
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Evolving Memristive Reservoir
Xinming Shi , Student Member, IEEE, Leandro L. Minku , Senior Member, IEEE, and Xin Yao , Fellow, IEEE

Abstract— In light of the dynamic plasticity, nanosize, and
energy efficiency of memristors, memristive reservoirs have
attracted increasing attention in diverse fields of research
recently. However, limited by deterministic hardware implemen-
tation, hardware reservoir adaptation is hard to realize. Existing
evolutionary algorithms for evolving reservoirs are not designed
for hardware implementation. They often ignore the circuit
scalability and feasibility of the memristive reservoirs. In this
work, based on the reconfigurable memristive units (RMUs),
we first propose an evolvable memristive reservoir circuit that
is capable of adaptive evolution for varying tasks, where the
configuration signals of memristor are evolved directly avoiding
the device variance of the memristors. Second, considering the
feasibility and scalability of memristive circuits, we propose
a scalable algorithm for evolving the proposed reconfigurable
memristive reservoir circuit, where the reservoir circuit will not
only be valid according to the circuit laws but also has the sparse
topology, alleviating the scalability issue and ensuring the circuit
feasibility during the evolution. Finally, we apply our proposed
scalable algorithm to evolve the reconfigurable memristive reser-
voir circuits for a wave generation task, six prediction tasks,
and one classification task. Through experiments, the feasibility
and superiority of our proposed evolvable memristive reservoir
circuit are demonstrated.

Index Terms— Evolution algorithm, evolvable hardware, mem-
ristor, neural networks, reservoir computing.

I. INTRODUCTION

RESERVOIR computing (RC) is a unified computational
framework, originally derived from recurrent neural net-

works. It was originally proposed to provide possible solutions
for the shortcomings of conventional recurrent neural networks
(RNNs), like computationally expensive parameter updates.
Due to its modeling accuracy, modeling capacity, biological
plausibility, as well as extensibility and parsimony, RC meth-
ods have quickly become popular [1], [2] and constitute one
of the core paradigms of RNN modeling.

Manuscript received 28 April 2022; revised 15 December 2022;
accepted 13 April 2023. This work was supported in part by the Research
Institute of Trustworthy Autonomous Systems (RITAS), in part by the
Guangdong Provincial Key Laboratory under Grant 2020B121201001, in part
by the Program for Guangdong Introducing Innovative and Enterpreneurial
Teams under Grant 2017ZT07X386, and in part by the Shenzhen Science and
Technology Program under Grant KQTD2016112514355531. (Corresponding
authors: Leandro L. Minku; Xin Yao.)

Xinming Shi and Xin Yao are with the Guangdong Provincial Key Lab-
oratory of Brain-Inspired Intelligent Computation, Department of Computer
Science and Engineering, Southern University of Science and Technology
(SUSTech), Shenzhen 518055, China, and also with the School of Computer
Science, University of Birmingham, B15 2TT Birmingham, U.K. (e-mail:
xxs972@cs.bham.ac.uk; xiny@sustech.edu.cn).

Leandro L. Minku is with the School of Computer Science, University of
Birmingham, B15 2TT Birmingham, U.K. (e-mail: l.l.minku@bham.ac.uk).

This article has supplementary material provided by the authors and
color versions of one or more figures available at https://doi.org/10.1109/
TNNLS.2023.3270224.

Digital Object Identifier 10.1109/TNNLS.2023.3270224

The RC operation principle is based on a nonlinear dynam-
ical system called a reservoir. Specifically, a reservoir is a
dynamic system that can perform nonlinear transformations
of the input signals and project them to a high-dimensional
space (represented as the reservoir states). To reflect time
correlations of input signals in the output signals, the reservoir
needs to generate history-dependent dynamics. According to
the work of Tanaka et al. [3], research on RC falls into two
general categories, which are software and physical implemen-
tations, respectively. As for software implementation, main-
stream research explores the practicability of applying RC
in new areas or improving existing results by RC. Some
researchers have modeled the dynamic behaviors of reservoir
proposing simulated neural networks, such as ESN [4] and
LSM [5]. They have been used to solve many computational
problems, such as temporal pattern recognition, prediction,
and generation tasks [6], [7]. The physical implementation
of RC has also attracted increasing attention in diverse fields
of research due to its fast speed of data processing and low
learning cost [3]. Depending on different types of physical
devices, electronic RC [8], photonic RC [9], and atomic switch
RC [7] have been widely studied, where electronic RC have
attracted great attention. A straightforward method of realizing
electronic RC is to implement RNNs using neural network
hardware or neuromorphic computing techniques. Researchers
have employed different electronic devices to realize the
electronic implementation of ESN and LSM following this
straightforward method, such as FPGA [10] and MOSFET
crossbar array [8]. Another method of realizing electronic
RC is to employ other dynamical systems instead of RNNs.
Therefore, some researchers mainly focus on exploring differ-
ent dynamical systems that are equipped with the features of
reservoirs, namely high dimensionality [11], nonlinearity [11],
and short-term memory [12], to serve as reservoirs directly.

Memristors are a new-type nonlinear electronic com-
ponent first established by Chua [13]. Since memristors
are resistance-changeable, nonvolatile, power-efficient, and
high-density integration-friendly [14], [15], memristor-based
RC has attracted a large number of researchers. Some
researchers followed the straightforward method of imple-
menting RNN-based reservoirs by using both neuron and
synapse circuits so that memristor-based ESNs [16] and
LSMs [17] could be realized. Some memristors can exhibit
nonlinear dynamics and short-term memory, which are in
accordance with the key features of the reservoirs. There-
fore, some researchers made attempts to design memristive
reservoirs based on these memristors without neuron circuits
[18], [19], [20]. For example, Kulkarni et al [18] and Gouhei
Tanak et al [20] have applied memristors only to construct the
memristive networks for RC applied to pattern recognition.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-2053-6924
https://orcid.org/0000-0002-2639-0671
https://orcid.org/0000-0001-8837-4442

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

However, as mentioned in previous studies [21], the con-
struction of a random fixed reservoir has been regarded as
not “good” enough for varying given tasks. A number of
optimization techniques have been explored to optimize the
software reservoirs [22], but none, if any, have been used in
hardware or memristive reservoirs. Compared with the soft-
ware RC, designing or optimizing the memristive reservoirs
is challenging, since the memristive circuit needs not only to
operate as a reservoir but also to work legally and efficiently
under the circuit laws. Considering the high development cost
of application-specific integrated circuits (ASICs), a reconfig-
urable feature is also desirable for the implementation and
optimization of a memristive reservoir, which means that the
memristive reservoir could be reconfigured on-chip for various
tasks, showing the benefits to the research and developing
cost of different reservoir circuits. However, the large search
space by the vast number of connection combinations and
scalable weights makes it difficult to design a suitable structure
manually for a given task.

Evolutionary approaches have the advantage that they are
often able to create a variety of different candidates for the
solution [23], which may have good potential for the design
and optimization of the memristive reservoir. However, even
though several evolutionary algorithms have been designed for
optimizing the simulated networks of reservoirs [24], there
are very limited algorithms designed for optimizing hardware
or memristive reservoirs directly. Several key issues involved
in the hardware implementation of reservoirs are ignored in
those algorithms, such as the feasibility of the evolved design
and the scalability issue of the evolved design. For example,
Dale et al. [25] proposed an evolvable carbon nanotube reser-
voir by optimizing electrodes based on a basic genetic algo-
rithm, where the scalability problem of evolving their physical
reservoir has not been considered. Chatzidimitriou et al. [24]
proposed an adaptive evolution and learning algorithm for
optimizing a simulated network of the reservoir (ESN), but
it cannot be applied to evolve the hardware or memristive
reservoir directly, since the feasibility of the circuit has not
been considered in their algorithm.

In this article, we propose the first scalable algorithm for
evolving reconfigurable memristive reservoir circuits on the
chip. On-chip methods could overcome the poor characteris-
tics of predeveloped practical devices, thereby increasing the
performance of implemented systems. Our contributions are
as follows.

1) We design the first reconfigurable memristive reservoir
circuit that can be evolved on-chip. This is achieved
by exploiting different nonlinear behaviors of memristor
currents.

2) We propose a scalable adaptation algorithm for on-chip
memristive reservoir evolution, providing an effective
method of designing memristive reservoirs automati-
cally. Specifically, different from existing approaches,
which evolve memristor states, the configuration signals
are evolved directly to control the memristor currents,
which can be done on a chip. This prevents the situation
where the actual memristance is different from the
desired one due to device variances, which negatively

affects existing approaches [26]. Different from the
algorithms designed for evolving simulated networks of
reservoirs, the feasibility and scalability of the memris-
tive circuit are taken into consideration in our proposed
algorithm.

3) We show that our proposed memristive reservoir was
able to solve one generation and six prediction tasks,
obtaining superior results compared with the state-of-
the-art approaches in terms of regression and circuit
performance.

The rest of this article is structured as follows. Section II
introduces the related work. Section III proposes the evolvable
memristive circuit design. Section IV proposes the adaptive
evolution algorithm for evolving the memristive reservoir
circuit. Section V describes the experiments for verifying our
proposed evolvable memristive reservoir. The conclusions of
our work are presented in Section VI.

