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Abstract— Multiscale features are of great importance in
modern convolutional neural networks, showing consistent per-
formance gains on numerous vision tasks. Therefore, many plug-
and-play blocks are introduced to upgrade existing convolutional
neural networks for stronger multiscale representation ability.
However, the design of plug-and-play blocks is getting more and
more complex, and these manually designed blocks are not opti-
mal. In this work, we propose PP-NAS to develop plug-and-play
blocks based on neural architecture search (NAS). Specifically,
we design a new search space PPConv and develop a search
algorithm consisting of one-level optimization, zero-one loss, and
connection existence loss. PP-NAS minimizes the optimization
gap between super-net and subarchitectures and can achieve good
performance even without retraining. Extensive experiments on
image classification, object detection, and semantic segmentation
verify the superiority of PP-NAS over state-of-the-art CNNs
(e.g., ResNet, ResNeXt, and Res2Net). Our code is available at
https://github.com/ainieli/PP-NAS.

Index Terms— Multiscale, neural architecture search (NAS),
plug-and-play, representation learning.

I. INTRODUCTION

MULTISCALE features are important for visual tasks
in natural scenes. Objects within a single image may

have various sizes and the same object may have different
sizes between multiple images. Then, different parts of an
object are usually of different sizes and may be helpful for
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understanding the object. Furthermore, under some circum-
stances, recognition of an object may be difficult from the
object itself, but much easier when relying on essential context
information from multiscale features. Thus, it is of great
importance to capture multiscale features that benefit com-
puter vision tasks, including image classification [1], [2], [3],
[4], [5], object detection [6], [7], [8], [9], [10], instance
segmentation [11], [12], semantic segmentation [13], [14],
keypoint detection [15], salient object detection [16], [17],
medical image analysis [18], [19], [20], [21], [22], and image
deraining [23].

The key to capturing multiscale features in convolutional
neural networks is the design of network architecture. Many
plug-and-play blocks [1], [2], [3], [4], which can be easily
integrated into existing networks by replacing the regular con-
volution operation, were proposed to improve the multiscale
representation ability of the networks. However, the design
of these blocks has become more and more complex and
requires significant architecture engineering. Moreover, these
manually designed blocks may contain human bias and are
not optimal. We believe that a new design pattern would
be introduced to facilitate the development of plug-and-play
blocks.

To address these problems, we advocate for the use of
neural architecture search (NAS) to find better plug-and-play
blocks automatically. In particular, a new search space for
plug-and-play blocks is proposed. Following the design of
previous works, the new search space can be easily integrated
into existing networks by only replacing the main convolution
operation. Therefore, we name the new search space as plug-
and-play convolution (PPConv). To better focus on the design
of plug-and-play blocks, we simply choose the most widely
used ResNet with bottleneck structure as the macro architec-
ture and replace the 3 × 3 convolutions with the searchable
plug-and-play blocks. The concrete operations and connec-
tions inside the plug-and-play blocks will be searched and
derived.

After the definition of search space, differentiable NAS
(DNAS or DARTS) [24], [25], [26], [27], [28] methods are
used to jointly optimize the network weights and architecture
parameters in a weight-sharing super-net via gradient descent.
The final architecture is derived from the trained super-net
at the end of the search phase. Unlike most DARTS-based
methods using bilevel optimization which suffers from a heavy
computational burden and inaccurate estimation of architec-
tural gradients, we apply one-level optimization to speed
up and simplify the search procedure. We also add strong
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Fig. 1. Pipeline of PP-NAS-induced PPConv. (Left) Process of PPConv to calculate input features with shape N × H × W × C . The input features are
split into D groups for search, where D = 4 in the example. The middle part shows the overview of the search space. Dotted lines are candidate connections
to pass the information flow. Squares with triangles in the corner show candidate operations for the search, where the center color indicates the dominant
operation with the largest weight. The output features of each group are marked with the same color as the dominant operation. (Right) Details of the process
in the output groups of the red dashed box on the left with j = 7. The forward process contains a sum of input features weighted by connection parameters
α, followed by a sum of candidate operations processed results weighted by operation parameters β. Architecture parameters α and β are learnable and
determine the derived architecture.

regularization to prevent the failure caused by overfitting
[29], [30]. We summarize our main contributions as follows.

1) We propose a new search space PPConv for plug-and-
play blocks and integrate it into ResNets to get PP-ResNets,
which is different from most previous NAS works based on
NASNet or MobileNet search space.

2) We introduce a search algorithm composed of one-level
optimization, zero-one loss, and connection existence loss.
It can significantly outperform random search and find good
connections and operations in the new search space.

3) PP-NAS minimizes the optimization gap between super-
net and derived architectures, which achieves good perfor-
mance even without retraining.

4) PP-ResNets outperform state-of-the-art ResNet-style
CNNs and show consistent gains on datasets and benchmarks,
including Canadian Institute For Advanced Research (CIFAR),
ImageNet, Visual Object Classes (VOC), Common Objects in
COntext (COCO), and Cityscapes.

Our work also has a conference version [31]. Compared
with it, additional contents are highlighted, including a figure
for the pipeline of PPConv (Fig. 1), comparison with other
NAS methods in classification (Tables I and III), random
search (Table II), detailed object detection results for each
class (Table V), visualization of semantic segmentation results
(Figs. 6 and 7), latency experiments (Table VII), ablation
studies for loss terms (Table VIII), and discussions about
PP-NAS (Section V and Fig. 5).

