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Abstract— Humans are able to learn to recognize new objects
even from a few examples. In contrast, training deep-learning-
based object detectors requires huge amounts of annotated data.
To avoid the need to acquire and annotate these huge amounts
of data, few-shot object detection (FSOD) aims to learn from
few object instances of new categories in the target domain.
In this survey, we provide an overview of the state of the art
in FSOD. We categorize approaches according to their training
scheme and architectural layout. For each type of approach,
we describe the general realization as well as concepts to improve
the performance on novel categories. Whenever appropriate,
we give short takeaways regarding these concepts in order to
highlight the best ideas. Eventually, we introduce commonly used
datasets and their evaluation protocols and analyze the reported
benchmark results. As a result, we emphasize common challenges
in evaluation and identify the most promising current trends in
this emerging field of FSOD.

Index Terms— Few-shot learning, meta learning, object detec-
tion, survey, transfer learning.

I. INTRODUCTION

IN THE last decade, object detection has tremendously
improved through deep learning [1], [2]. However, deep-

learning-based approaches typically require vast amounts of
training data. Therefore, it is difficult to apply them to
real-world scenarios involving novel objects that are not
present in common object detection datasets. Annotating large
amounts of images for object detection is costly and tiresome.
In some cases—such as medical applications [3] or the detec-
tion of rare species [4]—it is even impossible to acquire plenty
of images. Moreover, in contrast to typical deep-learning-
based approaches, humans are able to learn new concepts with
little data even at an early age [5], [6], [7]. When children are
shown new objects, they are able to recognize these objects
even if they have seen them only once to a few times.

Therefore, a promising research area in this direction is
few-shot object detection (FSOD). FSOD aims at detecting
novel objects with only few annotated instances after pre-
training in the first phase on abundant publicly available data,
as shown in Fig. 1. Consequently, it alleviates the burden of
annotating large amounts of data in the target domain.
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Fig. 1. General idea: by first training on a base dataset with abundant
annotated bounding boxes, it is possible to apply few-shot object detectors to
settings with only few annotated object instances, such as mechanical tools.

In this survey, we aim to provide an overview of state-of-
the-art FSOD approaches for new researchers in this emerg-
ing research field. First, we define the problem of FSOD.
Afterward, we categorize current approaches and highlight
similarities as well as differences. Subsequently, we intro-
duce commonly used datasets and provide benchmark results.
Finally, we emphasize common challenges in evaluation and
identify promising research directions to guide future research.

II. PROBLEM DEFINITION

FSOD aims at detecting novel objects with only few anno-
tated instances. Formally, the training dataset D = Dbase
∪ Dnovel is separated into two datasets Dbase and Dnovel
containing nonoverlapping sets of base categories Cbase and
novel categories Cnovel, with Cbase ∩ Cnovel = ∅. Each tuple
(Ii , ŷo1 , . . . , ŷoM ) ∈ D consists of an image Ii = {o1, . . . , oM}

containing M objects o1, . . . , oM and their corresponding
labels ŷoi = {coi , boi }, including the category coi and the
bounding box boi = {xoi , yoi , woi , hoi } with coordinates
(xoi , yoi ), width woi , and height hoi . For the base categories
Cbase, abundant training data are available in the base dataset
Dbase. In contrast, the novel dataset Dnovel contains only few
annotated object instances for each novel category in Cnovel.
For the task of K -shot object detection, there are exactly K
annotated object instances available for each category in Cnovel.
Therefore, the number of annotated novel object instances
|{o j ∈ Ii∀Ii ∈ Dnovel}| = K · |Cnovel| is relatively small. Note
that the number of annotated object instances does not neces-
sarily correspond to the number of images, as one image may
contain multiple instances. The most difficult case for FSOD
is one-shot object detection, where K = 1. N -way object
detection denotes a detector that is designed to detect object
instances from N novel categories, where N ≤ |Cnovel|. FSOD
is therefore often referred to as N -way K -shot detection.
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Training an object detector only on Dnovel quickly leads
to overfitting and poor generalization due to limited training
data [8], [9]. However, training on the highly imbalanced
combined data D = Dnovel ∪ Dbase generally results in a
detector that is heavily biased toward the base categories
and, therefore, unable to correctly detect instances from novel
categories [9]. Therefore, current research focuses on novel
approaches for FSOD. Typically, the initial detector model
Minit equipped with a backbone pretrained on classification
data is first trained on Dbase, resulting in the base modelMbase.
Most approaches then train Mbase on data Dfinetune ⊆ D,
including novel categories Cnovel, resulting in the final model
Mfinal

Minit
Dbase
−−→Mbase

Dfinetune
−−−−→Mfinal. (1)

III. RELATED WORK ON TRAINING WITH LIMITED DATA

There are some related research areas that also focus on
training with limited data. In the following, we will briefly
discuss differences and similarities with FSOD.

