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Toward Explainable Affective Computing:
A Review

Karina Cortiñas-Lorenzo and Gerard Lacey

Abstract— Affective computing has an unprecedented potential
to change the way humans interact with technology. While the
last decades have witnessed vast progress in the field, multimodal
affective computing systems are generally black box by design.
As affective systems start to be deployed in real-world scenarios,
such as education or healthcare, a shift of focus toward improved
transparency and interpretability is needed. In this context, how
do we explain the output of affective computing models? and
how to do so without limiting predictive performance? In this
article, we review affective computing work from an explainable
AI (XAI) perspective, collecting and synthesizing relevant papers
into three major XAI approaches: premodel (applied before
training), in-model (applied during training), and postmodel
(applied after training). We present and discuss the most funda-
mental challenges in the field, namely, how to relate explanations
back to multimodal and time-dependent data, how to integrate
context and inductive biases into explanations using mechanisms
such as attention, generative modeling, or graph-based methods,
and how to capture intramodal and cross-modal interactions in
post hoc explanations. While explainable affective computing is
still nascent, existing methods are promising, contributing not
only toward improved transparency but, in many cases, surpass-
ing state-of-the-art results. Based on these findings, we explore
directions for future research and discuss the importance of
data-driven XAI and explanation goals, and explainee needs
definition, as well as causability or the extent to which a given
method leads to human understanding.

Index Terms— Affective computing, explainable AI (XAI),
multimodal machine learning, review.

I. INTRODUCTION

S INCE Ancient Greece, it has been widely acknowledged
that humans seek explanations in an attempt to under-

stand the world [1]. This ubiquitous search for answers and
explanations is inherent to human nature and fundamental
to integrate technology into everyday lives. In this context,
new personalized and human-driven approaches are driving a
paradigm shift from the Internet of Things to the Internet of
People, where the focus is not on devices or infrastructure but
rather on people [2], [3]. In this new paradigm, human-centric
technology must be social and enrich the user experience by
being context-aware, allowing for empathetic interactions that
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are personalized to a given user in a given situation at a given
point in time. Furthermore, for technology to be successfully
leveraged, interactions not only need to be context-dependent
but also predictable [4]. Hence, to enable such scenarios, two
key requirements must be met: 1) technology must be able to
recognize, understand and express human emotions and 2) in
order to be predictable, technology must be explainable and
able to expose to the user the reasoning behind its operations
in a human-understandable way.

While research on affective computing has witnessed
tremendous progress in the past decade [5], [6], research on
interpretable AI methods for affect recognition is still in its
infancy. Multimodal learning approaches leveraged in the field
are usually a black box, offering very little transparency about
the reasoning behind their predictions. With most state-of-
the-art (SOTA) methods being reliant on deep learning (DL)
approaches, opening this black box in affective computing
poses some unique challenges.

1) Multimodal Analysis: Our experience of the world,
including both the perception and the synthesis or
arousal of emotions, is inherently multimodal [7], [8].
This means that interpretable methods for affective com-
puting must be able to estimate the relative importance
of not only unimodal inputs but also different multi-
modal sources and their interactions [9].

2) Real-Time Analysis: Human emotions unfold over
time [10], [11], [12]. We interact with others in real
time, and our emotions vary dynamically with temporal
context. As a crucial component of real-world affect,
time must be taken into account in the interpretation
of emotion recognition. Hence, explainable methods
must be able to disentangle the importance of different
modalities and inputs at different points in time.

3) Context: Emotions are influenced not only by temporal
context but also by interaction dynamics, the semantics
of verbal utterances, environmental context, and social
and cultural context. These variables affect the inter-
pretation of nonverbal behaviors and are a fundamen-
tal source of interpersonal and intrapersonal variance
[13], [14], [15]. Because different behaviors can have
different interpretations depending on the context, con-
textual information specific to the given task should be
included when possible in the interpretation of affect
recognition.

4) Ground Truth: Since affective states are internal to a
given individual, we can only observe symptoms of
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the inferred emotional state or apparent emotions [16].
As a consequence, ground truth is difficult to establish
in affective computing [17], and labeling of apparent
emotional states can be prone to bias [18], [19], [20].
In this context, explainable methods can help expose
not only the model reasoning but also uncover potential
biases in the training set.

5) Ethics: Emotional states are private; therefore, affective
computing naturally raises ethical concerns. In this field,
explainable methods are fundamental not only to provide
transparency to the user but also to ensure that emotion
recognition systems are compliant with privacy laws and
can be appropriately audited [21], [22], [23].

Despite these challenges, affective computing has been
deployed in diverse domains, ranging from intelligent tutoring
systems [24] to health monitoring tools [25]. This diversity of
domains and application contexts entails different tasks, users,
and risks. For example, failing to recognize a given affective
state can have catastrophic consequences when the outcome
affects the health of an individual (e.g., mental health diagnosis
and monitoring systems [26]) or when a wrong prediction
prompts the system to deliver inappropriate interventions (for
instance, inappropriate pedagogical interventions in tutoring
systems can have a long-lasting impact on people’s learning,
development, and life-long functioning [27]). On the other
hand, when deployed to enhance human–machine interactions,
recognition errors can negatively impact user experience, while
having negligible harm.

In domains such as education or healthcare, where failing
to generalize can deeply impact human lives, explainability
is critical [28]. In this type of scenario, explanations provide
multiple benefits. First, explanations can help users better
understand the system’s behavior, nurturing user’s trust in
decisions when advice or feedback is given. For example,
in tutoring and learning systems, understanding feedback is
essential to achieve pedagogical success and fundamental for
sustained adoption [27]. Second, explanations can provide
insights into multimodal learning, allowing researchers and
developers to better understand when the model fails to
generalize and the key areas for improvement [29]. When
deployed on biased training sets, interpretability and model
transparency can also help to identify biased labeling patterns
in the input data, allowing us to trace back key attributes
influencing labeling trends in the training set. In scenarios
such as automatic recruitment, this aspect is fundamental
to the successful deployment of affective decision support
systems [30], [31], [32], [33]. Finally, explanations enable
post hoc understanding, facilitating audit analyses to ensure
compliance with ethical and privacy regulations [34].

Several surveys exist covering recent advances in affective
computing [5], [6], explainable AI (XAI) [35], [36], [37], [38],
[39], and multimodal learning [29], [40]. However, to the best
of our knowledge, this is the first attempt to review work on
XAI with a focus on affective computing. Our goal is to study
whether explaining the output of affective computing systems
is possible while maintaining SOTA predictive performance,
helping researchers in the field grasp the most important

aspects of different methods and highlighting the fundamental
challenges to be addressed in future research. To this end,
we have reviewed over 200 publications on the application
of explainable methods in affective computing tasks from
high-impact computer science conferences and journals across
the fields of affective computing, visualization, and machine
learning. With a focus on those applications where SOTA
results were achieved or even improved, a smaller subset of
these works has been selected to be presented in this article.

The key contributions of this article are given as follows.
1) We collect and synthesize work on explainable affective

computing modeling and other related human-centric
tasks, leveraging a taxonomy to help researchers effi-
ciently comprehend the strengths and weaknesses of
different methods.

2) We provide evidence supporting the hypothesis that
explaining the output of affective computing systems
does not necessarily lead to worse predictive perfor-
mance.

3) We discuss the key challenges to be addressed in affec-
tive computing and the key requirements differentiating
XAI needs in the field from other domains.

4) Based on this literature analysis, we identify and dis-
cuss future research opportunities and key gaps to be
addressed in order to improve the transparency of affec-
tive computing systems in real-world applications.

This article is structured as follows. We start by defining
terminology, presenting evaluation methods and the taxonomy
to be used in this review (see Section II). Next, we dis-
cuss recent XAI developments in the field and group them
into three key categories: premodel (see Section III), in-
model (see Section IV), and postmodel (see Section V).
In Section III, we explore three challenges in premodel under-
standing: exploratory data analysis (EDA) in multimodal set-
tings, standardization of dataset descriptions and quality tests,
and privacy. In Section IV, we review attention mechanisms
(see Table I), generative modeling techniques (see Table II),
and graph-based methods (see Table III). In Section V,
we review postmodel XAI techniques applied on discrete sets
of inputs and handcrafted features (see Table IV) and discuss
their main advantages and weaknesses. Finally, key challenges
and directions for future research are discussed in Section VI,
and final conclusions are drawn in Section VII.

II. PROBLEM DEFINITION AND TERMINOLOGY

A. Problem Statement and Evaluation Methods

Can we explain the output of multimodal affective comput-
ing systems while preserving model performance? This article
explores this question empirically by reviewing past attempts
in the literature. Motivated by the existing tradeoff between
predictive performance and explainability in XAI and by the
specific challenges of multimodal affective computing (see
Section I), we break our central research question into the
following pieces.

1) Data Understanding: The goal of multimodal DL
approaches is extracting and learning patterns from train-
ing corpora. Hence, understanding the data the system
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is working with is crucial to assess the reliability of
predictions and improve task performance. Furthermore,
enabling human experts to interactively explore the data
for informed decision-making can facilitate the integra-
tion of human feedback into the modeling loop [41].
From this perspective, we address the following ques-
tion: how can we explain the output of affective systems
in light of the data being used?