II. RELATED WORK

A. Hardware Implementation of Reservoir Computing

Different types of RC algorithms have been implemented
by hardware. ESN and LSM are two types of RC algorithms,
which are based on nonlinear function neurons and spiking
neurons, respectively. Both ESN and LSM models have been
fully developed in FPGAs for data recognition and classifica-
tion. Yi et al. [10] proposed an FPGA-based ESN model with
64 neurons. An ESN model was also implemented in an FPGA
for chaotic-time series forecasting [27]. An LSM model has
been implemented with 135 neurons in an FPGA for pattern
recognition to evaluate the presented FPGA neuromorphic
processors. It achieved a recognition accuracy of 96.4% [17]
on a speech recognition benchmark, the TI46 speech corpus.

The dynamic system-based RC model has also been imple-
mented in hardware [28] in addition to those neuron-based
RC models [10]. The photonic reservoir has recently gotten a
lot of attention. However, signal processing using the photonic
reservoir may necessitate the purchase of expensive peripheral
devices such as a digitizer and a waveform generator [29].
Electronic reservoirs are also being investigated for the devel-
opment of low-cost machine learning devices [3]. Currently,
some of the electronic reservoirs are built on traditional
complementary metal–oxide–semiconductor (CMOS) devices
combined with other components such as capacitors and
operational amplifiers [28], [29], [30]. Memristive reservoirs
outperform CMOS reservoirs in terms of circuit area and
power consumption due to the nanosize and energy efficiency
of memristors [3], [19]. There has been research [18], [20]
using memristors to implement reservoir computing with
greater energy efficiency and low training cost. However, they
are based on the specified circuit, whose topology cannot be
evolved adaptively to different tasks and cannot be changed
dynamically during the circuit execution.

B. Evolution of Reservoir Computing

Some researchers asserted that just simply creating a reser-
voir at random is unsatisfactory. It seems obvious that, when
addressing a specific modeling task, a specific reservoir design

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: EVOLVING MEMRISTIVE RESERVOIR 3

that is adapted to the task will lead to better results than a
naive random creation [21]. Therefore, researching evolution-
ary reservoirs has been regarded as a natural idea. Recently,
there have been several studies optimizing reservoirs to achieve
better performance on a given application [23]. As mentioned
in [31] and [21], most of the reservoir computing optimization
and improvements are in the dynamic reservoir itself. In [32],
the number of nodes, reservoir connectivity, and weights have
been optimized, with connectivity and input scaling playing a
great role in the studied approach, and the quantity (number
of connections) and quality (values) of weights having a big
impact on the training process.

By adopting appropriate evolutionary algorithms, it is, thus,
easy to perform better than average by choosing the right reser-
voir [23]. This has been done with genetic algorithms [33],
Evolino [22], evolutionary strategy [34], and particle swarm
optimization (PSO) [32]. In general, there have been three
classes of evolutionary algorithms to optimize RC [35]. The
first is to optimize the global parameters of the reservoir,
such as the spectral radius and the scaling of weights. The
second is to optimize the topology/architecture of the network
directly, such as weight connections. The third class can be
done in a hybrid way of the other groups. However, there
is no research focusing on the optimization of hardware or
memristive reservoirs [25].

III. MEMRISTIVE RESERVOIR CIRCUIT DESIGN

A. Memristor Model

In software RC, a reservoir can perform nonlinear trans-
formations of the input signals and project them to a
high-dimensional space by its short-term memory effect.
Therefore, in order to implement the circuit counterpart of RC,
the reservoir circuit that can exhibit short-term memory should
be constructed first. According to [3], some of the memris-
tive devices or systems are capable of exhibiting nonlinear
dynamic behavior in a short-term memory manner. In this
work, we apply the memristor model proposed by [36],
which is equipped with short-term memory (forgetting effect),
to construct the reservoir part of the circuit.

The memristor model proposed by Chen et al. [36] has the
forgetting effect, which will be applied to implement the
short-term memory effect of the reservoir in this work.
Its mathematical model is shown as follows:

i = (1− x)α
[
1− e−βv

]
+ xγ sinh(δv) (1)

ẋ =
(

λ
[
eη1v − eη2v

]
−

x − θ

τ

)
f (x) (2)

ε̇= σ(eη1v − eη2v) f (x) (3)
τ̇ = θ(eη1v − eη2v) (4)
f (x)

=
(sign(v)+1)(sign(1−x)+1)+(sign(−v)+1)(sign(x)+1)

4
(5)

where i is the current passing through memristor and v is
the voltage applied across the memristor; x is the Ohmic-like
conducting channel, which is equivalent to the conductance

Fig. 1. (a) I –V hysteresis curves of the forgetting memristor model [36].
(b) Circuit simulation result with applied sine voltage.

and has been normalized to [0, 1], and x = 0 indicates fully
Schottky-dominated conduction, whereas x = 1 indicates fully
tunneling-dominated conduction; α is the barrier height for
the Schottky barrier; β denotes the depletion width in the
Schottky barrier region; γ is the barrier height for tunnel-
ing; η1 and η2 are the interface effect with positive voltage
and negative voltage, and they are all positive-valued fitting
parameters determined by material properties and indepen-
dent of x ; ε is the retention of the Ohmic-like conducting
channel, which can vary within the range [0, 1]; λ is a
positive constant of controlling the changing rate of x ; τ is
the diffusion time; δ and θ are the corresponding parameters
for ε and τ ; f (x) is the window function for better elaborating
the memristor dynamics. The values of the parameters used
in this work are given in Table I of the supplementary
material. They were adapted from the parameters of the
bipolar model [36] by tuning through circuit simulation tests
to ensure the memristors can generate fading dynamics within
our simulation time window (0.5 s) one by one.

According to (1), there is a nonlinear relationship between
the applied voltage and the current flowing across the mem-
ristor. We also performed circuit simulation tests to verify
this nonlinear relationship. Fig. 1(a) shows the I –V hysteresis
curves of the forgetting memristor model [36], which exhibit
high nonlinearity between the voltage and the current. The
applied voltage and the current flowing across the memristor
are shown in the temporal domain in Fig. 1, where the
nonlinearity transformation is also explicit.

In this article, the evolvable memristor-based reservoir
computing is introduced, which is based on the reconfig-
urable memristive units (RMUs) proposed in our previous
work [37]. Considering the synchronous weight adjustment
of the proposed RMU, it is suitable to be applied to change
and evaluate the reservoir topology and weights. In addition,
the overall circuit architecture of evolvable memristor-based
reservoir computing is also introduced in this section.

B. Memristive Network for RC

Fig. 2 shows the schematic of the memristive network for
RC with random topology [20]. After applying a masking
operation to x , it is fed into the memristive network. This
process has two effects. First, the input mask distributes the
information contained in the same time series value to all
neurons, and it makes the dimensional multiplexing of the
input. Second, the mask values with zero mean make the
input time series x with nonzero mean become zero; such

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Schematic of memristive network for RC with random topology,
redrawn from work [20].

property is convenient for eliminating the intercept in ridge
regression. Regarding the physical reservoir computing, the
function of the input mask layer was realized through the form
of preprocessing [20], [26]. As for our proposed approach, the
same as the previous work [20], [26], it is also implemented
by the form of input preprocessing and will not be trained.

The input signal x(t) ∈ R1×n, t ∈ {1, . . . , T ∗} of the
reservoir comes together with a corresponding teaching signal
y(t) ∈ R1×n, t ∈ {1, . . . , T ∗} for training purposes. Since
we use a linear readout layer in our proposed reservoir
model, for each input signal and reservoir layer h(t) ∈
R1×N , t ∈ {1, . . . , T ∗}, an n-dimensional output ŷ ∈ R1×n, t ∈
{1, . . . , T ∗} can be obtained by using an output parameter
matrix Wout ∈ RN×n and by setting ŷ := h(t) · Wout, t ∈
{1, . . . , T ∗}.

The training consists of finding the output parameter matrix
Wout that minimizes the distance between the outputs and the
teaching signals, with L2-norm regularization. This amounts
to solving the following optimization problem:

Wout := arg min
W∈RN×n

(
T ∗∑

t=1

||ŷ(t)− y(t)||2 + λ||W ||2
)

= arg min
W∈RN×n

(
T ∗∑

t=1

||h(t)×W − y(t)||2 + λ||W ||2
)

(6)

where λ||W ||2 refers to the regularization term to prevent
overfitting by limiting the norm of the solution and λ ≥ 0 is a
hyperparameter that controls its intensity. In order to solve this
problem, ridge regression has been applied, whose solution is
given by

Wout =
(
HT H + λIN

)−1
HTy. (7)

As mentioned in Section III-A, a memristor could be
generally described by an algebraic equation and a differential
equation, which are as follows:

I = G(w, V)V (8)
dw

dt
= f (w, V) (9)

where the function f determines how the internal state behaves
depending on the input voltage. Therefore, a network of
memristors could be used as a reservoir that maps the input
signal into the high-dimensional feature space. The current
signal of memristors will be used as the output signal of the
memristive RC. Then, the output signal of the memristive

Fig. 3. (a) Circuit schematic of reconfigurable memristor-based unit.
(b) Equivalent circuit when Vc = 1 (high-voltage level). (c) Equivalent circuit
when Vc = 0 (low-voltage level).

reservoir can be processed by the readout layer multiplying
with Wout, so that we can get the actual output ŷ.