A. Related Concepts for Learning With Limited Data
1) Few-Shot Learning and Classification: Before being

applied to detection, few-shot learning was first explored for
classification tasks [10], [11], [12], [13], [14], [15]. As objects
with only few training instances do not need to be localized,
classification is clearly easier. Yet, many ideas can be adopted
for FSOD.

2) Semisupervised Learning is related to few-shot learning
in that only a few labeled instances of the target categories
are available. However, in contrast to few-shot learning, large
amounts of additional unlabeled data are often available that
help to learn appropriate representations [16], [17], [18], [19].

Thus, when additional unlabeled data are available, methods
from semisupervised learning should be considered to improve
the learned representations in few-shot learning approaches.

3) Incremental Learning: Typical deep-learning approaches
suffer from catastrophic forgetting when the model is trained
on new data. In contrast, incremental learning approaches [20],
[21], [22] aim to retain the performance on old categories
when new categories are added incrementally. Some FSOD
approaches also incorporate incremental learning techniques.

B. Object Detection
1) Generic Object Detection is the joint task of localizing

and classifying object instances of categories the detector
was trained on. Regions of interest (RoIs) are localized by
coordinates of bounding boxes and classified into a predefined
set of categories. All other object categories, which are not
part of the training categories, are regarded as background,
and the detector is trained to suppress detections of those
other categories. While achieving impressive results, these
approaches require loads of annotated object instances per cat-
egory and typically fail when applied to the few-shot regime.
For researchers new in this field, we refer to comprehensive
surveys [1], [2] on this topic.

2) Cross-Domain Object Detection [23], [24], [25] is the
task of first training a detector on abundant labeled data and
then adapting this detector to a different domain with limited
data; a typical example is synthetic-to-real. However, unlike
FSOD, the categories stay the same across different domains.

3) Zero-Shot Object Detection can be defined similar to
FSOD. However, as an extreme case, the number of annotated
object instances is zero (K = 0). Zero-shot detectors often
incorporate semantic word embeddings [26], [27], [28], i.e.,
semantically similar categories lead to similar features in the
embedding space. This works for detecting everyday objects,
which can be easily labeled, but might be problematic when
providing a specific label is difficult or when very similar
objects need to be distinguished.

4) Weakly Supervised Object Detection relaxes the required
annotations such that the training data contain only image-
level labels, i.e., whether a specific object category is present
or absent somewhere in the image [29], [30], [31]. These anno-
tations are much easier to obtain and can often be acquired by
keyword search. The challenge for weakly supervised object
detectors is detecting all object instances without having any
localization information during training. Although alleviating
the annotation burden, weakly supervised object detectors still
require large amounts of images, which might be hard to obtain
for detecting rare objects.

C. Learning Techniques for FSOD

In addition to the related research areas described above,
in the following, we will address learning techniques that are
widely adopted in FSOD.

1) Transfer Learning refers to the reuse of network weights
pretrained on a baseline dataset to improve generalization
capabilities on a new domain with limited data. As in few-shot
learning and detection, this usually involves novel categories
from the target domain. However, unlike few-shot learning,
the number of object instances for novel categories is not
necessarily small. Therefore, techniques for learning from few
data need to be incorporated in transfer learning approaches
for FSOD.

2) Metric Learning aims for learning an embedding in which
inputs with similar content are encoded in features that have
a small distance to each other in terms of the metric, while
encoded features from dissimilar inputs are supposed to be far
apart [32]. To learn features with low inner-class distances and
high inter-class ℓ2 distances, triplet loss [33] or its extensions
(see overview in [34]) are often used. Since this learned feature
embedding typically generalizes well, the model can also be
applied to encode instances of novel categories, which were
unknown during training, and make metric-based decisions
without the need for retraining. In the context of few-shot
classification, this means that during inference, the model
extracts feature embeddings of the few annotated examples
of Dnovel as well as of corresponding test images. The test
image is then assigned to the category of the closest feature
embedding of an annotated example. However, for few-shot
detection, concepts for localizing instances in the images need
to be integrated.

3) Meta Learning approaches learn how to learn in order
to generalize for new tasks or new data [13]. For few-shot
learning, this means that these approaches learn how to learn
to categorize the given inputs even though the categories are
not fixed during training. These approaches need to learn how
the required knowledge about the category is learned most
efficiently so that this category knowledge can also be learned
for novel categories with few training examples.
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D. Related Surveys
Although other surveys on FSOD are available [35], [36],

[37], [38], [39], [40], they do not cover as many publications
related to FSOD as we do. Works [36], [38], [39] are broader
surveys, also addressing self-supervised, weakly supervised,
and/or zero-shot learning and do not focus as much on FSOD.
Works [35], [36] only cover earlier work on FSOD and hence
are somewhat outdated since at least some of the currently best
performing approaches on common benchmarks are missing.
As work [40] is not available in the English language, it is
only accessible to a limited group of researchers. Overall, our
survey is most related to [37], as it also elaborates several core
concepts and groups approaches according to these concepts.
However, with the visual taxonomy in Figs. 4, 7, and 9,
we enable the reader to faster grasp which approaches follow
similar concepts and what concepts seem to complement each
other well. We also provide better guidance on benchmark
results by highlighting differences in evaluation protocols and
grouping approaches with comparable evaluations. Further-
more, we provide a much more comprehensive survey by
covering nearly twice as many FSOD papers as [37] did.