2) Model Understanding (a.k.a. Global Explainability):
Given some inputs and explanatory features, where
do model outputs come from? Model understanding
deals with grasping how the data get processed during
training, explaining how the model behaves on average
for a given dataset. More specifically, we want to iden-
tify overall feature importance trends and quantify the
importance of features and their interactions over the
whole affective dataset [9].

3) Predictions Understanding (a.k.a. Local Explainability):
Given an individual sample, where does a specific pre-
diction come from? Instead of understanding averaged
or global trends, in this case, we want to quantify the
impact of explanatory features and/or inputs on a given
model prediction. The goal is to give the user the ability
to question the recommendations from an affective com-
puting system, exposing key features influencing one
specific outcome.

B. Terminology and Scope: What Is an Explanation?

Because explanations necessarily involve a human factor,
the concept has not yet been formalized in the literature, and
there is still debate over what constitutes an explanation and
what makes an explanation effective and sufficient for a given
user or explainee [36]. In this article, we understand explana-
tions as a form of social interaction, where someone, or some
system, provides relevant information to some explainee(s) or
human(s) [42]. In this context, the relevancy of the information
provided is linked to the knowledge being transferred in the
interaction and the ability of the explanation to enhance the
explainee’s understanding. Hence, in the AI domain, this social
interaction involves questions formulated by the explainee
and answers or explanations generated by the system. While
different types of questions can be answered by explanations,
in this article, the main focus is on understanding the what:
what inputs are related to model outputs and what specific
features, interactions, and/or input information lead to and
influence a given model prediction. Thus, our scope is the first
ladder of explanatory reasoning [43]. We want to understand
whether achieving this first stage of explanatory behavior
is even possible today without negatively influencing model
performance. Other reasoning such as interventionist (how-
questions) or counterfactual explanations (why-questions) are
out of the scope of this review.

When it comes to defining the terms interpretability and
explainability, some works in the literature refer to inter-
pretable models as models whose reasoning processes are
understandable to humans, either because they are inherently
interpretable [44] or because certain model properties and

components can be directly assigned an interpretation [45],
and as explainability as those techniques aimed at explaining
black-box models [44], [46]. Others, however, adopt differ-
ent distinctions between the terms [38], do not differentiate
between both concepts [34], [37], [39], or use other terms
such as “intelligibility” and “understandability” interchange-
ably [47]. In this article, we follow the formulation proposed
in [41] and understand interpretability and explainability as
identical concepts relating to the science that deals with the
technical implementation of transparency and traceability in
AI approaches, comprehending what a model has done and
which part(s) of the model structure influence its recommen-
dations. Because XAI explanations obtained through these
approaches do not necessarily lead to user understanding,
we use a second concept to capture the human dimension of
explanations: causability. A notion introduced and discussed
in [48], causability is about measuring the usability of a given
explanation and evaluating whether the information provided
meets understanding goals in a given context, helping a human
connect the recommendations to a mental model and giving
the user the power to understand, confirm, or overrule model
outputs. Because causability refers to a human model, it nec-
essarily involves the evaluation of the quality of explanations.

Inspired by the ideas proposed in [41], in addition to
assessing the ability of the methods to enable data understand-
ing, model understanding, and/or predictions understanding,
the work reviewed in this article is also evaluated against
two additional dimensions: first, the ability of the proposed
technique to provide a technical explanation while maintaining
or improving SOTA results on a given affective task, and
second, the evaluation of the causability of the generated
explanation and the extent to which the proposed method leads
to human understanding.

C. Affective Computing and Similar Fields

Since first introduced in the late 1990s, affective computing
research has evolved over the years from having a single focus
on human effect or emotions [16] to modeling social signals
and nonverbal behavior in human multimodal interactions
[49], [50], as well as modeling other phenomena, such as
personality traits [51], cognitive abilities [52], [53], or psycho-
logical disorders [26]. Despite taking many forms, all of these
variants involve the same set of fundamental characteristics
outlined in Section I: the use of multimodal time-dependent
data, the sensitivity to context, the difficulty in establishing
ground truth, and several ethical concerns involving the use
of these technologies in different real-world scenarios. Hence,
in this review, we not only consider work focused on predicting
emotion labels but also include other human-centric tasks,
such as modeling psychological and neuro disorders, mental
states, personality traits, cognitive abilities, social signals, and
sentiment analysis.

D. Taxonomy

In this article, inspired by the taxonomy proposed in [34],
we group different XAI methods for multimodal affective
computing considering when they are applied.
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1) Premodel (Data Understanding): The goal of premodel
techniques is to understand the data used by the system
before the actual training takes place. Relating explana-
tions back to input data is a fundamental step toward
understanding the underlying model mechanisms, help-
ing a human connect model shortcomings with the
limitations of the training datasets.

2) In-Model (Model Understanding): In-model XAI tech-
niques are focused on providing transparency into how
the data get processed during training. By understanding
how the model learns from data and how relationships
between modalities and time influence the final outcome,
the goal is to trace back predictions to inputs and learned
features.

3) Postmodel (Predictions Understanding): Postmodel XAI
techniques are applied after training and either consider
the model as a black box, using explainer mechanisms
to relate inputs to outputs, or leverage some aspect
of the model’s internal structure. Traditionally applied
to unimodal data in the XAI domain, in this article,
we review attempts to incorporate these techniques into
multimodal affective settings while highlighting their
key advantages and limitations.

III. PREMODEL XAI METHODS FOR
AFFECTIVE COMPUTING

Data-driven systems can generally improve their predictive
performance by adjusting their training algorithms and/or
improving the quality of the training dataset. In affective com-
puting, the latter requires both an exploration of multimodal
datasets and a common framework against which to measure
and quantify data quality. Understanding the data used to train
affective algorithms is not only beneficial to improve modeling
performance but also necessary to enable model transparency.
If we consider explanations as social interactions, generating
explanations should be framed as a conversation, where a user
can query the system in an interactive way as new answers
are provided [42], [54]. Premodel XAI methods can not only
facilitate this task by enabling interactive data exploration for
enhanced decision-making but can also help the system relate
explanations back to data. For instance, when constrained and
unrepresentative training datasets limit the ability of the model
to generalize, unexpected predictions on unseen cases can be
explained on the basis of the input dataset quality. In addi-
tion, because data-driven affective systems are fundamentally
exploiting associative patterns in the data, relating explanations
back to the input data can help researchers better understand
and identify potential limitations of the system and areas of
improvement from a data-centric perspective.1

Applied to data before training, the methods reviewed in
this section are aimed at enabling a common understanding of
multimodal affective data. Rather than transforming a given
dataset to improve its quality, the goal of the methods dis-
cussed is to gain insights into the data used for learning and/or
inference in order to explain model outputs. Our discussion is
centered on three main challenges.

1https://datacentricai.org/

1) EDA for Multimodal and High-Dimensional Data:
Exploring multimodal datasets for enhanced data under-
standing involves dealing with high-dimensional data.
Techniques to reduce both the time and space com-
plexity of the EDA task and methods to project
high-dimensional data into lower dimensional represen-
tations are needed.

2) Lack of Standardized Affective Dataset Descriptions and
Quality Tests: A common understanding of datasets
in the field and tests to assess their limitations can
accelerate multimodal affective research and deploy-
ment into real-world applications. However, creating,
documenting, maintaining, and evaluating multimodal
datasets are expensive, and disjoint efforts on these
fronts make standardization a challenge.

3) Privacy: Due to the nature of affective computing data,
premodel explainability can unintentionally lead to a
leak in personal and sensitive data, potentially infringing
on human rights. In addition, in real-world scenarios,
both training sets and data models may be proprietary,
limiting the availability of assets for explainability and
increasing the risks of intellectual property infringement.

A. EDA: Understanding Multimodal Affective Datasets

The goal of EDA is to discover patterns in the data to foster
hypothesis development and refinement. Deep-rooted in statis-
tics, EDA has an emphasis on understanding the data through
visual exploration and metrics. While being a well-established
statistical tradition, EDA can become challenging in fields
such as affective computing, where dataset dimensions are
usually high and different modalities can be noisy, miss-
ing, or corrupted. The high dimensionality of data in this
domain requires projections into lower dimensional, more
interpretable, representations while preserving the underlying
structure. In this context, building lower dimensional data
representations that encapsulate meaning is a key challenge.
Moreover, since emotions are time-dependent, volumes of data
can grow even further, increasing computational complexity.
This dependence on time, involving the use of multimodal
sequences of unstructured data, also entails significant difficul-
ties when aligning different modalities for visual comparison.

Due to these challenges, past work on affective data visual-
ization has mainly focused on understanding affective annota-
tions rather than input data. For instance, Zeng et al. [55] built
EmoCo, an interactive visual analytics system to analyze emo-
tion coherence and target alignment across different modali-
ties in public speaking videos, Zeng et al. [56] introduced
EmotionCues, an exploratory tool to visualize and explore the
affective state of students in a classroom, and Wang et al. [57]
presented DeHumor, a visual analytics application for ana-
lyzing humor behaviors in public speaking. Understanding
the target distribution can also help improve the reliability
of annotations. Wang et al. [58] explore the distribution of
emotion annotations using outlier detection methods and use
these insights to correct outliers toward the learned distri-
bution, reducing labeling noise and outperforming previous
SOTA results. Escalante et al. [59] analyze different aspects
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of the target variable in the First Impression dataset, including
intravideo and intervideo variance, and use these insights,
together with studies of the correlations with sensitive traits,
such as gender and ethnicity, to uncover existing biases in the
dataset.

