
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Identifying Appropriate Intellectual Property
Protection Mechanisms for Machine Learning
Models: A Systematization of Watermarking,
Fingerprinting, Model Access, and Attacks

Isabell Lederer, Rudolf Mayer , and Andreas Rauber

Abstract— The commercial use of machine learning (ML) is
spreading; at the same time, ML models are becoming more
complex and more expensive to train, which makes intellectual
property protection (IPP) of trained models a pressing issue.
Unlike other domains that can build on a solid understanding of
the threats, attacks, and defenses available to protect their IP,
ML-related research in this regard is still very fragmented. This is
also due to a missing unified view as well as a common taxonomy
of these aspects. In this article, we systematize our findings on
IPP in ML while focusing on threats and attacks identified
and defenses proposed at the time of writing. We develop a
comprehensive threat model for IP in ML, categorizing attacks
and defenses within a unified and consolidated taxonomy, thus
bridging research from both the ML and security communities.

Index Terms— Attacks on intellectual property protection
(IPP), fingerprinting, IPP, machine learning (ML), model access
control, watermarking.

I. INTRODUCTION

IN MANY machine learning (ML) settings, training an
effective model from scratch—especially complex and

powerful models such as a deep neural network (DNN)—
is computationally very expensive and requires expertise for
setting parameters, and the amount of data needed is not
commonly accessible or expensive to obtain. Security concerns
become more prominent when these models are made available
to other parties or customers, e.g., in ML as a Service (MLaaS)
or under a license. This is when model owners—who have
invested significant resources to train a model and now want
to offer it to customers—start to consider intellectual property

Manuscript received 3 May 2021; revised 31 October 2021, 5 April 2022,
and 3 August 2022; accepted 4 October 2022. This work was partially
funded by the European Union’s Horizon 2020 research and innovation
programme under grant agreement no. 826078 (project ‘FeatureCloud’). This
publication reflects only the authors’ view and the European Commission
is not responsible for any use that may be made of the information it
contains. SBA Research (SBA-K1) is a COMET Center within the COMET
– Competence Centers for Excellent Technologies Programme and funded by
BMK, BMAW, and the federal state of Vienna. The COMET Programme is
managed by FFG. (Corresponding author: Rudolf Mayer.)

Isabell Lederer was with SBA Research, 1040 Vienna, Austria.
Rudolf Mayer and Andreas Rauber are with SBA Research, 1040 Vienna,

Austria, and also with the Institute of Information Systems Engineering,
Faculty of Informatics, Vienna University of Technology, 1040 Vienna,
Austria (e-mail: rmayer@sba-research.org; andreas.rauber@tuwien.ac.at).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3270135.

Digital Object Identifier 10.1109/TNNLS.2023.3270135

protection (IPP) methods such as watermarking (to verify
ownership) and access control (to prevent unauthorized usage
of a model). IP litigation cases over ML models do occur
but have so far not seen widespread media attention; however,
protection mechanisms are therefore investigated from a legal
point of view, e.g., [1], showing that the burden of proof
generally lies with the IP rights holder. Thus, it is important
to anticipate the need for such proofs and protect ML models
with IPP techniques.

In the last few years, we have consequently seen an increase
in research on IPP techniques for ML models. Many black-
and white-box watermarking methods have been proposed
based on techniques such as backdoor embedding via data
poisoning or regularization. At the same time, several studies
have shown the vulnerability of some of these schemes against
novel attacks. Similar observations hold true for model access
control techniques. However, a comprehensive overview on the
field, including a unified nomenclature and taxonomy, is still
missing. Based on a systematic review, this article provides a
survey and systematization of knowledge.

Our contributions are given as follows:
1) a systematic overview on research related to IPP of ML,

focusing on reactive (watermarking and fingerprinting)
and proactive (e.g., model access) techniques;

2) a taxonomy to categorize ML IPP schemes;
3) a categorization of 36 approaches by a set of character-

istics identified through methodological comparison;
4) an analysis of vulnerability to attacks designed to break

the IPP schemes;
5) guidelines on how to choose a fitting watermarking/IPP

scheme for a given setting;
6) a framework for implementations of watermarking

methods and available trained and watermarked mod-
els, allowing to compare other methods to previous
research.1

The remainder of this article is structured as follows.
Section II provides an overview of related surveys. Our
research methodology is described in Section III. Section IV
provides definitions and background to ML, DNNs, water-
marking, and fingerprinting. Section V introduces our

1Available at https://sbaresearch.github.io/model-watermarking/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0003-0424-5999


2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Literature search process workflow. In every step, we denote the
number of publications by N = x . Numbers 1–6 correspond to CSV-files,
which contain all the retrieved literature in the particular step.

taxonomy of IPP methods, the threat model, and attacks.
Sections VI and VII then discuss current approaches for
watermarking and fingerprinting schemes, while Section VIII
discusses proactive IPP methods such as access control.
Section IX provides a taxonomy of currently known attacks
and which IPP methods are vulnerable to them. In Section X,
we provide guidelines for choosing fitting IPP methods in vari-
ous scenarios before we provide our conclusions in Section XI.

II. RELATED WORK

As the first work in this field, Chen et al. [2] empirically
investigated five watermarking schemes for ML models (two
white and three black boxes), evaluated their fidelity, and
estimated the robustness against three attacks (model fine-
tuning, parameter pruning, and watermark overwriting), thus
providing an important early comparison of these techniques’
effectiveness. We expand on this and provide a survey as
well as systematization of the overall IP protection field for
ML models. Concurrently to our work, a survey specifically
covering the watermarking of ML models was published as a
preprint by Boenisch [3]. Watermarking is an important aspect,
which our work complements with fingerprinting and proactive
methods such as model access, thus providing a holistic view
of the entire IPP field.

III. METHODOLOGY

A. Literature Search

In preparation for this systematization, we performed an
extensive literature search following the guidelines by Kitchen-
ham and Charters [4]. Fig. 1 shows our literature search
process. We distinguish between the following types of pub-
lications: formal literature (FL), i.e., peer-reviewed literature
such as book sections, conference papers, and journal articles;
and gray literature (GL), i.e., literature that did not undergo
a peer-reviewed process, for example, preprints (published,
e.g., on arXiv, university repositories, personal websites, and
so on).

Fig. 2 shows the distribution of publications regarding the
different topics and literature types.2 We can clearly see that
most papers address watermarking; however, there are also
a significant number of papers on attacks. Note that some
publications include both a novel attack on a scheme and a
novel watermarking scheme, which is immune to this attack.

2The topics will be explained in more detail in Sections VI–IX.

Fig. 2. Literature distribution across different topics regarding IPP of ML
models. Most of the papers address watermarking.

Fig. 3. Literature distribution over the years for different topics.

Fig. 3 shows the distribution of publications across the
publishing years. We see a rising research interest in all topics,
with papers on attacks being published only recently.

B. Inclusion and Exclusion Criteria

In order to facilitate the reproducibility of the literature
search, we defined and documented the following criteria to
find the most relevant literature covering IPP of ML models.
Our inclusion criteria are: 1) literature that proposes an IPP
scheme for ML models; 2) literature that proposes an attack on
an IPP scheme for ML models; and 3) literature that evaluates
or compares earlier schemes.

Our exclusion criteria are: 1) (near) duplicates3; (ii) liter-
ature that only uses ML for multimedia watermarking, such
as image watermarking; and (iii) literature that only applies
previously published IP protection schemes, without a novel
or large-scale evaluation.

IV. PRELIMINARIES

This section provides the necessary background for the
remainder of this article. In this work, we focus on supervised
learning, an area of ML including classification and regression.

3If the titles are different, but the content is very similar, we include
all versions of this item and indicate that fact. However, we subsequently
cite only the most complete version, as suggested by Kitchenham and
Charters [4].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LEDERER et al.: IDENTIFYING APPROPRIATE IPP MECHANISMS FOR MACHINE LEARNING MODELS 3

Some learning algorithms—such as the (stochastic) gradient
descent commonly employed in DNNs or convolutional neural
networks (CNNs)—iteratively adapt their learnable parameters
by minimizing some form of loss function. To prevent overfit-
ting to the training data, a parameter regularizer is oftentimes
used. This is an additional term in the loss function, often
in the form of a penalty that controls the magnitude of the
parameter values. In the field of model IPP, regularizers are
frequently used to embed a watermark into a model.

The process of fine-tuning, i.e., further training a model on
different training data, usually with a smaller learning rate, can
be used for either improving the model or, when using it for a
slightly different purpose, in transfer learning. In the context
of model IPP, we use it either to embed a watermark or as
a malicious modification to a well-trained model to remove
unwanted information (e.g., a watermark).

Knowledge distillation [5] is a compression technique that
uses knowledge of a model (teacher network) to train a new,
smaller, computationally cheaper model (student network).

Generative adversarial networks (GANs) use two models:
one (the generator) learns the actual data generation task and
the other (the discriminator) evaluates it [6].

Federated learning (FL) [7] is an ML technique in which
multiple parties are involved to train the model on their data
(without sharing the data, mostly to preserve privacy).

An autoencoder (AE) is a special artificial neural network
that is commonly used for dimensionality reduction [8]. This
is achieved by learning to replicate its input to its output via
a smaller hidden layer that learns to represent the input.

Adversarial examples [9] are inputs created to fool a model.
An original input is perturbed by some specially crafted noise
such that the model is unable to classify the generated input
instance correctly. The perturbation is kept minimal in order to
be less noticeable by humans or technical detection methods.

We understand ML-based image processing as applying a
model to an input image, with the output being an image
as well. The model is trained to perform image enhancing
and embed unrecognizable data or other transformations such
as neural style transfer [10]. It is important to differenti-
ate image processing from image preprocessing, which is
usually performed on an image dataset before training a
model and includes techniques such as resizing, cropping,
or normalization.

A. Watermarking

Digital watermarking is a well-studied method, e.g., in mul-
timedia [11] and relational databases [12] IPP. The main
idea is to embed a piece of imperceptible4 signature in the
data (e.g., image or audio) to deter malicious usage. Digital
watermarking is thus a form of steganography or information
hiding, i.e., the practice of concealing a message within
another message. The hidden information must be embedded
in such a way that no algorithm can remove or overwrite

4Perceptible watermarks are also commonly used in the multimedia domain,
e.g., logos or copyright notices superimposed on images or videos. Impercep-
tible watermarks, however, aim to avoid changing the perceptible impression
of a work. This is the type of watermark we consider for IPP of ML models.

the watermark. More recent digital watermarking techniques
(e.g., for images) make use of deep learning techniques in
the embedding process [13]; similarly, also attacks targeted to
remove such watermarks are increasingly using deep learning
[14]. Quiring and Rieck [15], for instance, combined methods
from model stealing to generate a substitute model of a
watermark detector and then generated adversarial examples
against this model in order to obtain images with minimal
perturbations, thus evading detection.

The watermarking methods we consider in this article are
ML model watermarking, i.e., the IP that has to be protected
is the ML model itself. Model watermarking is related to mul-
timedia watermarking, but the techniques differ since the asset
to be protected differs. Research on watermarking ML models
predominantly addresses image classification (cf. Section VI)
and, thus, CNNs. The introduced terminology is thus strongly
influenced by this application of ML, but the concepts are
transferable to other input types.

B. Fingerprinting

We consider fingerprinting as an extension of watermarking.
While watermarking has the purpose to verify the owner of a
digital asset, fingerprinting wants to trace its (potentially mali-
cious) recipient. Therefore, fingerprinting techniques should
be capable of embedding multiple, but unique marks to iden-
tify the recipient. Similar to watermarking, fingerprinting is
already widely used in multimedia areas such as images, audio,
video [16], or digital data stored in relational databases [17].

V. TAXONOMY OF IPP FOR ML MODELS

In this section, we define our threat model and provide
a comprehensive taxonomy of IPP methods for ML models
to mitigate the risks posed by those threats. Subsequently,
we give an overview of attacks against those IPP mechanisms.