C. Construction of Memristive Reservoir Based on RMU

We propose to construct the memristive network for RC in a
reconfigurable manner based on the reconfigurable memristive
unit (RMU) from [37] to construct the memristive network.
Since the memristance of this RMU is capable of being
tuned synchronously, it is suitable to construct the memristive
reservoir. The RMU is composed of four transistors and one
memristor, as shown in Fig. 3. In Fig. 3, Vin and Vc represent
the input signal and the control signal, respectively. The
control signal Vc has two states, which are logic 0 and logic 1
represented as 0 and 5 V voltage, respectively. T1 and T2 are
pMOS transistors, whereas T3 and T4 are nMOS transistors.
The input signal Vin will be fed into the unit from the source
s terminal of T1, and the control signal Vc will be fed into the
unit by the inverter U1. The gate g terminals of T1 and T4 are
connected to the signal Vc, whereas the gate g terminals of
T2 and T3 are connected to the control signal Vc. One terminal
of the memristor is connected to T1 and T4, and another one
is connected to T2 and T3.

When the input voltage Vin is 0, there will be no current
or voltage flowing through the memristor so that the state of
the memristor will not change. When the input voltage Vin is
not 0, there will be two working situations according to two
states of control voltage Vc. Fig. 3 shows the circuit schematic
of the reconfigurable memristor-based unit and the equivalent
circuits with different levels of Vc. Terminals a and b of the
memristor M are the bottom (−) and top (+), respectively.
When Vc stays at a high-voltage level, the transistors T1 and
T3 turn on, T2 and T4 turn off, so that the current flows from
a to b. This can be regarded as applying the negative voltage
from the top terminal, incurring an increasing memristance.
Fig. 3(b) shows the equivalent circuit. When Vc stays in a low-
voltage level, the transistors T2 and T4 turn on, and T1 and
T3 turn off, so that the current flows from b to a. This can
be regarded as applying the positive voltage from the top
terminal (+), incurring a decreasing memristance. Fig. 3(c)
shows the equivalent circuit. By changing the voltage states
and the pulse width of control voltage Vc, the current will
flow in different directions, and the memristance will vary to
different values. Therefore, we propose to connect the RMUs
and feed them with different voltage states and pulsewidths
of control voltage Vc so that circuits with different topologies
and memristances can be implemented. This can then be used
as configurable memristive reservoirs.

Fig. 4 gives an example to illustrate how the memristor-
based reconfigurable unit works. The top figure shows the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: EVOLVING MEMRISTIVE RESERVOIR 5

Fig. 4. Simulation results of reconfigurable memristor-based unit. The yellow
line denotes Vin, the red-dashed line denotes the current flowing across the
memristor, and the blue solid line denotes the configuration voltage Vc .

input signal Vin, where we use the sine wave as the example.
The bottom two plots provide two situations of the control
signal Vc and its corresponding current flowing across the
memristor M . For the first situation, the frequency of Vc is
larger than that of the second situation. During the first 0.1 s,
there is no input signal (Vin = 0) so that the currents on both
of the two cases are also 0. When Vc stays in logic 1, T1 and
T3 will be turned on, whereas T2 and T4 will be turned off,
so that the current of M will flow from point a to b, which
is the negative direction for the memristor. When Vc stays in
logic 0, T2 and T4 will be turned on, whereas T1 and T3 will
be turned off, so that the current of M will flow from point b
to a, which is the positive direction for the memristor.

Fig. 5 (left) shows an example circuit composed of nine
RMUs. Fig. 5 (right) shows different states of control volt-
age Vc and the corresponding equivalent circuits. The example
circuit is composed of nine RMUs, and the voltage states of
Vc of the different RMUs control the current directions of their
corresponding memristors. The table shows four examples of
possible circuit topologies, where the voltage states with blue
highlight indicate that the corresponding RMUs have been
selected to construct circuits, and the voltage states with the
darker highlight indicate their present voltage states (0 or 1).
Taking the first situation as an example, the units RMU1_1,
RMU2_1, RMU2_2, and RMU3_3 are selected, where the voltage
states of Vc11 , Vc2_1, Vc2_2, and Vc3_3 are 0, 1, 1, and 1,
respectively, and then, an equivalent circuit composed of four
memristors is obtained. In the same way, more circuits could
be constructed.

In summary, using the RMU, current states with varying
dynamic behaviors could be generated to create memristive
reservoirs by innovatively controlling the voltage V c rather
than tuning their memristance. This operation can overcome
the device variance of memristors, thereby increasing the
performance of implemented systems. Reservoir states with
sufficient dynamic behaviors could be implemented using
the various nonlinear and fading states of generated cur-
rents. Furthermore, the circuit evolution platform could be
built to support the evolution of memristive reservoir circuits
by connecting the RMUs and tuning their applied control
voltages V c in an evolvable manner. This means that the
memristive reservoir could be evolved on-chip for the first
time. This can prevent device variance of memristors, such as
device-to-device variance, potentially leading to more accurate

TABLE I
GENOME OF PROPOSED MEMRISTOR-BASED RC

reservoirs. The details of the evolutionary algorithm design
will be given in Section IV.

IV. EVOLUTIONARY DESIGN OF MEMRISTIVE CIRCUITS

In this work, a scalable evolutionary algorithm for opti-
mizing memristor-based reservoir computing is proposed,
which can evolve the memristor-based reservoir in an adap-
tively sparse manner. The genome (Section IV-A), initial-
ization method (Section IV-B), evolution algorithm design
(Section IV-C), as well the crossover (Section IV-C1) and
mutation operations (Section IV-C2) are introduced in this
section.

A. Chromosome Representation

As mentioned in Section III-B, the classical paradigm of
reservoir computing is composed of an input layer, a reservoir,
and an output layer. Therefore, we apply a binary adjacency
matrix Wbool to represent the topology of the reservoir, and
matrices Wres and Wout to represent the weight values of the
reservoir and the output layer, respectively. Wbool and Wres are
evolved by our proposed algorithm, whereas Wout is set by
offline training through ridge regression using (7).

In our proposed memristor-based reservoir computing, the
states of reservoir nodes are represented by the states of
the current flowing through the memristors. As shown in
Fig. 3, the conductance of the memristor can be tuned by the
control voltage Vc with different pulsewidths, during which
the internal current state of the memristor will also keep
changing under the applied voltage. Therefore, instead of
evolving the weight values of the reservoir directly, the weights
between the nodes are evolved by a matrix of the pulsewidth
of control voltage Vc, by which the currents flowing across
the memristors can be controlled to present different dynamic
behaviors.

Table I shows the genome of the proposed memristive reser-
voir circuit. The topology and configuration signal matrix of
the memristive reservoir will be evolved during the evolution
procedure. The reservoir topology is represented by an adja-
cent matrix Wbool, of which value 0 represents that there will
be no connection between the corresponding nodes, whereas
value 1 represents that there will be a connection between the
two corresponding nodes. The diagonal of Wbool has a value
of 0 since there is no self-connection of nodes in our work.
Besides the topology of the reservoir, the configuration signals
between the RMUs are also evolved and are represented by
an N × N matrix Wres. It should be noted that only if the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 5. Circuit example composed of nine RMUs and the corresponding equivalent circuits under the different states of control voltage Vc .

corresponding value in Wbool is 1, the weight of the connection
will be valid in matrix Wres. Assuming the number of reservoir
nodes and output neurons is N and M , the sizes of Wbool, Wres,
and Wout are N × N , N × N , and N × M , respectively.

As for the matrix Wres, its values are limited to [0, 0.5],
which is the pulsewidth of the voltage applied to them.

B. Sparse Initialization

Regarding hardware implementation, there will be problems
of hang terminals of nodes in the circuit if the reservoir follows
a completely random initialization. Hang terminals indicate
the part of the circuit with an open connection with the whole
circuit. Therefore, we do not initialize the reservoir entirely
at random. It has been argued that reservoirs should ideally
have a small clustering degree (sparse reservoirs) [6] so that
the dynamic information flow through the reservoir nodes is
not too cluttered. Therefore, we adopt cycle reservoirs with
regular jumps (CRJ) [38] to initialize the candidate reservoirs.
According to previous work [38], CRJ leads to a fixed simple
regular topology with sparse connections. The reservoir nodes
are connected in a unidirectional cycle with bidirectional
shortcuts (jumps). Therefore, the nonzero elements of Wres
are as follows.

1) The lower subdiagonal W i, j
res , where i = j + 1.

2) The top-right corner W 1,N
res .

3) The jump entries. Consider the jump size 1 < l <

⌊N/2⌋, if (N mod l) = 0, there will be N/ l regular
jumps. If (N mod l) ̸= 0 , then there will be ⌊N/ l⌋
regular jumps.

By this sparse initialization, there will be a slightly higher
degree of local clustering while achieving a much smaller aver-
age path length. Moreover, in terms of circuit validity, there
will be no hang terminals since the memristors are connected
in series or parallel in the reservoir circuits. Based on this
sparse initialization, we can prevent excessive connections in
the circuits, ensuring a scalable topology during the evolution.

