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Retinex Image Enhancement Based on Sequential
Decomposition With a Plug-and-Play Framework

Tingting Wu , Wenna Wu, Ying Yang , Feng-Lei Fan , Member, IEEE, and Tieyong Zeng

Abstract— The Retinex model is one of the most representative
and effective methods for low-light image enhancement. However,
the Retinex model does not explicitly tackle the noise problem
and shows unsatisfactory enhancing results. In recent years, due
to the excellent performance, deep learning models have been
widely used in low-light image enhancement. However, these
methods have two limitations. First, the desirable performance
can only be achieved by deep learning when a large number
of labeled data are available. However, it is not easy to
curate massive low-/normal-light paired data. Second, deep
learning is notoriously a black-box model. It is difficult
to explain their inner working mechanism and understand
their behaviors. In this article, using a sequential Retinex
decomposition strategy, we design a plug-and-play framework
based on the Retinex theory for simultaneous image enhancement
and noise removal. Meanwhile, we develop a convolutional
neural network-based (CNN-based) denoiser into our proposed
plug-and-play framework to generate a reflectance component.
The final image is enhanced by integrating the illumination
and reflectance with gamma correction. The proposed plug-
and-play framework can facilitate both post hoc and ad hoc
interpretability. Extensive experiments on different datasets
demonstrate that our framework outcompetes the state-of-the-
art methods in both image enhancement and denoising.

Index Terms— Image enhancement, image restoration,
plug-and-play, Retinex theory.

I. INTRODUCTION

IMAGES usually exhibit low contrast and unexpected noise
distortions when the photographic environment suffers from
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low illumination. Such drawbacks not only affect the visual
quality of captured images but also hinder the effectiveness of
downstream vision tasks such as image classification [1], [2]
and segmentation [3]. Image enhancement aims to reconstruct
a visually pleasing and clear image from its low-light
counterpart. During the past decades, various methods have
been proposed for low-light image enhancement [4], [5], [6],
[7], [8]. Among them, the Retinex model is one of the most
representative and significant models. However, most existing
optimization-based Retinex models still suffer from image
quality degradation such as heavy noise, inadequate details,
and low contrast.

The Retinex theory, proposed by Land and McCann [9]
in 1971, shows an impressive agreement with the color
perception of the human visual system (HVS) and inspires
numerous image enhancement algorithms [6], [10], [11].
According to the Retinex theory, an observation S can
be represented by the pixelwise product of two different
components: a reflectance layer R and an illumination
layer L

S = R · L (1)

where R denotes the inherent property of the scene surface
and contains details and color information of the original
image, while L represents the intensity and distribution of the
environmental illumination. Note that L is spatially determined
by the darkened regions of the image.

Simultaneously, estimating R and L from S according to (1)
is an ill-posed task. To address this issue, priors are needed
to be incorporated. Ng and Wang [6] adopted a log transform
to overcome the ill-posedness of the Retinex model. Then, the
total variation regularization and the L2-norm regularization
were employed to estimate the log-reflectance component
and log-illumination component, respectively. However, the
log transform may seriously distort gradient information,
which is problematic for noise in image enhancement tasks
[6], [11], [13]. To circumvent the abovementioned limitations,
numerous decomposition algorithms have been investigated
without the log transform. Gu et al. [14] predicted the
illumination and the reflectance directly in the image domain
by L2 and L1 norms, respectively. Following the work in [14],
Gu et al. [12] proposed a Retinex-based fractional-order total
variational (FOTV) model by employing the fractional-order
gradient total variation regularization [∇α, α ∈ (1, 2)] on
both the reflectance and the illumination. However, such a
decomposition method is mainly carried out in the V-channel
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Fig. 1. Exemplary comparison with two existing methods on Img3. The
images generated by KinD [8] and FOTV [12] still have low contrast. Instead,
the image recovered by ours achieves a desirable result. (a) Img3. (b) KinD [8].
(c) FOTV [12]. (d) Ours.

Fig. 2. Comparison between the common and our sequential decomposition
strategies. The parts in the dotted boxes represent the Retinex decomposition
operations. (a) Alternating decomposition strategy. (b) Our Retinex sequential
decomposition method. L ′ and R′ demonstrate the illumination and reflectance
obtained by gamma correction, respectively.

of the HSV color space, which ignores the noise in the
other two channels. Thus, although these methods can remove
noise to a certain extent while preserving finer details, their
denoising ability is still limited.

It is increasingly noticed that noise in the dark channel is
a key issue in image enhancement, which must be treated
appropriately [7], [8], [15], [16], [17], [18], [19]. To desirably
enhance the low-light illuminated images, the model should
be endowed with denoising capability. In recent years, due to
its excellent performance, deep learning has been widely used
in low-light image enhancement. Realizing the criticality of
denoising, a plethora of deep models [7], [8], [15], [16], [17],
[18], [19] take the denoising as a separate task. However, these
methods have two limitations.

1) The desirable performance can only be achieved by
deep learning when a large number of labeled data are
available. However, it is not easy to curate massive
low-/normal-light paired data due to the following
reasons. First, there is no convincing synthetic method
to simulate realistic low-light images from normal-
light ones because illumination conditions are highly
varied. Second, the existing datasets are either small
or collected in a too specific context such as the
extremely underexposed condition to fulfill the general

need. Then, the model trained over such datasets may
not be translatable.

2) Deep learning is notoriously a black-box model [20].
Despite that deep learning delivers great performance
in real-world tasks, it is difficult to explain their inner
working mechanism and understand their behaviors.