Analyzing patterns in the input data can also be beneficial to
understand sources of interpersonal and intrapersonal variance.
For example, Carbonell et al. [60] use unsupervised methods
to augment the supervised analysis of emotion expressions,
revealing additional insights into how emotion expressions
differ by individual and gender. Also aimed at comparing and
contrasting data across emotions and individuals, the authors
of AffectiveTDA [61] propose to use topological data analysis
(TDA) to build an explainable visual data representation of
facial expressions using facial landmarks.

Unsupervised methods such as clustering can not only help
improve predictive performance by identifying the most rele-
vant discriminant features [62], [63] but can also ease feature
selection for semantic interpretation. For instance, in [64],
singular value decomposition-based coclustering is used to
identify the most salient regions in face images. Other unsu-
pervised techniques, such as PCA, can also facilitate dataset
understanding and comparison: in [65], a corpus similarity
measure based on PCA-ranked features is proposed to iden-
tify similar emotion datasets, helping practitioners select and
merge datasets for speech emotion recognition. Although the
high dimensionality of multimodal data in affective computing
can hinder the implementation of traditional EDA techniques,
the computation of simple metrics, such as similarity met-
rics, can still provide explainability benefits while remaining
computationally feasible. For instance, in [66], dynamic time
warping (DTW) is used to compute in real time the similarity
between two multimodal temporal sequences. Hierarchical
clustering is then applied to these similarity values to identify
abnormal nonverbal behaviors in the participants of a TV
show. Identifying outliers and measuring the dissimilarity
between observations using techniques such as these ones
could also be useful to explain abnormal model behavior (e.g.,
unexpected predictions due to distribution shifts).

B. Standardization of Affective Dataset Descriptions

Affective computing research has suffered from a lack of
available datasets due to expensive labeling, requiring mul-
tiple annotators to minimize annotation bias [17]. However,
as more datasets are created, the lack of standardized dataset
descriptions and quality tests can hinder the field to scale
into real-world applications. In this context, descriptions and
tests can help practitioners understand and assess the quality
of the training data, providing them with tools to analyze
the tradeoffs of different datasets while allowing them to
explain model behavior in light of the input data. In the
discussion that follows, we understand dataset descriptions
as metrics that provide transparency into what a given dataset
contains, including aspects such as the distribution statistics for
input features, the assessment of the labels’ construct validity,
or the justification of the annotation scheme. On the other
hand, quality tests provide an assessment of the external
consistency of the data against a given quality framework

(e.g., bias tests [67]). Whereas dataset descriptions help answer
the question what does the dataset contain?, quality tests
address a value-based one: is this dataset good enough for
this task?

1) Dataset Descriptions: In general, when describing an
affective computing dataset, different metrics are usually
reported in the literature. While the number of individuals and
the distribution of the target labels are commonly informed,
different authors consider incorporating additional distinct
metrics. For instance, the authors of SEWA [68] indicated
the age range, gender, and culture of participants, while,
in CMU-MOSEI [69], only the gender is informed. Most
datasets contain English recordings and ignore accents, but,
in RECOLA [70], the authors presented a multimodal corpus
of interactions in French and reported the distribution of
mother tongues of the participants. Annotation schemes and
ways to ensure construct validity are also diverse: using the
same examples, to build SEWA, five annotators were hired for
each cultural background, whereas the authors of RECOLA
relied on a total of six annotators and used normalization
techniques to reduce variability in human judgment. While
annotators of RECOLA could annotate video sequences from
another dataset to become familiar with the annotation inter-
face, the authors of CMU-MOSEI provided a 5-min training
video to crowdsourced judges from Amazon Mechanical Turk.
Although some psychological constructs require a minimum
time to assess and cannot have continuous metrics (e.g.,
personality traits), annotation schemes also differ even for
the same psychological constructs. For example, SEWA and
RECOLA use continuous measures of valence and arousal,
while other datasets use different discrete labels for a single
video, frame, or utterance (e.g., CMU-MOSEI).

Standardization of these aspects is a challenge in the field,
making it hard for researchers and practitioners to effectively
choose a multimodal dataset and incorporate some of these
characteristics into explanations. Databases such as the ones
mentioned above are usually manually collected to fulfill the
requirements of specific research tasks, resulting in disjoint
efforts when reporting dataset descriptions. To the best of
our knowledge, in affective computing, there are no standards
on how to document datasets yet. In the broader machine
learning field, however, several approaches already exist. For
instance, Datasheets for Datasets [71] propose to document
not only the dataset composition but also its purpose, col-
lection process, and recommended uses, including questions
appropriate for both academic researchers and product teams.
In production systems, Data Cards [72] are an alternative
framework aimed at capturing critical information about a
dataset across its life cycle. Similar approaches also exist
for structured data [73] and domain-specific fields, such as
natural language processing (NLP) [74]. Some of these exist-
ing dataset documentation frameworks could be leveraged in
affective computing, mitigating potential ground-truth biases
while preventing researchers and practitioners from using
datasets in the wrong contexts.

2) Quality Tests: Assessing the quality of a given dataset
is also part of understanding the data, as it helps identify
its limitations and strengths for a given task. In this regard,
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due to the difficulty of establishing ground truth, bias is an
important quality aspect in affective data. Booth et al. [67]
provide guidelines to approach this topic in the field, includ-
ing a framework to identify sources of bias when inferring
psychological constructs and metrics to quantify fairness at
different stages of the machine learning pipeline.

Other quality dimensions, such as the completeness of dif-
ferent modalities and noise topologies, also lack standardized
tests in affective computing. In the broader machine learning
community, however, Datasheets for Datasets [71] encourage
dataset creators to inform about any errors, sources of noise,
or redundancies in the data. In addition, in the context of
real-world deployments where data can be unpredictable and
ever-changing, quality assessments for new data are crucial
to understand and explain the behavior of retrained models.
Despite its ubiquity in real-world scenarios, identifying and
measuring data drift in multimodal affective computing are
challenging: both changes in input data and target attributes
can be unknown [75], drift can happen at different levels [76],
and it can involve both unimodal and cross-modal joint distri-
bution shifts [77].

Dataset quality is also dependent on the task: the quality
of a given dataset can be adequate for a given task but poor
in a different context. Documenting the purpose of a given
dataset, as well as the recommended and not recommended
uses [71], can help practitioners and researchers better select
datasets, increasing their awareness of dataset limitations, and
ultimately helping them understand model behavior in light of
the data being used. As affective computing research evolves,
standardization of dataset documentation and quality tests is
a step toward scaling the deployment of affective computing
systems in real-world applications.

C. Privacy

A key challenge in responsible AI is the tension between
explainability and privacy goals [78], [79]. In research settings,
how a dataset is collected, including its primary source of
information and the level of consent required from partic-
ipants, determines the amount of information that can be
shared. In real-world production systems, the training data may
not be available due to privacy and/or security issues, and both
models and datasets may also be proprietary. In these contexts,
revealing information through explanations could infringe both
privacy and intellectual property rights [80], [81].

Since affective states are latent, it can be safer to assume that
users of real-world affective computing systems will consider
their data private by default [23]. By adopting the default
position that affective data are only for personal consump-
tion, federated learning (FL) can help protect privacy while
allowing for local premodel explainability. Following this
approach, all the training is done on-device, and only model
parameters are sent to a centralized server [82], [83]. In this
setting, premodel explainability could leverage only local data
on-device, helping a user understand how their own data
influences the overall system behavior. Although, in affective
computing, FL has already been used (e.g., stress-level mon-
itoring [84], pain estimation [85], and mood prediction [86]),

explainability in these types of scenarios remains largely
unexplored. One key challenge relates to explaining the system
behavior locally when this depends on both the inference
logic of local models and the influence of multiple local
models impacting the overall master model(s). While premodel
explainability could help a user understand the influence of
their own data and patterns locally, understanding the overall
system behavior opens a broader challenge in the explainabil-
ity space, namely, how to extract explanations from a complex
system in which multiple models and blocks interact with each
other.

When data need to be transferred to a centralized server,
how the data are collected and used, as well as any risks
and limitations, should be communicated to users trans-
parently [23], [87]. In this type of scenario, differential
privacy and data obfuscation strategies could be useful to
preserve users’ privacy while maintaining the relevant pre-
dictive patterns in the data. In affective computing, however,
disentangling personal data from sensitive attributes can be
extremely hard. To overcome this challenge, recent techniques
in video-to-video synthesis could be leveraged. For example,
Haddonll et al. [88] explore the idea of transferring visual
behaviors onto a target video of nonexistent anonymous faces
displaying the same apparent emotion, offering a baseline
for the suitability of expression transfer and anonymization
in affect prediction models. In speech emotion recognition,
Feng et al. [89] propose a privacy-preserving data transforma-
tion technique to remove sensitive information in the training
data, preventing inference of sensitive attributes while preserv-
ing data utility, and in [90], different approaches to obfuscate
user identity in multimodal mobile data are presented. While
these pieces of work address how differential privacy and data
obfuscation approaches could be implemented, none of them
explore the explainability of the final anonymized datasets.
The methods discussed in Sections III-A and III-B could be
helpful not only to allow model developers and researchers
better understand model behavior in light of the used data but
also to assess and evaluate premodel explainability before and
after anonymization tasks.