A. Threat Model

We first need to understand the motives of an attacker
(also called adversary or malicious user). The entity that
invested resources to obtain an ML model for a specific task
(“model owner”) wants to offer this model to a certain target
audience/customer. The most prominent reasons for an attacker
to (illegally) redistribute a model are: 1) no/not enough training
data, expertise, time, or computational power to train such a
model themselves and/or 2) the unwillingness to agree with
the license terms of the obtained model or the fees for using
MLaaS. We call the model to be protected the target model and
the attacker’s model—which stems from the target model—the
adversary model. In our threat model, we assume one of the
following scenarios.

1) Legal Copy: The model owner distributes the model
publicly, either for free, e.g., via a platform such as
Model Zoo [56], but with a restrictive license, or for
a fee. The attacker redistributes it, e.g., via a lucrative
API service.

2) Illegal Copy: The model owner distributes the model
as a pay-per-query API service. The attacker performs

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Taxonomy of IPP mechanisms for ML models.

a model stealing (or extraction) attack [57], [58] and
redistributes it as above, e.g., via their own API service.

Regardless of how the attacker obtained the model, in both
cases, the IP of the model owner is illegally utilized. However,
it is important to differentiate between those cases, as this has a
large impact on the selection of potential defense mechanisms.

B. IPP Methods

We developed a comprehensive taxonomy of IPP methods
for ML models, as shown in Fig. 4. We distinguish between
reactive methods that respond to a threat event and proactive
methods, meaning that the defender takes the initiative to
prevent a threat event. Methods that enable to verify the
ownership of a model through model watermarking and model
fingerprinting are thus reactive; methods that, e.g., seek to
prevent unauthorized model access are proactive. Ownership
verification is a weak form of protection, as it requires the
unauthorized usage of the model to be known (or at least
suspected) and needs some form of access to the model. Model
access control, on the other hand, may prevent such illegal use
by rendering the model useless for unauthorized users. This is
comparable to preventing unauthorized use of, e.g., software.

Some of the methods we introduce in this section can be
distinguished by whether they are white-box or black-box.
White box means that the model owner needs access to the
parameters or other characteristics of the adversary model
during the IPP method process, e.g., watermark extraction.
As this scenario is often unrealistic, black-box mechanisms
tend to be more popular. These generally only need access to
the model’s prediction—e.g., via an API service—to observe
matching input and output from the ML model and use it in
a similar fashion to an oracle.

Watermarking as defense against model stealing attacks
(scenario 1) in our threat model) is mostly achieved through
specific black-box watermarking techniques which survive
such an attack, i.e., the hidden information is “stolen” with
the model. In the case that a user legally obtained a copy of
the ML model [scenario 2)], but then is using it not accord-
ing to the licensing terms, more techniques are available.

White-box approaches for this case embed the ownership
information directly into the model parameters or their prob-
ability density function (pdf). Black-box approaches mostly
rely on specific input samples, so-called “trigger sets,” that
will cause the model to behave in a way that is unexpected
for the task and unpredictable to the attacker. These techniques
mainly differ in how the respective triggers are constructed.

Model access control methods can be distinguished via the
asset they want to protect. Most work focuses on the protection
of the model parameters, either through encryption, other
obfuscation techniques, or by requiring a specific method to
transform the inputs. If the model structure (or architecture) is
to be protected, usually obfuscation techniques are employed.

Watermarking and fingerprinting of ML models are forms of
steganography (information hiding); however, we want to point
out that there are several other connotations for watermarking,
and information hiding in general, along the ML process
(as shown in Fig. 5). For example, Sablayrolles et al. [59]
proposed a technique that traces data usage; it marks (training)
data so that an ML model trained on that data will bear a
watermark that can be identified (cf. 1 in Fig. 5). However,
the main body of work regarding watermarking—and also the
respective focus in this article—considers ML models as the
asset to be protected through embedded watermarks (cf. 2
in Fig. 5). Abdelnabi and Fritz [60] are not watermarking a
model, but the output of a (text-)generating model (cf. 3 in
Fig. 5). They assume that an attacker could use the model to
generate entire articles; subsequently, the watermark can be
extracted from the generated text and prove an illegitimate
use of the model. For some settings, it is further considered
that a marked output (prediction or data) is generated with
the explicit goal to trace the usage of these data, e.g., by an
attacker (cf. 4 in Fig. 5). This is a special form of 1 , given
that the data origin is different, and of 2 , as the adversary
model is implicitly marked (cf. Section VI-D).

Other forms of steganography may be employed in an attack
against ML processes. For instance, Song et al. [63] proposed
a technique to exfiltrate data from a private training dataset
by hiding them within the parameters of a model that was

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LEDERER et al.: IDENTIFYING APPROPRIATE IPP MECHANISMS FOR MACHINE LEARNING MODELS 5

Fig. 5. Different notions of information hiding along an ML process.

trained on this dataset. In this way, adversaries who do not
have direct access to the training data, but are allowed by the
data owner to run an ML training algorithm on the data, can
exfiltrate these data via the derived ML model, i.e., perform a
data exfiltration attack (cf. 5 in Fig. 5).

In this work, however, we focus on techniques that hide and
rightfully ingrain information about a legal owner or—in case
of fingerprinting—a recipient of the model.

C. Attack Model

This section introduces the attack models, which we will
further detail in Section IX. We assume that the attacker
obtains a legal copy of the target model and either knows
or suspects that the model has an IPP in place. We begin with
attack models against watermarks, as these are transferable to
other IPP types; we consider the following cases.

1) Watermark Detection: The attacker seeks to detect the
watermark, potentially to perform a targeted watermark
removal or overwriting. If the watermark is not secured
with additional mechanism (e.g., a private key for extrac-
tion), the attacker could also claim ownership.

2) Watermark Overwriting: The attacker tries to replace the
existing watermark with their watermark, thus rendering
the model owner’s watermark useless.

3) Watermark Invalidation: The attacker aims to disable the
watermark function so that it cannot be verified, without
actually removing it from the model.

4) Watermark Removal: The attacker wants to modify the
model in such a way that the model owner’s watermark
extraction algorithm will no longer result in proving
correct ownership.

Most of these attacks also work against fingerprinting.
With regard to model access control mechanisms, detection

is often trivial, as an active mechanism will result in low
fidelity. An attacker would mostly want to remove, invalidate,
or potentially overwrite the mechanism to: 1) gain unautho-
rized access to use the model (as black box) or 2) to reveal
either the model architecture or parameters for other purposes.

VI. WATERMARKING OF ML MODELS

The vast majority of watermarking methods for ML models
are designed specifically for DNNs. The main reason for this

is not only the high value of DNNs, as they require large
datasets and long training periods, but also the number of
“degrees of freedom” in a DNN. Large DNNs thus have,
compared to other ML models, more “space” for hiding
watermarks. Most authors evaluate the schemes for image
classification tasks. However, some extend to other tasks, such
as audio classification [42], image processing [61], [62], [64]
(the output being an image/data rather than a prediction),
or specific settings, such as GANs [35], FL [24], graph neural
networks [65], and deep reinforcement learning [66].

The following terminology is common in model watermark-
ing and used throughout this article: watermark embedding is
the process of placing the watermark into the model, e.g., via
fine-tuning. Watermark extraction is the process of extracting
the embedded watermark from the model, but neither in a
malicious nor permanent way (which are called watermark
detection and watermark removal). Extraction means to iden-
tify if and which watermark has been placed. Subsequently,
during watermark verification, the extracted watermark is
compared to the model owner’s secret to prove ownership.
Following certain rules, e.g., thresholding the bit error rate,
it is determined if the watermarks are the same.

Typical workflows for white- and black-box watermarking
are shown in Fig. 6(a) and (b), respectively. For white-box
watermarking, the model owner creates a T -bit signature
vector b ∈ {0, 1}

T , which is a set of arbitrary binary strings
that should be independently and identically distributed (i.i.d.)
[40]. This binary vector serves as a watermark and is usually
embedded into the model through fine-tuning with regulariza-
tion. We call this type of embedding scheme regularizer-based
(cf. Section VI-B). Note that other ways of embedding are
proposed by Uchida et al. [36], e.g., during the training or via
knowledge distillation.

For black-box watermarking, the model owner creates spe-
cially crafted trigger inputs that receive wrong labels on
purpose. When the model is “triggered” by these inputs,
it behaves unexpectedly to a normal user (cf. Section VI-C).

A. Requirements

Watermarking (and fingerprinting) schemes should fulfill
several requirements. Literature is not coherent in terminology;
we therefore provide a common nomenclature in this article.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 6. Typical workflows for (a) white-box watermarking and (b) black-box watermarking.

TABLE I
REQUIREMENTS FOR WATERMARKING TECHNIQUES. THE NOTATION IS NOT CONSISTENT THROUGHOUT THE PAPERS, BUT THE TERMS IN THE LEFT

COLUMN ARE THE MOST PROMINENT ONES. THESE REQUIREMENTS MOSTLY APPLY ALSO TO FINGERPRINTING METHODS

To this end, we collected all requirements that are proposed in
the literature and list them in Table I, identifying terms that are
used synonymously and referencing respective publications.5

The most important requirements are effectiveness: the
watermark should be embedded in a way that the model owner
can prove ownership anytime; fidelity: the model’s accuracy
should not be degraded because of the watermark embedding;
and robustness: the watermark embedding should be robust
against several kinds of attacks, including fine-tuning, model
compression, and other attacks specific to certain methods.

Fingerprinting should fulfill two more requirements, namely,
uniqueness: the fingerprint can be uniquely attributed to a
certain user and scalability: the fingerprinting scheme should
be able to embed multiple fingerprints.

We provide an overview of all the watermarking and fin-
gerprinting schemes considered in this article, and whether
they are meeting the abovementioned requirements, in Table II.
We observe that all schemes fulfill the above-identified most
important requirements of fidelity, effectiveness, and robust-

5Note that there are a few more terms used in the literature that cannot be
easily mapped. Feasibility is a combination of robustness and effectiveness
[27], and correctness of effectiveness, reliability, and integrity [29]. Nontrivial
ownership is used in multiple ways—sometimes as a synonym for integrity,
meaning that innocent models are not being accused of ownership piracy, but
also as a requirement that an attacker cannot easily claim ownership without
knowing the watermarking scheme and embedded watermark. Authentication
is rather a subset of effectiveness than a real synonym since it only requires
a provable association between an owner and their watermark.

ness, except for Guan et al. [70] who purposefully give up
robustness in favor of reversibility. This is inspired by tradi-
tional image integrity: the authors point out that the application
of their scheme is not IPP, but integrity authentication, and
that all existing watermarking methods are irreversible—once
the watermark is embedded, it cannot be removed to restore
the original model without degrading the model’s perfor-
mance. They argue that irreversible watermarking schemes
alter the signature of a model, which could have severe
consequences, especially in applications for, e.g., the medical
or defense domain. The fidelity requirement does not apply for
Zhang et al.’s method [61] since fidelity is not well-defined
for generative models. As these output an image (or other
complex data), whether a watermarked version of such a
model is comparable to the original one requires defining
an appropriate similarity measure to determine whether two
outputs are equivalent.

B. White-Box Watermarking

White-box watermarking requires full access to the model
during watermark extraction and verification.