II. RELATED WORK

A. Multiscale Network and Plug-and-Play Block

The key to capturing multiscale features in convolu-
tional neural networks is the design of network architecture.
Res2Net [1] proposed to connect split small filter groups in a
hierarchical residual-like style to increase multiscale represen-
tation strength. MixConv [2] mixed up multiple kernel sizes in
a single depthwise convolution to capture patterns at different

resolutions for better accuracy and efficiency. PyConv [3]
introduced pyramidal convolution that contains a pyramid
of kernels with varying size and depth to capture different
levels of details in the scene. HS-ResNet [4] addressed the
hierarchical-split block that contains many hierarchical splits
and concatenates connections within a single residual block.

B. Differentiable Neural Architecture Search

DNAS is one of the one-shot search methods, in which an
overparameterized super-net containing all candidate architec-
tures is trained only once. DARTS [24] introduced a differ-
entiable framework by relaxing the search space so that the
architecture parameters could be differentiable and optimized
together with the network weights by gradient descent. Despite
its simplicity, many follow-up works revealed some of its
drawbacks, such as instability [32], the inevitable aggregation
of skip connections [29], and the gap between the search and
the evaluation [33]. P-DARTS [34] designed a progressive
search strategy to bridge the depth gap between super-net
and subarchitectures. FairDARTS [35] proposed a zero-one
loss combined with sigmoid function to alleviate the issue
of discretization discrepancy. RobustDARTS [29] showed that
adding regularization strategies can robustify DARTS to find
solutions with less curvature and better generalization perfor-
mance. GOLD-NAS [30] enlarged the search space to contain
more than 10160 candidates and used one-level optimization
with a variable resource constraint to explore this large search
space.

III. METHODOLOGY

A. Search Space

The pipeline of the proposed PP-NAS-induced PPConv is
shown in Fig. 1. To make it easier to understand, we also com-
pare the structure of group convolutions [36] and the blocks
used by Res2Net with PPConv in Fig. 2. Group convolutions
split the features into D groups, apply convolution on each
group, and concatenate all output feature groups. The Res2Net
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Fig. 2. Comparison between group convolution (GroupConv), the blocks
used by Res2Net, and our proposed searchable PPConv. The solid lines
represent the selected connections, and the dotted lines represent the pruned
connections. The selected operation is placed at the center of the output feature
group and the pruned operations are in the corner. The candidate operations
include identity, 1 × 1 convolution, and 3 × 3 convolution. Vertical lines and
curved lines on the right indicate that feature groups with smaller indexes can
be part of the input of feature groups with larger indexes.

blocks add connections between output feature groups to
increase the actual network depth. Besides, the convolution
operation applied to the first group is replaced as an identity
operation. This design reduces parameters or, in another way,
allows wider convolution for the rest of the groups. It also
encourages feature reuse, which follows DenseNet [37].

PPConv is a generalization of group convolution and
Res2Net blocks. Let us first split the input features into
D groups evenly and denote them as x (i)(0 < i ≤ D); then,
we also have D groups of intermediate features denoted as
x (i)(D < i ≤ 2D) and D groups of output feature maps
denoted as x ′(i)(D < i ≤ 2D). A group of features will be
called a node for convenience in the following. The connection
between x (i) and x ( j) is a directed edge (i, j), where 0 < i < j
and D < j ≤ 2D. Each intermediate node is computed based
on all of its predecessors, the weight of which is associated
with connection parameters α. Each output node is the output
of the associated operation applied on the intermediate node,
the weight of which is associated with operation parameters β.
α and β are architecture parameters to learn and will be
described in the next part. With this design of search space,
learning the block is reduced to learning the connections
between nodes and the operations applied on intermediate
nodes. It should be noted that their learning is decoupled,
which differs from previous works.

The candidate operations include identity, 1 × 1 convolu-
tion, and 3 × 3 convolution. By including these operations,
we ensure that group convolution and Res2Net blocks are also
in the search space. Zero operation [24] is not included as
candidates because we want to fix the number of output nodes
and the number of output features to the same as the input.

Next, we describe the macro architecture. PPConv is
designed to replace the main convolution (usually 3 × 3 con-
volution) in networks. Therefore, it is easy to integrate it into
existing mainstream network architectures. To better focus on
the design of new plug-and-play blocks, we simply choose
the most widely used ResNet as the macro architecture.
Specifically, ResNet with bottleneck structure is used and the

middle 3 × 3 convolution with stride 1 in the bottleneck is
replaced with PPConv for all of the following experiments.
We call ResNet with PPConv as PP-ResNet.

For datasets with different resolutions (CIFAR and
ImageNet), ResNet architectures with an appropriate number
of stages and times of downsampling are required. Therefore,
the concrete architecture depends on the dataset, following the
design of the original ResNet [38]. For example, ResNets on
CIFAR have three stages and are downsampled two times,
and ResNets on ImageNet have four stages and are down-
sampled five times. PPConv structures are searched separately
across different stages and shared between blocks in the same
stage.