D. Premodel Methods’ Conclusion

Traditionally focused on understanding a given modeling
algorithm, XAI methods have largely ignored data under-
standing. However, as discussed in this section, a big part of
understanding the behavior of a data-driven system involves
understanding the data that it is based on. Premodel explain-
ability can help researchers and model developers understand
multimodal relationships in the data, the influence of context,
and sources of variance, and evaluate the reliability of target
annotations in affective data. In real-world applications, pre-
model explainability can help end users understand the outputs
of an affective computing system and assess their relevancy
in a particular context. Specifically, when the explanations are
linked to a given user-generated data, this understanding can
provide agency to users, giving them the ability to control the
system behavior by adjusting the data being fed.

However, several challenges lie ahead. First and foremost,
understanding multimodal and time-dependent data is not
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TABLE I
SUMMARY OF ATTENTION-BASED XAI METHODS FOR AFFECTIVE COMPUTING TASKS

TABLE II
SUMMARY OF GENERATIVE-BASED XAI METHODS FOR AFFECTIVE COMPUTING TASKS

straightforward and, in some situations, may not even be
computationally feasible. Nonetheless, depending on the appli-
cation, full comprehension of the datasets may not be neces-
sary. Simple metrics, such as similarity metrics, could still be
valuable and worth including in explanations. In addition, stan-
dardization of dataset metrics and documentation, potentially
adapting frameworks, such as Datasheets for Datasets [71],
could help practitioners and researchers better understand
the behavior of their developed systems in light of the
data being used. Last but not least, premodel explainability
needs to be aligned with privacy goals. Potential avenues to
preserve privacy while incorporating premodel explainability
include FL approaches, as well as differential privacy and data
obfuscation methods. Since these techniques add additional
complexity, further research is needed to move from a single-
algorithm/modeling-centric approach to XAI to a holistic
approach that considers not only the data being leveraged by
the system but also the different components and blocks in it.

IV. IN-MODEL XAI METHODS FOR
AFFECTIVE COMPUTING

Often referred to as interpretable ML [44], [45], the goal
of in-model XAI methods is to provide transparency into
how input data get processed and transformed into model
predictions. Rather than incorporating additional mechanisms
post hoc to understand the relationship between model inputs
and outputs, in-model techniques are inherent to model
architecture and take an active part in model training, con-
tributing toward both model understanding and prediction

understanding. In affective computing, these transparent mod-
eling mechanisms aim to answer the following questions.

1) What is the impact of different behavioral cues and
multimodal features in model predictions?

2) How important are cross-modal interactions and
intramodal features in predicting a given target?

3) How does time influence the relationship between input
features and model outputs?

In order to answer the questions above, in-model XAI
techniques in affective computing have a focus on how to
disentangle feature interactions and how to effectively fuse
and align different modalities. In the discussion that follows,
we review past work in the field implementing the follow-
ing methods: attention mechanisms (see Table I), generative
modeling (see Table II), and graphs (see Table III).

A. Attention Mechanisms

The aim of attention mechanisms is to enhance or attend
to the most relevant parts of the input data while ignoring
or putting less weight on irrelevant information for a given
prediction task. In its simplest form, attention produces a
weighted combination of input vectors, where the most rele-
vant inputs to predict a target are assigned higher weights and
the least relevant ones smaller weights [91]. Formally, we can
think of attention mechanisms as mimicking the retrieval of
a value vi (e.g., an input embedding vector) for a query q
(e.g., a contextual embedding) based on a key ki (usually the
same input embeddings vectors) in a database, where the query
outcome is a weighted combination of values vi based on the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE III
SUMMARY OF GRAPH-BASED XAI METHODS FOR AFFECTIVE COMPUTING TASKS

similarity of the query vector q and the different key vectors

attention(q, k, v) =

∑
i

similarity(q, ki ) ∗ vi . (1)

Because the weights associated with input embeddings
are trainable, these learned parameters can give insight into
the specific inputs that the model has considered useful
when training. In affective computing, this can be useful to
understand the contribution of different modalities and input
features at different points in time. Nonetheless, previous
research has shown that the relationship between attention
weights and model outputs is not necessarily direct [92], [93].
Jain et al. [92] show that attention scores are often uncor-
related with gradient-based feature importance measures, and
adversarial attention distributions can be found without alter-
ing model predictions. Although attention mechanisms can
provide a look into the inner workings of a model by producing
an easily understandable weighting of hidden states, attention
scores are not unique nor do they necessarily provide a faithful
interpretation of the link established by the model between
inputs and outputs. Hence, post hoc analyses of attention
weights and tests, such as the ones proposed in [94], are
needed to make informed decisions about the extent to which
model outputs can be interpreted via attention weights.

To the best of our knowledge, in affective computing,
there is very little work incorporating post hoc analyses of
attention scores. Most work uses attention to improve model
performance without forcing an alignment in multimodal data,
only visualizing attention activations for qualitative analysis
[95], [96], [97], [98], [99], [100], [101]. The authors of
Multimodal HireNet [102], however, incorporate a quantitative
analysis of attention weights, leveraging attention mechanisms
in a hierarchical fashion to understand the importance of ques-
tions, moments, and modalities in a hiring interview. The sta-
tistical analysis on attention activations includes visualizations

of temporal attention for different modalities, unsupervised
modeling to extract the regions of maximum attention, and
supervised techniques to understand the relevance of attention
slices in predicting employability. While they are unable to
identify whether the effect of attention slices is positive or
negative and causability of the generated explanations is not
yet addressed, their approach provides insight into not only
the salient inputs that the model considers relevant for the
prediction task but also the influence of those elements on the
final predictive performance.

Because attention scores are the result of a training pro-
cess on some input data, attention weights give insight into
specific information deemed useful when training but are not
necessarily correlated with human attention. What the model
decides to attend to is not necessarily aligned with what a
human would attend to if given the same inference task.
Hence, attention-based explanations can potentially generate
misalignment with the user’s prior beliefs, leading to under-
trusted insights that are not relevant to the mental model of the
explainee [42]. Along these lines, Nguyen et al. [103] explore
whether attention weights are aligned with semantic meaning
in emotional narrative understanding. While the qualitative
analyses imply that attended words carry emotional semantic
meaning, the work does not include quantitative analyses
nor user evaluations to measure semantic meaning and the
extent to which attention activations are aligned with these
connotations. In that respect, further research is needed to
assess the correlation between model attention and human
meaning in different training corpora and when incorporating
multimodal data.

B. Generative Modeling

Compared to discriminative models, generative models can
generate new data instances by modeling the distribution of
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the data itself. Given a set of input data X and a set of targets
Y , the goal of a generative model is to approximate the joint
distribution of the observed data P(X, Y ) by maximizing the
likelihood of the data under the model assumptions. Discrimi-
native models, on the other hand, are focused on discriminating
label data Y while considering input data X , approximating the
conditional probability P(Y |X). Because this latter probability
requires less knowledge about the data to be modeled than
the joint distribution, discriminative models usually require
larger amounts of data to train and perform well. Conversely,
to model a joint probability, knowledge about the input data X
and label data Y is needed, requiring more assumptions about
the underlying structure of the data.

Not all generative models are explainable. For instance,
variational autoencoders (VAEs) and generative adversarial
networks (GANs) are black box by design. Some generative
approaches, however, offer XAI advantages. Generative tech-
niques such as probabilistic graphical models (PGMs) allow
the incorporation of expert knowledge via graphs, ensuring
alignment between model explanations and explainees’ prior
knowledge. For example, in healthcare, these models can
represent researchers’ assumptions about the causal structure
among variables [104], and in affective computing, these
representations can encode theories of emotion [12], allowing
explanations to be interpreted in light of a given theory.
In these models, the relationship between nonobserved vari-
ables (e.g., internal emotions, beliefs, or desires) and observed
variables (e.g., emotional expressions and verbal cues) can be
explicitly modeled at different time steps. For example, the
evolution of latent emotions, Z t → Z t+1, could be modeled
using observed emotional expressions X t and perceived emo-
tions Yt . This flexible representation, encoding both observed
and nonobserved variables in a structure that has intrinsic
meaning, allows the interpretation of relationships in the model
in light of contextual cues. For example, when modeling
engagement [15], contextual variables, such as backchannel
or interruptions, and social factors, such as gender, can be
explicitly defined as variables in a PGM.

Modeling joint distributions has a long history in affective
computing. Before the rise of DL, different works lever-
aged probabilistic models, such as hidden Markov networks
(HMMs) [105], [106], [107], Bayesian networks (BNs) [108],
[109], [110], Gaussian mixture Models [111], [112], and
Boltzmann machines [113], [114]. Despite providing better
explainability, these generative approaches have two key dis-
advantages.

1) Representation: Low Capacity to Model Complex Rela-
tionships: Because generative models usually incorpo-
rate domain knowledge through a set of inductive biases,
these biases are commonly strong simplifying assump-
tions, limiting their ability to capture real-world complex
variability.