The first framework for embedding a watermark into a DNN
was proposed by Uchida et al. [36].6 They follow the idea
of embedding a signature into the model, particularly in the
DNN’s weights. Although it would be possible to directly alter

6A slightly extended version can be found in [71].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LEDERER et al.: IDENTIFYING APPROPRIATE IPP MECHANISMS FOR MACHINE LEARNING MODELS 7

TABLE II
REQUIREMENTS MET BY WATERMARKING AND FINGERPRINTING SCHEMES. WE DISTINGUISH TWO DEGREES. ∼: RESPECTIVE AUTHORS CLAIM THAT

THE SCHEME FULFILLS THIS PROPERTY. ✓: AUTHORS SHOW EMPIRICALLY TO WHICH EXTENT THE PROPERTY IS FULFILLED

the model’s parameters (as in the case of watermarking rela-
tional data), this would degrade the model’s performance. The
model is trained with a regularizer term, given the signature
b ∈ RT , the averaged weights vector w ∈ RM , and a specially
crafted embedding matrix M ∈ RT ×M . The embedding matrix
M can be considered a secret key for the embedding and
extracting processes. The watermark is extracted by applying
M ∈ RT ×M to the weights vector w ∈ RM and then applying
a step function. The resulting vector b̃ is compared with
the signature b, and the bit error rate (BER) is computed.
Ownership is proven by thresholding the BER.

Rouhani et al. [40] proposed a watermarking framework,
which proves to be more robust against watermark removal,
model modifications, and watermark overwriting than [36].
This method is regularizer-based and encodes the signature
in the pdf of activation maps obtained at different DNN
layers, through an additional regularization term that ensures
that selected activations are isolated from others, in order to
avoid creating a detectable pattern of alterations. During the
verification process, previously generated trigger images are
used as input for the model to then analyze the activations.
The scheme can be employed in a white- or black-box setting,
depending on whether just the output-layer or also hidden-
layer activations are assumed to be available for watermark
verification. Note that access to the output activations is not
guaranteed in a black-box setting.

Wang and Kerschbaum [37] show that both pre-
vious schemes are vulnerable to watermark detection
(cf. Section IX), as the weight distribution deviated from those
of nonwatermarked models. The authors claim that this arises
from the additive regularization loss function(s). Consequently,
they propose a scheme that is particularly robust against
detection attacks. Inspired by the training of GANs, they train
a watermarked target DNN, which is competing against a
detector DNN that aims to discover whether a watermark is
embedded.

Wang et al. [38] followed a similar approach and proposed
a white-box scheme that makes use of an additional DNN
for the watermark embedding process. The target model is
trained in parallel with an embedding model, which is kept
secret after embedding. The scheme is regularizer-based, and
the watermark is verified by feeding the selected weights into
the embedding model and thresholding the output vector. They
empirically show that their scheme achieves better fidelity,
robustness, and capacity compared to [36].

Feng and Zhang [39] combined a binarization scheme and
an accuracy compensation mechanism to reduce the model’s
accuracy degradation, which is a result of fine-tuning. They use
spread-spectrum modulation on the signature b and embed it in
different layers to reduce the risk of the watermarked weights
being set to zero during a pruning attack. The binarization
scheme then transforms the selected weights per layer so
that the second norm of the selected weights in one layer
remains unchanged, making it harder to discover the embed-
ding position of the watermark. Finally, they use a regularizer
mechanism in fine-tuning to reduce the impact of watermark
embedding on the model’s performance.

The first (and so far only) white-box framework for auto-
matic speech recognition (ASR), SpecMark, was introduced by
Chen et al. [68]. They embedded the watermark in the spread
spectrum of the ASR model without retraining it, evaluated
SpecMark on the DeepSpeech model, and concluded that it
does not have any impact on fidelity.

C. Black-Box Watermarking

Black-box watermarking methods need only querying
access to the model during watermark extraction and verifica-
tion. Only two of the existing black-box watermarking frame-
works [42], [43] address the second threat model scenario,
i.e., the illegal copy (cf. Section V-A). All the other methods
are not reliably robust against model stealing attacks [58] and
therefore primarily address the first case (legal copy).

All frameworks that are defending against the legal copy
case utilize backdooring via data poisoning (cf., e.g., [72]).
A backdoor consists of a so-called trigger set of input–output
pairs—which are only known to the backdoor creator (in most
cases, the model owner)—and triggers a behavior that is not
predictable by others. We call the input images of the trigger
set trigger images (sometimes also referred to as watermarks).

Black-box watermarking methods focus on either creating
suitable trigger images (inputs) or the output for the trigger
image. Depending on the scheme, different trigger images
are used for watermarking: out-of-distribution (OOD), pattern-
based, noise-based, perturbation-based, and in-distribution.
OOD images are completely unrelated to the dataset, for
example, abstract images in a dataset of handwritten digits.
In-distribution trigger images are taken from the original train-
ing dataset and deliberately relabeled wrongly. Pattern-based
images are derived from the training dataset, e.g., by marking

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 7. Examples for various types of trigger images, intentionally labeled as a different class [(a) and (b) “cat,” (c) and (d) “airplane,” and (e) “9”]. (a) OOD
[18]. (b) In-distribution [30]. (c) Pattern [19]. (d) Noise [19]. (e) Perturbation [26].

with a pattern such as a logo, text, or other designed pat-
terns. This is comparable to patterns embedded in images for
“conventional” data poisoning attacks (see [72]). Noise-based
images are derived from the training dataset by adding noise
(i.e., no systematic pattern), either visible or invisible to the
human eye. Perturbation-based images are slightly perturbed
images and lie near the classification boundary; thus, when
relabeled, they force the model to slightly shift its classification
boundary and are inspired by adversarial examples [9]. Fig. 7
shows the examples for all five types of trigger images.
Similar to embedding backdoors—as an attack to reduce the
availability or integrity of a model—, the overall objective is
that the model will accurately behave on the main classification
task while classifying the trigger images as designated by the
owner.

Zhang et al. [19] proposed the first black-box watermarking
scheme and introduced three types of trigger images: unrelated
(OOD), content (pattern), and noise. Their work was the basis
for many subsequent papers.

1) Out-of-Distribution: Similar to and shortly after
Zhang et al. [19], Adi et al. [18] proposed to include abstract
images as triggers in the training dataset. Those abstract
images are completely unrelated to the main classification task,
and thus, it is highly unlikely that a model that has not seen
this data point (i.e., one not watermarked) will label it as the
designated class.

One of the first watermarking schemes for image processing
models was proposed by Quan et al. [64]. The main difference
to classification is that the output is, like the input, an image
and not a label—thus, they generate input–output pairs that
consist of trigger images and verification images. They use
OOD images (or random noise) as trigger images and create
the verification images by applying a simple image processing
method to the trigger images (ideally not the one on which the
model is being trained). The model is then fine-tuned on the
union of the original dataset and the trigger set.

Yang et al. [20] empirically showed that distillation is an
effective watermark removal attack. Therefore, they propose
a scheme that they claim to be especially robust against
distillation. The main idea is that the watermark information is
carried by the predictions of the original training data, whereas
the watermark extraction is done by querying an OOD trigger.
In contrast to [18] and [19], the target model is not trained on
the union of the original dataset and the trigger set but only
on the original dataset while making use of another model,
the ingrainer model; this influences the target model by a
regularizer term in the loss function. The ingrainer model
has the same architecture as the target model and is only

trained on the trigger set, with the purpose to overfit the trigger
set.

2) Pattern: An improved pattern-based technique was pro-
posed by Li et al. [21]. They showed that previous schemes
[18], [19] are vulnerable to ownership piracy attacks, dur-
ing which an attacker aims to embed their own watermark
into an already watermarked model. The authors proposed a
scheme that is especially robust against such attacks using
so-called dual embedding: the model is trained to classify:
1) data with a predefined binary pattern correctly, i.e., null
embedding, and 2) data with an inverted pattern (binary bits
are switched) incorrectly, i.e., true embedding. They observe
that null embedding does not degrade the model’s accuracy if
the number of pixels in the pattern is sufficiently small. Fur-
thermore, they evaluated the robustness against model stealing
attacks and concluded that with OOD data, the attacker would
need significantly more input data to reach similar accuracy.

Guo and Potkonjak [22] proposed to embed a pattern into
the trigger images that can be clearly associated with the
model owner’s signature, e.g., a logo. The pattern should be
embedded with little visibility so that an unmarked model
would still classify the trigger images according to its original
labels.

As an improvement to [22], Guo and Potkonjak [23] pro-
posed an evolutionary algorithm-based method to generate and
position trigger patterns. Their algorithm is based on differen-
tial evolution [73], an evolutionary algorithm and metaheuris-
tic that searches for solutions to an optimization problem.
Using this trigger pattern generation, they demonstrated an
improvement in integrity and robustness.

3) Noise: Zhu et al. [25] proposed a watermarking scheme
to defend especially against overwriting. They used one-way
hash functions to generate both the trigger image and the
label. The framework takes an initial image and creates a
hash chain of trigger images, as shown in Fig. 8. They
showed experimentally that their proposed scheme is robust
against overwriting even if the attacker knows the trigger set
generation algorithm.

4) Perturbation: The goal of Le Merrer et al. [26] is to
slightly shift the decision boundary of the model. This is
achieved by generating adversarial examples [9] for images
close to the boundary and changing the assigned class label.
After fine-tuning the model, the decision boundary is adapted.
An illustration of this decision boundary shifting is given in
Fig. 9.

Li et al. [27] especially addressed evasion attacks. They
proposed a framework closely related to the idea of GANs and
used three DNNs: encoder, discriminator, and target model.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LEDERER et al.: IDENTIFYING APPROPRIATE IPP MECHANISMS FOR MACHINE LEARNING MODELS 9

Fig. 8. Top-left image shows the initial image, and the following five are
trigger images resulting from a hash chain [25].

Fig. 9. (a) Data points will be divided into “true adversaries” (R and B) and
“false adversaries” (R̄ and B̄). The label for the true adversaries is changed,
and the label for the false adversaries stays unchanged. (b) After fine-tuning,
the decision boundary has changed [26].

The encoder takes the original image and aims to embed a logo
into the image in a way that the difference is imperceptible.
The resulting trigger images are fed into the discriminator—
together with the original image—to evaluate the encoder’s
success. A difference in the original and trigger images is
essential for the effectiveness of the embedded watermark—
the larger the difference, the better. However, the smaller the
difference, the better the protection against evasion attacks—
the authors thus specifically aim to address this tradeoff.

5) In-Distribution: Namba and Sakuma [30] proposed an
attack called query modification to invalidate the watermark,
which exploits the fact that trigger images differ from original
training images (cf. Section IX). They then developed a
scheme that is more robust, especially against query mod-
ification, but also model modifications such as fine-tuning
and model compression (e.g., pruning). They suggest to use
trigger images that are selected from the training sample
distribution. Although the trigger images are undetectable,
the model is more likely to overfit the (on purpose) wrongly
labeled triggers and, thus, more susceptible to removal attacks
via, e.g., pruning. They want to counter this pruning by
ensuring that the predictions do not depend on a large number
of small model parameters, which would likely be pruned.
Therefore, the model is first trained as usual with the original
training set. Then, the watermark is embedded through expo-
nentially weighting the parameters and training the model on a

combination of the original dataset with the trigger set, which
enforces the predictions to depend on a small number of large
parameters.

6) Label: The papers in this category focus on the label for
triggers. Hence, the choice of trigger images is secondary.

Zhong et al. [31] proposed to label the trigger images with
a completely new label rather than assigning an existing one
so that the watermark embedding has only little impact on the
original classification boundaries. Any pattern-based trigger
image can be used in this context. They empirically compare
their work to [19] and show that the proposed scheme achieves
a zero false-positive rate, i.e., excellent integrity, and is more
robust against fine-tuning and model compression.

Zhang et al. [32] observed that trigger images are fre-
quently created in a systematic way, which makes it easier
for an attacker to recreate them. Therefore, they propose to
include unpredictability in the labels for triggers. They use
a chaos-based labeling scheme that ensures that an attacker
cannot produce a valid trigger set, even if they know the
pattern.

