104559.

[148] H. Abbasimehr, M. Shabani, and M. Yousefi, “An optimized model
using LSTM network for demand forecasting,” Comput. Ind. Eng.,
vol. 143, May 2020, Art. no. 106435.

[149] G. Baryannis, S. Dani, and G. Antoniou, “Predicting supply chain
risks using machine learning: The trade-off between performance and
interpretability,” Future Gener. Comput. Syst., vol. 101, pp. 993–1004,
Dec. 2019.

[150] C. Lin, D. Deng, Y. Chih, and H. Chiu, “Smart manufacturing schedul-
ing with edge computing using multiclass deep Q network,” IEEE
Trans. Ind. Informat., vol. 15, no. 7, pp. 4276–4284, Jul. 2019.

[151] D. A. Rossit, F. Tohmé, and M. Frutos, “Production planning and
scheduling in cyber-physical production systems: A review,” Int. J.
Comput. Integr. Manuf., vol. 32, nos. 4–5, pp. 385–395, May 2019.

[152] D. Ivanov, A. Dolgui, and B. Sokolov, “The impact of digital tech-
nology and Industry 4.0 on the ripple effect and supply chain risk
analytics,” Int. J. Prod. Res., vol. 57, no. 3, pp. 829–846, Feb. 2019.

[153] C. Morariu, O. Morariu, S. Raileanu, and T. Borangiu, “Machine
learning for predictive scheduling and resource allocation in large
scale manufacturing systems,” Comput. Ind., vol. 120, Sep. 2020,
Art. no. 103244.

[154] F. R. Lima-Junior and L. C. R. Carpinetti, “Predicting supply chain
performance based on SCOR metrics and multilayer perceptron neural
networks,” Int. J. Prod. Econ., vol. 212, pp. 19–38, Jun. 2019.

[155] D. Shi, W. Fan, Y. Xiao, T. Lin, and C. Xing, “Intelligent scheduling
of discrete automated production line via deep reinforcement learning,”
Int. J. Prod. Res., vol. 58, no. 11, pp. 3362–3380, Jun. 2020.

[156] Z. Tong, F. Ye, B. Liu, J. Cai, and J. Mei, “DDQN-TS: A novel bi-
objective intelligent scheduling algorithm in the cloud environment,”
Neurocomputing, vol. 455, pp. 419–430, Sep. 2021.

[157] D. Syed, A. Zainab, A. Ghrayeb, S. S. Refaat, H. Abu-Rub, and
O. Bouhali, “Smart grid big data analytics: Survey of technologies,
techniques, and applications,” IEEE Access, vol. 9, pp. 59564–59585,
2021.

[158] B. Dhupia, M. U. Rani, and A. Alameen, “The role of big data analytics
in smart grid management,” in Emerging Research in Data Engineering
Systems and Computer Communications. Singapore: Springer, 2020,
pp. 403–412.

[159] Z. Alavikia and M. Shabro, “A comprehensive layered approach for
implementing Internet of Things-enabled smart grid: A survey,” Digit.
Commun. Netw., vol. 8, no. 3, pp. 388–410, Jun. 2022.

[160] W. Zheng and G. Chen, “An accurate GRU-based power time-series
prediction approach with selective state updating and stochastic opti-
mization,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 13902–13914,
Dec. 2022.

[161] Y. Jia, X. Lyu, P. Xie, Z. Xu, and M. Chen, “A novel retrospect-inspired
regime for microgrid real-time energy scheduling with heterogeneous
sources,” IEEE Trans. Smart Grid, vol. 11, no. 6, pp. 4614–4625,
Nov. 2020.

[162] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[163] D. Wang, G. Zhao, H. Chen, Z. Liu, L. Deng, and G. Li, “Nonlinear
tensor train format for deep neural network compression,” Neural
Netw., vol. 144, pp. 320–333, Dec. 2021.

[164] Y. Gil, J.-H. Park, J. Baek, and S. Han, “Quantization-aware prun-
ing criterion for industrial applications,” IEEE Trans. Ind. Electron.,
vol. 69, no. 3, pp. 3203–3213, Mar. 2022.

[165] Q. Xu, Z. Chen, K. Wu, C. Wang, M. Wu, and X. Li, “KDNet-
RUL: A knowledge distillation framework to compress deep neural
networks for machine remaining useful life prediction,” IEEE Trans.
Ind. Electron., vol. 69, no. 2, pp. 2022–2032, Feb. 2022.

[166] W. Fang, F. Xue, Y. Ding, N. Xiong, and V. C. M. Leung, “EdgeKE:
An on-demand deep learning IoT system for cognitive big data on
industrial edge devices,” IEEE Trans. Ind. Informat., vol. 17, no. 9,
pp. 6144–6152, Sep. 2021.

[167] C. Qiu, X. Wang, H. Yao, J. Du, F. R. Yu, and S. Guo, “Networking
integrated cloud-edge-end in IoT: A blockchain-assisted collective
Q-learning approach,” IEEE Internet Things J., vol. 8, no. 16,
pp. 12694–12704, Aug. 2021.

[168] A. H. Sodhro, S. Pirbhulal, and V. H. C. de Albuquerque,
“Artificial intelligence-driven mechanism for edge computing-based
industrial applications,” IEEE Trans. Ind. Informat., vol. 15, no. 7,
pp. 4235–4243, Jul. 2019.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1109/TII.2023.3264111
http://dx.doi.org/10.1109/TCYB.2022.3209707


20 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[169] Y. Laili, F. Guo, L. Ren, X. Li, Y. Li, and L. Zhang, “Parallel
scheduling of large-scale tasks for industrial cloud-edge collaboration,”
IEEE Internet Things J., vol. 10, no. 4, pp. 3231–3242, Feb. 2023.