IV. CATEGORIZATION OF FSOD APPROACHES

Approaches for FSOD incorporate novel ideas in order to
be able to detect objects with only few training examples.
In general, the abundant training examples for base categories
Cbase are used to leverage knowledge for the novel categories
Cnovel with limited labeled data.

We categorize approaches for FSOD into meta learning and
transfer learning approaches, as shown in Fig. 2. We further
divide meta learning approaches into single- and dual-branch
architectures. Dual-branch architectures are constituted by a
query and a support network branch, i.e., the network pro-
cesses two inputs (a query and a support image) separately.
Single-branch approaches in general resemble the architecture
of generic detectors but reduce the number of learnable
parameters when training on novel categories or utilize metric
learning. Yet, also several dual-branch architectures and some
transfer learning approaches incorporate ideas from metric
learning. Therefore, to avoid ambiguous categorization, we do
not use metric learning as a separate category, as done in early
work on FSOD. Instead, we distinguish by training schemes
and architectural aspects, which better reflects the different
trends in the current state of the art.

FSOD is a rather young but emerging research field as most
approaches have been published only within the last three
years. Most approaches use transfer learning or dual-branch
meta learning.

In the following, we first describe dual-branch meta learning
approaches in Section V. We start with the general training
scheme for meta learning and follow with the typical realiza-
tion. In the following, we describe how specific approaches
deviate from the general realization. In Section VI, we focus
on single-branch meta learning approaches. Although there is
no common realization from which others deviate, we still
group approaches to their main ideas. In Section VI-D,
we cover transfer learning approaches. Similar to dual-branch
meta learning approaches, we first describe the general real-
ization and then turn to modifications.

Whenever appropriate, we give short takeaways at the
end of the subsections in order to highlight key insights.
Some takeaways also contain citations to link the concept to

Fig. 2. Categorization of FSOD approaches.

specific well-performing methods with regard to benchmarks
in Section IX.

Moreover, we summarize the best performing approaches
for each training scheme at the end of the correspond-
ing section. Finally, in Section VIII, we draw a compari-
son between meta learning and transfer learning approaches
before discussing common datasets and benchmark results in
Section IX.

V. DUAL-BRANCH META LEARNING

A lot of approaches for FSOD utilize meta learning in
order to learn how to generalize for novel categories. In this
section, we first describe the general training scheme for
meta learning in Section V-A. To realize meta learning, dual-
branch approaches use a query and a support branch as we
outline in Section V-B. After this, we describe how specific
approaches deviate from the general realization.

A. Training Scheme
For meta learning, the model is trained in multiple stages.

First, the model Minit is trained only on the base dataset Dbase,
resulting in Mbase. Typically, an episodic training scheme is
applied, where each of the E episodes mimics the N -way-
K -shot setting. This is called meta training. In each episode
e (also known as few-shot task), the model is trained on
K training examples of N categories on a random subset
De

meta ⊂ Dbase, |De
meta| = K · N . Therefore, the model needs to

learn how to discriminate the presented categories in general
depending on the input. Finally, during meta fine-tuning, the
model Mbase is trained on the final task, resulting in Mfinal

Minit
De

meta⊂Dbase
→→→ · · · →

e=1,...,E
Mbase

Dfinetune
−−−−→Mfinal. (2)

If the model is supposed to detect both base and novel
categories, it is trained on a balanced set Dfinetune ⊂ D of
K training examples per category, regardless of whether it
is a base or a novel category. Otherwise, if we are only
interested in the novel categories, the model is trained only on
Dfinetune = Dnovel. Note that some approaches do explicitly not
finetune on novel categories but simply apply Mbase to novel
categories, which is called meta testing. During meta testing,
the model simply predicts novel objects in the inference mode
when presented with K annotated examples of N categories.