B. Differentiable Architecture Search

Following previous works, we use continuous relaxation
to make the search space continuous and search procedure
differentiable. Every edge (i, j) between nodes x (i) and x ( j)

is parameterized by α(i, j). As we want to have a variable
number of connections for each node rather than a fixed
number of connections, softmax activation that encourages
competition between edges is not appropriate. Instead, sigmoid
activation (σ) is used, and the edges of a node will cooperate
with each other, leading to smoother information flow. More
importantly, each edge will be switched on or off indepen-
dently according to its corresponding connection parameter.
Formally, the intermediate node is computed as follows:

x ( j)
=

∑
i< j σ

(
α(i, j)

)
x (i)∑

i< j σ
(
α(i, j)

) . (1)

Note that the output is normalized by the sum of all
associated σ(α) because intermediate nodes have a different
number of predecessors and the norm of nodes will differ
significantly without normalization, which might hurt model
stability.

Next, we will discuss how to search for operations. Let
O denote a set of possible operations (identity, 1 × 1 con-
volution, and 3 × 3 convolution in this article) where every
operation is to be applied to the intermediate nodes to get
output nodes. The categorical choice of a particular operation
for x ′( j) is relaxed to a softmax over all candidates

ō( j)(x) =

∑
o∈O

exp
(
β

( j)
o

)
∑

o′∈O exp
(
β

( j)
o′

)o(x). (2)

The operation weights for a node are parameterized by a
vector β( j) of dimension |O|. At the end of search phase,
the mixed operation ō( j) can be replaced with the most likely
operation, i.e., o( j)

= argmaxo∈O β
( j)
o .

After relaxation, we jointly optimize the architecture param-
eters α, β, and the network weights w. Previous differentiable
methods recognized it as a bilevel optimization problem
and alternatively optimized the training loss on the training
set and validation loss on the validation set using gradient
descent. However, as pointed out in [30], bilevel optimization
suffers from a heavy computational burden and inaccurate
estimation of architecture gradients. Instead, we use one-level
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optimization that optimizes the architecture α and β and the
weights w at the same time while only on the training set.
To avoid the failure of one-level optimization which might be
caused by overfitting, we also add strong data augmentation
and regularization. With one-level optimization, the search
procedure is exactly the same as training a classification
network, except for the use of two different optimizers for
the architecture parameters α and β and the model weights
correspondingly.

C. Architecture Derivation and Optimization Gap

At the end of the search, when the architecture parameters
α and β are fully optimized, we derive concrete connections
and operations to form discrete architectures. For connections
between nodes, we select all possible choices if their associ-
ated α is above σthreshold. As for operations, we simply choose
the one with the largest weight β. The intermediate nodes are
computed based on all of their predecessors with the same
weight: x ( j)

=
∑

i< j x ( j)/( j − 1), D < j ≤ 2D.
As is well known, the biggest pitfall of weight-sharing

methods is the optimization gap between the super-net and
the subarchitectures [39]. Without extra constraints, at the end
of search, the final σ(α) will be only slightly larger or less
than 0.5, thus resulting in the optimization gap. To alleviate
this gap, an extra zero-one loss [35], [40] is explicitly added
to push the sigmoid value of architecture parameters toward 0
or 1, formally as follows:

L0−1 = −

∑
i, j

(
σ
(
α(i, j))

− 0.5
)2

. (3)

After this, it is also possible that no connection is selected
from the input nodes or to the intermediate nodes if their
associated σ(α) are all below σthreshold. If any of the input
nodes have no connection to the intermediate nodes, this group
of feature maps is completely dropped, and a part of the input
information will be lost. On the other hand, if any of the
intermediate nodes have no connection from the other nodes,
the number of output nodes will change, which is not expected.

To solve these problems, we coerce another connection
existence loss to ensure the existence of at least one connec-
tion. Meanwhile, we also introduce max operation to avoid
unnecessary constraints on architecture learning when the
connections already exist for each feature group. With this
design, the loss will not make the derived architectures sparse.
To achieve the expectations, the loss is formulated as follows:

Lconn =

∑
0<i≤D

max

1 −

∑
D< j≤2D

σ
(
α(i, j)), 0

2

+

∑
D< j≤2D

max

1 −

∑
0<i< j

σ
(
α(i, j)), 0

2

. (4)

The square is applied to ensure that the gradient of each
connection parameter relates to other connection parameters,
which is consistent with the characteristic of one-shot NAS
that has mutual influence of different subarchitectures. How-
ever, the loss without a square may work as well. As the zero-

one loss pushes σ(α) toward 0 or 1, the connection loss should
work well.

In conclusion, the total loss to optimize is the sum of the
classification loss (cross entropy), the L2 loss for all learnable
parameters, the zero-one loss, and the connection existence
loss for α formally as follows:

L = LCE + L L2 + L0−1 + Lconn. (5)

Weights for the four parts of losses may be assigned and tuned,
but we omit them here for simplicity. The performance may
be further improved if carefully tuning the weights.

Our goal is to bridge the optimization gap and derive dis-
crete architectures from the super-net with less discretization
error. To achieve this goal, we adopt one-level optimization
that jointly updates model weights and architecture parameters.
The optimization process is written as follows:

min
w,α,β

L(w, α, β) (6)

where w indicates model weights. One-level optimization
allows the parameters to be optimized directly from the target
without approximation of the optimized model weight that is
used to reduce search cost, which is different from bilevel
optimization and reduces the optimization gap.