C. Evolutionary Algorithm

The pseudocode of reservoir circuit evolution is described in
Algorithm 1. The first step is to initialize the population. Then,
for all num_Pop candidate reservoirs, they are first transferred
into corresponding circuit netlists according to Section IV-A,
given their fitness evaluation. The champion gene will be kept
in the population. This procedure is repeated for a maximum

number of generations num_Gen. Regarding the fitness eval-
uation, it contains two stages. First, the circuit netlist of
the training is simulated by using NGSPICE. The currents
of the memristor-based reconfigurable units in a reservoir are
recorded as res_out. Second, the weights of the output layer
Wout are calculated using ridge regression. Then, the actual
output ŷ is calculated by res_out × Wout, and the fitness is
calculated by the following:

fitness = 100− A

√〈∥∥ŷ(t)− y(t)
∥∥2
〉

(10)

where 100 is an arbitrary value to convert the problem into a
maximization problem; A is a scaling factor to control how
large the differences between the scaled error (right term)
and 100 (left term) are; y(t) is the desired output (target),
ŷ(t) is the readout output; ∥.∥ denotes the Euclidean norm,
and ⟨.⟩ denotes the empirical mean calculated over a set of
examples.

After the fitness evaluation, the best gene will be kept to
execute the Adapt operation. This operation is designed so
that the reservoir connections can be evolved gradually, and
the reservoir is kept sparsely connected [39]. IsAdapt is a
Boolean value predefined parameter, where value 0 repre-
sents that the genomes will not go through adaptive sparse
adjustment while value 1 represents that the genomes will go
through an adaptive sparse adjustment. Specifically, a frac-
tion of the weights, the ones closest to zero, is removed.
Then, new weights are added randomly in the same amount
as the ones previously removed, following the pseudocode
shown in Algorithm 2. Next, two parents are selected, and
they go through crossover and mutation with probability
Pc and Pm , respectively. Their details are introduced in
Sections IV-C1 and IV-C2.

1) Crossover: Algorithm 3 displays the pseudocode of the
crossover operation. As for the crossover of the reservoir
genome, the parent could be regarded as the product of Wres
and Wbool of one individual. For the crossover operation of
parents with different sizes, the size of the offspring reservoir
should be determined first. There are two alternatives of
determining the size of the offspring reservoir, which are to
follow the parent with a larger size and to choose the size of
the parent with better fitness, respectively. The crossover prob-
ability is Pc, which is to decide whether to take the crossover
operation. Besides the determination of the offspring size, the
weight values of the offspring reservoir are determined by the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: EVOLVING MEMRISTIVE RESERVOIR 7

Algorithm 1 Pseudocode of Reservoir Evolution
1: Set the probability of crossover and mutation Pc and

Pm , generation g, tournament size num_Tour, mini-
mum and maximum size of reservoir num_ini_node and
num_max_node

2: Population initialization p’s genomes by setting their
Wbool , Wres

3: for each generation g do
4: for each genome do
5: circui t_netlist ← phenotype(genome)
6: res_out ← NGSPICE(circui t netlists)
7: if res_out ̸= 0 then
8: Calculate Wout using ridge regression.
9: ŷ← res_out ×Wout

10: f ← 100− A
√〈∥∥ŷ− y

∥∥2
〉

11: end if
12: end for
13: champion← clone of genome with the best fitness
14: p[0] ← champion
15: for each genome in p[1, N) do
16: if I s Adapt then
17: genome← Adapt (genome, g)

18: end if
19: parent1, parent2 ← selection(all genomes)
20: genome← crossover(parent1, parent2, Pc)

21: genome← mutate(genome, Pm)

22: end for
23: end for
24: Return Wbool , Wres , Wout

following rule [24]:

wi j=



w1
i j+w2

i j

2
, if w1

i j , w
2
i j ̸= 0 and random < 0.5

w1
i j , if w1

i j , w
2
i j ̸= 0 and 0.5 ≤ random<0.75

w2
i j , if w1

i j , w
2
i j ̸= 0 and 0.75 ≤ random<1.0

w1
i j , if w2

i j ,= 0 and w1
i j ̸= 0

w2
i j , if w1

i j ,= 0 and w2
i j ̸= 0.

(11)

Fig. 6 shows an example that explains how the parents with
different sizes execute the crossover operation. As shown in
Fig. 6, the sizes of parent1 and parent2 are different, where
parent1 is a 3 × 3 weight matrix and parent2 is a 5 × 5 weight
matrix. Therefore, there will be three types of weight pairs on
these two matrices, which are the matching pair, disjoint pair,
and excess part. The yellow area shows the overlapped part of
parent1 and parent2, whereas the gray area shows the excess
part. The matching pairs (green solid line) in the overlapped
part represent that two weights in the same position of two
parents’ matrix have the same value type, which means are all
“zero elements” or all “nonzero elements.” In addition, the rest
of the situation belongs to the disjoint pairs (red dashed line).
Based on the size of the reservoir, excess weights are either
completely adopted or completely discarded. The weights with

Algorithm 2 Pseudocode of Adaptive Sparse
Adapt (genome, g)

1: set sparsity ε

2: if I s Adapt then
3: remove a fraction ε of the smallest positive weights

by setting their corresponding W i, j
bool to zero

4: if g mod e == 0 (at every e generations) then
5: return the sparse connection
6: else
7: add randomly new weights in the same amount as

the ones removed previously
8: end if
9: end if

Algorithm 3 Pseudocode of Crossover crossover()

1: parent1, parent2 selection by tournament strategy
2: if parent1.si ze()! = parent2.si ze() then
3: if random < Pc then
4: if parent1.si ze() > parent2.si ze() then
5: of f spring = parent1
6: else
7: of f spring = parent2
8: end if
9: else

10: if parent1. f i tness > parent2. f i tness then
11: of f spring = parent1
12: else
13: of f spring = parent2
14: end if
15: end if
16: for wi j in of f spring do
17: if wi j is in overlapped area then
18: wi j ← wights_update()
19: end if
20: end for
21: end if

Fig. 6. Crossover operation for the parents with different sizes.

disjoint or matching connection are either averaged or selected
from either parent based on (11).

2) Mutation: In order to encourage diversity of reservoirs
during the evolution, five types of mutation operators are
applied:

1) Weight Mutation: For the values in Wres corresponding
to the position where Wbool is not zero, there will be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 7. Example visualization of related signals of memristive reservoir circuit. (a) Wave generation task: Input sine wave, three target waves, and current
signals of memristive reservoir circuits. (b) Narma-10 system prediction task: Target series, three discretized input signals, and current signals of memristive
reservoir circuits.

the probability Pm to mutate them to a new value taken
uniformly at random within the allowable range.

2) Add Node: To add a node to the reservoir and initialize
its corresponding Wbool matrix to 0.

3) Delete Node: To calculate the weighted sum of Wres
associated with each node and delete the node with the
smallest weight sum.

4) Jump Mutation: The jump step of CRJ structure will be
mutated. The value range of the step is between 2 and
N /2. According to the new jump step, Wbool will be
updated so that the CRJ structure could be rebuilt.

5) Input/GND Node Mutation: The position of reservoir
nodes connected to the input signal and GND will
be mutated to increase circuit diversity picking a new
position uniformly at random since different terminals
of the circuit connected to input or GND could be a
different circuit.

Besides encouraging diverse candidate reservoirs, these oper-
ators maintain circuit validity during the evolution. Regarding
the reservoir diversity, either nodes’ number, connection ways,
or their degree could be mutated by our proposed five mutation
operations, which is beneficial to the diversity of memristive
reservoir circuits. Regarding the circuit validity, the proposed
add, delete, or jump operators will generate or delete nodes
based on the Wbool and Wres, so that there will be no hang
terminals that incur the invalid circuits, like open circuits.
The operator of input/GND mutation will ensure that there
will be always input and GND terminals in the evolved
circuit. Therefore, our proposed mutation operations ensure
that the mutated individuals remain feasible circuits during the
evolution. Moreover, the generated circuits will all be taken
through circuit simulation on NGSPICE, where circuits that
fail the NGSPICE simulation are given a bad fitness value as
the penalty. This may happen, for instance, if there is a circuit
convergence problem or any other problems that can only be
revealed through simulation.

In summary, our approach is the first to enable the
memristive reservoir circuits to be evolved on-chip. This is

achieved through our proposed scalable adaptation algorithm
incorporated into our evolutionary algorithm, based on the
proposed circuit evolution platform. The reservoir circuits
can be sparsely initialized and furnished with circuit validity
using the CRJ-type initialization approach. In addition, circuit-
specific genetic operators are designed, enhancing the circuit
diversity and validity. The function Adapt() is important for
not only maintaining the sparse topology but also progressively
developing useful connections. The specific implementation of
evolving memristive reservoirs is given in github.1

V. EXPERIMENTAL STUDIES

A. Test Tasks

In order to verify the feasibility of the proposed adaptive
memristive RC, seven tasks are executed, including one wave
generation task and six prediction tasks.

1) Wave Generation Task: Memristors have recently been
used as single devices or in the form of networks for wave
generation tasks [7]. In addition, wave generation tasks also
have been commonly applied to verify the feasibility of
hardware reservoir computing [19]. The wave generation task
used in our experiments is illustrated in Fig. 7(a), where the
input voltage of the reservoir is the sine wave with 1 kHz and
5-V amplitude, and the output target of the RC is a square
wave with 1 kHz and 1-mV amplitude (orange line), triangular
wave with 1 kHz and 1-mV amplitude (red line), and sine wave
with 2 kHz and 1-mV amplitude (green line), respectively.
Fig. 7(a) (bottom) shows an example of the current signals
used with the RMUs to generate the output waves, where
the input signal could be mapped into the high-dimensional
feature space by the currents of RMUs. Therefore, there will
be 900 × 3 points to be generated in the wave generation task.