7) Output Vector: The approaches in this category focus on
embedding information in the output vector. Chen et al. [33]
proposed the watermarking framework BlackMarks, which
encodes the signature within the distribution of output acti-
vations. To encode the class predictions, the authors design a
scheme that maps the class predictions to bits, i.e., by cluster-
ing the original classes into two categories represented by bits
0 and bit 1. The trigger images are created as follows: take an
image from cluster “0,” create an adversarial example so that
it would be predicted with a class belonging to cluster “1,” and
finally label it with a uniformly randomly chosen class from
cluster “0.” Trigger images for bit 1 are created and vice versa.
The watermark is extracted by querying the trigger images and
encoding each class to a binary value, which should result in
the owner’s binary signature.

Similarly, Xu et al. [34] proposed a watermarking scheme
that carries the watermark information within the output acti-
vations. The trigger pairs consist of a trigger image and a serial
number (SN), which is encoded in the model’s probabilities.

D. Countering Model Stealing

Only a few schemes address the second threat scenario in
Section V-A, i.e., robustness against model stealing attacks
[58]. First, Jia et al. [42] proposed a scheme called entangled
watermark embedding (EWE). The main idea is to create a
watermarked model that is not specialized into “submodels,”
where one part of the model has learned the main classification
task and the other has learned the watermark detection (which
is normally lost during a model stealing attack). This is
achieved through a regularizer, ensuring that the trigger images
lead to similar activation patterns as the original images. Thus,
both trigger and original images cause a similar behavior of
the model, thereby increasing the robustness against model
stealing.

Szyller et al. [43] proposed the framework dynamic adver-
sarial watermarking of neural networks (DAWN), which does
not embed a signature into the target model itself, but dynami-
cally returns wrong classes from the API service for a fraction

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

of queries to mark an adversary model created via a model
stealing attack. It is worth noting that the scheme is not able
to differentiate between an attacker and a benign client—all
clients obtain a fraction of wrong predictions, and it is ensured
that the same query always returns the same output (correct
or modified) to avoid simple collusion attacks. This approach
thus realizes 4 in Fig. 5.

Zhang et al. [61] and Wu et al. [62] proposed, indepen-
dently of each other, an approach similar to [43], as they
are hiding an invisible watermark in the outputs of the image
processing model, but for all outputs. When an attacker trains
a new (surrogate) model on the input–output pairs of the
original model, the watermark will be learned as well and
can be verified via black-box access (cf. 4 in Fig. 5). One
difference to [43] is that in the case of an image processing
model, the output is another image, and thus, there is more
space to embed the watermark in. Neither papers explicitly
address model stealing attacks, but we believe that they are a
suitable defense.

E. Watermarking for Specific ML Settings

Existing watermarking schemes are not suitable for FL,
as pointed out by Tekgul et al. [24]. Embedding a watermark
in such a setting is different because the model owner has no
access to training data, and the training is performed in parallel
by several clients. Tekgul et al. [24] proposed to include an
independent and trusted third party between the model owner
and the clients, which will embed a backdoor-based and black-
box watermark into the model at every aggregation step.
Furthermore, they propose a specific noise pattern for triggers.

Yu et al. [35] proposed the first watermarking scheme spe-
cially crafted for GANs. Previously existing watermarking
schemes were limited to DNNs that map from images to
classes and thus could not be transferred to GANs. Yu et al.
[35] watermarked the input images and then transferred these
images to the GAN model. Thereby, the image steganography
system, which consists of an encoder and decoder, has first
to be trained and, subsequently, all the training data—together
with a secret watermark—are fed to the encoder, resulting in
watermarked data. The watermarked data are then used to train
the GAN model. For verification, the model owner only needs
an output image of the GAN and applies the decoder on it
to compare the result with the secret watermark. Thus, the
proposed scheme needs only black-box access for verification.

F. Watermarking as Part of an IPP Workflow

Besides the abovementioned watermarking techniques as
reactive methods, further approaches have been proposed to
prove ownership of IP in other domains, e.g., using ledgers
such as blockchains to deposit the digital object (or a signature
thereof) together with the owners identity [74], [75]. We note
that such mechanisms could be one option to prove ownership
of an ML model if white-box access to the model exists and
the model itself or its signature can thus be compared to the
ledger’s entries. To be practical, such schemes would need
to be robust to small changes in the model parameters—an
attacker could perform those changes at little extra loss due to

general model robustness, while the changes would invalidate
ownership claims, as models and signatures would not match
anymore; hence, approaches, such as fuzzy hashing, might be
a suitable solution. In addition, as discussed in Section VI,
white-box access to a suspected pirated model is unrealistic,
as ML models can be exploited and monetized by clients
without the need for this type of access.

For black-box methods, which have superseded white-box
approaches for reasons outlined in Section VI, access to the
model itself is not available, and therefore, no signature can be
computed for comparison with a deposited model. To support
ownership verification, the aim of the legitimate model owner
is to prove that they have knowledge of the trigger set pairs
(inputs and expected outputs), which can be seen as a form
of challenge–response. As other users of the model could also
search for inputs with unexpected outputs (also ex-post with
black-box access) and claim these to be valid evidence proving
ownership, it is of interest to owners to prove their knowledge
at a specific (and earlier) point of time. Depositing signatures
of these trigger pairs with a trusted authority (such as a notary)
or a distributed ledger (such as blockchain) can provide a
trusted time stamp that can be used in the verification process.

G. Length of Watermarks and Complexity

In most cases, the length of the watermark is either deter-
mined by the number of parameters changed in white-box
watermarking or the number of trigger images used in black-
box approaches. Regarding complexity, the embedding time
heavily depends on the choice of either training the model
from scratch or fine-tuning it, as fine-tuning creates additional
overhead. Regarding extraction time, there are no major dif-
ferences between the methods, as all of them either score
trigger images or transform the model’s parameters in order
to extract the watermark—they are thus all dependent on:
1) watermark’s length and 2) the prediction time in case of
black-box watermarking or the number of neurons on the
chosen layer in white-box watermarking.

VII. FINGERPRINTING OF ML MODELS

A model owner might be selling their ML model to different
customers, but the model gets illegally redistributed by one of
them. The owner would then like to gather evidence on the
leak; therefore, they could embed fingerprints in the ML model
before selling the product in order to trace back a malicious
user if needed. We can think of fingerprinting as a user-level
extension of watermarking. At the time of performing this sys-
tematization, fingerprinting for ML models was not extensively
discussed, with only three papers published.

Note that there is another definition of fingerprinting:
a (unique) identifier for an object (either hardware, software,
or a combination thereof) is generally referred to as a “finger-
print,” e.g., such as in browser fingerprinting [76] or device
fingerprinting [77]. The application scenario for employing
these techniques is often to track devices (resp. their users).
Also, this use of fingerprinting is an inherent property of the
object and not the result of an active embedding process. Given
that this context differs from what we considered so far, we call
this form fingerprinting as unique identification.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LEDERER et al.: IDENTIFYING APPROPRIATE IPP MECHANISMS FOR MACHINE LEARNING MODELS 11

A. Fingerprinting as User-Specific Watermark

Chen et al. [41] proposed DeepMarks, a white-box finger-
printing framework that is able to embed unique fingerprints.
The verification process not only detects the malicious user
but also if multiple—and if so which—users collaborated in
order to remove the watermark. The embedding process works
similar to DeepSigns [40]. The authors propose to assign a
unique binary vector (fingerprint) to each user and embed
the fingerprint information in the pdf of the weights before
distributing the models to the users.

Although DeepMarks is the only paper especially
considering fingerprinting, we believe that a couple of the
watermarking schemes introduced above can be extended to
fingerprinting. To name a few, Uchida et al. [36] embedded a
unique signature into the weights of the DNN, Li et al. [27]
embedded a unique logo into the trigger images, and Guo and
Potkonjak [22] generated unique trigger images based on a
signature. All of them could embed user-specific watermarks.
Moreover, Xu et al. [34] relied on SNs that can be created in
indefinitely many ways, assigning each to a user.

B. Fingerprinting as Unique Model Identifier

Cao et al. [69] proposed a framework to obtain a unique
identifier of DNNs. As two different models likely have dif-
ferent classification boundaries, they suggest to “fingerprint”
this boundary. The authors identify so-called “fingerprinting
data points” that lie near the model’s classification boundary.
Since the points lie near the classification boundary rather than
on it, the authors claim robustness against model modifications
and uniqueness of the fingerprint.

Zhao et al. [28] and Lukas et al. [29] modified this idea of
fingerprinting as unique identification. Both propose a scheme
in which the adversary model—created through applying
modifications to the target model—has the same fingerprint
as the target model. Both introduced a novel algorithm for
creating transferable adversarial examples (see, e.g., [78]).
In Section VI-C, we described how black-box watermarking
methods use perturbation-based trigger images (i.e., adver-
sarial examples), which are used during training so that the
models learn how to (purposefully) misclassify them. In the
context of fingerprinting as unique model identifier, the authors
want to instead create an adversarial example from an already
trained ML model. The key aspect is that these generated
images are not only adversarial examples for the target model
but also for the adversary model, i.e., they are transferable.
This fits our first threat model in Section V-A.

VIII. ACCESS CONTROL AND OTHER PROACTIVE IPP

In this section, we analyze proactive IPP methods. These
are orthogonal to and go further than ownership verification.

The most prominent type of methods tries to prevent unau-
thorized access to a trained neural network. This is achieved
by rendering the model useless to an unauthorized user, even
if this user manages to obtain a full and exact copy of the
model. Most methods employ obfuscation and/or encryption,
which can only be overcome with a matching secret.

There are diverging viewpoints on which assets of an
ML model are most important to protect. The majority of
literature argues that it is the learned model parameters as:
1) learning requires large amounts of (expensive) training data,
expertise with training the model, and computing resources
and 2) in many cases, standard, well-known architectures (such
as GoogLeNet/Inception [79] and ResNet) are employed—
the architectures are not secret, but the models need to be
(re)trained to fit the domain. However, other works (e.g., [45])
highlight the fact that if a custom architecture is devel-
oped, then the resulting structure is actually the asset to
protect.

Analogous to ownership verification (cf. Table I), access
control mechanisms should primarily fulfill the following
requirements.

1) Fidelity: The model should maintain accuracy after
applying the proactive defense.

2) Robustness: The access control should resist a des-
ignated class of transformations, including malicious
model modifications.

3) Efficiency: The impact of the access control mechanism
on the time for prediction (and to some extent also for
training); this is more relevant than its counterpart for
ownership verification (watermarking), as it might affect
normal operation efficiency.

4) Protection Effectiveness: A model that is used without
proper authorization should incur a significant degrada-
tion in prediction correctness so that the value for the
attacker is diminishing or even nonexistent. For example,
Lin et al. [53] set a loss of 20 percentage points in
effectiveness as a goal to render the model useless.

The choice of protection scheme also depends on the type
of asset to be protected. We can, in general, distinguish the
following approaches (cf. Fig. 4):

1) obfuscating the model structure;
2) modifying the input, e.g., by encryption or permutation;
3) encrypting (parts of) the model, i.e., the weights;
4) modifying the model structure, e.g., by adding layers.
We provide an overview of the proactive IPP schemes

considered in this article in Table III, where we indicate
whether they are meeting the abovementioned requirements.
While fidelity and protection effectiveness are discussed or
demonstrated by almost all works, we can observe that
only a selected number of papers are doing this for robust-
ness against attacks as well as for the efficiency of their
scheme.