Besides, the design of loss functions helps to eliminate the
optimization gap as well, where L0−1 tries to keep the forward
result of the derived architecture similar to the super-net in one
PPConv. However, we should admit that the deviation between
the forward results of the derived architecture and super-net
will accumulate with the increase of depth and complexity of
PPConv, which is difficult to eliminate. In addition, the depth
and width gap still exist. We notice that PPConv decouples
the search of connections and operations, leading to much less
usage of memory and searching cost. Then, it is possible to use
precisely the same depth and width for the architecture search
as the architecture evaluation. As a result, we can directly
obtain a trained network by pruning unimportant connections
and operations at the end of the search, with a very small
performance drop.

IV. EXPERIMENTAL RESULTS

A. Searching on CIFAR

CIFAR-10 [41] is a standard image classification dataset
consisting of 50 k training images with 5 k images per class
and 10 k testing images with 1 k images per class. The
resolution of each image is 32 × 32. CIFAR-100 is just like
CIFAR-10 and has the same number of images as CIFAR-10
but with 100 fine-grained classes. The training set of CIFAR-
100 has 50 k images with 500 images per class, and the test
set has 10 k images with 100 images per class. Since we use
one-level optimization, there is no need to split the training
set for another validation set, so we conduct the architecture
search on CIFAR-10/100 with all the training images.

We use ResNet-110 with the bottleneck structure as the
backbone network for CIFAR-10/100. To achieve comparable
performance with Wide ResNet (WRN) [42], some improve-
ments are applied. In the original paper, ResNet-110 is based
on the basic blocks that are different from ours, so every
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stage in our ResNet-110 has 12 residual blocks. In addition,
the number of channels of three stages of ResNet-110 in the
original paper is 16, 32, and 64, but we set them as 64, 128,
and 256. The resulting ResNet-110 has a total of 18.5 M
parameters. Another tweak to the architecture is adding a
3 × 3 average pooling layer with a stride of 2 before the
convolution with a stride changed to 1. This tweak is also
applied to the ResNeXt and Res2Net for a fair comparison.

As mentioned before, to minimize the optimization gap,
we try to keep most of the network and hyperparameter
settings the same between the search and the evaluation.
The model weights w are optimized by SGD with an initial
learning rate of 0.1, a momentum of 0.9, and a weight decay of
5e−4, and the architecture parameters α and β are optimized
by Adam [43], with a learning rate of 1e−3, a momentum
(0.9, 0.999), and a batch size of 128. As we use explicit
L2 loss for the architecture parameters, no weight decay
is used for Adam. The super-net is trained for 300 epochs
with additional data augmentation, including Cutout [44] and
AutoAugment [45]. The learning rate for SGD is adjusted
according to a cosine schedule [46] and the learning rate for
Adam is fixed. We set the weights for LCE, L0−1, and Lconn
in the loss of (5) to 1.0 for simplicity, while the weight for
L L2 is the same as the weight decay for SGD. The initial
value for the connection parameters is set to 0. Architecture
parameters of each stage are shared to reduce the calculation.
After training the super-net, σthreshold is set to 0.9 to prune the
unimportant connections.

In the evaluation, the network depth and width are not
changed, and the architecture is derived from the super-net. For
CIFAR-10/100, we have two training settings for a fair com-
parison between other works: standard and augmented. Under
the standard setting, we train the network for 200 epochs with
only random crop, random horizontal flip, and normalization
as the data augmentation. For the augmented setting, the
network is trained for 600 epochs with Cutout, AutoAugment,
and Mixup [47]. The cutout length is 16 and the mixup ratio
αmix is 0.2. Other hyperparameters are precisely the same as
in the search phase. For each type of network architecture,
we repeat the evaluation five times under the standard setting
and three times under the augmented setting and report the
mean of these results.

For a fair comparison, ResNet, ResNeXt, and Res2Net are
reimplemented and trained under the same training settings as
PP-ResNet. ResNeXt has a cardinality of 4 and the number of
channels for each group is 24, formally as 4c × 24w. Res2Net
has a split of 4 and the number of channels of each split is 26,
formally as 26w × 4s, which is the same as PP-ResNet.

To ensure that PP-ResNet has a similar number of param-
eters with ResNeXt and Res2Net, we keep exactly one
“identity” operation after searching. This decision slightly
narrows search space and may affect the final performance.
Similarly, many previous works of DARTS [24], [48] limited
the number of “skip connect” operations to 1 or 2.

Besides, to show the relative performance of PP-ResNet
compared with other NAS methods, we also compare the
performance of PP-ResNet with some related differentiable

TABLE I
RESULTS OF DIFFERENT ARCHITECTURES ON CIFAR-10/100

NAS methods. However, we should admit that the comparison
is not fair due to the divergent design of search space. These
methods are shown as references to the performance improve-
ment that can help readers better understand the effectiveness
of PP-ResNet compared with manually designed ResNets.