B. General Realization
Dual-branch approaches utilize a two-stream architecture

with one query branch Q and one support branch S, as shown
in Fig. 3. The input to the query branch Q is an image
IQ on which the model should detect object instances,
whereas the support branch S receives the support set
DS = {(ISi , ŷo j )}

K ·N
i=1 , with K support images ISi for each of

N categories and exactly one designated object o j and its
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Fig. 3. General architecture for dual-branch meta learning based on Faster R-CNN. Query and support images are fed through a shared backbone. The support
features are pooled through global averaging and aggregated with the query features. We show here the one-shot-three-way case without loss of generality.

label ŷo j per image. There are three options, how to present
the designated object. First, all training examples are already
cropped to the designated object by the ground-truth bounding
box, as shown in Fig. 3 (bottom). Second, the full-size image
and an additional binary mask, indicating the location of the
object, are presented. Third, as in [41], the full-size image can
be used and the region with features of the designated object
is extracted by RoI align [42]. For all three options, we refer
to the presented image as support image IS . A support image
for a specific category c is denoted as IS,c.

The support branch S is now supposed to extract relevant
features f S of the support image IS . These support features
f S are then aggregated with the features f Q from the query
branch Q, denoted as A( f Q, f S), in order to guide the
detector toward detecting object instances of category c from
IS,c in the query image IQ.

Note that the following explanation refers to the most basic
and widely used architecture for FSOD with meta learning that
is shown in Fig. 3. As shown in Fig. 4, the specific approaches
may differ in one or multiple points described here and will
be explained in detail in the following.

Many approaches build on top of Faster R-CNN [70] with a
ResNet [71] backbone. Often, a Siamese backbone is utilized,
i.e., the query branch Q and the support branch S share their
weights. The backbone features f Q,B of the query branch Q
are further processed by a region proposal network (RPN) and
an RoI align, resulting in the query RoIs R. In the support
branch S, the support features from the backbone f S,B are
pooled through global averaging, resulting in representative
support vectors f S for each category. In the case of K > 1, for
each category c, the mean of its support vectors is calculated,
resulting in one support vector f S,c per category. These
support vectors encode category-specific information, which
are then used to guide the RoI head in recognizing objects
of these categories. Therefore, query RoIs R and support
vectors f S are aggregated—shown as ARoI in Fig. 3 –, in the
most simple case by channelwise multiplication Amult as in
Equation (3).

After aggregation, for each of the N categories, there
are separate RoIs RA,c. Their features are specialized for
recognizing objects of the respective category c. These
category-specific RoIs RA,c are then fed into a shared RoI

Fig. 4. Categorization of dual-branch meta learning approaches. Best viewed
in color.

head for bounding box regression and binary classification.
Since the aggregated RoIs RA,c already contain category-
specific information, the multicategory classification can be
replaced by a binary classification that only outputs the
information whether the RoI RA,c contains an object of
the specific category c or not. To enforce only one cat-
egory for each RoI R, a softmax layer can be applied
afterward.

Note that the RoI heads for all categories share the same
weights. Therefore, the RoI head must generalize across
categories. With this mechanism, it is theoretically possible to
detect objects of novel categories without fine-tuning on novel
categories, but simply meta testing. This makes meta-learning
approaches, especially useful for real-world applications, as no
further training is required.

During inference, the support features f S of the few images
of Dnovel can be computed once for all N categories such that
the support branch S is no longer required.
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C. Variants for Aggregation
The particular dual-branch meta learning approaches differ

most in the way the aggregation between query f Q and
support features f S is implemented.

1) Aggregation Before the RPN: Typically, the features of
the query RoI R are aggregated with the support vectors f S .
However, this requires the RPN to output at least one RoI
for each relevant object. Otherwise, even the best aggregation
method cannot help in recognizing the desired object. How-
ever, the RPN is trained only on base categories. If the novel
categories Cnovel differ a lot from the base categories Cbase,
the RPN might fail to output suitable RoIs for recognizing
objects of Cnovel. Therefore, Fan et al. [55] designed a so-
called AttentionRPN, which effectively aggregates query and
support features before the RPN. We denote this by AFeat

in Fig. 3. Specifically, the support features f S are first average
pooled and then aggregated with the query features f Q by a
depthwise cross correlation. Afterward, the RPN is applied
onto the enhanced features, resulting in region proposals that
are more related to the presented category c of the support
image IS,c, thus improving the recall.

Zhang et al. [68] (PNSD) built upon this method but
replaced average pooling with second-order pooling and power
normalization [72]. These second-order representations rather
function as a detector of features to capture co-occurrences
than a counter as in average pooling. This helps to alleviate
the harmful variability of features that stem from varying
appearances of objects such as color, viewpoint, and texture.

As second-order pooling is limited to linear correlations,
in their follow-up work, Zhang et al. [69] (KFSOD) utilized
kernelized covariance matrices [73] and reproducing kernel
Hilbert space kernels [74] that capture nonlinear patterns.
These kernels can factor out spatial order while keeping rich
statistics about each region. Due to this shift invariance, similar
objects that vary in physical location, orientation, or viewpoint
can be more easily matched.

Furthermore, many others also adopt the idea of Atten-
tionRPN [55], as shown in Fig. 4. Yet, some use a different
aggregation operation, which we will discuss in the following.