Overall, existing methods still have some drawbacks as
shown in Fig. 1. To address these issues, inspired by the
plug-and-play image restoration method [21], we propose a
framework that uses sequential decomposition strategy to solve
R and L sequentially, thereby avoiding the alternating iteration
and canceling the mutual interference between solving R and
L . Fig. 2 shows the differences between the common Retinex
decomposition and the sequential decomposition strategies.
This framework circumvents the reliance on large paired
low-/high-light data, a key problem encountered in image
enhancement, by transforming the problem of learning how
to enhance an image into the problem of learning how
to do image denoising in solving R. The training of a
convolutional neural network-based (CNN-based) denoiser can
be done reliably and effectively over synthetic noisy/clean
data because synthesizing noise is much easier and more
faithful than synthesizing light illumination. Furthermore, the
plug-and-play framework promotes interpretability. On the one
hand, due to the modularized structure of the plug-and-play
framework, it is relatively easier to apply post hoc analysis
to identify the mechanism of the framework. Thus, we can
make the most use of the performance of advanced deep
learning denoisers and use a post hoc analysis method to gain
interpretability. Along this direction, instead of translating the
existing CNN denoisers into this task, we independently design
a simple yet efficient and effective CNN-based denoiser.
On the other hand, we can directly seek an explainable CNN-
based denoiser. The employment of an interpretable denoiser
can further enhance the entire framework’s interpretability.
Specifically, we use a wavelet-inspired autoencoder [22],
which is essentially a learnable wavelet shrinkage model.
Overall, our contributions are threefold.

1) We present an efficient sequential decomposition
Retinex algorithm to solve the illumination and
reflectance functions. To the best of our knowledge,
it is the first time to investigate the problem of
low-light image enhancement by a novel plug-and-
play framework. This framework is an organic fusion
of model- and data-driven modalities, which can
circumvent the reliance on large low-/normal-light data.

2) Through a post hoc analysis and applying an explainable
denoiser, we show how the modularized structure
in the proposed plug-and-play framework facilitates
interpretability in terms of both post hoc analysis and
ad hoc interpretable modeling.

3) Extensive and systematic low-light image enhancement
experiments are conducted on different datasets to
demonstrate the outperformance of our proposed method
from both quantitative and qualitative aspects.

II. RELATED WORK

A. Low-Light Image Enhancement Methods
During the past decades, a large number of algorithms

have been developed for low-light image enhancement. These
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algorithms can be reasonably categorized as model- and
learning-based algorithms.

1) Model-Based Methods: In this section, we mainly intro-
duce two model-based methods: the histogram equalization
(HE)-based methods and the decomposition-based methods.

Intuitively yet effectively, HE enhances image contrast by
changing the histogram distribution. The basic principle of HE
and its variants is to expand the dynamic range of pixels in an
image. Different from the standard HE algorithm, the adaptive
HE (AHE) [4] adjusts image contrast by calculating the local
histogram and redistributing the brightness. Although AHE
enhances local details in extremely dark or bright areas, it also
amplifies noise. The work in [5] can alleviate overexposure
and noise amplification by limiting the distribution of gray
levels in different regions (CLAHE). Subsequently, various
HE-based methods are devised to improve the overall visual
quality based on different constraints [23], [24].

Unfortunately, these HE-based methods are handicapped to
images with nonuniform illumination, which motivates the
invention of decomposition-based methods. This thread of
work assumes that an image can be decomposed into the
reflectance and the illumination components, and an image
is enhanced by further processing and integrating these two
components. The existing decomposition-based approaches
can be categorized into the variational methods [6], [10],
[11], [12], [13], [14], [25], [26], [27], [28], path-based
algorithms [29], [30], recursive algorithms [31], [32], partial
differential equation (PDE)-based methods [33], [34], and
learning-based methods [7], [8], [18], [35], [36]. However,
these techniques tend to induce sketchy details, prominent
noise, and unknown artifacts.

2) Learning-Based Methods: Recently, many learning-
based methods have emerged with promising performance for
underexposed image correction. The key bottleneck therein
is the lack of paired low-/high-light datasets. To solve this
problem, Wei et al. [7] collected a dataset named LOL,
which was widely applied in many works. Meanwhile, they
introduced an end-to-end trainable network called RetinexNet,
which is the first work that combines the Retinex theory and
deep learning. Chen et al. [18] built the SID dataset and trained
an end-to-end network with good noise reduction and image
enhancement, particularly for the extremely underexposed
images. Considering the poor generalization performance
of these methods in other test sets, some work attempts
to adopt semisupervised or unsupervised learning, such as
RetinexDIP [37]. However, their results sometimes suffer from
unexpected artifacts and improper exposure.

Another key problem in the image enhancement task is
the noise hidden in the dark. Lore et al. [38] exploited an
autoencoder to extract the image information and performed
the enhancement. Wang et al. [39] designed the DeepUPE,
which establishes the loss function according to the prior
information of illumination. Since these methods are not
designed for noise, the enhanced results still suffer visible
noise. Some learning-based methods treat denoising as an
independent module. Lv et al. [15] proposed a multibranch
decomposition-and-fusion enhancement network to cope well
with color distortion and noise. Xu et al. [16] designed
a frequency-based network for denoising and enhancement

simultaneously. They adopted a cross domain transformation
(CDT) module to eliminate noise and protect details.
Zhu et al. [17] designed a two-stage network to effectively
remove noise through the multiexposure fusion module. In our
study, we also regard noise suppression as a nonnegligible
factor. Progressive Retinex [19] uses two fully pointwise
convolutional neural networks to simulate the statistical
regularities of ambient light and image noise and leverage
them as constraints to facilitate the mutual learning process,
which not only avoids the ambiguity between tiny textures and
image noise but also enhances the computational efficiency.
Liu et al. [40] focused on constructing a lightweight yet
effective network, referred to as RUAS [40] to enhance
low-light images in real-world scenarios. Yang et al. [41]
noticed that there lacks a desirable objective for low-light
image enhancement, and they designed an end-to-end signal
prior-guided layer separation network with layer-specified
constraints.

Despite the promising performance, these methods either
are trained over synthetic data and data collected in a
specific condition or suffer from the lack of interpretability.
In contrast, by synergizing the model- and data-driven
modalities, our plug-and-play framework delivers superior
performance without dependence on paired low-/normal-light
data and enjoys interpretability.

B. Plug-and-Play Framework

Earlier, the plug-and-play framework was proposed to solve
the denoising problem [21], which allows the insertion of
different denoisers for prior knowledge learning. The plug-
and-play framework mainly contains two steps. First, the
objective function is decoupled into a fidelity subproblem
and a prior subproblem via the variable splitting algorithms.
These two subproblems are combined into an iterative
scheme solved alternately. Second, the existing state-of-the-
art denoising techniques can be employed directly to solve the
prior subproblem, including regularization denoising methods
[42], [43] and learning-based denoising methods [44].