In Table I, we compare the test error and the number of
parameters of the discovered architectures with other net-
works. Our PP-ResNet has an improvement of 0.17% over
Res2Net on CIFAR-10 and 0.13% on CIFAR-100 under the
standard setting. We also find that PP-ResNet can outper-
form the comparing differentiable methods when using the
augmented setting, while it obviously performs worse than
them when using the basic setting. The results demonstrate
the potential of PP-NAS for integration with other tricks to
reach better performance.

The architectures discovered on CIFAR-10/100 are shown
in Fig. 3. We find that there is no 1 × 1 convolution in the
discovered architectures. According to many related works of
NAS, we speculate that the nonparametric identity operation
has some special advantages over the parametric convolution
operations during optimization. Meanwhile, between the para-
metric operations, 3 × 3 convolution has 8× more parameters
than 1 × 1 convolution, resulting in a significant advantage.
We plan to explain it from more perspectives in the future.

B. Comparison With Random Search

Random search is a competitive baseline for hyperparameter
optimization [50] and NAS [51]. Many recent works prove that
random search with early stopping or other heuristics performs
similarly with NAS methods. PP-NAS has a relatively small
search space compared with many NAS works, which has
the potential to suffer from degenerated architecture after
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Fig. 3. Discovered blocks on CIFAR-10/100 for the three different stages of PP-ResNet-110.

TABLE II
COMPARISON OF RANDOM SEARCH ON CIFAR-10/100

searching, or the architectures in the search space show similar
performances. To evaluate the effectiveness of the proposed
search algorithm, we conduct random search experiments on
CIFAR-10/100 and compare them with our PP-NAS search
results.

Considering the design of the proposed search space,
we conduct two types of random searches: full random
search and constrained random search. For full random search,
we first initialize the architecture parameters and then derive
architectures from them directly without optimization. It is
possible that no connection is selected from the input nodes,
resulting in loss of input information. To avoid this degenera-
tion, we also conduct a constrained random search that ensures
all groups of input feature maps are used. This constraint
is a type of human heuristics. After architecture derivation,
we train these networks in the same way as previously
described.

In Table II, we compare the test error of the derived
architectures. The architecture produced by the full random
search performs worst in both CIFAR-10/100. We note that
one group (totally four groups) of input features in stage 3
is completely dropped in this architecture. Somewhat surpris-
ingly, with the loss of input information, the results of the
full random search are only slightly worse than those of the
constrained random search. Overall, the architectures produced
by PP-NAS perform better than random search, which proves
the effectiveness of the proposed search algorithms.

However, we should also admit that the improvements of
PP-NAS compared with randomly searched architecture in the
constrained search space are minor through rigorous statistical
analysis, which is also a common challenge for NAS [54].
We also notice that PP-NAS has obvious performance gain
compared with randomly searched architectures in the full
search space. As a result, we assume that with more runs of

the experiments and fewer human priors for the search space
design, PP-NAS may outperform random search obviously.

C. Searching on ImageNet

ImageNet-1K (ILSVRC2012) [55] dataset consists of 1.3 M
images for training and 50 k images for testing, equally
distributed among 1000 classes. Due to the use of one-
level optimization, no extra validation set is split from the
training set. Due to the low memory usage and training cost
of PP-NAS, we directly search on the full training set without
any subsampling.

The training protocol generally follows [56]. We use label
smoothing (ϵ = 0.1) as the regularization strategy and use
SGD with a weight decay of 1e−4, a momentum of 0.9,
and a mini-batch of 1024. We use a learning rate of 0.4 and
adjust it according to a cosine schedule for training 120 epochs
and with a warm-up of five epochs [57]. Mixup or knowl-
edge distillation [58] is not used to avoid the long training
time. The architecture parameters α and β are optimized by
Adam, with a fixed learning rate of 1e−3 and a momentum
(0.9, 0.999). Except for the use of Adam, all hyperparameters
are the same between the search phase and the evaluation
phase.

To further show the generalization of PP-ResNet, following
the related works [59], [60], we also train it under the
augmented setting. Specifically, the network is trained for
300 epochs with RandAugment [61] and Mixup as extra data
augmentations. The RandAugment layer is set to 2, and the
magnitude is set to 10. We also use stable weight decay [62]
and reduce the value to 4e−5. Following [63], we train the
network under the image size of 160 × 160 and evaluate
under 224 × 224, but we do not fine-tune any layers after
training. We also include other NAS methods to show the
relative performance of PP-ResNet, part of which adopts a
search space adapted from ResNet or DenseNet that has the
similar derived architecture to PP-ResNet for a relatively fair
comparison.

The architecture discovered on ImageNet is shown in Fig. 4.
We compare the top-1 accuracy, top-5 accuracy, and the
number of parameters of the discovered architecture with other
models in Table III. Our PP-ResNet-50 has an improvement
of 0.39% over Res2Net-50 on top-1 accuracy and 0.12% on
top-5 accuracy with the same number of parameters. Under
the augmented setting, PP-ResNet-50 can achieve an 80.58%
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Fig. 4. Discovered blocks on ImageNet dataset for the four different stages
of PP-ResNet-50.