2) Inference: High Computational Complexity: While infer-
ence in generative models is NP-hard, approximate
inference methods can generally provide good-enough
approximations for many cases encountered in prac-
tice [115]. However, when incorporating complexity
to increase expressive power, approximate inference

methods can grow their computational complexity even
further, limiting their ability to train fast.

Several examples of recent work in affective computing
have tackled the challenges above. The following discussion is
framed around three common approaches in the field: PGMs,
deep generative models, and probabilistic programming.

1) PGMs: Joint multivariate distributions over large num-
bers of random variables can involve the specification of an
exploding amount of probabilities [115]. This expensive repre-
sentation involves high memory complexity, making it cumber-
some to manipulate both from a computational perspective and
from a human expert standpoint. PGMs reduce representation
complexity by exploiting independence properties in the data
and leveraging graphs as compact representations of joint
probabilities. In affective computing, recent work has lever-
aged two basic types of PGMs: 1) Markov networks, using
undirected graphs with cyclic dependencies and 2) BNs, using
a directed acyclical graph and explicitly modeling conditional
dependencies.

Starting with the first, Perikos et al. [116] introduce novel
HMMs to recognize sentiments in text. HMMs face two key
challenges in this type of task: first, the need for a high
feature space dimensionality to achieve high capacity, leading
to sparsity issues and very small probabilities, and second, the
difficulty of generalizing over previously unseen observations.
To solve these challenges, Perikos et al. [116] propose a
semantic clustering of words and a heuristic approach to per-
form feature selection via majority voting, as well as a smooth-
ing factor for probability estimates of out-of-vocabulary obser-
vations to avoid multiplications by zero. While these new
explainable HMM architectures require smaller datasets and
lower computational costs, they achieve lower performance
compared to SOTA deep neural networks (DNNs). Although
no user evaluations are carried out in their work, the authors
show how HMMs can qualitatively enable interpretability at
every step of their operations, achieving performance levels
on the task of sentiment analysis that based on the application
could be deemed acceptable.

Compared to Markov networks, BNs’ model directed rela-
tionships between random variables or nodes in a network.
In affective computing, this type of architecture has been used
to encode context in a variety of tasks, including engagement
prediction [117], affect recognition from speech [118], and
emotion modeling in dyadic conversations [119]. To improve
their modeling capacity, BNs have also been combined with
DL approaches. For instance, Heimerl et al. [15] use DL
methods for feature learning from multiple modalities and rely
on theoretical knowledge to choose the relevant features to
include in the model. While the work in [15] does not include
a full comparison of performance to SOTA DL methods, the
authors show how these models can offer a direct read on the
probabilistic relationships between relevant factors. Neverthe-
less, further research is needed to evaluate the causability of
these probabilistic insights.

2) Deep Generative Models: Hybrid approaches combining
the benefits of both discriminative and generative models are
more and more common in the literature [12]. The general idea
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is to leverage DL to learn complex probability functions in
generative models, facilitating inference, and parameterization
of probability functions while enabling model understand-
ing through uncertainty estimation. For instance, in a deep
Markov model (DMM), the probability functions defining
the relationships between latent and observable variables are
parameterized using neural networks [120], [121]. In affective
computing, however, DMMs need to handle multiple data
modalities, and therefore, uncertainty-aware multimodal fusion
is required. In this regard, Zhi-Xuan et al. [122] introduce
a factorized inference method for multimodal DMMs. This
multimodal generalization is derived via a factorized vari-
ational posterior, and while not tested directly on affective
inference tasks, the authors demonstrate that the method is
capable of multimodal temporal inference tasks, using both
synthetic and real-world multimodal data with varying levels
of data deletion.

Also, combining generative and discriminative approaches,
Tsai et al. [123] propose to optimize for a joint generative-
discriminative objective across multimodal data and labels.
The proposed approach factorizes representations into two
sets of independent factors: multimodal discriminative fac-
tors (shared across all modalities and containing joint multi-
modal features for discriminative tasks) and modality-specific
generative factors (unique for each modality and containing
the information required to generate each unimodal data).
Because generative factors model the joint distribution for
each modality, the incorporation of these into the architec-
ture allows the reconstruction of missing modalities, helping
the model achieve SOTA performance on six multimodal
datasets. By modeling unimodal variance using a genera-
tive approach, the authors are also able to interpret the
learned multimodal representations in light of the disentan-
gled unimodal contributions, understanding the influence of
each modality toward multimodal predictions at each time
step.

3) Probabilistic Programming: Because theory-driven
approaches require domain knowledge and need to be hand-
tuned to specific tasks and contexts, these methods tend to
have larger barriers to adoption. Usually built incrementally
and through iterations, being able to quickly compare different
theories is key for the sustained use of generative models.
Ong et al. [124] propose a probabilistic programming
approach to affective computing, modeling psychological-
grounded theories as generative models of emotion and
implementing them as stochastic, executable computer
programs. Because PGMs suffer from limited representation
power and computationally intensive inference, probabilistic
programming can be seen as a modern successor [125].
Instead of a graphical representation, conceptual knowledge
is defined as stochastic programs embedding randomness into
their execution. These programs allow for explicit modeling
of uncertainty and direct interpretation, as well as modularity
and hierarchical setups to model complex phenomena. To
jumpstart adoption, Ong et al. introduce different probabilistic
libraries leveraging deep-learning for fast inference, such as
Pyro, and go through tangible case studies and accompanying

code to illustrate the interpretability strengths of these
methods [124].

C. Graphs

A major challenge in affective computing involves how to
incorporate context into model explanations. While generative
models use a theory-driven approach to incorporate context
through latent variables, graph representations can integrate
context explicitly, encoding both spatial and temporal rela-
tionships in the data by using a set of edges or connections
between different items or entities. These relationships can
be extracted and incorporated into explanations while still
leveraging data-driven modeling techniques, overcoming both
the interpretability limitation of DNNs and the capacity con-
straints of generative approaches. Moreover, graphs can not
only be used to represent key relationships in unstructured
data but also be leveraged to represent commonsense reasoning
or specific domain knowledge. The latter, commonly referred
to as knowledge graphs (KGs) or semantic networks [126],
offers key advantages to explainable modeling, including both
the incorporation of external knowledge and symbolic logic.

In the discussion that follows, we give an illustrative
overview of recent work in affective computing where graphs
have been used as a data representation tool to encode task-
relevant information. Next, we review past work in the field
leveraging KGs and discuss the key advantages and challenges
of these methods. Rather than providing an exhaustive collec-
tion of references in this area, our goal is to provide the reader
with an illustration of what is possible, building knowledge
on how graphs can contribute toward explainable affective
computing.

1) Modeling Data With Graph Representations: Certain
affective computing tasks can benefit from exploiting inherent
relational structures in the data. In this type of application,
graphs are well suited to improve both predictive performance
and in-model interpretability. For example, instead of action
units (AUs), muscles in a human face and their relationships
could be represented via a graph [127], [128]. By exploiting
the dynamics of facial topology, the proposed method in [128]
has greater discriminative power and higher interpretability.
Along the same lines, Ghaleb et al. [129] present an explain-
able approach for bodily expressed emotion recognition. Using
the body joints of the human skeleton as nodes in a graph, the
proposed architecture leverages graph convolutional networks
(GCNs) [130] and attention mechanisms to identify which
body part contributes the most to emotional inference. Also,
using GCNs, in electroencephalogram (EEG) signal-based
emotion recognition, Ye et al. [131] propose a hierarchical
dynamic approach to learn topological relationships among
EEG channels, and Li et al. [132] apply a graph topology fea-
ture learning strategy to identify discriminative brain regions
and explain which ones relate the most to emotion.

Another task where graphs can exploit inherent structures
in the data is sentiment analysis and, more specifically, aspect-
based sentiment analysis (ABSA). To identify the sentiment
polarity toward different aspects contained in a text, graphs
encoding the syntactic tree structure have been used to
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disambiguate information [133], [134], [135], [136]. With no
specific focus on XAI, the methods proposed in these works
rely on graphs to improve model performance by modeling
correlations between different syntactic elements in a sentence.
To the best of our knowledge, no existing work has attempted
to assess the value of these methods for model transparency.

Even when no inherent structures exist in the data, graphs
can help overcome other key challenges in affective comput-
ing. Starting with the reliability of emotion annotations, graphs
have been used to model the correlations between different
emotions. Rather than considering a given emotion as a stable
single label, the idea is to acknowledge the fuzzy nature of
emotions and explicitly model the correlations among different
affective states using a graph [137], [138]. As shown in [138],
this offers several advantages, including a better understanding
of the emotional state of a given individual and a direct
interpretation of the modeled graph.

Graph representations can also help modeling context,
incorporating contextual cues in the interpretation of affect
recognition. For instance, in [139], graphs are used to learn
the affective relationships between different context elements
in a picture, and in [140], a hierarchical method based on
scene graphs is presented. Following a similar reasoning,
Gao et al. [141] propose a novel framework based on a GCN
that leverages both spatial and temporal contextual features
for video emotion recognition, outperforming SOTA methods
for context-aware emotion recognition while allowing a direct
visualization between final emotion predictions and salient
regions in video frames.