Recently, various image reconstruction approaches have
been explored based on the plug-and-play framework, such as
image super-resolution [45], image deblurring [46], and image
denoising [46], [47]. Zhang et al. [46] introduced the IRCNN
model for nonblind image deblurring and image denoising
by plugging a deep denoiser prior into the half quadratic
splitting (HQS) algorithm [48]. Sun et al. [47] developed
a block-coordinate regularized denoising algorithm, which
decomposes the large-scale estimation problem into a series
of updates covering a small part of unknown variables. These
methods have revealed the surprising potential of the plug-
and-play framework in different image restoration tasks.

One of the major advantages of the plug-and-play
framework is that a pretrained denoiser can be used if there
is no enough data for end-to-end training. Since the available
paired data for image enhancement tasks are very limited, the
plug-and-play framework is suitable for our task. At the same
time, the model can gain interpretability from a mathematical
perspective since there is a close tie between the plug-and-play
framework and the traditional restoration methods.
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III. MODEL AND ALGORITHM

Our proposed method mainly consists of three components:
the sequential decomposition module, the denoising module,
and the adjustment module. Because of the sequential
decomposition, L and R are solved independently. For the
illumination layer L , we first compute the initial illumination
L̂ from the input S via the meanRGB operation; then,
we derive L by minimizing a loss function through iterative
optimization. For the reflectance layer R, since L is done,
we can get the initial map of R through the simple relationship,
i.e., R(0) = S/L . Then, the reflectance map R is processed
by a CNN-based denoiser. Finally, the gamma correction is
employed to combine the illumination and reflectance maps
to yield the final enhanced image. Fig. 3 shows the flowchart
of our proposed method based on the sequential decomposition
within a plug-and-play framework.

A. Retinex Model With the Plug-and-Play Scheme

We propose a plug-and-play scheme for low-light image
enhancement with the sequential decomposition-based Retinex
model. We construct the following optimization function to
alleviate the ill-posedness of (1):

min
R,L
∥S − L · R∥2

F + λ8(R)+ β∥∇R − G∥2
F + α∥∇L∥1

(2)

where S, L , and R denote the low-light image, estimated
illumination, and reflectance, respectively; G is the adjustment
to ∇S; λ, α, and β are the regularization parameters; ∥ · ∥F
represents the Frobenius norm; and ∥ ·∥1 denotes the ℓ1 norm.
Next, we explain in detail each term in the objective function:

1) The term ∥S−L ·R∥2
F minimizes the Frobenius distance

between S and L · R, which is the fidelity term.
2) 8(R) is the regularization term of R, which is used

to denoise the reflectance part. If 8(R) = ∥∇R∥1,
the proposed model (2) is a hybrid model about total
variation. If 8(R) =

∑
i ∥N Ni (R)∥∗, the proposed

model (2) is a low-rank hybrid model, and here,
∥ · ∥∗ represents the nuclear norm and N Ni (R) =
[Ri1, Ri2, . . . , Rik] is the similar patch group of the
reference patch Ri1. In our proposed framework, 8(R)
is an implicit prior whose subproblem is denoising.

3) The third term ∥∇R − G∥2
F minimizes the distance

between ∇R and G. Since G is obtained from ∇ Ŝ
(adjusted by the gradient of S), the details of edges can
be preserved. ∇ Ŝ and G [49] are given by

∇ Ŝ =

{
0, if ∇ Ŝ < ε

∇S, otherwise
(3)

G =
(

1+ κe−|∇ Ŝ|/σ
)
◦ ∇ Ŝ. (4)

Here, ϵ can filter out small gradients; σ and κ are the
parameters that control the enlarged level. Equation (3)
can suppress the possible noise before the amplification.

4) ∥∇L∥1 ensures the smoothness of the illumination layer.
Typically, to estimate the illumination map L and the

reflectance map R, we can solve (2) in an alternating fashion
(solving L and R alternatively in the iteration). However,

this is time-consuming and complex. To address this issue,
we adopt a novel sequential decomposition strategy to generate
the illumination part independently. Specifically, we first
estimate the illumination L from the initial illumination L̂
[see (5)] and then estimate the reflectance map R [see (6)]

min
L
∥L − L̂∥2

F + α∥∇L∥1 (5)

min
R
∥S − L · R∥2

F + λ8(R)+ β∥∇R − G∥2
F . (6)

1) Illumination Map (L) Estimation: Recently, numerous
approaches have been proposed to directly estimate the
initial illumination map L̂ , such as the maxRGB [50] or
meanRGB [25] operator. These approaches preassume that
each channel of an RGB image has a common illumination.
We adopt the meanRGB operator to ensure the consistency of
illumination, which is defined as

L̂(x) =
1
3

∑
c∈{R,G,B}

Sc(x) (7)

where x denotes the pixel of the image. Then, an alternating
direction minimization method (ADMM) [51] is employed to
solve (5)

min
L
∥L − L̂∥2

F + α∥v∥1, s.t. ∇L = v (8)

where v is an auxiliary variable. Then, we can create a
corresponding augmented Lagrangian function

Lθ (L , v)=∥L − L̂∥2
F+α∥v∥1+

θ

2
∥∇L−v∥2

F+⟨Z ,∇L − v⟩

(9)

where θ is the penalty parameter and Z is the Lagrangian
multiplier. The ADMM algorithm is derived by minimizing L
with respect to L and v (one at a time while fixing the other
at its most recent value). By direct computation, we can get
the updating formula of L

L(k+1)
=

(
2+ θ (k)∇T

∇
)−1(

2L̂ + θ (k)∇T v(k) −∇T Z (k)
)
(10)

which is implemented by fast Fourier transform (FFT) and
inverse FFT (IFFT). Meanwhile, the v-subproblem can be
quickly solved by the soft shrinkage

v(k+1)
= η

(
∇L(k+1)

+
Z (k)

θ (k)
,
α

θ (k)

)
(11)

where η is a soft shrinkage function defined as

η
(
xi j , c

)
:=

xi j

|xi, j |
·max

(
|xi, j | − c, 0

)
.