One aspect common to most access control schemes is
that they require the authorized user to possess some form
of secret, e.g., a key or a token. Most works, however, do not
discuss aspects of management and revocation of these secrets.
While those aspects are somewhat orthogonal to the access
control mechanism itself, they are of significant importance,
as the most commonly discussed scenario is that the models
are deployed in the customer’s infrastructure, or, e.g., in an
embedded device. To some extent, this lack of holistically
considering proactive IP protection mechanisms is comparable
to using watermarking without considering a proof of existence
of the trigger sets (as discussed in Section VI-F).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE III
REQUIREMENTS MET BY ACCESS CONTROL SCHEMES. WE DISTINGUISH TWO DEGREES. ∼: RESPECTIVE AUTHORS CLAIM THAT THE SCHEME

FULFILLS THIS PROPERTY. ✓: AUTHORS SHOW EMPIRICALLY TO WHICH EXTENT THE PROPERTY IS FULFILLED

A. Model Architecture Protection

Xu et al. [45] proposed a scheme to protect the structure
of a CNN. They argue that: 1) being able to pirate an archi-
tecture, even without trained weights, is a major incentive for
adversaries and 2) the most important part of the architecture
is the feature extraction in the early layers—and not the fully
connected layer(s) at the end. They thus propose to obfuscate
these layers of the architecture through iteratively replacing
complex processing blocks of a trained CNN, such as an
inception module [79], by a small number of sequentially
aligned convolutions (the simulation network). For the simpler,
shallow structure to learn these modules effectively, they are
using teacher–student network approaches, receiving as ground
truth the class label and the output of the feature extraction
block. The resulting network does not suffer a noticeable
effectiveness loss and is in most cases more efficient. The
shallow structure is, however, not capable to learn a new,
similarly complex task from scratch and, thus, of only limited
utility to an attacker.

B. Model Parameter Protection

1) Parameter Encryption and Obfuscation: Gomez et al.
[49] proposed a scheme utilizing homomorphic encryption
(HE), which allows to compute certain operations directly
on encrypted data. Prediction is performed by encrypting the
input to the homomorphically encrypted layers and decrypting
the resulting output using asymmetric key pairs. Encryption
is limited to parts of the model due to the huge runtime
overhead incurred by HE. While the authors argue that the
last layers they train are the most valuable—and, thus, get
encrypted—others (e.g., [46]) argue that the first layers, which
are responsible for feature extraction, are the important asset—
especially if the training dataset is not public and the feature
extractors differ from those of benchmark datasets.

Chakraborty et al. [50] introduced a hardware-protected
neural network (HPNN). In their threat model, they assume
that an attacker obtains the white-box model and to host their
own (public) service or to use it in a private environment.
They argue that encrypting the whole NN will lead to pro-
hibitive runtime overhead for predictions, which are, however,
often required in (near) real time. They obfuscate the learned
parameters through a technique they call locking—i.e., making
some neurons in the network dependent on a secret key that
determines the sign of the value of the linear function in
that neuron. The model can thus be openly distributed, as to
correctly use it, a secret key needs to be available in a trusted
hardware [root of trust, such as a trusted platform module

(TPM)]. The model needs to be trained with a modification of
the backpropagation algorithm to be key-dependent, but this
does neither affect fidelity nor the model’s ability to learn the
relationship between inputs and outputs. The authors argue
that a hardware solution entails stronger security guarantees
and less performance overhead.

Alam et al. [51] proposed using a key-scheduling algorithm
to create a series of keys, one for each model parameter
of a DNN. After a standard training algorithm, the owner
encrypts the parameters using a substitution box (S-box).
At prediction time, a legitimate user owning a key uses the
same key-scheduling algorithm to create decryption keys for
each query.

Lin et al. [53] used chaotic encryption to obfuscate the
model parameter positions without changing the weights’ dis-
tribution, thus making detection of this scheme more difficult.
Legitimate users need a key to determine the positions of the
output cells of kernel (matrix) operations; otherwise, these out-
puts will be in a wrong sequence and the prediction correctness
will deteriorate. The authors argue that the decryption is fast
enough, as only a few layers need to be encrypted, and secure
enough, as the decryption can be performed independently for
each layer and on the chip, rendering memory attacks impossi-
ble. One challenge is selecting the most effective combination
of layers to encrypt, as, depending on the architecture, not all
layers provide the same protection.

Motivated by SN verification in software products,
Tang et al. [52] proposed a scheme for DNNs in which the
user has to possess a valid SN. The SN could be a secret
combination with the model owner’s identity and can there-
fore be also used for ownership verification. The embedding
is done by a teacher–student framework where the teacher
network learns the classification task and the student network
is distilled from the teacher network, with an additional loss
that ensures that the SN is embedded.

2) Input Obfuscation: Chen and Wu [55] proposed a
scheme using a transformation module that preprocesses inputs
in a secret way before passing them to the prediction module,
which needs no further protection—inputs that are not pre-
processed correctly will deteriorate accuracy. For the trans-
formation module, the authors invert the idea of adversarial
examples: adding an adversarial perturbation specific for each
input so that the model correctly classifies them. The module
thus acts as a kind of decryption module and is intended
to run in a TPM. In their most successful approach, the
transformation module is implemented as a CNN and trained
together with the prediction module using specific regularizers.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LEDERER et al.: IDENTIFYING APPROPRIATE IPP MECHANISMS FOR MACHINE LEARNING MODELS 13

TABLE IV
WHICH ATTACK DEFEATS WHICH WATERMARKING TECHNIQUE BASED ON THE EVALUATION OF THE PAPERS. ∼ DENOTES THAT THE AUTHORS CLAIM

THAT THEIR ATTACK CAN BE EXTENDED EASILY TO DEFEAT THIS WATERMARKING TECHNIQUE BUT
DID NOT PROVIDE AN EVALUATION FOR THAT

Pyone et al. [54] proposed a scheme in which inputs to
the model are perturbed in a specific (deterministic) manner
through blockwise pixel shuffling before they are fed to the
model training or prediction phase. The perturbation is based
on a secret that the rightful user possesses—not knowing this
key will result in distortion in the spatial arrangement that will
render the model ineffective.

3) Structure Modification: Fan et al. [46] proposed pass-
port layers, a scheme of inserting additional layers into the
network. These layers are added after the convolutional layers
and perform a scaling operation, the parameters of which are
derived from the secret, called passport. These are generated,
e.g., based on a given set of input images and the values in
the feature maps, which result when passing them through
a trained model of the same architecture. The author’s moti-
vation is not primarily access control, but adding a kind of
“second factor” to ownership verification. They argue that it
is easy to forge watermarks for a given model and thus have
a false ownership claim, e.g., against [36] or [18], as trigger
sets based on adversarial examples do not depend on the input
data and thus can be obtained from a trained model alone (see
Section IX). To demonstrate high fidelity of the model as well
is, however, only possible when having authorized access. This
additional step for ownership verification could be provided
by most of the other access control schemes presented in this
section.

Sun et al. [48] showed—using the example of a LeNet-5
CNN—that adapting the activation function of the convolu-
tional layers to be dependent on a random number only known
to the legitimate user can provide effective protection.

Lim et al. [47] are the first to propose an access control
scheme for a recurrent neural network (RNN). Specifically,
they consider an image captioning model producing a text
sequence, implemented as a simplified variant of the show,
attend, and tell model [80]. The proposed framework is similar
to [46], while not embedding the verification information (the
owner’s key) into the model weights, but into the signs of
the hidden states of the RNN. During model inference time,
the key is required as input to the model by an elementwise
combination with the input data.

C. Unrobust Models as IPP

Szentannai et al. [44] observed that published DNNs are
useful as they produce robust predictions even with minor

perturbations of the parameters. They thus propose a proactive
defense mechanism that renders the model sensitive and fragile
through applying transformations that add neurons on any hid-
den layer of the model. These neurons decompose previously
existing neurons in such a way that the mapping between its
preceding and subsequent layer is kept, but weights of existing
neurons on the modified layer are divided and, thus, more
susceptible to small changes in values. As a consequence,
even minor modifications of the model parameters, caused
by, e.g., fine-tuning, will drastically alter the predictions;
subsequently, adversaries cannot utilize the model in a transfer
learning setting. In order to make it difficult to spot these
additional neurons, the so-called “deceptive neurons,” which
bear no other functionality, are added as decoys.

IX. ATTACKS ON IPP MECHANISMS

If an attacker knows or suspects that a model is protected,
they could try to change the model in order to remove
or overwrite the protection. Regarding watermarking, most
authors claim that their techniques are robust against vari-
ous model modifications such as fine-tuning—retraining the
model with new data—, and model compression or parameter
pruning—setting small parameter values to zero [81], [82].
Still, several attacks that are aiming to remove, overwrite,
detect, or invalidate state-of-the-art watermarking schemes
have been proposed. We will analyze those in the following.

In Table IV, we summarize the attacks on watermarking
schemes. Each line corresponds to an attack and each col-
umn to a (type of) watermarking scheme. Table IV shows
which attack defeats which kind of watermarking. We list
only schemes that were proven to be successfully defeated—
missing schemes in the table do not imply strong robustness.
We can see that an attack usually addresses either white-
or black-box watermarking schemes. The four trigger image
types—OOD-, pattern-, noise-, and perturbation-based—seem
to be defeated in a similar way. In-distribution watermarks
are more difficult to detect or remove, probably because of
the fact that they do not differ from the original training data
distribution.

A. Watermark Overwriting

Li et al. [21] showed that some schemes [18], [19] are
vulnerable to watermark overwriting (they call this “ownership

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

piracy”). They applied the schemes to four image classification
tasks and assumed that an attacker would have access to
around 10% of the original training data. They then showed
that an attacker could successfully embed its own watermark
by fine-tuning the model with data adapted to this watermark.

B. Watermark Detection

Several attacks exploit the fact that a watermarked model
actually learns two tasks: the main classification task and
the watermark extraction task. Wang and Kerschbaum [85]
revealed vulnerabilities against watermark detection when they
observed that in regularizer-based watermarking methods such
[36], the variance of the distribution of model parameters
(they call this weights variance) increases during watermark
embedding.

Wang and Kerschbaum [37] showed that regularizer-based
watermarking schemes are vulnerable to watermark detection
through the use of a property inference attack [90]. Knowing
the embedding algorithm, they trained a set of models with
similar architecture and similar data (so-called “shadow mod-
els”), some of which will be watermarked, others not. From
these models, they extract weights as representative features
and subsequently train a model on these features to distinguish
between watermarked and not-watermarked models. Similarly,
Shafieinejad et al. [84] also proposed to use property inference
for watermark detection.

C. Watermark Removal

Wang and Kerschbaum [85] further removed watermarks by
embedding additional watermarks into the model, following
the embedding scheme in [36]. Since every additional water-
mark might increase the weight’s variance, they propose to
lower it by adding an L2 regularizer. Following this procedure,
the authors show that the old watermark cannot be extracted,
and thus, the model owner cannot claim ownership. It should
be noted that although additional watermarks are embedded
into the model, the main objective is to “neutralize” the old
watermark rather than to use the new watermarks to claim
ownership.

Shafieinejad et al. [84] analyzed the robustness of
backdoor-based watermarking schemes. In particular, they
propose a model stealing attack that trains a substitute model
(see [58]). This is performed by querying the original model
with a public dataset from the same domain and using
the resulting label to train their own model. As the public
dataset contains none of the trigger images, the watermark
is “lost” in the process. We want to point out that most of
the techniques, as per their design, are not robust against
model stealing attacks [58], as pointed out by Mosafi et al.
[91]. Exceptions, such as EWE [42] and DAWN [43], are
described in Section VI-D.

Liu et al. [86] proposed WILD, a framework against
backdoor-based watermark techniques embedded via fine-
tuning. They argue that it is hard for attackers to collect
the required amount of within-domain, unlabeled data for the
attack in [84], but that using out-of-domain data impacts the
effectiveness of the substitute model too much. Their method

requires fewer data, as they augment it by random erasing
[92], i.e., removing random segments from the input images.
These augmented data alone are, however, not enough to
remove a watermark via fine-tuning, due to the high diver-
sity of potential watermarks. The authors note that backdoor
patterns are mostly learned by the high-level feature spaces
produced by the convolutional layers and not by the fully
connected layers. They thus additionally add a regularizer term
that ensures a minimal distance in distribution between the
high-level feature space of the augmented and the clean dataset
during fine-tuning so that a backdoor pattern could not be
learned. The authors reveal that it is more difficult to remove
OOD, compared to pattern- and noise-based watermarks.