[170] A. M. Ghosh and K. Grolinger, “Edge-cloud computing for Internet of
Things data analytics: Embedding intelligence in the edge with deep
learning,” IEEE Trans. Ind. Informat., vol. 17, no. 3, pp. 2191–2200,
Mar. 2021.

[171] Y. Wu, “Cloud-edge orchestration for the Internet of Things: Architec-
ture and AI-powered data processing,” IEEE Internet Things J., vol. 8,
no. 16, pp. 12792–12805, Aug. 2021.

[172] A. Ghosh, A. Mukherjee, and S. Misra, “SEGA: Secured edge gateway
microservices architecture for IIoT-based machine monitoring,” IEEE
Trans. Ind. Informat., vol. 18, no. 3, pp. 1949–1956, Mar. 2022.

[173] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio,
“An empirical investigation of catastrophic forgetting in gradient-based
neural networks,” 2013, arXiv:1312.6211.

[174] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp. 2935–2947, Dec. 2018.

[175] M. De Lange et al., “A continual learning survey: Defying forgetting in
classification tasks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 44,
no. 7, pp. 3366–3385, Jul. 2022.

[176] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “ICaRL:
Incremental classifier and representation learning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5533–5542.

[177] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey
on explainable artificial intelligence (XAI),” IEEE Access, vol. 6,
pp. 52138–52160, 2018.

[178] L. Floridi, “Establishing the rules for building trustworthy AI,” Nature
Mach. Intell., vol. 1, no. 6, pp. 261–262, May 2019.

[179] S. Mohseni, N. Zarei, and E. D. Ragan, “A multidisciplinary survey and
framework for design and evaluation of explainable AI systems,” ACM
Trans. Interact. Intell. Syst., vol. 11, nos. 3–4, pp. 1–45, Dec. 2021.

[180] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
J. Comput. Phys., vol. 378, pp. 686–707, Feb. 2019.

[181] R. Bommasani et al., “On the opportunities and risks of foundation
models,” 2021, arXiv:2108.07258.

[182] S. Yuan et al., “A roadmap for big model,” 2022, arXiv:2203.14101.
[183] T. B. Brown et al., “Language models are few-shot learners,” in Proc.

Adv. Neural Inf. Process. Syst., vol. 33, 2020, pp. 1877–1901.
[184] W. Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to

trillion parameter models with simple and efficient sparsity,” J. Mach.
Learn. Res., vol. 23, no. 1, pp. 5232–5270, 2021.

[185] J. Jumper et al., “Highly accurate protein structure prediction with
AlphaFold,” Nature, vol. 596, pp. 583–589, Aug. 2021.

[186] J. W. Song, Y. I. Park, J.-J. Hong, S.-G. Kim, and S.-J. Kang,
“Attention-based bidirectional LSTM-CNN model for remaining
useful life estimation,” in Proc. IEEE Int. Symp. Circuits
Syst. (ISCAS), Daegu, South Korea, 2021, pp. 1–5, doi:
10.1109/ISCAS51556.2021.9401572.

Lei Ren (Member, IEEE) received the Ph.D. degree
in computer science from the Institute of Soft-
ware, Chinese Academy of Sciences, Beijing, China,
in 2009.

He is currently a Professor with the School
of Automation Science and Electrical Engineer-
ing, Beihang University, Beijing, the Zhongguancun
Laboratory, Beijing, and the State Key Laboratory
of Intelligent Manufacturing System Technology,
Beijing. His research interests include neural net-
works and deep learning, time-series analysis, and

industrial artificial intelligence applications.
Dr. Ren serves as an Associate Editor for the IEEE TRANSACTIONS ON

NEURAL NETWORKS AND LEARNING SYSTEMS and other international
journals.

Zidi Jia (Graduate Student Member, IEEE) received
the bachelor’s and master’s degrees from the School
of Automation Engineering, University of Electronic
Science and Technology of China, Chengdu, China,
in 2017 and 2020, respectively. He is currently
pursuing the Ph.D. degree in pattern recognition and
intelligent systems with the School of Automation
Science and Electrical Engineering, Beihang Univer-
sity, Beijing, China.

His research interests include deep learning, indus-
trial artificial intelligence, the Industrial Internet of

Things, and industrial process monitoring.

Yuanjun Laili (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees from the School of Automa-
tion Science and Electrical Engineering, Beihang
University, Beijing, China, in 2009, 2012, and 2015,
respectively.

She is currently an Associate Professor with
the School of Automation Science and Electrical
Engineering, Beihang University, the Zhongguancun
Laboratory, Beijing, and the State Key Laboratory
of Intelligent Manufacturing System Technology,
Beijing. She is the Chief Scientist with the National

Key Research and Development Program of China. Her research interests
include the area of intelligent optimization, modeling, and simulation of
manufacturing systems.

Dr. Laili is a member of the Society for Modeling and Simulation Interna-
tional (SCS). She has received the Young Talent Lift Project supported by the
China Association for Science and Technology and the Young Simulation
Scientist Award from SCS. She serves as an Associate Editor for the
International Journal of Modeling, Simulation, and Scientific Computing and
Cogent Engineering.

Di Huang (Senior Member, IEEE) received the
B.S. and M.S. degrees in computer science from
Beihang University, Beijing, China, in 2005 and
2008, respectively, and the Ph.D. degree in computer
science from the École Centrale de Lyon, Lyon,
France, in 2011.

He joined as a Faculty Member with the Labora-
tory of Intelligent Recognition and Image Process-
ing, School of Computer Science and Engineering,
Beihang University, where he is currently a Pro-
fessor. His research interests include biometrics,

2-D/3-D face analysis, image/video processing, and pattern recognition.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1109/ISCAS51556.2021.9401572