Takeaway: When using Faster R-CNN as a detector,
an aggregation before the RPN leads to better region proposals
and thus fewer missed detections.

2) Aggregation Operation: In the most simple case, the
support vectors f S and the query features f Q are multiplied
channelwise

Amult
(

f Q, f S
)
= f Q ⊙ f S (3)

where ⊙ denotes the Hadamard product.
Moreover, different aggregation operations are explored in

the state of the art. In AttentionRPN [55] and GenDet [51],
support features are convolved/correlated with the query fea-
tures. Li et al. [60] (OSWF) used cosine similarity between
each element of f Q and f S , which resembles Amult in
Equation (3), but with an additional scaling factor.

Michaelis et al. [58] (CGG) and [75] (OSIS) calculated the
ℓ1-distance at each position and concatenated the resulting
similarity features to the query features. Xiao and Marlet [43]
(FsDetView) used a more complex aggregation operation by
combining channelwise multiplication as in Amult with sub-
traction and query features themselves similar to [58]

A
(

f Q, f S
)
=

[
f Q ⊙ f S , f Q − f S , f Q

]
(4)

Fig. 5. Common aggregation problems. Images based on [53]. (a) Loss of
spatial information due to global average pooling. (b) Spatial misalignment
due to convolution-based aggregation.

where [·, ·] denotes channelwise concatenation.
Meta Faster R-CNN [59] builds upon this aggregation

A =
[
8Mult

(
f Q ⊙ f S

)
, 8Sub

(
f Q − f S

)
, 8Cat

[
f Q, f S

]]
(5)

where 8Mult, 8Sub, and 8Cat each denote a small convolutional
network with three conv and rectified linear unit (ReLU)
layers.

Zhang et al. [41] (SQMG) decided to enhance the query
features f Q by support features f S with dynamic convolu-
tion [76]. f S is fed into a kernel generator to generate the
weights of the convolution. Afterward, the generated weights
are convolved with f Q.

Takeaway: The simple channelwise multiplication of sup-
port features f S and query features f Q cannot fully exploit
the information they contain.

3) Keep Spatial Information for Aggregation: As opposed
to aggregating support features via average pooling, others
(see Fig. 4) propose to utilize spatial information. For the
object detection task, objects are located by bounding boxes.
However, not every part of that bounding box is occupied by
the object and, therefore, does not contain relevant information
about the respective category. With average pooling however,
these irrelevant features are aggregated into the support vector.
Moreover, with global average pooling, spatial information is
completely lost, as shown in Fig. 5(a).

Therefore, Li et al. [60] (OSWF) first pooled support
features to the same spatial dimension as the query RoI R.
Afterward, these pooled features are concatenated to the query
RoI R. Finally, 1 × 1 convolutions are used to compare
structure-aware local features.

However, Chen et al. [53] argued that a convolution of
query features f Q and support features f S is less suitable
since the objects in query images IQ and support images
IS are generally not aligned in the same way, as shown
in Fig. 5(b). Therefore, they design an attention-based aggre-
gation as described in the following.

Takeaway: In order to incorporate the valuable spatial
information of a support image IS , its features should not
be simply averaged for aggregation.

4) Attention-Based Aggregation: Lately, attention mecha-
nisms could significantly improve performance on many vision
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tasks [77]. Thus, it is not surprising that the aggregation of
support and query features also benefits from incorporating
attention mechanisms. These attention mechanisms range from
traditional, over nonlocal [78] to multihead attention as in
transformers [79]. We will discuss all of them in the following.

Chen et al. [53] (DAnA) aimed to incorporate the spatial
correlations between query image IQ and support image
IS but also considered that these images are generally not
aligned (see Fig. 5(b)). Therefore, dual-awareness attention
first highlights relevant semantic features of the respective
category on the support features f S and suppresses back-
ground information. Afterward, the spatial correlations are
incorporated with an attention-based aggregation. This spatial
misalignment is also addressed in Meta Faster R-CNN [59].
Using two attention modules, the support and RoI features are
first spatially aligned, and then, the foreground regions are
highlighted.

Wang et al. [48] (IFC) first used a self-attention module on
top of average- and max-pooled query features to separately
mine local semantic and detailed texture information. After-
ward, with a new feature aggregation mechanism based on a
learnable soft-threshold operator [80], redundant information
can be shrunk while enhancing feature sensitivity and stability
for both novel and base categories.

Huang et al. [49] (ARRM) aimed to achieve a better
interaction of support and query features by designing an
attention-based affinity relation reasoning module consisting
of several convolutions and matrix multiplications of different
features. With an additional global-average-pooling branch,
also the global semantic context of the support features is
integrated. Using this attention-based module for aggregation,
misclassifications can be reduced.