Finally, the Lagrangian multiplier Z and the parameter θ are
updated through

Z (k+1)← Z (k) + θ (k)
(
∇L(k+1) − v(k+1)

)
,

θ (k+1)
← θ (k)ρ, ρ > 1.

(12)

Here, ρ is the step size. The iteration will terminate when
∥∇L−v∥F ≤ ι∥L̂∥F with ι = 10−5 or k reaches the maximum
value.
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Fig. 3. Flowchart of our method. We first obtain the illumination L via refining the initial illumination L̂ generated by the meanRGB operation. Then,
we obtain the initial value of R via R(0) = S/L . The noise-free reflectance map is obtained by inserting the denoiser with the designed plug-and-play
framework. Finally, gamma correction is applied to the decomposed component to adjust the image.

2) Solution of R-Subproblem: Following the HQS
method [48], (6) can be reformulated as a constrained
optimization problem by introducing an auxiliary variable z:

min
R
∥S − L · R∥2

F + λ8(z)+ β∥∇R − G∥2
F

s.t. R = z. (13)

Then, (13) is solved by minimizing the following problem:

Lµ(R, z) = ∥S − L · R∥2
F + λ8(R)

+β∥∇z − G∥2
F +

µ

2
∥z − R∥2

F (14)

where µ is a positive penalty scalar.
z-Subproblem (Contrast Enhancement): The fidelity term

and regularization term are decoupled into two individual
subproblems. Collecting the z-involved terms from (14) gives
the problem as follows:

z(k+1)
= arg min

z
β∥∇z − G∥2

F +
µ

2
∥R − z(k)∥2

F . (15)

Then, the updating formula of zk+1 is given by

z(k+1)
=

2β∇T G + µR(k)

2β∇T∇ + µI
. (16)

Note that the update of z(k+1) can be implemented by FFT and
IFFT.

R-Subproblem (Noise Suppression): Neglecting the terms
unrelated to R, the R-subproblem can be solved by the
following iterative scheme:

R(k+1)
=arg min

R
∥S − L · R∥2

F+
µ

2
∥z(k+1)

− R∥2
F+λ8(R).

(17)

We rewrite (17) as follows:

R(k+1)
= arg min

R

∥∥∥∥∥√
2L2 + µI R −

2S · L + µzk+1√
2L2 + µI

∥∥∥∥∥
2

F
+ λ8(R). (18)

Algorithm 1 Single-Image Low-Light Enhancement
Input: The input image S, k = 0, α = 0.1, θ = 0.0045,

ρ = 1.08, Z (0) = 0, ϵ = 1, κ = 2.5, σ = 10;
1: Compute G via Eqs. (3) and (4);
2: Estimate L̂ via Eq. (7);
3: while not converged do
4: Update L(k+1) via Eq. (10);
5: Update v(k+1) via Eq. (11);
6: Update Z (k+1) via Eq. (12);
7: end while

Input: R(0) = S/L , k = 0, µ = 0.001, β = 0.001, noise
level ω, gamma correction coefficient γ1,γ2;

8: while not converged do
9: Update z(k+1) via Eq. (16);

10: Update R(k+1) via Eq. (19);
11: end while
12: Estimate S′ via Eq. (22).
Output: The estimated result S′.

Solving (18) is essentially equivalent to solving an adaptive
denoising problem, where different regions of an image are
configured with different weights. Such an adaptation is
plausible because the noise level varies in different regions.
Usually, darker regions are subjected to stronger noise in
image enhancement. Due to the equivalence, we can use a
Gaussian denoiser to solve (18) as

R(k+1)
= Denoiser

(
2S · L + µzk+1

2L2 + µI
, ω

)
(19)

where ω is a hyperparameter of the denoiser related to the
noise level. For example, for different levels of noise, the
denoising effect of the Gaussian denoiser should be different.
In the experiment, the selection of ω depends on images.
We will discuss how ω affects the overall image enhancement
performance in Section VI-B2.

Summary: According to the Retinex theory, an observed
image S can be represented by the pixelwise product of two
different components: a reflectance layer R and an illumination
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layer L: S = R · L , where R denotes the inherent property of
the scene surface and contains details and color information
of the original image, while L represents the intensity and
distribution of the environmental illumination. Our framework
uses a sequential decomposition strategy to solve R and
L sequentially, thereby avoiding the alternating iteration
and canceling the mutual interference between solving R
and solving L . Fig. 2 shows the differences between the
common Retinex decomposition strategy and the sequential
decomposition strategy. Furthermore, the important prior
subproblem in solving R is reduced to a denoising problem,
amendable to the advanced denoisers to be employed in a plug-
and-play manner. This is why our framework is plug-and-play.

B. CNN-Based Denoisers

Since our framework is plug-and-play, denoisers can be
selected as appropriate. In recent years, deep learning has
been widely used in various fields [52], [53]. Considering that
learning-based methods significantly outperform traditional
variational models, we design a CNN-based denoiser to solve
the R subproblem in the image enhancement task. In addition,
we also use an explainable denoiser.

Ours: Currently, the activation unit ReLU is the most
widely used nonlinear activation function in deep learning
because of its good properties in preventing gradients
vanishment or explosion. However, ReLU also tends to
block information transmission because it sets zero to all
negative parts of the input, which may block reasonable
information circulation because those inhibited neurons will
not be updated in the backpropagation. To address this
issue, a thread of the activation functions, e.g., ON/OFF

ReLU [54], Concatenated-ReLU [55], and Leaky-ReLU [56],
which consider the information flow of negative parts, were
proposed to supplement ReLU in deep networks. Compared to
other activation functions, Leaky-ReLU has a smaller number
of parameters and a reasonably effective generalization
performance. Therefore, we design the CNN-based denoiser
with Leaky-ReLU, as shown in Fig. 3. The new denoiser
mainly includes three parts: “Conv + LeakyReLU” for the
first layer, “Conv + BactchNorm + LeakyReLU” for the
2–18 layers, and “Conv” for the last layer. The convolutional
layer in the first part uses 64 filters to generate 64 feature
maps and the size is 3 × 3 × 3. Also, we use the filters of
size 3× 3× 64 for the second and last parts. The LeakyReLU
function is defined as follows:

LeakyReLU(x) =

{
x, x > 0
ax, x ≥ 0

where a denotes a small constant and is usually set
to −0.02. We also add batch normalization between the
convolutional layer and the activation function. The application
of batch normalization can also improve training efficiency and
denoising performance [57].