2) Nonlinear Dynamic System Prediction Task: We con-
sidered the NARMA systems of order 10 [40] to verify our

1https://github.com/embeddedsky/EvoMRC.git

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: EVOLVING MEMRISTIVE RESERVOIR 9

proposed method

y(t + 1) = 0.3y(t)+ 0.05y(t)
9∑

i=0

y(t − i)

+ 1.5s(t − 9)s(t)+ 0.1 (12)

where s(t) is a random input series ranged from [0, 0.5] and
y(t) is the output of the system. NARMA tasks aim at mea-
suring the ability of a neural network to model nonlinear and
long-term memory systems. We selected the first 1000 of an
NARMA sequence for training, and the remaining 1000 were
used for testing. The first 200 values from the training and test
sequences were used as the initial washout period.

3) Nonlinear Audio Prediction Task: In audio prediction,
one tries to forecast future samples out of a given history
horizon. Such methods are necessary, for instance, in audio
restoration, whenever a sequence of consecutive samples is
missing or when impulsive noise appears. Researchers found
that long memory appears to be strongly represented in
music [41]. This dataset is from [42], which is a short
recording of a Jazz quartet. The training set consists of the first
2000 points, and the test set consists of the next 2000 points.
The first 200 values were used as the initial washout period.

4) ARFIMA Series Prediction Task: We generated the
ARFIMA series using the following model with a long mem-
ory effect:(

1− 0.7B + 0.4B2)(1− B)0.4Yt = (1− 0.2B)εt (13)

where B is the backshift operator, Yt is the time series at the
time t , and εt indicates the error, and the previous forecast is
adjusted in the direction of the error. The training and testing
data lengths are set as 2000 and 2000, respectively. The first
200 values from the training and test sequences were used as
the initial washout period.

5) Tree Ring Prediction Task: This dataset contains
4351 tree ring measures of a pine tree from an Indian
Garden, Nevada Gt Basin obtained from R package tsdl,2

where 1000 items are used for training and 1000 for testing.
In addition, the first 200 values from them were used as the
initial washout period.

6) Dow Jones Industrial Average (DJI) Prediction Task:
The raw dataset contains DJI daily closing prices from 2000 to
2019 obtained from Yahoo Finance, where 1000 items are
used for training and 1000 for testing. In addition, the first
200 values from them were used as the initial washout period.

7) Santa Fe Laser Prediction Task: Santa Fe Laser dataset
was used,3 which consists of a cross-cut through periodic to
chaotic intensity pulsations of a real laser. The lengths of the
training and test sets are 2000, where the first 200 values from
them are used as the initial washout period.

8) Dynamic Gesture Recognition (DGR): This consists of
spatiotemporal time series data for the task of recognizing
dynamic gestures. These dynamic gestures are recorded in
three dimensions at a sampling frequency of 10 Hz. Typ-
ical signals are normalized as the voltage with amplitude

2https://pkg.yangzhuoranyang.com/tsdl/
3http://web.cecs.pdx.edu/ mcnames/DataSets/index.html

(−1 to 1). The gestures in the dataset are then divided,
where 600 selected samples for training and the remaining
300 samples for testing.

B. Experimental Setting

In our experiments, root mean squared error (RMSE) is used
as a measure of predictive performance

RMSE =

√〈∥∥ŷ(t)− y(t)
∥∥2
〉

(14)

where y(t) is the desired output (target), ŷ(t) is the readout
output, ∥.∥ denotes the Euclidean norm, and ⟨.⟩ denotes the
empirical mean.

With the objective of evaluating the predictive perfor-
mance of the proposed approach, we conduct compar-
isons with several existing baseline approaches for time
series prediction, which are vanilla RNN [43], ESN [4],
vanilla LSTM [44], memory-augmented LSMT, and memory-
augmented RNN [45]. These approaches have been cho-
sen as a baseline for time series information processing
widely [45], [46].

We have applied not only grid search but also differential
evolution, which is a classic optimization method for searching
optimal parameters [47], [48], to optimize the hyperparameters
of the compared models. The parameters of the differential
evolution algorithm are maxIter = 200, pop_Size = 20, muta-
tion_Rate = (0.5, 1), and recombination_Rate=0.7. As for the
parameters of our work, Pc represents the crossover possibility
and sets it as 0.5. The mutation possibility Pm for all five
types of mutation operators is set as 0.8. The num_ini_node
and num_max_node represent the number of initial nodes in
the memristive reservoir and the number of the max nodes
allowed in the memristive reservoir. ε indicates the sparsity
used in Algorithm 2 Adapt() and is set as 0.3. The parameter
A used in (10) is set to 10000. The parameters are given in
Table II.

In order to prevent the issue of data leakage, time series
cross-validation (three folds) is applied to both our proposed
method and other SOTA models. The training of the models is
done based on the training folds, whereas the hyperparameter
or topology tuning is based on the RMSE computed over the
validation folds. This is in line with the use of cross-validation
for model selection [49].

We have adopted Mann–Whitney U test as the statistical
test to support the comparison of the predictive performance
of the approaches. The comparisons are based on ten runs of
the approaches.

Besides these software models, three memristive reservoir
circuits with different fixed topologies have also been used to
compare with our proposed evolutionary approach, which are
random, cycle, and cycle with jumps, respectively. In order to
ensure a fair comparison, the nodes applied in the circuit with
these topologies are set as the same num_max_node regarding
the different tasks, where 60 nodes are for the wave generation
task and 30 nodes are for six prediction tasks. Random topol-
ogy represents that the memristors are connected randomly,
cycle topology represents that the memristors are connected

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 8. Different topologies of the reservoir.

Fig. 9. Diagrams of embryo circuits for evolving memristive reservoir circuit
to wave generation (a) and 10th-order Narma dynamic system prediction (b).

in series constructing a cycle, and cycle with jump represents
that the memristors are connected in series constructing a cycle
and some of them are connected with jumps directly. The
diagram of different topologies of the reservoir is shown in
Fig. 8. As with our proposed approach, the output layer of the
reservoirs with fixed topology is also trained based on Ridge
regression.

The circuit setup is also required for evolving the mem-
ristive reservoir circuits. The circuit setup is different for the
wave generation task and prediction tasks, which is mainly
related to the embryo circuit design, and will be introduced as
follows.

1) Wave Generation Task: The memristive reservoir will
be evolved starting from an embryo circuit, which
represents the initial circuit configuration of the to-be
evolved circuit. The diagram of the embryo circuit for
the wave generation task is shown in Fig. 9(a). The input
signal is the sine wave with 1 kHz and 5-V amplitude.
This input terminal and the GND terminal should be
connected to the evolvable memristive reservoir circuit.
In addition, the simulation time is set as 0.5 s. After
collecting the reservoir output, the data are fed into the
readout function. Briefly, the target of this task is to
generate three different waves based on one single input
signal. Therefore, there is only one terminal for the input
single in the embryo circuit.

2) Seven Other Tasks: Besides the wave generation task,
there are also seven other tasks (six are one-dimension
and one is multidimension). These tasks require prepro-
cessing the input signal s(k) before feeding it into the
memristive reservoir circuit. The amplitude of the input
signal s(k) is linearly converted into a voltage pulse with
amplitude Vin(k) that is then applied to the memristor
reservoir

Vin(k) = 2.5× s(k)+ 2.5. (15)

This linear conversion allows the input voltage pulses to fall
in the range of 2.5− 5 V for memristor stimulation. In order
to extract input features for the time series, there is another

TABLE II
PARAMETER SETTINGS OF OTHER OPTIMIZATION METHOD AND OURS

TABLE III
EXPERIMENT RESULTS WITH DIFFERENT ALGORITHM COMPONENTS’

ABLATION OR DIFFERENT CIRCUIT CONDITIONS

preprocessing step to the input signals before feeding into the
memristive reservoir, which has been used in the preprocessing
of the physical reservoir computing [12], [50]. Specifically,
we fed three input signals with different sampling frequencies
(200, 100, and 50 HZ) to the time series into the memristive
reservoir circuits for one dimension. Therefore, there will be
three input voltages of the reservoir circuit for one-dimension
tasks and nine input voltages for the tasks with multidimen-
sion. Taking a prediction task as an example, its embryo
circuit is shown in Fig. 9(b). Moreover, the GND terminal
of the overall circuit is also set in the embryo circuit. After
collecting the reservoir output, the data are fed into the readout
function. Taking the nonlinear dynamic series prediction task
(Narma-10) as an example, Fig. 7(b) shows the time series of
Narma-10 system, the input signals with different timeframes,
and the current states recorded from the memristive reservoir
circuit. We have also performed experiments, which show that
such preprocessing step is important to obtain better predictive
performance, as shown in the supplementary material.

C. Experimental Result

1) Ablation Study of Our Proposed Algorithm: In this
section, we investigate the effectiveness of different operations
in our proposed algorithm. Table III gives the comparison of
our approach with or without crossover, adapt, and mutation
operations. In general, removing crossover, adapt, or mutation
operations all degrade the RSME of the proposed algorithm.
The Mann–Whitney U tests of the ablated approaches with an
all-equipped approach are conducted, and their p-values are
also shown in Table IV.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: EVOLVING MEMRISTIVE RESERVOIR 11

TABLE IV
COMPARISONS OF MEMRISTIVE RESERVOIR CIRCUITS WITH DIFFERENT TOPOLOGIES

From Table III, we can see that the reservoir with adapt
outperforms the one without adapt and the memristive reser-
voir circuits with other topologies, implying that the adapt
operation is capable of generating the effective connections
for reservoir evolution.