Hsieh et al. [57] (CoAE) proposed a coattention method in
order to make the query features f Q attend to the support
features f S and vice versa. Therefore, two mutual nonlocal
operations [78] are utilized, which receive inputs from both
f Q and f S . This helps the RPN to compute region proposals
that are able to better locate objects of the category c from
the support image IS,c. Moreover, Hsieh et al. [57] proposed
a subsequent squeeze-and-coexcitation method—extending the
squeeze-and-excitation of SENet [81]—in order to highlight
correlated feature channels to detect relevant proposals and
eventually the target objects. A similar coattention is utilized
by Hu et al. [62] (DCNet).

With AIT, Chen et al. [56] pushed the idea of CoAE [57] a
little further. Instead of using a single nonlocal block, multi-
head coattention is utilized for aggregating query and support
features before the RPN. Let V, K and Q be the value, key,
and query of a transformer-based attention [79]. Similar to
the coattention in CoAE, query features stem from another
branch

FQ = attn
(
VQ, KQ, QS

)
, FS = attn

(
VS , KS , QQ

)
(6)

where superscripts Q and S denote whether features are from
the query or support branch. The resulting features FQ encode
related visual characteristics of both the query image IQ and
the support image IS , which helps the RPN to predict RoIs
related to IS . According to Chen et al. [56], this improves
the accuracy compared to the nonlocal attention block [78] in
CoAE [57]. After the RPN, AIT [56] uses a transformer-based
encoder–decoder architecture for transforming the RoIs R to

Fig. 6. Different amount of information for several support images of the
same category. Image from GenDet [51].

emphasize visual features corresponding to the given support
image IS .

A similar aggregation to FS in Equation (6) is also used in
Meta-DETR [64] and APSP [54]. However, both Meta-DETR
and APSP first enhance query or support features as we will
describe in the following.

Takeaway: The spatial information of a support image IS ,
as well as its relation to a query image IQ, is best incorporated
through transformer-based attention mechanisms [78], [79].

5) Multilevel Aggregation: So far, support and query fea-
tures were only aggregated after feature extraction in the back-
bone. However, Han et al. [66] (FCT) argued that multilevel
feature interactions between the query and support branch
could better align the features. Therefore, they come up with a
novel fully cross-transformer based on the improved Pyramid
Vision Transformer PVTv2 [82]. The FCT model consists
of three interaction stages between query and support in the
backbone and one additional interaction stage in the detection
head. Finally, a pairwise matching similar to the one from
AttentionRPN [55] outputs the final detections.

Takeaway: Aggregation of low-, mid-, and high-level fea-
tures can boost the performance.

6) Aggregation of Several Support Images: In the general
approach, to fuse all support images of category c, the mean
of their features is calculated{

IS,c
i

}K

i=1
: f S,c

=
1
K

K∑
i=1

f S,c
i . (7)

However, not all support images provide the same amount of
information for the respective category, as shown in Fig. 6.
Unusual object views, object parts, or even occlusion by
objects of other categories impair the discriminative power
if support features f S,c

i are simply averaged.
Therefore, a weighted average is proposed in GenDet [51].

The weight wi for each support image IS,c
i is computed by

the similarity between the single-shot and the mean detector
and learned during training{

IS,c
i

}K

i=1
: f S,c

=
1
K

K∑
i=1

wi · f S,c
i . (8)

Quan et al. [52] (CAReD) followed a similar approach.
However, the weight wi is determined by the softmax over
the correlation between the support features f S,c

i and all other
support features { f S,c

j }
K
j=1 of the same category c. Due to the

softmax, the weighting factors already sum up to 1 and the
factor (1/k) is omitted.
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DAnA [53], SQMG [41], as well as APSP [54] incorporate
the similarity of query f Q and different support features f S .
In DAnA [53], support features f S,c

i of K different images
{IS,c

i }
K
i=1 are first aggregated independently with the query

features f Q based on the correlation between query and
support. As the importance of each support images IS,c

i is
already incorporated, the resulting K aggregated features can
be simply averaged{

IS,c
i

}K

i=1
: A

(
f Q, f S,c)

=
1
K

K∑
i=1

A
(

f Q, f S,c
i

)
. (9)

In SQMG [41], the support features f S,c
i of multiple support

images IS,c
i are weighted according to their similarity with

the query features f Q using an attention mechanism. First,
the similarity is computed with a relation network [83].
Afterward, the weighting values wi for support features f S,c

i
are computed with a softmax on the similarity score. The
final support features are achieved by a weighted sum as in
Equation (8).

Lee et al. [54] (APSP) first used a multihead attention to
refine each individual support vector f S,c

i by incorporating
all other support vectors of the same category c. Afterward,
instead of computing one single support vector, all K support
vectors { f S,c

i }
K
i=1 are utilized in a second multihead attention

for aggregation with the query features. Thus, not all variances
of different support images need to be incorporated in a single
support vector and therefore lead to more robust features.