Soft-AE (An Explainable Denoiser): Fan et al. [22]
proposed the so-called soft autoencoder (Soft-AE), which is
interpretable based on the wavelet shrinkage theory. As shown
in Fig. 4, the activation functions in the encoding layers are set
to soft-thresholding units ηb<0(x) = sgn(x)max{|x | + b, 0},

Fig. 4. Architecture of Soft-AE. The Soft-AE is a learnable wavelet shrinkage
algorithm.

where b is a threshold, sgn(·) is the sign function, and
activation functions of the decoding layers are linear. As a
result, convolutional layers in the encoder part conduct wavelet
transform, while convolutional layers in the decoder part
conduct inverse wavelet transform. The Soft-AE can be
regarded as unrolling the cascade wavelet shrinkage algorithm
into a network, and the wavelet transform is learnable.

Mathematically, the wavelet shrinkage algorithm consists
of three steps. Suppose that we have the following additive
noise model: Y (t) = S(t) + N (t), where Y (t) and S(t)
are the measured and the authentic signals, respectively: 1)
perform the wavelet transform over the noise signal to derive
wavelet coefficients: Ŷ = W [Y ]; 2) apply an elementwise
soft-thresholding activation to the wavelet coefficients: Z =
η−σN (2 log n)1/2(Ŷ ), where is the noise variance and n is
the number of pixels; and 3) perform the inverse wavelet
transform: Ŝ = W−1

[Z ].

Algorithm 2 Wavelet Shrinkage Algorithm
Input: Y (t) = S(t)+ N (t), wavelet φ

1: Wavelet transform by φ: Ŷ = Wφ[Y (t)];
2: Soft thresholding: Z = ηb(Ŷ );
3: Inverse wavelet transform by φ−1: Ŝ = W−1

φ [Z ];
Output: Ŝ(t)

Proposition 1: Let Ŝ(t) and S(t) be the recovered signal
and the noisy signal in Algorithm 2. Given the Besov norm B
that is a measure for smoothness, there is a universal constant
πn , where n is the number of elements in Ŝ(t) and S(t), with
πn → 1 as n → ∞, and constant C(B) depending on the
Besov norm such that

Prob
{
∥ fL R∥B ≤ C(B)

∥∥ f̂ H R
∥∥

B

}
≥ πn. (20)

Proposition 1 reveals the important smoothness relationship
between the original noisy signal and their wavelet recovery.
With the overwhelming likelihood and in a common
smoothness measure: Besov norm, the recovered signal is
smoother than the noisy signal. Proposition 1 offers a
theoretical guarantee for the denoising effect of Algorithm 2.
Considering that the soft-AE performs a network-based
wavelet transform, it inherits such a theoretical guarantee from
the wavelet shrinkage theory.
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C. Gamma Correction

To further improve the enhancement effect, the gamma
correction can be used for illumination adjustment after
obtaining the final reflectance R and illumination L . Then,
the final result can be obtained by

S′ = R · L ′ (21)

where · denotes the elementwise multiplication and L ′ =
L(1/γ ). Usually, the value of γ is empirically set to 2.2.

This gamma correction method assumes that the illumi-
nation map from the Retinex model is close to the real
illumination. However, this assumption may not hold for the
extremely low illumination. Thus, we adopt the following
gamma correction strategy for the extremely low-light images:

S′ = R′ · L ′ (22)

where R′ = R(1/γ1) and L ′ = L(1/γ2). We can manually
adjust the values of γ1 and γ2 according to the characteristics
of the images. Finally, the whole procedure of the proposed
framework is summarized in Algorithm 1.

IV. INTERPRETABILITY OF THE PROPOSED FRAMEWORK

The employment of the plug-and-play framework features
modularization, which sequentially solves R and L and avoids
the crosstalk between them. Our highlight is that the plug-
and-play framework can enhance interpretability. Generally,
interpretability means to what extent a human can understand
and reason a model. In [20], interpretability is divided into
post hoc interpretation and ad hoc interpretable modeling.
The former is conducted after a model is well learned.
The main advantage of post hoc methods is that one does
not need to compromise interpretability with the predictive
performance since prediction and interpretation are separate.
The latter is to prototype an interpretable model. The merit
of ad hoc interpretable modeling is that it can avoid the bias
of post hoc interpretation. We argue that the modularization
in the plug-and-play framework can enhance both post hoc
and ad hoc interpretability. On the one hand, we can use a
powerful denoising network, conjugated by a dedicated post
hoc analysis, to simultaneously enjoy satisfactory denoising
performance and interpretability. On the other hand, we can
straightly utilize an interpretable denoiser. In the following,
we illustrate them in detail.

A. Post Hoc Analysis

Since our framework is essentially iterative, we develop an
explanatory directed graph to illustrate how R is solved as the
iteration goes. For example, is it local? When and where the
information is lost severely? Specifically, inspired by the study
in [58], we set a pixel Rt

i of interest obtained in the t th iteration
to zero (mask it) and examine how R in the subsequent
iteration is altered. Suppose that Rt+1

j , where j ̸= i , has a
dramatic change; it concludes that Rt

i has a major impact on
Rt+1

j . Then, we build a link between them. Repeating this
procedure for different pixels and iterative steps, we expect to
track the information evolution in the iteration.

B. Ad Hoc Modeling

The aforementioned Soft-AE is essentially unrolling
the cascade wavelet shrinkage algorithm into a network,
which is naturally more interpretable than the conventional
autoencoders. Let us mathematically illustrate the connection
between the Soft-AE and the wavelet shrinkage system.