Emotion recognition in conversations is another task where
contextual factors play an important role. Because mod-
eling emotions in a conversation requires reasoning over
long-term dependent contextual information, sequence-based
DNNs struggle to capture multiple dependencies over long
sequences of time [142]. Hence, graphs have been used to cap-
ture both temporal dynamics and intraspeaker and interspeaker
dependencies. By modeling the conversation using a directed
graph, utterances are represented by nodes and edges capture
the dependencies between utterances coming from different
speakers. In this way, the entire conversational corpus is sym-
bolized as a heterogeneous graph, and the emotion detection
task is framed as a classification problem of the utterance
nodes [143]. Ghosal et al. [142] present DialogueGCN and use
edge weights to visualize the dependencies between different
speakers. Extensions of this work include the incorporation
of sequential context [144], an extension of the method to
M distinct speakers in a conversation [143], and solutions for
long-term contextual information without considering a fixed
window size [145].

In cases where conversations have a clear defined goal,
graphs can also provide a useful structure to understand
conversation dynamics. Joshi et al. [146] propose Dialograph,
a text-based negotiation system based on graph attention
networks for interpretable prediction of optimal negotiation
strategies. By using a graph where nodes correspond to negoti-
ation strategies for a given utterance and directed edges capture
the influence between strategies, the proposed architecture
allows the interpretation of negotiation strategies via attention.

By relying on graphs, Dialograph not only improves the
understanding of negotiation strategies in a conversation but
also outperforms previous baselines for downstream dialog
generation.

Finally, modeling multimodal dynamics using a graph can
provide several benefits, including an improved performance
by helping the network to explicitly model cross-modal inter-
actions and an improved understanding of the fusion mecha-
nism. For example, Zadeh et al. [69] use edge weights to study
how modalities relate to each other across time, and Yang
et al. [147] propose modal-temporal attention graph (MTAG),
an interpretable graph-based approach that converts unaligned
multimodal sequence data into a graph with heterogeneous
nodes and edges. Because each node in the proposed graph
represents a video, text, or audio utterance, a dynamic pruning
method and attention mechanisms are considered to reduce
the complexity of interpretation, achieving SOTA performance
while allowing for a qualitative interpretation of model out-
comes.

2) Knowledge Graphs: KGs are graphs that store fac-
tual information or commonsense knowledge by using
nodes/entities and edges to represent relationships between
entities. Typically encoded as a set of rules, knowledge in a
KG can be either represented via a graph or by using subject–
relationship–object triples [148]. While directly interpretable,
these representations make it hard to ingest KG features into
machine learning applications due to computational efficiency
and data sparsity challenges [149]. Hence, a common way of
representing knowledge in a KG involves the use of embed-
dings. Aimed at encoding the latent properties of the graph
in a continuous space, KG embeddings are low-dimensional
dense representations of a given entity in a KG and its
relationships [150]. Because latent semantics of the network
are preserved while generating the embeddings, similarity in
the embedding space implies the similarity of both concepts
and relationships in the corresponding KG.

Although KG embeddings are not directly explainable, KGs
can open the door to explainable affective computing via the
integration of symbolic AI into subsymbolic AI approaches.
These two alternative paradigms to AI offer different ways to
model reality: on the one hand, subsymbolic AI does not make
use of explicit symbols or rules to attain a model and relies on
mechanisms to extract patterns from past experiences, such as
statistical learning or DL methods. Because the model is not
explicitly defined, these learning mechanisms can often lead
to black-box models with low interpretability. On the other
hand, symbolic AI aims to build a model via rules or formulas
that can not only logically represent reality, leveraging objects
and logical relationships in symbolic statements that are
often hardcoded, but also be learned [151]. Because symbolic
AI builds models that are explicitly represented via rules
derived from reasoning, outputs are inherently explainable
and can be described in human language. Hence, in affective
computing, these two approaches to AI can be combined to
leverage both the data-driven expressive power of subsymbolic
AI (e.g., DL models) and the interpretability of symbols
and domain-based knowledge (e.g., commonsense reasoning
encoded in KGs). In this context, KG embeddings can be used
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to integrate semantic and domain background knowledge in
a machine-readable format into DL architectures, helping the
model disambiguate concepts when dealing with large amounts
of data while providing more meaningful explanations [152].

Several attempts exist in the literature combining KGs and
subsymbolic AI techniques. Starting with emotion recogni-
tion in conversations, Ghosal et al. [153] present COSMIC,
a framework that incorporates different elements of common-
sense knowledge, such as mental states, events, and causal
relations, to predict utterance emotions in a conversation.
The proposed framework consists of three main stages: the
extraction of context-independent features using pretrained
language models, the extraction of knowledge-based (com-
monsense) features with the commonsense transformer model
COMET pretrained on several commonsense KGs, and the
integration of both features into dedicated GRU cells to model
speaker states and intent. This approach not only achieved new
SOTA results for emotion recognition in conversations but also
provided better qualitative interpretations of predictions via the
incorporation of commonsense knowledge-based features.

Also, in the context of emotion recognition in conversations,
Wang et al. [154] use KGs to integrate emotional causality
reasoning into empathetic response generation, improving the
explainability of both the emotion recognition and the utter-
ance generation tasks. In their work, the user’s emotional
experience is represented by using a series of emotional
causality graphs via multihop reasoning over commonsense
KGs. These graphs are then used to build an embedding
and generate an empathetic response. While most existing
works focus on what the emotion is and ignore how the
emotion is evoked, Wang et al. [154] show that the use of
KGs not only helps with creating a context-aware embedding
that can be exploited to synthesize an empathetic utterance
but also contributes toward an improved understanding and
interpretability of the system.

By integrating relevant domain context, KGs not only help
a DL model achieve better performance via richer features
and embeddings but can also enable effective disambigua-
tion and noise handling. For instance, in the context of
ABSA where different aspects and sentiments can be mixed
in a long sentence, KGs can help provide explainable and
accurate aspect terms. For instance, Zhao et al. [155] study
the problem of explainable ABSA by incorporating exter-
nal domain knowledge into a pretrained BERT language
model, and Zhong et al. [156] introduce KGAN, a KG
augmented network that captures sentiment feature repre-
sentations from a temporal, syntax, and knowledge-based
perspective. Using attention mechanisms when learning these
three representations, weights can be inspected to understand
which words were attended the most from each different
perspective.

The combination of KGs and subsymbolic AI approaches
is also at the core of Sentic Computing [157]. Defined as a
multidisciplinary approach to sentiment analysis at the cross-
roads between affective computing and commonsense com-
puting, several algorithms and resources proposed under this
umbrella enable the incorporation of external knowledge into
DL architectures [158]. For instance, AffectiveSpace [159],

[160] and SenticNet [161] are KG resources built to represent
affective commonsense reasoning. From the algorithm’s per-
spective, Sentic LSTM incorporates commonsense knowledge
of sentiments into the end-to-end training of an LSTM model:
the core of the method, fully described in [162], relies on
the integration of relevant AffectiveSpace embeddings into
LSTM gate mechanisms to control the flow of word-level
information through the LSTM cell. Finally, Sentic LDA
integrates knowledge from SenticNet in the calculation of word
distributions within the standard LDA algorithm, enabling the
shift from syntax to semantics in ABSA [158], [163].

D. In-Model Methods’ Conclusion

In-model XAI methods have the potential to improve both
predictive performance and model transparency in affective
computing. While the methods discussed in this section can
help overcome key XAI challenges in the field, they also face
several issues. Attention requires post hoc analysis, and when
used in architectures incorporating hierarchical mechanisms
or transformer-based strategies, it can lead to hundreds of
millions of parameters, requiring high computational power
to be trained and further processing to produce a useful
explanation. Generative models can be interpreted directly,
but the discovery of factors requires expert knowledge, which
can be impractical for some tasks. In addition, if too many
factors are added to improve model capacity, a generative
model can also become difficult to interpret. When the task at
hand benefits from explicitly modeling relational structures in
the data, graph representations can benefit both interpretability
and model performance. However, there are many works in
the literature incorporating graphs that are solely focused on
improving predictive performance, adding additional complex-
ity layers and parameters to be trained, and preventing effec-
tive interpretation when the graphs are not sparse. Finally, KGs
can bridge the gap between data-driven analyses and human
meaning, providing strong priors and exposing frameworks for
interpretation. However, complex sets of rules can also be hard
to interpret.

As we will discuss later in Section VI, any in-model XAI
method has the potential to generate uninterpretable complex
sets of patterns, which may need to be preprocessed further to
avoid increasing the cognitive load of explainees [42]. In this
way, a holistic approach to in-model XAI could be the key
to unlock explainability in affective computing, with hybrid
methods marrying the strengths of different techniques.

V. POSTMODEL XAI METHODS FOR
AFFECTIVE COMPUTING

The goal of postmodel XAI techniques is to understand
how model outputs relate to inputs after model training. These
techniques estimate feature importance by treating the model
as a black box (model agnostic methods) or exploiting some
aspect of the model’s internal structure (e.g., activations of
neurons in a neural network).