TABLE III
IMAGE CLASSIFICATION RESULTS FOR IMAGENET DATASET

top-1 accuracy and 95.34% top-5 accuracy. It also outperforms
comparing NAS methods, except for GreedyNASv2 [53],
which uses evolutionary algorithms for searching. However,
PP-ResNet is gradient-based and requires less time to search
the architecture compared with GreedyNASv2, which some-
how compensates for the performance limitation. Besides, the
search space of PP-NAS focuses on the forward paths for
convolution blocks, while GreedyNASv2 cares more about the
combination of different existing convolution operations with
different kernel sizes and widths. Since the focus is different,
PP-NAS may be integrated into the search pipeline of other
NAS methods in the future.

Interestingly, it is also possible to avoid retraining, con-
sidering the minor differences between the search and the
evaluation in this work. At the end of search, all σ(α)

are around 0.995 or 0.005, so we can safely prune these
unnecessary connections. After pruning, PP-ResNet without
retraining can achieve a top-1 accuracy of 78.92%, which is
only 0.56% lower than retraining.

D. Object Detection

We further validate PP-ResNet on the large-scale detection
benchmark COCO [64]. Following previous works [6], [7],
[65], we use the COCO train2017 split (115 k images)

TABLE IV
GFLV2-BASED OBJECT DETECTION RESULTS ON THE COCO DATASETS

for training and val2017 split (5 k images) as the main
results.

GFLV2 [66] is one of the state-of-the-art one-stage detectors
used as the baseline method with ResNet-50, Res2Net-50, and
PP-ResNet-50 as the backbone network. For a fair comparison,
we reimplement GFLV2 and keep all the implementation
details the same except for the use of different backbone
networks.

First, the EfficientDet [8] style data augmentation is used
rather than the faster RCNN style [6]. Specifically, faster
RCNN randomly resizes the short edge of the original image,
while EfficientDet randomly resizes the original image and
crops a square region from it. We use a crop size of 896 × 896,
which is close to the original 800 × 1333. We use a resizing
range from 0.5 to 2.0, following the implementation of Effi-
cientDet. A random horizontal flip is also used after cropping.
During testing, we resize and pad the images to the target size
(896 × 896) without flipping or multiscale augmentation.

We train all networks with the SGD optimizer with a
momentum of 0.9 and a weight decay of 1e−4. We use a
total batch size of 32 on eight TPUv2 cores and a learn-
ing rate of 0.02. The learning rate is linearly warmed up
from 0 to 0.02 for the first one epoch and then decayed to 0
according to a cosine schedule. Synchronized batch normal-
ization is added after every convolution with a momentum
of 0.9. All models are trained for 24 epochs (around 90 k
iterations, comparable to 2× the schedule in [67]). GIoU [68]
loss is used for the bounding box regression with a weight
of 2.0. At inference, we keep the top 5 k predictions from
all FPN levels [7] and then apply the standard nonmaximum
suppression with an IoU threshold of 0.6 and a confidence
threshold of 0.05 to yield the final detections.

Table IV shows the object detection results on
COCO val2017. Note that our reimplemented GFLV2
with ResNet-50 backbone network has similar results as
the original paper. Overall, the PP-ResNet-50-based model
outperforms ResNet-50 and Res2Net-50 by 2.0% and 0.6%
on average precision (AP). For specific metrics, PP-ResNet
performs better on AP50, AP75, APM , and APL , and worse
on APs , which indicates more accurate detection, especially
for larger objects. It might be explained that larger objects
benefit more from multiscale features.

PASCAL VOC [69] is another standard benchmark dataset
for object detection, which contains 20 common object
classes. We use VOC2007 trainval and VOC 2012 trainval
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TABLE V
RETINANET-BASED OBJECT DETECTION RESULTS ON PASCAL VOC

(16 551 images) for training and test on the VOC2007
test (4952 images), which follows the common prac-
tice [70], [71], [72].

RetinaNet [65] is used as the baseline method with ResNet-
50, Res2Net-50, and PP-ResNet-50 as the backbone network.
For a fair comparison, we keep all the implementation details
the same and only use different backbone networks.

The data augmentation and training settings are almost
the same as COCO with a few differences. For PASCAL
VOC, we use a target size of 640 × 640. The L1 loss is
used for bounding box regression with a weight of 1.0. For
nonmaximum suppression, we use an IoU threshold of 0.5 to
yield the final detections.

Table V shows the object detection results on the VOC2007
test set. Overall, the PP-ResNet-50-based model outperforms
ResNet-50 and Res2Net-50 by 1.45% and 0.54%, respectively,
on mean AP (mAP). For per class results, PP-ResNet-50
performs best on 13/20 of all classes, especially for
those poorly detected classes (mAP < 80%). For example,
PP-ResNet-50 outperforms Res2Net-50 by 2.0% for the bottle
and 3.2% for the table.

E. Semantic Segmentation

Multiscale representations are essential for semantic seg-
mentation, which is position-sensitive and relies on contextual
information of objects. We thus evaluate our PP-ResNet on the
semantic segmentation task using the PASCAL VOC dataset
and the Cityscapes dataset [73].

Following previous works [74], [75], [76], we use the
augmented PASCAL VOC 2012 dataset [77], which contains
10 582 images for training and 1449 images for validation.

We use DeepLabv3+ [76] as the segmentation method.
We reimplement DeepLabv3+ and keep all the details the
same except that the backbone network is replaced with
ResNet, Res2Net, or our proposed PP-ResNet. The output
strides used in training and evaluation are both 8. The multi-
grid method of (1, 2, 4) is also used for better performance.