Takeaway: As not all support images provide the same
amount of information, their individual relevance should be
incorporated, as shown in Fig. 6.

D. Incorporate Relations Between Categories

Han et al. [61] (QA-FewDet) highlighted the problem that
many dual-branch meta-learning approaches work as a kind
of single-category detector without modeling multicategory
relations. However, especially for novel categories resembling
base categories, these relations can help in correctly classifying
objects (e.g., a motorbike is more similar to a bicycle than to
an airplane).

Therefore, in contrast to using visual features only,
Kim et al. [63] (FSOD-KT) additionally incorporated linguistic
features. Before aggregation, the support vectors f S are fed
through a knowledge transfer module, which exploits seman-
tic correlations between different categories. This knowledge
transfer module is implemented by a graph convolutional
network [84]. The input to this graph convolutional network
is a graph where each node represents one category, and
the values on the edges represent the similarities between
linguistic category names. However, this is only applicable
if all categories have predefined and distinct category names
and might be hard to transfer to, e.g., medical imaging.

Han et al. [61] (QA-FewDet) also utilized graph convo-
lutions but did not rely on the linguistic category names.
In contrast, they build a heterogeneous graph, which enhances
support vectors f S with multicategory relations in order to
better model their relations and incorporate features from
similar categories. Moreover, their heterogeneous graph also
aligns support and query features. Since the support features
f S,c of one category c are only extracted from few support
images, there might be a huge discrepancy to query RoIs Rc

that actually belong to the same category c. Therefore, the
heterogeneous graph also contains pairwise edges between
RoIs, in order to mutually adapt features of f S,c and Rc and
reduce their discrepancy.

Although not using graph convolutions, Zhang et al. [64]
(Meta-DETR) also incorporated relations between different
categories by transforming their support features. The authors
introduce a correlation aggregation module, which is able to
simultaneously aggregate multiple support categories in order
to capture their interclass correlation. This helps in reducing
misclassification and enhances generalization to novel cate-
gories. First, the query features f Q are matched with multiple
support features f S simultaneously by utilizing attention
modules [79]. Afterward, task encodings help to differentiate
these support categories.

Takeaway: Incorporating the relations between different
categories helps in better representing and classifying the
data-sparse novel categories Cnovel.

E. Increase Discriminative Power
After aggregation, for each RoI R, there exist N category-

specific RoIs RA,c, which are classified independently. If the
support features f S for different categories are too similar, this
independent classification might lead to ambiguities. There-
fore, some approaches use an additional meta loss to enforce
the support features f S to be as diverse as possible. Most often
(e.g., in [9], [43], [44], [61], and [63]), the support features
f S are classified, and a simple cross-entropy loss is applied.
This encourages the support vectors to fall in the category the
respective object belongs to. More advanced approaches utilize
techniques from metric learning to increase the discriminative
power, as described in the following.

GenDet [51] and Meta-DETR [64] use a loss based on
cosine similarity for more discriminative support vectors. First,
the support vectors f S are normalized. Afterward, for each
pair of support vectors ( f S,ci , f S,c j ), the cosine similarity is
computed, which results in a similarity matrix A ∈ RN×N ,
where N is the number of different categories. With an ℓ1 loss,
the similarity matrix A is constrained to be close to the
identity matrix IN ∈ RN×N . Intuitively speaking, this results
in minimizing the similarity between different support vectors
and maximizing the discriminative ability of each support
vector, i.e., a high margin between different support vectors.

Wang et al. [48] (IFC), Kobayashi [47] (SPCD), and
Huang et al. [49] (ARRM) also used a cosine loss, but in
ARRM, an additional margin is added to further increase
discrimination and reduce misclassification.

MM-FSOD [50] uses the Pearson distance for aggregating
f S and f Q. Compared to cosine similarity, the Pearson
distance first normalizes each dimension with the mean of
all dimensions, resulting in a smaller inner class variance.
Therefore, there is no need for designing a special distance
loss function, and the simple cross-entropy loss can be utilized.

Li et al. [46] (CME) proposed an adversarial training pro-
cedure for min-max-margin: Next to a loss for increasing the
margin, the features of novel categories are disturbed to reduce
the discriminative power of their support vectors and, thus,
decrease the margin. To be precise, the most discriminative
pixels are erased in an adversarial manner by backpropagating
the gradient to the input support image. With this approach,
CME [46] is capable of accurately detecting more objects with
fewer false positives.
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For the meta learning approach, the detector is supposed
to detect objects in a query image IQ that are of the same
category c as the object in the support image IS,c. Due to this
problem definition, meta leaning approaches tend to focus on
separating foreground from background instead of distinguish-
ing different categories, as noted by Zhang et al. [41] (SQMG).
This often leads to false positives, i.e., predicted bounding
boxes, even though the query image IQ does not contain any
instance of the regarded category c. However, it is equally
important that the detector can distinguish different categories
and identify which object categories are not present in the
query image.