Without loss of generality, we consider a four-convolutional-
layer Soft-AE. Suppose that this four-convolutional-layer
Soft-AE contains N filters in the first encoding layer and
M × N filters in the second encoding layer, which are
denoted as ψi , i ∈ [N ] and ψi j , i ∈ [M]; j ∈ [N ],
respectively. In symmetry, the two decoding layers of this
four-convolutional-layer Soft-AE consists of N × M and N
filters, which are denoted as φi j , i ∈ [N ]; j ∈ [M] and
φi , i ∈ [N ], respectively. For simplicity, we use (·)+ to denote
the soft-thresholding function ηb(·). The final output of this
four-convolutional-layer Soft-AE is

N∑
k

φk ∗

 M∑
j

φk j ∗

[
N∑
i

ψ j i ∗ (ψi ∗ x)+
]+ (23)

where ∗ represents convolution. We can apply the approximate
property of the soft thresholding

(h + g)+ ∼ h+ + g+. (24)

When the threshold is zero, a soft-thresholding activation
degenerates into a linear activation. Thus, (24) approximately
holds when the threshold is small. As a result, (23) turns into

N∑
k

φk ∗

M∑
j

[
φk j ∗

N∑
i

ψ j i ∗ (ψi ∗ x)+
]+
. (25)

Let 9 be a matrix of the size of M × N whose ( j, i)-entry
is ψ j i and 8 be the N × M matrix whose (k, j)-entry is φk j .
Since convolution operations conform to the associative laws,
(25) is further simplified into the matrix form

[φ1, . . . , φN ]⊗8⊗9 ⊗
[
(ψ1 ∗ x)+, . . . , (ψN ∗ x)+

]T

(26)

where (A ⊗ B)i j =
∑

k Aik ∗ Bk j , which is analogous to the
matrix product, but elements are convolutional filters, and the
operation between the elements is convolution. The Soft-AE
is to do wavelet shrinkage and can recover the clean signal
when the following conditions are satisfied:
8⊗9 = diag(λ1, λ2, . . . , λN )δ

φk =
ψ−1

k∣∣∣∑N
k λk

∣∣∣ or ψk =
φ−1

k∣∣∣∑N
k λk

∣∣∣ , k = 1, 2, . . . , N

(27)

where δ is the Dirac function, and the selection of 8 ⊗ 9
should make

∑N
k λk nonzero. Equation (27) can be trivially

fulfilled by setting diagonal elements of 8 and 9 to be
mutually inverse to each other and the rest elements to zero.
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V. MAIN EXPERIMENTS

Extensive experiments are conducted to evaluate the
effectiveness of our framework. First, we introduce the
experimental protocols. Second, we analyze via qualitative
visualization and quantitative comparisons the image enhance-
ment performance of our proposed framework, with an
emphasis on the effects of the initial illumination map and
the proposed sequential decomposition.

A. Experimental Protocols

1) Datasets: We conduct extensive experiments on
three datasets. The first dataset is Set12, which contains
12 underexposed images with real noise collected in public
datasets [10], [61], [62]. The second dataset is LOL [7]
(https://daooshee.github.io/BMVC2018website/), which con-
tains 500 low-light images and their normal-light ground truth.
We use the fivefold cross validation to test the performance
of all supervised learning-based methods on the LOL dataset.
Fig. 5 shows the splits of the fivefold cross validation. The
third dataset is the Berkeley segmentation dataset (BSD)
(https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/
bsds/) that contains 30 images with normal light and is
employed for testing. We use a simple synthetic strategy to
transform those normal-light images into low-light versions
with noise distortion. First, we generate the low-light image
by reducing the brightness of the V-channel of the normal
images in HSV color space. Then, the white Gaussian noise
with σ = 5 is added to the low-light images to obtain the
desired images.

2) Compared Methods: To demonstrate the superiority of
our method, we compare it with nine off-the-shelf advanced
image enhancement approaches, including three traditional
methods FOTV [12], LIME [10] and LR3M [25], and six
machine learning-based methods RetinexNet [7], KinD [8],
Zero-DCE [59], RetinexDIP [37], RUAS [40], and URetinex
[60]. All these methods are either classical benchmarks or
state-of-the-arts published in recent two years. We configure
the parameters of all compared methods based on the
recommendation of the original papers.

3) Evaluation Metric: Two types of image quality assess-
ment indexes are employed. The first type is full-reference
image quality assessment metrics (FR-IQAs): PSNR, SSIM,
and mse that are used when both low-light images and
normal-light ground truth are available. The second type is
no-reference image quality assessment metrics (NR-IQAs) that
are suitable when only low-light images are available. The
widely used NR-IQAs are NIQE [63], BTMQI [64], and
ARISMC [65]. The lower NIQE, BTMQI, and ARISMC, the
better the perceptual quality.

B. Performance Analysis

1) Qualitative Comparison: Figs. 6 and 7 show the visual
comparison between the proposed method and competitors on
LOL179 and Img7.

The highlights of Fig. 6 are given as follows. First, the
RetinxDIP method only shows the moderate enhancement
effects. Most regions of this enhanced image are still

TABLE I
AVERAGE AND STD NUMERICAL RESULTS ON SET12. THE BEST
PERFORMER IS BOLD-FACED. THE RUNNER-UP IS UNDERLINED

Fig. 5. Split of the fivefold cross validation. In particular, the LOL dataset
contains 500 images, and these images are randomly coded from 1 to 500.

extremely dark and insufficiently contrastive. Second, although
LIME, RetinexNet, Zero-DCE, and FOTV obtain the desirable
enhancement, they fail to eliminate the noise in the dark
regions. Third, as shown in the zoomed-in regions, the
visual results generated by KinD and LR3M are oversmooth,
resulting in unclear and unsharp structural expression, while
the URetinex and KinD produce unrealistic results with color
distortion. Finally, the proposed model is visually superior,
with a better enhancement and a lower noise level. The
abovementioned issues, such as heavy noise appearing in the
dark regions and unclear structures, are markedly alleviated.

From Fig. 7, we draw four observations. First, most
methods perform poorly in denoising, e.g., significant noise
remains on the road. Although LR3M and RUAS effectively
suppress noise, the texture in the green box is missing
because of the overdenoising effect. Second, the results
of LIME, RetinexNet, and RUAS are overenhanced, e.g.,
extra color distortion is present. Third, URetinex and RUAS
unsatisfactorily overexpose the sky. Finally, the visual effect
created by our proposed model is pleasing. For example, the
structures are sharper, and the surface is clearer.