Following previous works [76], we employ a crop size to be
512 during both training and test on the PASCAL VOC 2012
dataset. For data augmentation, we randomly scale the input
images (from 0.5 to 2.0), then randomly left-right flip the
images, and finally randomly crop square patches from them
during training. When testing, we only pad the original images
to the target size (512 × 512) without resizing. Single-scale
results are reported.

All models are trained with the SGD optimizer with a
momentum of 0.9 and a weight decay of 1e−4. We use a

TABLE VI
DEEPLABV3+ BASED SEMANTIC SEGMENTATION

RESULTS ON PASCAL VOC AND CITYSCAPES

total batch size of 16 on eight TPUv2 cores and a learn-
ing rate of 0.01. The learning rate is linearly warmed up
from 0 to 0.01 for the first five epochs and then decayed
to 0 according to a cosine schedule. Synchronized batch
normalization is added after every convolution with momen-
tum of 0.9. All models are trained for 60 epochs (around
40 k iterations).

Cityscapes is a large-scale dataset containing high-quality
pixel-level annotations of 5000 images (2975, 500, and
1525 for training, validation, and test sets, respectively)
and about 20 000 coarsely annotated images. We use these
2975 images for training and 500 images for validation.

The data augmentation is generally the same as VOC except
for a different crop size of 512 × 1024 and additional ran-
dom photometric distortion. When testing, we simply use the
original images without flipping or multiscale augmentation.

The training settings are also almost the same as VOC
except for a smaller batch size of 8 and longer training epochs
of 90 (around 45 k iterations).

Table VI shows the semantic segmentation results on
the PASCAL VOC dataset and the Cityscapes dataset. For
PASCAL VOC, our PP-ResNet-50-based model outperforms
ResNet-50 and Res2Net-50 by 0.81% and 0.42% on mean IoU
(mIoU), respectively. For Cityscapes, the PP-ResNet-50-based
model outperforms ResNet-50 and Res2Net-50 by 1.41% and
0.58%, respectively. The greater improvement in Cityscapes
than VOC might be explained by images in the Cityscapes
dataset being harder to segment and requiring stronger mul-
tiscale feature extraction ability, which is just the advantage
of PP-ResNet.

Figs. 6 and 7 visualize the semantic segmentation results on
the PASCAL VOC and Cityscapes dataset using PP-ResNet,
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TABLE VII
LATENCY (ms/IMAGE) OF DIFFERENT RESNET-STYLE

MODELS ON THREE CLASSIFICATION DATASETS

Res2Net, and ResNet as backbone networks. For the PAS-
CAL VOC dataset, our PP-ResNet produces more complete
segmentation results. For the Cityscapes dataset, PP-ResNet’s
segmentation results have finer details and less classification
error.

V. DISCUSSION

A. Latency of PP-ResNets

Inference speed, or latency, is an important metric to
measure the complexity and practicality of neural networks,
especially on mobile devices that have limited calculation
or under scenarios that require fast or real-time processing.
However, NAS methods find out optimized architectures that
usually have complex structures in the search spaces, which
may severely increase the latency of the derived architecture.

To explore the factors that may affect the latency of PP-
NAS, as well as showing the practicality of it for wide applica-
tions, we evaluate the latency of PP-ResNets on CIFAR-10/100
and ImageNet, respectively. In detail, latency is measured
using a single Tesla T4 GPU with a batch size of 1024 for
CIFAR and 256 for ImageNet. The batch size decrease is
due to limited GPU memory. The results are reported on the
average of five runs. We also evaluate the latency of ResNet,
ResNeXt, and Res2Net under the same settings for a fair
comparison. The results are shown in Table VII.

For experiments on CIFAR, due to the complex calculation
of PPConv, the latency of PP-NAS increases compared with
the original ResNet. However, it has a similar value compared
with ResNeXt that has group convolutions and Res2Net that
has both group features and inner connections for the output
feature groups. The results indicated that the latency is mainly
due to the groups and the cascade structures of the output
features.

Similar results of latency are also reported on ImageNet,
where the test resolution is set to 224 × 224. It should be noted
that PP-ResNet slightly increases the inference cost com-
pared with Res2Net, while the performance gain is obvious

Fig. 5. Curve for L p = wL L2 L L2 + wL0−1 L0−1. Colored arrows show the
direction of the gradient with respect to connection parameters α. The darker
the color, the larger the absolute value of the gradient.

TABLE VIII
ABLATION STUDIES FOR LOSS TERMS OF PP-RESNET-110

EVALUATED ON CIFAR-10/100

(0.39% Top-1 accuracy). These results show the effectiveness
of PP-NAS in ResNet structures.

B. Ablation Studies for Loss Terms

Understanding the importance of the loss terms in (5) is
important to better analyze PP-NAS. In this work, we intro-
duce L0−1 and propose Lconn to promote the learning of
the architecture parameters. We also use the commonly
applied L L2 regularization to ensure that the learned values
are suitable. To further show the necessity of these loss
terms, we conduct ablation studies, which are evaluated on
CIFAR-10/100. The weights for loss terms are set the same as
experiments in Section IV-A. The derivation threshold σthreshold
is also set to 0.9 for each ablation counterpart. We search three
times and train for three times under each of these settings
and provide the average results for successful architectures.
The ablation results are shown in Table VIII.