When the scope is local and the goal is to explain a
given prediction, model agnostic methods approximate model
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TABLE IV
SUMMARY OF POSTMODEL XAI METHODS FOR AFFECTIVE COMPUTING TASKS

computations by applying perturbations on inputs and observ-
ing the changes in model outputs. This is the case with
Shapley values [164], where feature importance is approx-
imated by averaging the marginal contribution of a given
feature on model outputs for all possible permutations of
other features [165], [166], and with LIME [167], where ran-
dom perturbations are applied to inputs and locally weighted
regression is used to identify the perturbations leading to the
biggest change in model output. Local postmodel methods can
also make use of the model’s inner workings to approximate
the relationship between inputs and outputs: for example,
gradient-based approaches use the gradient of the output for
a given class with respect to some inputs to quantify feature
importance. This is the case with methods such as Smooth-
Grad [168], GradCAM [169], LRP [170], or DeepLift [171].
When the scope is global and the goal is to understand how
the model works on average considering the whole dataset,
explanations are generally obtained by either aggregating local
explanations (e.g., using LIME or Shapley) or by applying a
global surrogate model. The latter, also called an explainer,
is by design a simpler model, such as a tree-based method,
which approximates inputs and outputs of a more complex,
black-box, model.

A. Postmodel XAI Applied on Discrete Sets
of Unimodal Inputs

A major challenge facing postmodel methods in affective
computing relates to representation learning and the require-
ment to have a discrete, interpretable, set of features to apply
these methods. From a computational perspective, because
bigger sets of features can lead to bottlenecks and heavy
workloads in the computation of explanations, smaller sets of
features are beneficial. From a modeling perspective, discrete
sets of features can lead to high variance across samples, limit-
ing the ability to generalize in different contexts (e.g., different

languages). Because these handcrafted features rely on human
perception, by design, they cannot encompass all the relevant
variance in the data.

Hence, in affective computing, postmodel XAI techniques
have been mainly applied on tasks where a single modality
is considered and a discrete set of inputs, such as pixels or
words, is used to learn data representations (see Table IV).
For instance, in vision, postmodel XAI applications include
pain estimation from facial expressions using DeepLift [172]
and LRP [173], interpretable depression recognition from
facial images using a CNN-based postmodel method [174],
facial emotion recognition using an extension of Shapley
values [175] and LRP [176], and prediction of driving behavior
with LRP [177]. Using LIME on video frames for emotion
recognition, Heimerl et al. [178] introduced NOVA, an anno-
tation tool for emotional behavior analysis implementing a
workflow that interactively incorporates the “human in the
loop.” In their work, the authors investigate how LIME can
better assist nonexperts in terms of the trust, perceived self-
efficacy, cognitive workload, and in creating the correct mental
models about the system. With a user study of 53 participants,
the causability and value of the proposed explanations are
assessed, with results indicating that LIME can help users
better understand the system compared to not having any
explanation.

In EEG signal-based emotion recognition, postmodel XAI
methods, such as Shapley values, have also been applied.
In [179], for example, fuzzy ART (FA) techniques and genetic
algorithms are used to amplify the signal-to-noise ratio and
create clusters of features that are then fed into boosted
decision trees. The importance of these clusters is interpreted
via SHAP values, leading to insights on the contributions
of both individual features and feature interactions toward
predicting human effect.

In text-based sentiment analysis, LIME has been used to
identify the most influential words in a sentence [180], and
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more generally, in NLP, local and global postmodel explana-
tions are also part of the Language Interpretability Tool [181],
an open-source platform for visualization and understanding
of NLP models.

In multimodal settings, Lyu et al. [182] propose DIME,
an extension of LIME disentangling a multimodal model
into unimodal contributions and multimodal interactions after
training. While the experiments performed only involve the
visual and text modalities due to the high computational cost
of the method, user evaluations show that DIME can help
researchers determine which unimodal or multimodal contri-
butions are the dominant factors behind the model’s prediction.
An improvement of DIME aimed at improving its scalability
is introduced in MULTIVIZ [183], a tool for analyzing the
behavior of multimodal models that scaffold the problem of
interpretability into unimodal importance, cross-modal interac-
tions, multimodal representations, and multimodal predictions.

B. Postmodel XAI Applied on Handcrafted
and Low-Level Features

Apart from being applied to pixels or words, post-
model XAI can also be applied to handcrafted features.
While the inevitable information loss of manual features
has propelled the development of other representation learn-
ing approaches [184], in certain tasks, discrete sets of rep-
resentations derived from science can still be beneficial,
especially when big pools of data are not available and
when understanding the association between specific attributes
is required [185]. In [186], for example, using a set of
88 handcrafted features and DeepLift, Das et al. investi-
gate the ability of unsupervised learning methods to learn
lower dimensional representations that can generalize over
different languages. In affective computing for mental well-
being, Alghowinem et al. [187] present a feature selection
framework to automatically identify the most discriminative
handcrafted features for depression detection, enabling inter-
pretability while providing higher predictive accuracy. Using
also handcrafted features to understand the psychological state
of a given individual, in [188], Shapley values are used to
assess the influence of sensor, behavioral, and weather factors
in the psychological indexes of office workers. Similarly,
in [189], behavioral insights are generated using Shapley
values and packaged into personalized interventions, helping
individuals build mindfulness habits.

When incorporating data-driven feature learning methods,
learned features might not be directly interpretable. In these
scenarios, postmodel methods have been applied in two differ-
ent ways. The first way involves a hybrid approach that relies
on bottom-up feature generation as part of the DL process and
top-down integration of theory-based features. For instance,
in personality prediction from text, Mehta et al. [190] propose
a model integrating traditional psycholinguistic features with
language embeddings, using Shapley values to understand
the influence of psycholinguistic predictors in a particular
personality trait prediction. While the interpretation of the
model does not guarantee 100% coverage or faithfulness since
language embeddings are not considered when computing

Shapley values, the method generates insights into how dif-
ferent psycholinguistic features influence model outcomes.

A second way of generating post hoc explanations in models
reliant on data-driven representations involves the use of a
discrete set of handcrafted features relevant to the task at
hand, but not necessarily used in the modeling process. In
M2-Lens [191], this approach is followed to explain multi-
modal models for sentiment analysis. Providing explanations
on intramodal and intermodal interactions at different levels,
M2Lens uses a set of handcrafted features for each modality
and relies on Shapley values to compute the importance of
each modality. Although explaining model performance using
a finite set of features can provide insights into how a given
model is influenced by those specific features, this approach
can only provide a relative view of feature importance. While
this can be useful in tasks where a defined set of interpretable
features is relevant for decision-making, it can be misleading
for researchers trying to understand how their model works.
For instance, one expert in [191] concludes that an LSTM
model does not rely on text to learn sentiment when, in fact,
the conclusion needs to be framed in relative terms: because
part-of-speech is the only text feature being considered to
quantify the importance of the text modality, the conclusion
should be that this specific feature is not as relevant as other
features being considered in the computation of importances.
We cannot infer that the text modality on its own is not
relevant nor the model is unable to learn sentiment in text: if,
in fact, the model is using only POS tags as the text feature,
we may be constraining its ability to extract information and
variance from the language modality by only feeding this
manual feature. If, on the other hand, the model is using other
text features such as word embeddings, then, because we are
not considering these language embeddings in the computation
of feature importances, we cannot conclude either that the
model is not paying attention to text to generate its predictions.

C. Postmodel Methods’ Conclusion

Postmodel XAI techniques have been proved effective in
unimodal cases and modeling scenarios involving finite sets
of handcrafted features. However, in multimodal tasks, post-
model methods need to be adapted to appropriately account
for intramodal and cross-modal interactions, usually leading
to high computational costs. Depending on the goal of the
explanations and who are the explainees, a discrete set of
manual features or highlighted inputs can be beneficial (e.g.,
NOVA [178]). However, when the goal is to understand
how the model operates in order to improve it, faithful-
ness is crucial to avoid overtrusting or undertrusting the
system. In this context, simplistic explanations can lead to
disregarding important aspects of the model influencing its
performance.

VI. DISCUSSION AND FUTURE DIRECTIONS

We have reviewed and categorized several approaches to
explain the output of multimodal affective computing systems.
As evidenced by these publications, recent advances in XAI
have made it possible to explain the output of affective
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Fig. 1. XAI understood as a dimensionality reduction problem: explanation goals and explainee need to determine the size of the required subset of patterns
composing the explanation.

computing systems without negatively impacting predictive
performance. The field, however, is still in its infancy, and sev-
eral challenges still lie ahead preventing transparent affective
computing systems from scaling. In the following, we discuss
the fundamental difficulties to be addressed by researchers and
directions for future research.

A. Dimensionality Reduction as an Analogy for
Generating Explanations

The ultimate goal of XAI in affective computing is extract-
ing a relevant subset of patterns that explain the relationship
between model inputs and outputs to help a user better
understand the behavior of an affective system. In this way, the
complete set of patterns being captured from the data is given
by the model, which is just a function mapping a set of inputs
to a given output or target of interest. A model can be given by
a neural network architecture, a differential equation system,
an exhaustive set of deterministic rules or heuristics, or a
set of ontologies and knowledge-based logic laws. Whatever
its form, a model needs to have enough expressive power
and capacity to model high-dimensional and sparse data.
In the case of affective computing, where accounting for
the intertwined relationships between different modalities and
context factors is crucial, to achieve high performance and
be able to exploit the patterns in the data, models neces-
sarily need to have great flexibility and expressivity. Thus,
an affective computing system naturally involves complex
models since it is the nature of the task itself that determines
the complexity of the full set of patterns that need to be
considered.