Similarly, the effectiveness of crossover and mutation opera-
tions has also been investigated, where five types of mutation
operations are all ablated in this experiment. As shown in
Table III, after removing the crossover or mutations, the
performance is worse than those of the all-equipped one.
In general, the results without crossover or mutations are
worse than the results without adapt, which indicates that
genetic operations among reservoirs are important for reservoir
evolution. Moreover, the evolved results are more sensitive to
the ablation of mutations since there will be much reservoir
diversity brought by the five types of mutation operations,
which is beneficial to reservoir evolution.

We also perform ablation experiments that remove the five
types of mutation operations one by one. The results of
ablating each specific operation are given in Table III. We can
see that removing each individual mutation operation leads
to performance degradation. According to the results shown
in Table III, we can see that removing the add node mutation
operation will lead to the most degradation of the performance,
which indicates that the add node mutation operation plays the
most important role within five mutation operations during the
circuit evolution. The step mutation operation plays the second
most important role in the circuit evolution. Other mutation
operations also have an impact on the circuit evolution.

2) Comparisons of Memristive Reservoir Circuits Under
Different Circuit Conditions: First, we investigate the noise
impact on the circuit perspective of the memristive reservoir.
Fig. 12 shows the current and memristor states of one mem-
ristive element based on our proposed reconfigurable memris-
tive reservoir [Fig. 12(a)] and the pure memristive reservoir
[Fig. 12(b)] under noise injection with different values of σ .
As shown in Fig. 12, the memristor states should be set to
start as 0.84. However, due to the noise injection, it will not
be 0.84 accurately. In our proposed reconfigurable memristive
reservoir, the current signal is not influenced so much by

this noise. However, in a pure memristive reservoir like [18],
the current signals are influenced heavier when there is noise
injection to the reservoir. Therefore, compared with the pure
memristors, our proposed memristor-based reconfigurable unit
is more noise-tolerant to be configured as a reservoir computer
since the current signal is not influenced so much by this
noise.

Second, we investigate the impact of memristor variability
on performance. Table III gives the performance comparisons
of our proposed memristive reservoir circuits under noise
scenarios with different values of σ of Gaussian noise. In order
to get a fair comparison, each result listed in the table is
the average value under 10 runs in the corresponding σ and
task. According to Table III, we can see that due to the noise
injection to the memristors, the performance degrades. With
increasing σ , there is an increasingly negative influence on the
predictive performance. Even though there is predictive per-
formance degradation when the noise is injected, the reservoir
is still valid, i.e., it can still work as a reservoir computer.

3) Comparisons of Memristive Reservoir Circuits With
Other Models: In this section, we discuss the regression
performance of the memristive reservoir circuits with different
topologies, which are random, cycle, cycle with jump, and
evolved topologies by our proposed approach. Their regression
performance comparisons are shown in Table IV.

In terms of circuit feasibility, the circuits with random
topology cannot ensure feasibility since they may generate the
dangling terminals of the circuit, leading to the failure of the
circuit simulation. Moreover, our proposed memristive reser-
voirs can be evolved adaptively for different tasks, and cycle
and CRJ memristive reservoirs cannot be evolved directly.

Considering the scalability of the circuit, we only use
30 nodes to construct the memristive reservoir circuit. As for
the memristive reservoir circuit, the CRJ memristive reservoir
has better performance than the cycle memristive reservoir.
In addition, the memristive reservoir evolved by our proposed
approach outperforms both of the cycle and CRJ memristive
reservoir circuits.

Moreover, in order to further verify the performance of
our proposed memristive reservoir circuits, several baseline

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 10. Current and control signal visualization of one RMU under the task
of audio and its equivalent circuit state under different VC states.

approaches of RC are compared as a reference, which are
vanilla RNN [43], ESN [4], vanilla LSTM [44], memory-
augmented LSMT, and memory-augmented RNN [45]. As for
the latter two, another parameter D is introduced for the
memory augmentation; therefore, memory-augmented LSMT
and memory-augmented RNN will be abbreviated as mLSTM
and mRNN in the following Sections. In order to make fair
comparisons with other approaches, the evaluation number of
each algorithm is fixed, which is set as 4000; then, we compare
the predictive performance (RMSE and accuracy for DGR)
of the reservoir on the 4000th evaluation. Table IV shows
the comparisons of different optimization methods applied
to the reservoir, where the gird search, differential evolu-
tion, and manual optimization are applied to be compared
with our proposed method. According to Table IV, with the
fixed computational budget (4000 evaluations), our proposed
reservoir outperforms other baseline models in terms of the
average ranking on different tasks. The Mann–Whitney U
tests of the existing models with our proposed method are
conducted, and their p-values are shown in Table IV. Based
on a level of significance of 0.05, we can confirm that our
proposed evolvable memristive reservoir circuit can improve
the performance compared with the existing models.

We visualize the memristive reservoir topology and their
corresponding circuits of the evolved results in Fig. 13. The
visualization of the matrix indicates the result of multiplying
Wbool and Wres. Specifically, the darker orange indicates the
larger pulsewidth of the control signal Vc, and the lighter
orange indicates the shorter pulsewidth. In the corresponding
circuits, the input signals are connected to the evolved reser-
voir circuit, and one of the nodes is connected to the GND.

According to the working principle of RMU introduced in
Section III-C (an example of Jazz task is shown in Fig. 10), the
larger pulsewidth of control signal Vc will lead to the longer
memory dependency of the input signal for the reservoir states,
whereas the shorter pulse width of the control signal Vc will
lead to more frequent memory fading for the reservoir states.
As shown in Fig. 13, the connections with the long dependency
memory (darker color cubes) are more likely to appear nearby
the terminals of the input signals, which is beneficial to spread
the useful information across the whole reservoir.

Moreover, jump connections with long dependency memory
(darker color cubes) tend to be generated to the reservoir
circuits for solving the tasks with long-term memory, such
as tree rings, DJI, and nonlinear audio. It indicates that
these jump connections with long dependency memory are

Fig. 11. Visualization of the network structure changes with the generation
and its corresponding fitness results.

Fig. 12. (a) Visualization of the current and memristor state of one memristive
element based on our proposed reconfigurable memristive reservoir. (b) Visu-
alization of the current and memristor state of one memristive element based
on the pure memristive reservoir.

Fig. 13. Visualization of memristive reservoir topology and equivalent
circuits. Taking the evolved result of Narma 10 as an example, evolved results
of other tasks are provided in the supplementary material.

beneficial to tackle the long-memory tasks [45]. In addition,
the connections with short dependency memory (lighter color
cubes) tend to be generated to the reservoir circuits for solving
the tasks with short-term memory, such as Narma 10.

We can also see from Fig. 13 that the evolved reservoir
circuit is based on cycle connections with irregular jumps
between nodes and various memory dependency, which is
difficult to be designed manually. These evolved cycle-based
irregular jump reservoirs are achieved especially thanks to
two components of our evolutionary process, namely our pro-
posed sparse initialization and mutation operations. The sparse
initialization will lead to not only the sparse connection but
also the circuit validity. In addition, the mutation operations
will enable varieties of reservoir connections and memory
dependencies of reservoir states.

Fig. 14 shows two examples of superposition between the
actual outputs of our proposed memristive reservoir versus

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: EVOLVING MEMRISTIVE RESERVOIR 13

TABLE V
COMPARISON BETWEEN OUR PROPOSED METHOD AND OTHER EXISTING PHYSICAL RESERVOIRS

Fig. 14. Actual outputs of our proposed memristive reservoir versus
corresponding targets. (a) Narma-10. (b) Nonlinear audio and other tasks are
provided in the supplementary material.

corresponding targets. They show that the signal generated
by our proposed memristive reservoir circuit is mimicking the
desired signal well. The results of other tasks are given in the
supplementary material.

4) Circuit Performance Analysis: Table V lists the compar-
ison of existing methods with our proposed method. We have
compared our proposed work with the existing methods [20]
and [18], [51] by multiple perspectives, which are design
method, hardware characteristics, and reservoir characteristics.

Regarding the design method, the reservoir of other exist-
ing works [18], [20] [51] is designed manually, which is
an intensive task due to the large search space and high
requirement to the designers. However, our work proposes
an evolutionary approach that can automate the design and
optimization procedure of the memristive reservoir.

Regarding the hardware characteristics, other works [18],
[20], [51] are based on their specified memristive or atomic
switch circuits, which cannot be reconfigured to change their
topologies. Our work is based on our proposed memristive
reconfigurable circuit. By changing the configuration signals,
the circuit topology can be changed and further evolved by
our proposed evolutionary algorithm.

Regarding the reservoir characteristics, because of the
reconfigurable circuits, our proposed memristive reservoir can
be evolved by searching for the optimal reservoir architecture
for different tasks, leading to better predictive performance.
In contrast, the existing methods [18], [20], [51] are based
on a fixed circuit architecture that cannot be reconfigured,

TABLE VI
COMPARISON OF DIFFERENT HARDWARE RESERVOIRS

which can limit their predictive performance. Moreover, for
other work [18], [20], [51], their circuits will be fixed not only
for different tasks but also within the circuit execution time.
For our work, the circuit states of one RMU can also change
within one cycle of circuit execution. Fig. 10 illustrates the
current and control signal Vc of one RMU and the equivalent
circuit state under different Vc states. The dynamic changes of
our proposed reservoir enrich the reservoir dynamics, which is
beneficial to tackle the time series problems that involve long-
and short-term dependencies.