2) Quantitative Comparison: Now, we quantitatively com-
pare our framework with its competitors on two test datasets.
Specifically, we use the NR-IQAs to measure the performance
of all the methods on Set12, and the NR-IQAs and FR-IQAs
on the LOL dataset.

Tables I and II summarize the experimental results of all
methods on LOL and Set12, respectively. Note that the Ave.
Rank is the comprehensive ranking of all numerical results.
First, the regularization-based algorithms show suboptimal
performance on the Set12 and LOL because those methods
ignore the noise distortion in enhancing images. Second,
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TABLE II
AVERAGE AND STD NUMERICAL RESULTS ON THE LOL DATASET. THE BEST PERFORMER IS BOLD-FACED. THE RUNNER-UP IS UNDERLINED

Fig. 6. Enhanced results of existing methods on LOL179. (a) Input. (b) LIME [10]. (c) RetinexNet [7]. (d) Zero-DCE [59]. (e) KinD [8]. (f) FOTV [12].
(g) LR3M [25]. (h) RetinexDIP [37]. (i) URetinex [60]. (j) Ours-IRCNN. (k) Ours. (l) Ground truth.

Fig. 7. Image enhancement results of existing methods on Img7. (a) Input. (b) LIME [10]. (c) RetinexNet [7]. (d) Zero-DCE [59]. (e) KinD [8].
(f) FOTV [12]. (g) LR3M [25]. (h) RUAS [40]. (i) RetinexDIP [37]. (j) URetinex [60]. (k) Ours-IRCNN. (l) Ours.

Fig. 8. Comparison between the meanRGB operator and maxRGB operator. Heatmap of (a) input, (b) maxRGB, and (c) meanRGB. (d) 1-D plots of the
estimated L map. Enhanced results of (e) maxRGB and (f) meanRGB.

compared to the regularization-based methods, learning-based
models achieve better results. Since the performance of pure
learning-based methods relies heavily on the number of

training samples and this dataset only has limited data, their
results are not completely satisfactory. Finally, among all
the image enhancement models, our method obtains the best
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TABLE III
AVERAGE NUMERICAL RESULTS ON 30 SYNTHETIC

LOW-LIGHT IMAGES WITH NOISE DISTORTION

numerical scores in light of all metrics. In addition, our model
has a relatively low std in the LOL dataset, suggesting that our
model is more robust and consistent.

To further test the effectiveness of the proposed method
in noise suppression, here we specifically compare it with
five competitors that also consider noise suppression in image
enhancement. The images are from the BSD dataset. Table III
reports the quantitative results on the synthetic 30 low-light
and noisy images. In Table III, our method achieves the highest
PSNR and SSIM values and the lowest mse error.

3) Initial Illumination Map: Different from the methods
based on alternating iteration, our model estimates R and L
separately. The key to the success of the proposed framework
is to accurately estimate L . In addition to the meanRGB
operator mentioned in this article, the maxRGB operator is
often used to estimate the initial illumination map, which is
mathematically defined as

L̂(x) = max
c∈{R,G,B}

Lc(x). (28)

We compare the performance of two initialization operators in
Fig. 8, where Fig. 8(a)–(c) shows the heatmaps of the input
image and the estimated illumination obtained by maxRGB
and meanRGB. As can be seen, both methods are noise-
free, but the estimated illumination obtained by meanRGB
is smoother than that obtained by maxRGB. The 1-D profile
in Fig. 8(d) also implicates that the pixel profile of the
illumination map obtained by meanRGB is more faithful to
the input image. Furthermore, we can see in Fig. 8(e)–(f) that
the meanRGB initial illumination yields a better enhancement
result.

4) Retinex Decomposition: To validate the effectiveness
of our decomposition strategy, we offer the decomposition
results of our framework in Fig. 9, where 9(a)–(d) represents
the input S, the reflectance layer R(k), illumination layer L ,
and the restored result, respectively. In our framework, the
noise existing in the illumination component is transferred
to the reflectance layer. Thus, the illumination layer should
be spatially smooth and only contains simple structures.
We only need to denoise the reflectance map. Fig. 9(b)
spotlights that our method can effectively remove the noise
in the reflectance map and preserve the edge and structure
information. In addition, the estimated illumination map
[Fig. 9(c)] is smooth and noise-free. Those observations
conclude the effectiveness of the decomposition strategy and
justify the utility of our plug-and-play framework for image
enhancement.

5) Runtime: Table IV shows the runtime of our method
and other state-of-the-arts for a single image. Note that the

Fig. 9. Decomposition results generated by our framework. (a)–(d) Observed
image, estimated reflectance R(k), illumination L , and enhanced version,
respectively.

TABLE IV
RUNTIME OF DIFFERENT MODELS FOR A SINGLE IMAGE (IMG1)

proposed model is faster than LR3M and RetinexDIP but
slower than other models. Although our model is not the
fastest, it has moderate runtime. We argue that a higher time
cost is worthwhile in order to acquire excellent enhancement
performance. The most time-consuming part of our framework
lies in deriving L . The denoising time of our denoiser only
takes 0.2601 s.

C. Interpretability of the Proposed Framework

Earlier experiments show that our designed denoiser can
assist the framework to deliver advanced image enhancement
performance. Now, we use the aforementioned post hoc
dynamics analysis to track the denoising process to address
problems such as what kind of information is used in denoising
in our framework.

The directed graph is built based on the algorithm in
Section IV-A. We demonstrate the information flow of
denoising in Fig. 10. Each arrow connects the most related
two pixels between images generated by two iterations. From
Fig. 10, we draw one interesting observation. It can be seen
that the information flow of denoising is highly local, ti.e.,
the restoration of some pixels is most influenced by its very
surrounding pixels. This is surprising because the deeper
layers of a CNN usually can extract abstract information,
which can cover a large receptive field. Thus, the interaction
between two pixels is expected to be local but not highly
local. Since various CNN-based denoisers with interpretability
can be inserted at will, we conjecture that if we insert a
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Fig. 10. Information flow of the proposed framework.

Fig. 11. Results of our proposed framework with and without the denoiser.
(a) W/O denoiser (NIQE: 3.6909). (b) With denoiser (NIQE: 2.8494).

transformer [66] into the denoising module, we might see the
interaction in a much longer range.