Guo et al.’s removal attack [88] covers two aspects: 1) input
data preprocessing consisting of pixel-level alterations such as
embedding imperceptible patterns and spatial-level transfor-
mation such as affine and elastic transformation, aiming at
making the trigger image unrecognizable by the model, and
2) fine-tuning, with data that can be unlabeled and from a
different distribution. The second step aims at restoring the
accuracy of the model on normal samples, which might suffer
from the input data preprocessing. Using the watermarked
model as an oracle to obtain labels, these input samples are
then preprocessed in the same manner and used for fine-tuning
the model. The authors empirically show that their watermark
removal attack can remove various types of watermarks with-
out knowledge about the watermark embedding or labeled
training samples.

Chen et al. [89]7 proposed REFIT, a watermark removal
framework based on fine-tuning. The basis of their work is
the phenomenon of catastrophic forgetting [94], which means
that models, which are trained on a series of tasks, can
easily forget the previously learned tasks. Their attack model
assumes that the attacker has no knowledge on neither the
watermark nor the watermarking scheme and has limited data
for fine-tuning. They first show that in case the training data
are known, the watermark can be removed by fine-tuning when
choosing the learning rate appropriately. In order to adapt to
having only limited data that do not come from the original
dataset, the authors include two techniques: 1) elastic weight
consolidation (EWC) and 2) augmentation with unlabeled
data (AU). EWC slows down the learning of parameters
that are important for previously trained tasks, in particular
the main classification task, via adding a regularizer term
to the loss function. AU, on the other hand, increases the
number of in-distribution, labeled fine-tuning data. To this
end, unlabeled data are obtained via web scraping and labeled
by the pretrained model. In most cases, the model labels the
data according to their true classes since the model has not
seen the data before, and the watermarked model was trained
to fulfill the integrity requirement. The authors showed that
the proposed framework successfully removes the watermark
from various state-of-the-art watermarking schemes without
degrading the test accuracy.

Aiken et al. [87] proposed a method for watermark removal
based on previous backdoor removal attacks [95], [96],

7Previous version in [93].

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LEDERER et al.: IDENTIFYING APPROPRIATE IPP MECHANISMS FOR MACHINE LEARNING MODELS 15

assuming an attacker with a small (less than 1%) amount of
original training data. Their technique involves three steps.
First, they reconstruct the perturbations (backdoor patterns)
that are required to flip a sample to the other class, using the
method from [95]. Second, they superimpose the pattern on
their clean training data to identify neurons that are responsible
for recognizing the backdoored images, similar to [96]. The
weights incoming to these neurons are then set so that they
produce zero activation. Finally, the model is fine-tuned on
the clean and backdoored training data while labeling the
backdoored training data to the class that is least likely to
be watermarked, which prevents reappearance of the neurons
that were reset in the previous step. The authors showed that
their technique defeats the watermarking schemes [18], [19]
by effectively removing neurons or channels in the DNN’s
layers that contribute to the classification of trigger images.

D. Watermark Invalidation

Watermark invalidation does not aim to remove the water-
mark but finds a way to render it useless.

Hitaj et al. [83] proposed two such attacks: an ensemble
attack and a detector attack. The ensemble attack uses several
different models, obtained from, e.g., Model Zoo [56], queries
all models, and finally chooses the output that was given by
most of the models. If one of the models is watermarked
and triggered with a specific input for the watermark extrac-
tion process, most likely only the watermarked model will
predict the chosen label, while the remaining models will
predict the true label. Therefore, the trigger output will not
be returned, and the verification fails. The detection attack
tries to avoid a trigger response; it trains a neural network,
i.e., the detector, which predicts whether the query is intend-
ing to trigger a watermark. If the input is recognized as a
trigger image, a different or no class at all can be returned.
The detector is a binary classifier that needs to distinguish
between clean and trigger input. Clean input is collected from
other public datasets. Trigger inputs are generated from a
portion of these samples. It should be noted that this kind of
attack is not able to invalidate pattern-based, noise-based, and
in-distribution watermarks, as the detector cannot be trained
well for watermark detection without further information about
the watermark.

Namba and Sakuma [30] proposed a watermark invalidation
attack called query modification processing, consisting of two
steps: trigger sample detection and query modification via AE.
An AE can reduce the effect of trigger images by diluting
the pattern embedded in the original image or by eliminating
the embedded noise. Because the application of an AE to
nontrigger images impacts the performance of the model on
these images negatively, it is not recommended to use the
AE on every query. Similar to [83], the authors propose to
first detect whether the input could be a trigger image queried
during a watermark verification process. They suggest three
ways to perform the detection: 1) measuring the effect of the
AE on the image in the input space; 2) measuring the effect
in the output space; or 3) both. The authors demonstrated to
invalidate the watermarks created in [19], [26], and [40].

E. Access Control Invalidation

Besides breaking a (potentially insecure) mechanism under-
lying encryption or obfuscation, an obvious attack on an access
control system is trying to guess a valid secret. The schemes
presented in Section VIII all demonstrate that using a wrong
secret entails a large drop in fidelity, often to the level of a
random classifier. Thus, their vulnerability depends on aspects
such as management of the secret or brute-force attacks trying
random secrets. The success of these attacks depends on the
size or complexity of the secret employed; thus, this can be a
decisive factor in selecting a scheme.

Besides these, the most widely studied attack to render
access control to ML models ineffective is fine-tuning. Most
proposed schemes test for this attack. Xu et al. [45] showed
that their scheme is to some extent resistant to fine-tuning,
and thus, reusing the pirated network for other tasks is dis-
advantageous. Chakraborty et al. [50], however, showed that
a fine-tuning attack using 10% of the dataset restores the
accuracy to 4%–11% of the original accuracy. While this is
still potentially large enough to bring little value, it also does
not render the network completely unusable. This is addressed
by Alam et al. [51], who showed that a model fine-tuning
attack—with 10% of the initial number of samples—does
not improve the random model accuracy of using a wrong
secret. Also, Pyone et al. [54] demonstrated robustness to
fine-tuning. Chen and Wu’s [55] scheme is vulnerable to a
powerful attacker that can observe input–output patterns from
the transformation module; depending on their amount, they
can then restore prediction accuracy to be within 5%–15% of
the original one—which might still be too large to make the
attack not worthwhile.

F. Other Attack Considerations

Kupek et al. [97] studied defenses against adversarial
attacks. They investigated to what extent secret (defense)
parameters—which have an effect on the model parame-
ters, e.g., a weights modification during fine-tuning with an
additional loss function—can be estimated by an attacker.
If this estimation succeeds, the attack can be tailored to better
circumvent the defense. While not primarily studied in the IPP
context, this type of parameter estimation could be utilized
in attacks against some of the schemes discussed in this
article, similar to the vulnerability mentioned by Wang and
Kerschbaum [37].

It can be observed that in contrast to reactive methods such
as watermarking, there is, at the time of writing, too few works
that evaluate proactive schemes—there is especially a lack of
works that independently evaluate schemes, i.e., an evaluation
done by others than the original authors of the scheme. This
might be due to access control techniques being generally
newer and, therefore, less explored. However, it indicates
a need for a more systematic and thorough theoretical and
empirical evaluation of the proposed schemes.

X. GUIDELINES ON CHOOSING AN IPP METHOD

ML models are certainly an IP that needs to be secured
when making it publicly available. Model owners that want to

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



16 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

determine which security measures to take are confronted with
a variety of possibilities, which we analyzed and systematized
in this article. Based on this work, we can derive a set of
guiding questions that will help to decide which action to take:

Do I want to proactively protect my model from malicious
users or react in case of a threat event? If proactively, one
should consider model access mechanisms or unrobust models
(cf. Section VIII); if reactively, watermarking would be an
appropriate choice (cf. Section VI).

When needing ownership verification, can I ensure to get
full access to the adversary model? If access is not ensured,
a black-box approach is the appropriate choice; otherwise, both
white box (cf. Section VI-B) and black box (cf. Section VI-C)
are suitable, where white-box watermarking schemes tend to
have higher fidelity than black-box watermarking.

How am I going to distribute my model? In the case of an
API service, one should be aware of model stealing attacks
(cf. Section VI-D). Most of the introduced methods are not
robust against this type of attack, except EWE [42] and DAWN
[43]. When distributing the full model, one should choose an
IPP that is robust against model modifications—since that is
what an attacker would most likely do before redistributing—
or decide whether access control is of importance.

If distributed to multiple users, do I need to be able to
trace back a malicious user? If yes, one should consider
embedding fingerprints (user-specific watermarks) each time
before distributing a model to the users. DeepMarks [41] is so
far the only explicitly designed fingerprinting framework that
allows unique fingerprint embedding and also detects if users
collaborated. However, we believe that other watermarking
methods could be extended to fingerprinting, as fingerprinting
is a user-specific watermark (cf. Section VII-A).

Is my model large enough to hold additional watermark
or model access information? Model owners should be aware
that the larger a model, the better it will perform on fidelity
since the model has enough “space” for holding the additional
information without compromising test accuracy.

Do I already have a trained model? Most watermark-
ing methods and some model access techniques, e.g., [52],
[55], embed the information when training the model from
scratch. Although it is possible to embed the information
later on, fidelity is in this case often compromised. Some
of the watermarking methods need an already trained model,
e.g., [26] for generating adversarial examples or [30]. If in
possession of an already trained model, the model owner can
utilize those watermarking methods or implement every other
watermarking method but has to be aware of the fidelity loss.
Regarding model access techniques, similar observations hold
true—some methods, such as [52] and [55], adapt the training
process with an additional regularizer to embed information,
and thus, most often lead to higher fidelity if they are already
employed during training and not during fine-tuning on a
previously trained model.

How much effort can I expect an attacker to spend on
defeating my security mechanism? Attacks require different
amounts of training time, (substitute) training data, different
levels of access, and so on (cf. Section IX). This needs to
be balanced with the (expected) value which the attack might

yield. When choosing an appropriate watermarking method,
one should be aware that most methods face a tradeoff between
robustness and fidelity.

There are watermarking techniques that have not been
broken so far, such as the schemes in [20], [21], [23], [25],
[27], [31], [32], [33], [34], [35], [37], [38], [39], [42], [43],
[62], [64], [68], and [70] (cf. Tables I and IV). However,
it does not follow that these methods are more robust than
others, especially as many of these schemes are rather new—
and many schemes have only been tested against some attacks.

Regarding model access, we note that most schemes have
not been vetted against attacks developed by researchers other
than the original authors of the scheme, and more empirical
evaluation is required. Thus, at this point, it is not possible to
accurately estimate the required effort of an attacker.

XI. CONCLUSION

IPP for ML assets is a very active research field, but still in
its infancy. With a growing number of threats discovered, novel
protection methods proposed and counterattacks developed,
the lack of a unified view on the vulnerabilities hinders
comprehensive approaches. In this article, we performed a
systematic review of the field and provide a comprehensive
taxonomy of IPP methods for ML models. We further cat-
egorized attacks on IPP mechanisms and discussed which
specific mechanisms are affected by the attacks. This provides
IP holders with a holistic overview of appropriate mechanisms
so that they may perform a detailed investigation for a concrete
setting.

We note that there is a lack of methods that holisti-
cally address multiple threats and attack models. Combining,
e.g., model access control systems with other proactive mea-
sures such as unrobust models and embedded watermarks,
would provide protection against multiple types of attacks.
However, there might also be effects that multiple IPP strate-
gies interfere with each other, especially if they need to
modify similar aspects of the ML model. With this survey and
systematization of knowledge, we provide a starting point in
this direction and inform about the complexity of a successful
IPP of ML models. Future research is mandated to strengthen
and extend evaluation frameworks for IPP methods in ML.