For loss without Lconn, since in many of the cases, there
exists at least one connection for each feature group within the
PPConv, Lconn shows little effect in these cases. As a result,
the architectures that are searched without it show competitive
performance to the one we searched. However, we also find
some degenerated architectures that have no connection to part
of the output groups, which decreases the number of total
output features and results in derivation failure.

For loss without L0−1, we find that σ(α(i, j)) are almost of
range (0.2, 0.8). Due to the large threshold for connection
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Fig. 6. Visualization of semantic segmentation results on the PASCAL VOC dataset using different backbone networks.

Fig. 7. Visualization of semantic segmentation results on the Cityscapes dataset using different backbone networks.
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derivation, the experiments fail to derive architectures that
can propagate the information. As a result, these experiments
are failed. Decreasing σthreshold may work in these cases,
while this violates the motivation for designing a method
with a small optimization gap between super-net and searched
architectures.

From the ablation experiments, we demonstrate that both
Lconn and L0−1 are required to ensure the successful architec-
ture, indicating that the design of these loss terms is necessary
in the searching framework of PP-NAS.

C. How the Loss Affects Connection Parameter Learning

Connection parameters α determine the forward paths of
PPConv, which are important and worth further analysis.
To understand how PP-NAS learns the connection parameters
α, we draw the partial loss L p = wL L2 L L2 + wL0−1 L0−1 in
Fig. 5, where wL L2 and wL0−1 are the weights of L L2 and
L0−1 with values of 5e−4 and 1, respectively. We omit LCE
due to the complex form of this loss term, which is related
to the super-net architecture and is difficult to draw. Besides,
as reported by FairDARTS [35], LCE alone shows the limited
effect on the learning of α. Therefore, the discussion of how
loss affects learning α without LCE is acceptable. We also
ignore Lconn due to the motivation that it is designed to avoid
degenerated architectures that have no connection to part of
the feature groups. Lconn shows little effect in many of the
cases. Note that the hyperparameter settings are the same as
the ones in experiments on CIFAR.

As shown in Fig. 5, the learning of α can be roughly divided
into three stages without a certain boundary, where at the
beginning, the learning is slow due to the small gradient.
However, this stage mainly determines the connections to
keep. The middle stage has a large absolute value for the
gradient, and thus, α changes rapidly. This stage shrinks the
gap between the super-net and subarchitectures. It is also
important, especially when we directly prune subarchitecture
from the super-net without retraining the model weights. The
learning of α slows down in the final stage, in which α

combined with a proper value of σthreshold further refines the
forward connections.

D. Ability for Multiscale Feature Learning

Our PP-NAS ensures the learning of multiscale features
within one convolutional block, which is achieved by the
design of our search space that includes cascade structures for
operations within the block. With connections within output
feature groups, the information is passed through different
operations that may expand the receptive field. In detail, when
the searched operation is 3 × 3 convolution or other operations
with a kernel size larger than 1, the receptive field expands.

More operations with larger kernel sizes or different kernel
shapes are worth trying to further promote the performance of
PPConv. The design of the search space of PP-NAS is also
compatible with more candidate operations. However, in our
experiments, we simply choose the 3 × 3 convolution to
expand the scale of features in order to be compatible with

group convolutions and Res2Net convolutions for a relatively
fair comparison.

E. Limitations

One of the limitations of PP-NAS is that the sigmoid
activation function for connection parameters suffers from
gradient killing that may cause an optimization gap when
the activated value is close to 0 and 1. Thus, more activation
functions and derivation strategy are worth trying in the future,
which may further promote the performance of PP-NAS.

Another limitation of PP-NAS is that it learns architecture
parameters based on the general features of the training
dataset and treats all input data the same. As a consequence,
some features that are important for part of the data, while
unimportant for others, are computed on the same forward
path, which may be suboptimal. Architecture customization
may alleviate the problem, while customization is expensive
for NAS due to large memory consumption and complex
search space design, which is beyond the focus of this work.
We will try architecture customization for data with different
features in the future.

VI. CONCLUSION

This work proposed a novel PP-NAS method, which
includes a new search space PPConv for plug-and-play blocks
and the corresponding search algorithm. PPConv can be easily
integrated into existing networks by replacing the main convo-
lution operation. For simplicity, we mainly apply PP-NAS on
ResNet architectures in this work and name it as PP-ResNet.
PPConv search space decouples connections and operations,
thus resulting in a lower memory usage and training cost.
Our search algorithm uses one-level optimization to speed up
and simplify the search procedure and introduces extra loss
functions to help search. PP-NAS largely shrinks the optimiza-
tion gap caused by weight sharing so that PP-ResNet with
discovered novel blocks can outperform ResNet, ResNeXt,
and Res2Net on numerous vision tasks, including image
classification, object detection, and semantic segmentation.

In the future, we plan to integrate PPConv to more net-
work architectures, especially lightweight networks such as
MobileNet and ShuffleNet. In addition, with further optimiza-
tion to PP-NAS, we believe that it will be possible to search
on downstream tasks (detection and segmentation) directly
and achieve better results. Finally, the proposed multiscale
networks also have the potential to perform well in many other
vision tasks, such as image super-resolution and denoising.
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