VI. ABLATION STUDY AND PARAMETRIC ANALYSIS

A. Ablation Study

1) Effectiveness of Denoiser: To show the necessity of
the inserted denoiser, we compare the results of our model
with and without denoiser. Fig. 11 reports the comparable
results. From it, we can find that the result generated by
our proposed model without denoiser has heavy noise, color
distortion, and poor numerical result. In contrast, the results
created by the model with denoiser have a clear and sharper
structure. Such results have demonstrated the effectiveness
of the proposed plug-and-play framework with the inserted
denoisers, which can alleviate color bias and structural detail
loss. By increasing the coefficient of denoising, we can
increase the degree of noise suppression in the reflectance
map. According to the degree of image degradation, different
coefficients of denoising can be employed to achieve the
desirable performance.

2) Effects of Different CNN-Based Denoisers: We compare
the enhancement effects of different denoisers to prove the
robustness of our plug-and-play framework. Fig. 12 shows
the enhancement results of four different denoisers, including
IRCNN [46], FFDNet [67], CBDNet [68], and our CNN-based

Fig. 12. Performance of the proposed framework with different denoisers.
(a) CBDNet (NIQE: 5.6149). (b) FFDNet (NIQE: 6.1877). (c) IRCNN (NIQE:
4.8271). (d) Our CNN-based denoiser (NIQE: 4.7822).

Fig. 13. Visual comparison on (a)–(c) wavelet denoiser and (d)–(f) ours.

denoiser. From Fig. 12, among all the denoisers, we can find
that our denoiser achieves the best performance on both the
visual effect and numerical result. Obviously, the performance
of denoisers has a direct effect on the result of our proposed
framework. However, the proposed method is a universal,
feasible and superior framework, which allows the insertion
of different denoisers based on the intrinsic characteristics of
different images.

3) Effect of an Explainable Denoiser: In particular,
we compare the effect of wavelet shrinkage denoiser (top
row) and the Soft-AE (bottom row) with details in Fig. 13.
The denoised results of wavelet shrinkage denoiser still suffer
obvious punctuate noise (the enlarged area in the red and green
boxes) and lose structural details (the enlarged area in the blue
box). On the contrary, the Soft-AE satisfactorily suppresses
the noise and simultaneously keeps structural details. Thus,
we conclude that the Soft-AE has a better performance.

B. Parametric Analysis

More favorably, for important hyperparameters such as
α, β, λ, γ1, and γ2, which greatly affect regularization
and correction, we have discussed their sensitivity to the
performance of the proposed framework in detail.

1) Regularization Parameters—α and β: The regularization
parameters α and β in (2) have direct effects on the
performance of our model. Fig. 14 shows the visual effects
under different settings of α and β. Fig. 14(b) shows the
result with α = 0, which means that the term ∥∇L∥1 does not
work. Such a setting is not conducive to generating a smooth
illumination map and leads to unsatisfactory enhancement
results. Fig. 14(c) gives the result with β = 0, which means
that the third term of (2) is inactive. Fig. 14(d) shows the
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Fig. 14. Regularization parametric analysis. (a) Input. (b) Enhanced image with α = 0. (c) Enhanced image with β = 0. (d) Enhanced image by our
framework.

Fig. 15. Effect of different regularization parameters on NIQE, BTQMI, and
ARISMC. We fix (a) β = 0.001 and (b) α = 0.1.

result generated by our model with α = 0.02 and β = 0.001.
Such results demonstrate the usefulness of the second and
third terms in (2). To further test the effects of α and β,
we conduct the experiments by only changing one parameter at
a time. Fig. 15 gives the experimental results (NIQE, BTMQI,
and ARISMC) on Set12. From it, we can easily observe that
different parameters have a direct impact on the performance
of our method. Please note that lower NIQE, BTMQI, and
ARISMC values represent better visual quality. As can be
observed, NIQE always prefers smaller parameters but is
not sensitive to β. BTMQI prefers smaller α and larger β.
ARISMC prefers an intermediate α and is not sensitive to β.

2) Noise Level—ω: The noise level of the denoiser usually
determines the effect of denoising. Therefore, we studied the
effect of different denoising levels on the enhanced results.
Fig. 16 shows the quantitative and qualitative analyses of
different ω’s. It is obvious that the CNN-based denoiser with
noise level 25 achieves a better visual result. However, the
enhanced results obtained by the denoisers with different noise
levels have little difference in numerical results. In order
to pursue a better denoising performance, we tend to use a
CNN-based denoiser with a noise level of 25.

3) Gamma Correction—γ1 and γ2: Gamma correction is a
nonnegligible link in the Retinex method. Fig. 17 shows the
numerical results with different γ1 and γ2 values on the test
set of LOL. The result indicates that the numerical results
are highly affected by γ2. A lower γ2 value corresponds to a
higher NIQE value and a higher mse value. Moreover, PSNR

Fig. 16. Quantitative and qualitative analysis of different ω values. (a) Noise
level 15. (b) Noise level 25. (c) Numerical results for different noise levels.

Fig. 17. Impact of gamma correction parameters on (a) PSNR, (b) SSIM,
(c) mse, and (d) NIQE.

and SSIM are more inclined to a higher γ2. On the contrary, the
performance is not sensitive to the variation of γ1. Therefore,
to obtain stable and superior performance in low-light image
enhancement, we adopt different settings of γ1 and γ2 on
different datasets. For the LOL dataset, γ1 and γ2 are set to
1.5 and 4, respectively, while γ1 = 1 and γ2 = 2.2 are set on
the Set12 dataset.
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VII. CONCLUSION

In this article, we have proposed a framework that uses
a sequential decomposition strategy to solve R and L
sequentially, thereby avoiding the alternating iteration and
canceling the mutual interference between solving R and L .
This framework not only circumvents the reliance on large
paired low-/normal-light data, a key problem encountered
in image enhancement but also promotes interpretability.
Quantitative and qualitative experiments have demonstrated
the superiority of our method. However, we find that the visual
effect of images is largely affected by the gamma correction
parameters that depend on the degree of underexposure. Future
work will be investigating the effect of gamma correction and
exploring efficient gamma correction methods.
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