The problem of explaining the output of affective computing
systems can be therefore reframed as a function approximation
problem: given a complex set of patterns considered by a
model, how can we extract a relevant subset of patterns to
help a user understand the relationship between model inputs
and outputs? (See Fig. 1). From this perspective, generating
explanations is no different from dimensionality reduction
in statistical learning and machine learning. Hence, both to
understand affective data, high dimensional and unstructured,
and to understand how an affective model reasons and oper-
ates, we need to reduce a set of complex patterns to a
relevant summary to be consumed by a human, minimizing
cognitive load and dilution of the most important information.
As discussed in Section III, the key challenge with the former

is the lack of standardization methods to evaluate, explore,
and compare multimodal datasets. The key challenge with the
latter, however, is how to ensure that the key information is
preserved, and the final set of relationships to be considered
is representative of the full set of patterns exploited by the
model.

While we acknowledge that not all applications need com-
plete faithfulness and explanations can still be useful even
when the subset of patterns does not have full coverage of
the real patterns leveraged by the model, faithful representa-
tions of model patterns are usually required when building
explanations for researchers in the field, who need a deep
understanding of model operations in order to improve them,
as well as decision-makers in high-stake scenarios, such as
healthcare or education, where model reliability is critical.
Considering the complexity of the full set of patterns as a given
due to the complexity of affective computing tasks, further
research is needed on how to reduce this high-dimensional set
of patterns into a manageable, human-friendly, summary of
relationships while maintaining the variance and key properties
of the data in the transformation.

B. Isolated Research Efforts Can Lead to Shifting
the Burden of XAI

Because a model is just a function relating inputs to outputs
and affective computing tasks are complex, involving high-
dimensional data, as well as multimodal and time depen-
dencies, we argue that any model with enough capacity will
generate a complex set of patterns or rules. In this way, the
model itself can be thought of as a very complex explanation
with low interpretability (see Fig. 1).

While some in-model XAI methods are claimed to be more
interpretable by design, such as theory-driven generative mod-
els or knowledge-based algorithms, a complex task can require
hundreds of factors to be considered in a generative model or
thousands of ontologies in a knowledge-based method. In this
way, high-complexity tasks can lead to generative models that
are not directly interpretable or large collections of intertwined
knowledge-based rules, which would need to be mined. Hence,
moving from one modeling framework to another, such as
from discriminative models to generative models, will not
solve the problem of generating an explanation: because the
task in itself is complex, the set of rules will still be complex,
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and we are just shifting the XAI burden from one framework
to another.

C. No Free Lunch: Explanation Goals and
User Needs Matter

Assuming that we have a continuous space between a very
complex set of model patterns and a very simple relevant
subset of those patterns (see Fig. 1), where do we stop?
How reduced should the subset be? The type of applica-
tion, the users involved, the goal of the explanations, and
even the frequency of explanations will determine the capacity
of the explainee to absorb information and the reduction that
needs to take place during the transformation. For instance,
when considering a researcher as the final user of the XAI
output and assuming that the goal of the explanation is to
provide enough information about the model for the researcher
to improve it, because this user is already knowledgeable
about how the model works, in this scenario, we would
expect a higher capacity to absorb information. Hence, more
complex summaries guaranteeing faithfulness to the system’s
decision-making would be beneficial. On the other hand, when
considering laypeople using an intelligent tutoring system to
learn how to best behave in a job interview, the explanation
exposed needs to be very simple, yet actionable. Assuming
that, in this case, the users require explanations to understand
why their score in the learning system is low and how to adapt
their behavior to score higher in a job interview, the output
summary needs to be targeted to the specific aspects that led
to the low score in order to help the users focus their learning
on what is important.

While these are hypothetical scenarios where we assume
certain user needs, user requirements should not be assumed
without evaluation. In fact, before even considering XAI tech-
niques or methods, any affective computing application should
consider why an explanation is needed in the first place. If user
needs are not properly understood, then the extent to which
an explanation should be simplified is unknown. Because
models are simplifications of reality and explanations are
simplifications of the models underneath, oversimplification
and incompleteness can lead to incorrect interpretations of
explanations, limiting their usefulness in practice. In the same
way, depending on who are the explainees, an explanation
that is complete and complex can also lead to wrong conclu-
sions and/or to being dismissed. This misalignment between
expected interpretations and actual understanding of expla-
nations can limit practical correctness in the same way that
flawed XAI algorithms can limit technical correctness. While
quantitative analyses can help mitigate the risks of technical
incorrectness, to solve for practical correctness careful user
design is needed.

In this review, we have seen that almost no research to date
includes user evaluations or assessments of the usefulness of
the explanations, that is, the causability of the XAI outputs,
when, in fact, the application itself and the user needs should
determine the choice of the XAI method, the scope of the
explanation, and the extent of the dimensionality reduction
applied on the model patterns. While we believe that this is

the case because explanation evaluations are not standardized
yet in the field, the human dimension of explanations should
not be ignored nor avoided.

D. XAI and Causality

Essentially, an explanation can be thought of as an answer
to a why-question. In this review, we have reduced the scope to
consider only associative reasoning, considering an explana-
tion as a subset of relevant patterns giving information on what
inputs relate to outputs and which part(s) of the input and/or
model structure influence its final recommendations. Under-
standing feature importance and the relationship between
model inputs and outputs is, however, just the beginning of the
XAI journey, and hence, this article has focused on gathering
evidence to understand whether this first stage is even possible
in affective computing. Nevertheless, when considering again
the case of an intelligent tutoring system, how can we guar-
antee that, if the user changes the specific traits leading to a
low score, no other traits will be changed, and therefore, the
final score will be higher? While out of scope in this review,
the next stage in the XAI journey would involve interventionist
and counterfactuals reasoning, that is, the ability to understand
not only which inputs relate to model outputs but also which
features, traits, or behaviors need to be changed and by how
much to flip the output of an affective computing system.
In affective computing, this type of reasoning answers the
question of not only why but also what if can be useful in a
wide spectrum of applications, ranging from learning systems
to diagnostic tools in healthcare.

Closely related to counterfactuals are the topics of causal-
ity and causal modeling. Because counterfactuals involve
reasoning about why things happened and imagining the
consequences of different actions in hindsight [192], adding
this additional layer of reasoning into explanations requires
models to identify and extract causal patterns from the data.
While causal modeling is outside of the scope of this article,
we believe that causal inference can be a powerful modeling
tool for future explainable affective computing, moving the
field forward toward more valuable and richer explanations
aligned with user needs.

E. Word of Caution: Explainable Affective Computing Does
Not Equate to Ethical Affective Computing

XAI does not justify illegitimate use cases of affective
computing. A model can be explainable and still lead to
unacceptable risks. Because AI models are uncertain and no
AI model is perfect, impact assessments [193] need to be
carried out in order to evaluate potential risks and benefits
for all involved stakeholders. When potential risks outweigh
expected benefits, different approaches other than AI should
be sought. Furthermore, XAI is also only one key aspect of
transparency, the latter involving responsible communication
at all levels, including system limitations, scope, and consent
among other aspects [23]. At the same time, transparency is
only one component of responsible AI [78] and, by itself,
does not guarantee that the developed system will respond
to responsible AI principles in practice. For these reasons,
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premodel, in-model, and postmodel explainability should not
be seen as sufficient prechecks to release affective systems
into real-world applications, but rather, as just a component
in a broader picture, including other applicable transparency,
privacy, accountability, and reliability goals.

Explanations do not always lead to positive effects either.
In fact, explanations can intentionally be used to deceive and
manipulate people [194], as well as unintentionally generate
negative consequences downstream [195]. In affective comput-
ing, where modeling is primarily focused on human behavior,
both manipulative explanations and pitfalls can lead to emo-
tional damage and infringement on human rights. Moreover,
inducing trust and overreliance on systems that should not
be trusted can negatively affect individuals at scale. In this
context, we advocate for a human-centered approach to XAI,
starting by questioning the need for explanations and carefully
assessing who can benefit from them. Rather than prescriptive,
we see explanations as prompts for further thinking, encour-
aging reflection rather than automatic acceptance. From this
perspective, explanations can be a tool aimed at giving agency
to people, helping end users improve their own capabilities
rather than replacing their judgment. While XAI has been
primarily focused on opening the black box of DL to help
researchers improve algorithmic performance, future research
requires multidisciplinary collaboration and cross-disciplinary
knowledge exchange, involving not only the development of
techniques for algorithmic transparency but also the practice
of responsible and human-centered XAI design.

VII. CONCLUSION

Affective computing is an active and challenging multi-
disciplinary research area with unprecedented potential to
change the way humans interact with technology. While the
last decades have witnessed vast progress in the field, the
black-box nature of affective computing systems is one of
the key aspects preventing them from scaling into real-world
applications. In this article, we have explored whether this
issue can be overcome with no extra cost to practical pre-
dictive performance. Toward this end, we have analyzed and
categorized examples of work implementing XAI methods in
affective computing applications and related tasks, with a focus
on those implementations achieving comparable results to the
SOTA or even improving them. While explainable affective
computing is still nascent and several challenges still are
ahead, we conclude that first-stage explanations relating inputs
to outputs are already technically feasible and do not necessar-
ily involve the use of simplistic modeling methods unable to
capture the complexity of affective computing tasks. Future
research needs to address aspects such as faithfulness and
causability, but the path toward explainable and transparent
affective computing systems has already been cleared.
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