Table VI shows the comparisons of different hardware
reservoirs. We can see that the ESN or LSM models have
to use n neurons to construct the reservoir; however, one
single neuron always needs several Mosfets to mimic nonlinear
behavior between the input and the output signal. Taking
FPGA-based ESN [10] as an example, 37 Mosfets and one
capacitor are required to construct one neuron, and there may
be more than 60 neurons used to construct a reservoir in their
work so that 2368 Mosfets and 64 capacitors will exist in its
circuit counterpart. Compared with these work [8], [10], [52],
by manipulating the currents flowing across the memristors,
our approach only applied four Mosfets and one memristor
to generate varied nonlinear behavior, which alleviates the
problem of circuit scalability. This is because, by benefiting
from the various nonlinear behaviors generated from RMUs,
we were able to use a small number of 30 nodes for realizing
the function of reservoir computing.

Moreover, we also analyzed the system performance
improvement as the generations of the algorithm proceed.
Taking the wave generation task as an example, Fig. 11 shows
the fitness (solid line) and predictive performance (dot line)
curves as the generations proceed. We also monitor the best
individuals in three generations, namely the 1st generation, the
100th generation, and the 200th generation. We display them
by the matrix of the multiplication between Wbool and Wres.
As shown in Fig. 11, the fitness (solid line) was improved
from 75.5 to 99.2 by our proposed evolutionary algorithm.
Regarding the best individual of the first generation, it is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

initialized by a sparse topology (CRJ), and the initial number
of the nodes is the minimum number. In Fig. 11 (bottom), the
darker orange indicates the larger pulsewidth of the control
signal Vc passing through a given node, and lighter orange
indicates shorter pulsewidth passing through a given node.
As we can see, lighter orange dominates the matrix corre-
sponding to the first generation, representing the CRJ sparse
topology. With the evolution procedure (from the 1st genera-
tion to the 100th generation), the number of reservoir nodes
increases while the topology still keeps the CRJ structure, with
more connections evolved. By optimizing the topology and
weights, the fitness can be improved a lot compared with
the initial one. Through further evolution (from the 100th
generation to the 200th generation), more connections that are
beneficial to improve fitness are evolved, whereas the topology
remains CRJ.

In summary, our proposed memristive reservoir circuit out-
performs the SOTA approaches of RC, RNN, ESN, LSTM,
mLSTM, and mRNN. Furthermore, when compared with other
existing memristive reservoir circuits with fixed topologies,
our memristive reservoir circuits not only ensured circuit
feasibility but also achieved superior regression performance.
From a circuit metric standpoint, our suggested reservoir
circuit is made up of memristors and MosFets, which are
more compact in terms of component count than other circuit
implementations.

VI. CONCLUSION

In this article, a scalable evolutionary algorithm for evolving
the reconfigurable memristive reservoir circuits is proposed.
Based on the reconfigurable memristive units, we design
a memristive reservoir circuit that can be evolved on-chip
in a reconfigurable way. Avoiding the variances driven by
the differences between the actual and ideal memristors, the
configuration signals of the memristor are evolved directly, and
the current states flowing through the memristors are recorded
as reservoir states. In addition, the feasibility and scalability of
circuits are considered in the proposed algorithm, where sparse
initialization and several evolutionary operators are designed
for the memristive reservoir circuits, alleviating these two
issues. To validate our proposed approach, one generation
task, one classification task, and six prediction tasks were
applied. As shown experimentally, the memristive reservoir
circuit evolved by our proposed algorithm can obtain better
regression performance over the other memristive reservoir
with a fixed topology and baseline approaches in terms of
the average ranking.

Due to the nonlinear dynamics of memristors, our evolved
memristive reservoir applies Mosfets and memristors to con-
struct the nonlinear behavior of the reservoir, incurring less
number of Mosfets and no capacitor in the circuit.

Future work will focus on further improving both evolution
efficiency and the result performance. Furthermore, we will
also investigate the hardware implementation of the memris-
tive output layer to achieve a fully analog adaptive memristive
reservoir circuit. The evolutionary approach proposed in this
article could serve as the first step toward fully evolvable
hardware [53], [54] based on memristive circuits.

REFERENCES

[1] P. Verzelli, C. Alippi, L. Livi, and P. Tiňo, “Input-to-state representation
in linear reservoirs dynamics,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, no. 9, pp. 4598–4609, Sep. 2022.

[2] H. Chen, P. Tiňo, A. Rodan, and X. Yao, “Learning in the model space
for cognitive fault diagnosis,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 1, pp. 124–136, Jan. 2014.

[3] G. Tanaka et al., “Recent advances in physical reservoir computing: A
review,” Neural Netw., vol. 115, pp. 100–123, Jul. 2019.

[4] H. Jaeger, “The ‘echo state’ approach to analysing and training recurrent
neural networks-with an erratum note,” German Nat. Res. Cntr. Inf.
Technol., GMD Rep., vol. 148, no. 34, p. 13, 2001.

[5] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based on
perturbations,” Neural Comput., vol. 14, no. 11, pp. 2531–2560, 2002.

[6] H. Jaeger and H. Haas, “Harnessing nonlinearity: Predicting chaotic sys-
tems and saving energy in wireless communication,” Science, vol. 304,
no. 5667, pp. 78–80, Apr. 2004.

[7] H. O. Sillin et al., “A theoretical and experimental study of neuromorphic
atomic switch networks for reservoir computing,” Nanotechnology,
vol. 24, no. 38, 2013, Art. no. 384004.

[8] Y. Kume, S. Bian, and T. Sato, “A tuning-free hardware reservoir
based on MOSFET crossbar array for practical echo state network
implementation,” in Proc. 25th Asia South Pacific Design Autom. Conf.
(ASP-DAC), Jan. 2020, pp. 458–463.

[9] P. R. Prucnal, B. J. Shastri, T. F. de Lima, M. A. Nahmias, and A. N. Tait,
“Recent progress in semiconductor excitable lasers for photonic spike
processing,” Adv. Opt. Photon., vol. 8, no. 2, pp. 228–299, May 2016.

[10] Y. Yi et al., “FPGA based spike-time dependent encoder and reser-
voir design in neuromorphic computing processors,” Microprocess.
Microsyst., vol. 46, pp. 175–183, Oct. 2016.

[11] X. Zhu, Q. Wang, and W. D. Lu, “Memristor networks for real-time
neural activity analysis,” Nature Commun., vol. 11, no. 1, pp. 1–9,
May 2020.

[12] C. Du, F. Cai, M. A. Zidan, W. Ma, S. H. Lee, and W. D. Lu, “Reservoir
computing using dynamic memristors for temporal information process-
ing,” Nature Commun., vol. 8, no. 1, pp. 1–10, Dec. 2017.

[13] L. O. Chua, “Memristor—The missing circuit element,” IEEE Trans.
Circuit Theory, vol. CT-18, no. 5, pp. 507–519, Sep. 1971.

[14] X. Shi, Z. Zeng, L. Le Yang, and Y. Huang, “Memristor-based circuit
design for neuron with homeostatic plasticity,” IEEE Trans. Emerg.
Topics Comput. Intell., vol. 2, no. 5, pp. 359–370, Oct. 2018.

[15] Q. Hong, H. Chen, J. Sun, and C. Wang, “Memristive circuit imple-
mentation of a self-repairing network based on biological astrocytes in
robot application,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 5,
pp. 2106–2120, May 2022.

[16] S. Wen, R. Hu, Y. Yang, T. Huang, Z. Zeng, and Y.-D. Song, “Memristor-
based echo state network with online least mean square,” IEEE Trans.
Syst., Man, Cybern. Syst., vol. 49, no. 9, pp. 1787–1796, Sep. 2019.

[17] Q. Wang, Y. Li, and P. Li, “Liquid state machine based pattern recogni-
tion on FPGA with firing-activity dependent power gating and approx-
imate computing,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
Montréal, QC, Canada, May 2016, pp. 361–364.

[18] M. S. Kulkarni and C. Teuscher, “Memristor-based reservoir computing,”
in Proc. IEEE/ACM Int. Symp. Nanosc. Archit., Jul. 2012, pp. 226–232.

[19] G. Tanaka et al., “Waveform classification by memristive reservoir com-
puting,” in Proc. 24th Int. Conf. Neur. Inf. Process. Cham, Switzerland:
Springer, 2017, pp. 457–465.

[20] G. Tanaka and R. Nakane, “Simulation platform for pattern recognition
based on reservoir computing with memristor networks,” Sci. Rep.,
vol. 12, no. 1, pp. 1–13, Jun. 2022.

[21] M. Lukoševičius and H. Jaeger, “Reservoir computing approaches to
recurrent neural network training,” Comput. Sci. Rev., vol. 3, no. 3,
pp. 127–149, 2009.

[22] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez, “Train-
ing recurrent networks by Evolino,” Neural Comput., vol. 19, no. 3,
pp. 757–779, Mar. 2007.

[23] B. Schrauwen, D. Verstraeten, and J. M. V. Campenhout, “An overview
of reservoir computing: Theory, applications and implementations,” in
Proc. 15th Eur. Symp. Artif. Neur. Netw., 2007, pp. 471–482.