In order to make future work on IPP protection methods
and respective attacks more comparable, it is important to
establish a benchmark setting with well-defined tasks, eval-
uation metrics, and artifacts. Evaluating protection and attack
methods on a common set of architectures and datasets fosters
direct comparison. Thus, reusing previously utilized datasets
and architectures is highly encouraged; if this is not possible,
newly created artifacts (e.g., not yet employed datasets, model
architectures, trained models, and similar artifacts) need to
be made available to the research community in an easy
and reliable manner, with enough details to understand and
reuse them. Also, reproducibility of the experiments is vital
in order to ensure that others can compare novel work to
previously published results and, especially if new artifacts are
used, are able to employ existing methods on these artifacts.
Thus, a detailed documentation of the training process and the
hyperparameters used is required.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LEDERER et al.: IDENTIFYING APPROPRIATE IPP MECHANISMS FOR MACHINE LEARNING MODELS 17

REFERENCES

[1] W. Michiels, “How do you protect your machine learning investment,”
Tech. Rep., Mar. 2020. [Online]. Available: https://www.eetimes.com/
how-do-you-protect-your-machine-learning-investment/

[2] H. Chen, B. D. Rouhani, X. Fan, O. C. Kilinc, and F. Koushanfar, “Per-
formance comparison of contemporary DNN watermarking techniques,”
2018, arXiv:1811.03713.

[3] F. Boenisch, “A systematic review on model watermarking for neural
networks,” 2020, arXiv:2009.12153.

[4] B. Kitchenham and S. Charters, “Guidelines for performing sys-
tematic literature reviews in software engineering,” Dept. Comput.
Sci., Univ. Durham, Durham, U.K., Tech. Rep., EBSE-2007-01,
2007.

[5] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” in Proc. NIPS Deep Learn. Workshop, Montréal, QC, Canada,
2014, pp. 1–9.

[6] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 27. Red Hook, NY, USA: Curran Associates,
Inc., 2014, pp. 1–15.

[7] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Trans. Intell. Syst. Technol., vol. 10,
no. 2, p. 12, 2019.

[8] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
Jul. 2006.

[9] C. Szegedy et al., “Intriguing properties of neural networks,” in Proc.
Int. Conf. Learn. Represent. (ICLR), Banff, AB, Canada, Apr. 2014,
pp. 1–10.

[10] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, “Neural style
transfer: A review,” IEEE Trans. Vis. Comput. Graphics, vol. 26, no. 11,
pp. 3365–3385, Nov. 2020.

[11] A. B. Kahng et al., “Watermarking techniques for intellectual property
protection,” in Proc. 35th Annu. Design Automat. Conf., San Francisco,
CA, USA, 1998, pp. 776–781.

[12] M. Kamran and M. Farooq, “A comprehensive survey of watermarking
relational databases research,” 2018, arXiv:1801.08271.

[13] X. Zhong, P.-C. Huang, S. Mastorakis, and F. Y. Shih, “An auto-
mated and robust image watermarking scheme based on deep neu-
ral networks,” IEEE Trans. Multimedia, vol. 23, pp. 1951–1961,
2020.

[14] S. S. Sharma and V. Chandrasekaran, “A robust hybrid digital
watermarking technique against a powerful CNN-based adversarial
attack,” Multimedia Tools Appl., vol. 79, nos. 43–44, pp. 32769–32790,
Nov. 2020.

[15] E. Quiring and K. Rieck, “Adversarial machine learning against digital
watermarking,” in Proc. 26th Eur. Signal Process. Conf. (EUSIPCO),
Rome, Italy, Sep. 2018, pp. 519–523.

[16] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, “FPGA finger-
printing techniques for protecting intellectual property,” in Proc. IEEE
Custom Integr. Circuits Conf., Santa Clara, CA, USA, Aug. 1998,
pp. 299–302.

[17] Y. Li, V. Swarup, and S. Jajodia, “Fingerprinting relational databases:
Schemes and specialties,” IEEE Trans. Dependable Secure Comput.,
vol. 2, no. 1, pp. 34–45, Jan. 2005.

[18] Y. Adi, C. Baum, M. Cisse, B. Pinkas, and J. Keshet, “Turning
your weakness into a strength: Watermarking deep neural networks
by backdooring,” in Proc. USENIX Secur. Symp. Berkeley, CA, USA:
USENIX Association, Aug. 2018, pp. 1615–1631.

[19] J. Zhang et al., “Protecting intellectual property of deep neural networks
with watermarking,” in Proc. Asia Conf. Comput. Commun. Secur.,
Incheon, South Korea: ACM Press, May 2018, pp. 159–172.

[20] Z. Yang, H. Dang, and E.-C. Chang, “Effectiveness of distillation
attack and countermeasure on neural network watermarking,” 2019,
arXiv:1906.06046.

[21] H. Li, E. Wenger, S. Shan, B. Y. Zhao, and H. Zheng, “Piracy resistant
watermarks for deep neural networks,” 2019, arXiv:1910.01226.

[22] J. Guo and M. Potkonjak, “Watermarking deep neural networks
for embedded systems,” in Proc. Int. Conf. Comput.-Aided Design,
San Diego, CA, USA, Nov. 2018, pp. 1–8.

[23] J. Guo and M. Potkonjak, “Evolutionary trigger set generation for DNN
black-box watermarking,” 2019, arXiv:1906.04411.

[24] B. G. A. Tekgul, Y. Xia, S. Marchal, and N. Asokan, “WAF-
FLE: Watermarking in federated learning,” in Proc. 40th Int. Symp.
Reliable Distrib. Syst. (SRDS), Chicago, IL, USA, Sep. 2021,
pp. 310–320.

[25] R. Zhu, X. Zhang, M. Shi, and Z. Tang, “Secure neural network
watermarking protocol against forging attack,” EURASIP J. Image Video
Process., vol. 2020, no. 1, Sep. 2020.

[26] E. Le Merrer, P. Pérez, and G. Trédan, “Adversarial frontier stitching for
remote neural network watermarking,” Neural Comput. Appl., vol. 32,
no. 13, pp. 9233–9244, Aug. 2019.

[27] Z. Li, C. Hu, Y. Zhang, and S. Guo, “How to prove your model belongs
to you: A blind-watermark based framework to protect intellectual
property of DNN,” in Proc. 35th Annu. Comput. Secur. Appl. Conf.,
San Juan, PR, USA, Dec. 2019, pp. 126–137.

[28] J. Zhao, Q. Hu, G. Liu, X. Ma, F. Chen, and M. M. Hassan, “AFA:
Adversarial fingerprinting authentication for deep neural networks,”
Comput. Commun., vol. 150, pp. 488–497, Jan. 2020.

[29] N. Lukas, Y. Zhang, and F. Kerschbaum, “Deep neural network finger-
printing by conferrable adversarial examples,” in Proc. Int. Conf. Learn.
Represent., May 2021, pp. 1–18.

[30] R. Namba and J. Sakuma, “Robust watermarking of neural network with
exponential weighting,” in Proc. ACM Asia Conf. Comput. Commun.
Secur., Auckland, New Zealand, Jul. 2019, pp. 228–240.

[31] Q. Zhong, L. Y. Zhang, J. Zhang, L. Gao, and Y. Xiang, “Pro-
tecting IP of deep neural networks with watermarking: A new label
helps,” in Advances in Knowledge Discovery and Data Mining. Cham,
Switzerland: Springer, May 2020, pp. 462–474.

[32] Y.-Q. Zhang, Y.-R. Jia, X. Wang, Q. Niu, and N.-D. Chen, “DeepTrigger:
A watermarking scheme of deep learning models based on chaotic
automatic data annotation,” IEEE Access, vol. 8, pp. 213296–213305,
2020.

[33] H. Chen, B. Darvish Rouhani, and F. Koushanfar, “BlackMarks:
Blackbox multibit watermarking for deep neural networks,” 2019,
arXiv:1904.00344.

[34] X. Xu, Y. Li, and C. Yuan, “A novel method for identifying the deep
neural network model with the serial number,” 2019, arXiv:1911.08053.

[35] N. Yu, V. Skripniuk, S. Abdelnabi, and M. Fritz, “Artificial finger-
printing for generative models: Rooting deepfake attribution in training
data,” in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 14448–14457.

[36] Y. Uchida, Y. Nagai, S. Sakazawa, and S. Satoh, “Embedding water-
marks into deep neural networks,” in Proc. ACM Int. Conf. Multimedia
Retr., Bucharest, Romania, Jun. 2017, pp. 269–277.

[37] T. Wang and F. Kerschbaum, “RIGA: Covert and robust white-box
watermarking of deep neural networks,” in Proc. Web Conf., Ljubljana,
Slovenia, Apr. 2021, pp. 993–1004.

[38] J. Wang, H. Wu, X. Zhang, and Y. Yao, “Watermarking in deep neural
networks via error back-propagation,” in Proc. Int. Symp. Electron.
Imag., Jan. 2020, pp. 1–9.

[39] L. Feng and X. Zhang, “Watermarking neural network with compensa-
tion mechanism,” in Knowledge Science, Engineering and Management.
Cham, Switzerland: Springer, Aug. 2020.

[40] B. Darvish Rouhani, H. Chen, and F. Koushanfar, “DeepSigns: An end-
to-end watermarking framework for ownership protection of deep neural
networks,” in Proc. 24th Int. Conf. Architectural Support Program.
Lang. Operating Syst., Renton, WA, USA: Providence, Apr. 2019,
pp. 485–497.

[41] H. Chen, B. D. Rouhani, C. Fu, J. Zhao, and F. Koushanfar, “DeepMarks:
A secure fingerprinting framework for digital rights management of deep
learning models,” in Proc. Int. Conf. Multimedia Retr., Ottawa, ON,
Canada, Jun. 2019, pp. 105–113.

[42] H. Jia, C. A. Choquette-Choo, V. Chandrasekaran, and N. Papernot,
“Entangled watermarks as a defense against model extraction,” in
Proc. 30th USENIX Secur. Symp. (USENIX Secur.), Aug. 2021,
pp. 1937–1954.

[43] S. Szyller, B. G. Atli, S. Marchal, and N. Asokan, “DAWN: Dynamic
adversarial watermarking of neural networks,” in Proc. 29th ACM Int.
Conf. Multimedia, Oct. 2021, pp. 4417–4425.

[44] K. Szentannai, J. Al-Afandi, and A. Horváth, “Preventing neural network
weight stealing via network obfuscation,” in Proc. Sci. Inf. Conf. Cham,
Switzerland: Springer, Jul. 2020, pp. 1–11.

[45] H. Xu, Y. Su, Z. Zhao, Y. Zhou, M. R. Lyu, and I. King, “DeepOb-
fuscation: Securing the structure of convolutional neural networks via
knowledge distillation,” 2018, arXiv:1806.10313.

[46] L. Fan, K. W. Ng, and C. S. Chan, “Rethinking deep neural net-
work ownership verification: Embedding passports to defeat ambiguity
attacks,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32. Red Hook,
NY, USA: Curran Associates, Inc., Dec. 2019, pp. 1–11.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



18 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[47] J. H. Lim, C. S. Chan, K. W. Ng, L. Fan, and Q. Yang, “Protect, show,
attend and tell: Empowering image captioning models with ownership
protection,” Pattern Recognit., vol. 122, p. 108285, Feb. 2022.

[48] L. Sun, Y. Wang, and L. Dai, “Convolutional neural network protection
method of Lenet-5-like structure,” in Proc. 2nd Int. Conf. Comput. Sci.
Artif. Intell., Shenzhen, China: ACM Press, Dec. 2018, pp. 77–80.

[49] L. Gomez, M. Wilhelm, J. Márquez, and P. Duverger, “Security
for distributed deep neural networks: Towards data confidentiality &
intellectual property protection,” in Proc. 16th Int. Joint Conf. e-
Bus. Telecommun., Prague, Czech Republic: Science and Technology
Publications, 2019, pp. 1–9.