[24] K. C. Chatzidimitriou and P. A. Mitkas, “Adaptive reservoir computing
through evolution and learning,” Neurocomputing, vol. 103, no. 2,
pp. 198–209, Mar. 2013.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

SHI et al.: EVOLVING MEMRISTIVE RESERVOIR 15

[25] M. Dale, J. F. Miller, S. Stepney, and M. A. Trefzer, “Evolving carbon
nanotube reservoir computers,” in Proc. Int. Conf. Unconv. Comput. Nat.
Comput. (UCNC). Cham, Switzerland: Springer, 2016, pp. 49–61.

[26] F. Duport, A. Akrout, A. Smerieri, M. Haelterman, and S. Massar, “Ana-
log input layer for optical reservoir computers,” 2014, arXiv:1406.3238.

[27] M. L. Alomar, V. Canals, N. Perez-Mora, V. Martínez-Moll, and
J. L. Rosselló, “FPGA-based stochastic echo state networks for time-
series forecasting,” Comput. Intell. Neurosci., vol. 2016, pp. 1–14, 2016.

[28] P. Amil, C. Cabeza, and A. C. Marti, “Exact discrete-time implemen-
tation of the Mackey–Glass delayed model,” IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 62, no. 7, pp. 681–685, Jul. 2015.

[29] K. Bai and Y. Yi, “DFR: An energy-efficient analog delay feedback
reservoir computing system for brain-inspired computing,” ACM J.
Emerg. Technol. Comput. Syst., vol. 14, no. 4, pp. 1–22, Oct. 2018.

[30] L. Appeltant et al., “Information processing using a single dynamical
node as complex system,” Nature Commun., vol. 2, no. 468, pp. 1–6,
Sep. 2011.

[31] A. Bala, I. Ismail, R. Ibrahim, and S. M. Sait, “Applications of meta-
heuristics in reservoir computing techniques: A review,” IEEE Access,
vol. 6, pp. 58012–58029, 2018.

[32] N. Chouikhi, B. Ammar, N. Rokbani, and A. M. Alimi, “PSO-based
analysis of echo state network parameters for time series forecasting,”
Appl. Soft Comput., vol. 55, pp. 211–225, Jun. 2017.

[33] T. Van Der Zant, V. Bečanović, K. Ishii, H.-U. Kobialka, and P. Plöger,
“Finding good echo state networks to control an underwater robot
using evolutionary computations,” IFAC Proc. Volumes, vol. 37, no. 8,
pp. 215–220, Jul. 2004.

[34] X. Wang, Y. Jin, and K. Hao, “Evolving local plasticity rules for
synergistic learning in echo state networks,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 31, no. 4, pp. 1363–1374, Apr. 2020.

[35] A. A. Ferreira, T. B. Ludermir, and R. R. B. de Aquino, “An approach
to reservoir computing design and training,” Exp. Syst. Appl., vol. 40,
no. 10, pp. 4172–4182, Aug. 2013.

[36] L. Chen, C. Li, T. Huang, X. Hu, and Y. Chen, “The bipolar and unipolar
reversible behavior on the forgetting memristor model,” Neurocomput-
ing, vol. 171, pp. 1637–1643, Jan. 2016.

[37] L. Yang, Z. Zeng, and X. Shi, “A memristor-based neural network
circuit with synchronous weight adjustment,” Neurocomputing, vol. 363,
pp. 114–124, Oct. 2019.

[38] A. Rodan and P. Tiňo, “Simple deterministically constructed cycle
reservoirs with regular jumps,” Neural Comput., vol. 24, no. 7,
pp. 1822–1852, 2012.

[39] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu, and
A. Liotta, “Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science,” Nature Commun.,
vol. 9, no. 1, pp. 1–12, Jun. 2018.

[40] A. G. Parlos, O. T. Rais, and A. F. Atiya, “Multi-step-ahead prediction
using dynamic recurrent neural networks,” Neural Netw., vol. 13, no. 7,
pp. 765–786, Sep. 2000.

[41] A. Greaves-Tunnell and Z. Harchaoui, “A statistical investigation of long
memory in language and music,” in Proc. 36th Int. Conf. Mach. Learn.,
Long Beach, CA, USA, 2019, pp. 2394–2403.

[42] G. Holzmann, “Reservoir computing: A powerful black-box framework
for nonlinear audio processing,” in Proc. 12th Int. Conf. Digit. Audio
Eff. (DAFx), Como, Italy, 2009, pp. 1–10.

[43] C. L. Giles, G. M. Kuhn, and R. J. Williams, “Dynamic recurrent neural
networks: Theory and applications,” IEEE Trans. Neural Netw., vol. 5,
no. 2, pp. 153–156, Mar. 1994.

[44] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[45] J. Zhao et al., “Do rnn and lstm have long memory?” in Proc. 37th Int.
Conf. Mach. Learn., 2020, pp. 11365–11375.

[46] A. Rodan and P. Tino, “Minimum complexity echo state network,” IEEE
Trans. Neural Netw., vol. 22, no. 1, pp. 131–144, Jan. 2011.

[47] L. Wang, H. Hu, X.-Y. Ai, and H. Liu, “Effective electricity energy con-
sumption forecasting using echo state network improved by differential
evolution algorithm,” Energy, vol. 153, pp. 801–815, Jun. 2018.

[48] B. Subudhi and D. Jena, “A differential evolution based neural net-
work approach to nonlinear system identification,” Appl. Soft. Comput.,
vol. 11, no. 1, pp. 861–871, 2011.

[49] J. Wainer and G. Cawley, “Nested cross-validation when selecting
classifiers is overzealous for most practical applications,” Exp. Syst.
Appl., vol. 182, Nov. 2021, Art. no. 115222.

[50] W. Du et al., “An optoelectronic reservoir computing for temporal
information processing,” IEEE Electron Device Lett., vol. 43, no. 3,
pp. 406–409, Mar. 2022.

[51] S. Lilak et al., “Spoken digit classification by in-materio reservoir
computing with neuromorphic atomic switch networks,” Frontiers Nan-
otechnol., vol. 3, p. 38, May 2021.

[52] S. Roy, A. Banerjee, and A. Basu, “Liquid state machine with dendrit-
ically enhanced readout for low-power, neuromorphic VLSI implemen-
tations,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 5, pp. 681–695,
Oct. 2014.

[53] X. Yao and T. Higuchi, “Promises and challenges of evolvable hard-
ware,” IEEE Trans. Syst., Man, C, Appl. Rev., vol. 29, no. 1, pp. 87–97,
Feb. 1999.

[54] T. Higuchi, Y. Liu, and X. Yao, Evolvable Hardware (Genetic and
Evolutionary Computation). Berlin, Germany: Springer-Verlag, 2006.

Xinming Shi (Student Member, IEEE) received
the B.S. degree in electronic engineering from the
Wuhan University of Technology, Wuhan, China,
in 2016, and the M.S. degree from the School of
Artificial Intelligence and Automation, Huazhong
University of Science and Technology, Wuhan,
in 2019. She is currently pursuing the Ph.D.
degree in computer science with the University of
Birmingham, Birmingham, U.K., in collaboration
with the Southern University of Science and Tech-
nology, Shenzhen, China.

Leandro L. Minku (Senior Member, IEEE)
received the Ph.D. degree in computer science from
the University of Birmingham, Birmingham, U.K.,
in 2010.

He was a Lecturer in computer science with
the University of Leicester, Leicester, U.K. He is
currently an Associate Professor (Senior Lecturer)
with the School of Computer Science, University of
Birmingham, Birmingham, U.K. His main research
interests are machine learning in non-stationary envi-
ronments / data stream mining, online class imbal-

ance learning, ensembles of learning machines, and computational intelligence
for software engineering.

Dr. Minku is an Associate Editor-in-Chief of Neurocomputing, a Senior
Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARN-
ING SYSTEMS, an Associate Editor of Journal of Systems and Software, and
an Associate Editor of Empirical Software Engineering journal. He was also a
General Chair of the International Conference on Predictive Models and Data
Analytics in Software Engineering (PROMISE 2019 and 2020), and Co-Chair
of the Artifacts Evaluation Track of the International Conference on Software
Engineering (ICSE 2020).

Xin Yao (Fellow, IEEE) received the B.Sc. degree
from the University of Science and Technology of
China (USTC), Hefei, China, in 1982, the M.Sc.
degree from the North China Institute of Computing
Technologies, Beijing, China, in 1985, and the Ph.D.
degree from USTC, in 1990.

He is currently a Chair Professor of computer
science with the Southern University of Science
and Technology, Shenzhen, China, and a part-time
Professor of computer science with the University
of Birmingham, Birmingham, U.K.

Dr. Yao was a Distinguished Lecturer of the IEEE Computational Intelli-
gence Society (CIS). He was the President from 2014 to 2015 of the IEEE
CIS and the Editor-in-Chief, from 2003 to 2008 of the IEEE Transactions on
Evolutionary Computation. His major research interests include evolutionary
computation, ensemble learning, and their applications to software engineer-
ing. His work won the 2001 IEEE Donald G. Fink Prize Paper Award; 2010,
2016 and 2017 IEEE Transactions on Evolutionary Computation Outstanding
Paper Awards; 2011 IEEE Transactions on Neural Networks Outstanding
Paper Award; and many other best paper awards at conferences. He received a
prestigious Royal Society Wolfson Research Merit Award in 2012, the IEEE
CIS Evolutionary Computation Pioneer Award in 2013 and the 2020 IEEE
Frank Rosenblatt Award.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