[50] A. Chakraborty, A. Mondai, and A. Srivastava, “Hardware-assisted
intellectual property protection of deep learning models,” in Proc. 57th
ACM/IEEE Design Autom. Conf. (DAC), San Francisco, CA, USA,
Jul. 2020, pp. 1–6.

[51] M. Alam, S. Saha, D. Mukhopadhyay, and S. Kundu, “NN-Lock:
A lightweight authorization to prevent IP threats of deep learning
models,” ACM J. Emerg. Technol. Comput. Syst., vol. 18, Feb. 2022,
Art. no. 3505634.

[52] R. Tang, M. Du, and X. Hu, “Deep serial number: Computa-
tional watermarking for DNN intellectual property protection,” 2020,
arXiv:2011.08960.

[53] N. Lin, X. Chen, H. Lu, and X. Li, “Chaotic weights: A novel
approach to protect intellectual property of deep neural networks,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 40, no. 7,
pp. 1327–1339, Jul. 2021.

[54] A. Pyone, M. Maung, and H. Kiya, “Training DNN model with secret
key for model protection,” in Proc. IEEE 9th Global Conf. Consum.
Electron. (GCCE), Kobe, Japan, Oct. 2020, pp. 818–821.

[55] M. Chen and M. Wu, “Protect your deep neural networks from piracy,”
in Proc. IEEE Int. Workshop Inf. Forensics Secur. (WIFS), Hong Kong,
Dec. 2018, pp. 1–7.

[56] Model Zoo. Accessed: Mar. 16, 2022. [Online]. Available:
https://modelzoo.co/

[57] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction APIs,” in Proc. 25th USENIX
Secur. Symp. (USENIX Secur.) Austin, TX, USA: USENIX Association,
Aug. 2016, pp. 601–618.

[58] D. Oliynyk, R. Mayer, and A. Rauber, “I know what you trained last
summer: A survey on stealing machine learning models and defences,”
ACM Comput. Surveys, pp. 1–36, 2023, doi: 10.1145/3595292.

[59] A. Sablayrolles, M. Douze, C. Schmid, and H. Jegou, “Radioactive data:
Tracing through training,” in Proc. Int. Conf. Mach. Learning, Jul. 2020,
pp. 8326–8335.

[60] S. Abdelnabi and M. Fritz, “Adversarial watermarking transformer:
Towards tracing text provenance with data hiding,” in Proc. IEEE Symp.
Secur. Privacy (SP), San Francisco, CA, USA, May 2021, pp. 121–140.

[61] J. Zhang et al., “Model watermarking for image processing networks,”
in Proc. AAAI Conf. Artif. Intell., vol. 34, Apr. 2020, pp. 12805–12812.

[62] H. Wu, G. Liu, Y. Yao, and X. Zhang, “Watermarking neural networks
with watermarked images,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 31, no. 7, pp. 2591–2601, Jul. 2021.

[63] C. Song, T. Ristenpart, and V. Shmatikov, “Machine learning models
that remember too much,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., Dallas, TX, USA: Association for Computing Machinery,
Oct. 2017.

[64] Y. Quan, H. Teng, Y. Chen, and H. Ji, “Watermarking deep neural
networks in image processing,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 5, pp. 1852–1865, May 2021.

[65] X. Zhao, H. Wu, and X. Zhang, “Watermarking graph neural networks
by random graphs,” in Proc. 9th Int. Symp. Digit. Forensics Secur.
(ISDFS), Elazig, Turkey, Jun. 2021, pp. 1–6.

[66] V. Behzadan and W. Hsu, “Sequential triggers for watermarking of deep
reinforcement learning policies,” 2019, arXiv:1906.01126.

[67] V. M. Potdar, S. Han, and E. Chang, “A survey of digital image
watermarking techniques,” in Proc. 3rd IEEE Int. Conf. Ind. Informat.,
Perth, WA, Australia, 2005, pp. 709–716.

[68] H. Chen, B. Darvish, and F. Koushanfar, “SpecMark: A spectral water-
marking framework for IP protection of speech recognition systems,” in
Proc. INTERSPEECH, Oct. 2020, pp. 2312–2316.

[69] X. Cao, J. Jia, and N. Z. Gong, “IPGuard: Protecting intellectual property
of deep neural networks via fingerprinting the classification bound-
ary,” in Proc. ACM Asia Conf. Comput. Commun. Secur., Hong Kong,
May 2021, pp. 14–25.

[70] X. Guan, H. Feng, W. Zhang, H. Zhou, J. Zhang, and N. Yu, “Reversible
watermarking in deep convolutional neural networks for integrity authen-
tication,” in Proc. 28th ACM Int. Conf. Multimedia, Seattle, WA, USA,
Oct. 2020, pp. 2273–2280.

[71] Y. Nagai, Y. Uchida, S. Sakazawa, and S. Satoh, “Digital watermarking
for deep neural networks,” Int. J. Multimedia Inf. Retr., vol. 7, no. 1,
pp. 3–16, Mar. 2018.

[72] T. Gu, K. Liu, B. Dolan-Gavitt, and S. Garg, “BadNets: Evaluating
backdooring attacks on deep neural networks,” IEEE Access, vol. 7,
pp. 47230–47244, 2019.

[73] R. Storn, “Differential evolution—A simple and efficient heuristic for
global optimization over continuous spaces,” J. Global Optim., vol. 11,
pp. 341–359, Dec. 1997.

[74] K. Wust and A. Gervais, “Do you need a blockchain?” in Proc. Crypto
Valley Conf. Blockchain Technol. (CVCBT), Jun. 2018, pp. 45–54.

[75] A. Savelyev, “Copyright in the blockchain era: Promises and challenges,”
Comput. Law Secur. Rev., vol. 34, no. 3, pp. 550–561, 2018.

[76] P. Eckersley, “How unique is your web browser?” in Privacy Enhancing
Technologies, vol. 6205, Berlin, Germany: Springer, 2010.

[77] T. Kohno, A. Broido, and K. C. Claffy, “Remote physical device
fingerprinting,” IEEE Trans. Dependable Secure Comput., vol. 2, no. 2,
pp. 93–108, Apr. 2005.

[78] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable
adversarial examples and black-box attacks,” in Proc. Int. Conf. Learn.
Represent. (ICLR), Toulon, France, Apr. 2017, pp. 1–24.

[79] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Boston, MA, USA, Jun. 2015,
pp. 1–9.

[80] K. Xu et al., “Show, attend and tell: Neural image caption generation
with visual attention,” in Proc. 32nd Int. Conf. Mach. Learn., Lille,
France, Jul. 2015, pp. 2048–2057.

[81] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning,” in Proc. Int. Conf. Learn. Represent.,
San Juan, PR, USA, May 2016, pp. 1–14.

[82] M. Zhu and S. Gupta, “To prune, or not to prune: Exploring the efficacy
of pruning for model compression,” in Proc. Int. Conf. Learn. Represent.
Workshop Track, Vancouver, BC, Canada, Apr. 2018, pp. 1–11.

[83] D. Hitaj, B. Hitaj, and L. V. Mancini, “Evasion attacks against water-
marking techniques found in MLaaS systems,” in Proc. 6th Int. Conf.
Softw. Defined Syst. (SDS), Rome, Italy, Jun. 2019, pp. 55–63.

[84] M. Shafieinejad, N. Lukas, J. Wang, X. Li, and F. Kerschbaum, “On the
robustness of backdoor-based watermarking in deep neural networks,”
in Proc. ACM Workshop Inf. Hiding Multimedia Secur., Jun. 2021,
pp. 177–188.

[85] T. Wang and F. Kerschbaum, “Attacks on digital watermarks for deep
neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process. (ICASSP), Brighton, U.K., May 2019, pp. 2622–2626.

[86] X. Liu, F. Li, B. Wen, and Q. Li, “Removing backdoor-based watermarks
in neural networks with limited data,” in Proc. 25th Int. Conf. Pattern
Recognit. (ICPR), Milan, Italy, Jan. 2021, pp. 10149–10156.

[87] W. Aiken, H. Kim, S. Woo, and J. Ryoo, “Neural network laundering:
Removing black-box backdoor watermarks from deep neural networks,”
Comput. Secur., vol. 106, Jul. 2021, Art. no. 102277.

[88] S. Guo, T. Zhang, H. Qiu, Y. Zeng, T. Xiang, and Y. Liu, “Fine-tuning
is not enough: A simple yet effective watermark removal attack for
DNN models,” in Proc. 30th Int. Joint Conf. Artif. Intell., Montreal,
QC, Canada, Aug. 2021, pp. 3635–3641.

[89] X. Chen et al., “REFIT: A unified watermark removal framework for
deep learning systems with limited data,” in Proc. ACM Asia Conf.
Comput. Commun. Secur., Hong Kong, May 2021, pp. 321–335.

[90] K. Ganju, Q. Wang, W. Yang, C. A. Gunter, and N. Borisov, “Property
inference attacks on fully connected neural networks using permutation
invariant representations,” in Proc. ACM SIGSAC Conf. Comput. Com-
mun. Secur., Oct. 2018, p. 15.

[91] I. Mosafi, E. O. David, and N. S. Netanyahu, “Stealing knowledge
from protected deep neural networks using composite unlabeled data,”
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2019, pp. 1–8.

[92] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing data
augmentation,” in Proc. AAAI Conf. Artif. Intell., vol. 34, Apr. 2020,
pp. 13001–13008.

[93] X. Chen et al., “Leveraging unlabeled data for watermark removal of
deep neural networks,” in Proc. ICML Workshop Secur. Privacy Mach.
Learn., Jun. 2019, pp. 1–6.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

http://dx.doi.org/10.1145/3595292


LEDERER et al.: IDENTIFYING APPROPRIATE IPP MECHANISMS FOR MACHINE LEARNING MODELS 19

[94] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio,
“An empirical investigation of catastrophic forgetting in gradient-based
neural networks,” 2013, arXiv:1312.6211.

[95] B. Wang et al., “Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks,” in Proc. IEEE Symp. Secur. Privacy (SP),
San Francisco, CA, USA, May 2019, pp. 707–723.

[96] K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against
backdooring attacks on deep neural networks,” in Research in Attacks,
Intrusions, and Defenses. Cham, Switzerland: Springer, 2018.

[97] T. Kupek, C. Pasquini, and R. Böhme, “On the difficulty of hiding keys
in neural networks,” in Proc. ACM Workshop Inf. Hiding Multimedia
Secur., Denver, CO, USA, Jun. 2020, pp. 73–78.

Isabell Lederer received the M.Sc. degree in tech-
nical mathematics from the Technical University
of Vienna, Vienna, Austria, in 2021. Her master’s
thesis was based on research on intellectual property
protection for machine learning models, in particu-
lar watermarking methods for convolutional neural
networks.

After her studies, she is pursuing a professional
career as a Data Scientist.

Rudolf Mayer is currently a Senior Researcher
and the Lead of the Machine Learning and Data
Management Team, SBA Research, Vienna, Austria,
and a Lecturer with the Vienna University of
Technology, Vienna. His research interests include
information retrieval (focusing on text and music
data) and machine learning. Specifically, he focuses
on privacy-preserving data publishing and machine
learning, and security aspects of machine learning
(adversarial machine learning) and intellectual prop-
erty protection in machine learning processes.

Andreas Rauber is currently a Professor with
the Data Science Research Unit, Department of
Information Systems Engineering, Vienna University
of Technology, Vienna, Austria; the Head of the
Vienna Scientific Cluster Research Center, Vienna;
and a Key Researcher at SBA Research, Vienna. His
research interests cover the broad scope of data sci-
ence, ranging from reproducibility and transparency
aspects in data analytics and their realization in
virtual research environments to explainability and
accountability in machine learning.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 