Therefore, in AttentionRPN [55], a multirelation detector
as well as a two-way contrastive training strategy is pro-
posed. The multirelation detector incorporates global, local,
and patch-based relations between support features f S and
query RoIs R in order to measure their similarity. The outputs
of all three matching modules are summed to give the final
matching score. Many others [52], [66], [68], [69] adopt
or build upon this multirelation detector. The additionally
proposed two-way contrastive training strategy is implemented
as follows. In addition to a positive support image IS,c,
a negative support image IS,n is used from an object category
n ∈ C\{c} that is not present in the query image IQ. This
two-way-contrastive training strategy is adapted by DAnA [53]
and, similarly, by CAReD [52]. Zhang et al. [41] (SQMG)
extended the contrastive loss with an adaptive margin [85] in
order to separate the different categories by a proper distance.
The adaptive margin incorporates semantic similarity of the
categories by word embeddings [86].

A second problem highlighted by Zhang et al. [41] (SQMG)
is the extreme imbalance of many background proposals versus
few foreground proposals, which impedes distance metric
learning. To combat the foreground–background imbalance,
the authors use a focal loss [87], which downweights the easy
background proposals and focuses on the hard negatives.

CoAE [57] uses an additional margin-based loss to improve
the ranking of the RoIs in the RPN. Those RoIs with high
similarity to the object in the support image IS should be at the
top of the ranking since only the top 128 RoIs will be further
processed. Therefore, the authors designed a margin-based
metric to predict the similarities for all RoIs. Chen et al. [56]
(AIT) adopted this margin-based ranking loss.

In typical episodic training, only N categories are presented
in each episode. According to Liu et al. [51] (GenDet), this
could lead to a low discriminative ability of the extracted fea-
tures, as only the sampled categories are distinguished. Thus,
their approach GenDet [51] utilizes an additional reference
detector during training, where all base categories Cbase need
to be distinguished. The index of a specific base category
stays the same over all episodes. Via an additional loss, both
detectors are constrained to output similar results. This guides
the backbone to extract more discriminative features.

Takeaway: In order to increase the discriminative power
and differentiate between several categories, ideas from metric
learning such as similarity metrics as well as contrastive
training should be employed.

F. Improve Representation Capability
Kobayashi [47] (SPCD) emphasized that during base train-

ing, all other nonbase categories are treated as negative. This
leads to insufficient expressive power to identify novel cate-
gories. Therefore, they introduce an additional self-supervised

module. With selective search [88], rectangular regions dif-
ferent to those from base categories are extracted, and the
network is taught to detect the same regions before and after
applying strong data augmentation in a self-supervised manner.

G. Proposal-Free Detectors
Most approaches build on top of the two-stage detector

Faster R-CNN [70]. However, these approaches need to deal
with possibly inaccurate region proposals and the decision of
whether to aggregate support features f S and query features
f Q before or after the RPN or both. When utilizing proposal-
free detectors, f S and f Q can simply be aggregated after
feature extraction and before classification and bounding box
regression.

Some approaches utilize simple one-stage detectors, such
as YOLOv2 [89] in MetaYOLO [45] and CME [46] or
RetinaNet [87] in DAnA [53]. Others build on top of anchor-
free detectors, such as CenterNet [90] in ONCE [65] or
FCOS [91] in Li et al. [60] (OSWF) and GenDet [51]. The
transformer-based detector Deformable DETR [92] is utilized
in Meta-DETR [64]. Meta-DETR aggregates support features
f S and query features f Q after the shared backbone. Subse-
quently, a category-agnostic transformer architecture predicts
the objects.

Takeaway: While most approaches build on top of Faster
R-CNN, proposal-free detectors are easier to implement.
In particular, transformer-based architectures, such as Meta-
DETR [64], already surpass other approaches.

H. Keep the Performance on Base Categories
In order to better detect base categories and prevent catas-

trophic forgetting, Han et al. [59] (Meta Faster R-CNN) used
an additional branch following the original Faster R-CNN [70]
architecture. As Meta Faster R-CNN already aggregates query
features f Q and support features f S before the RPN, only
the weights for the backbone are shared between those two
branches. After meta training on the base categories Cbase, the
weights of the backbone are fixed and the RPN and RoI head
for the base category branch are trained. Finally, the other
branch is adapted or simply applied to novel categories with
meta fine-tuning or meta testing, respectively (see Section V-A
for terminology definitions). As the first branch stays fixed, the
performance for base categories Cbase will not drop due to meta
fine-tuning.

For the incremental learning approaches ONCE [65] and
Sylph [67], the weights for the already learned categories also
stay fixed. Instead of a softmax-based classifier, Sylph uses
several independent binary sigmoid-based classifiers (one for
each category) such that the categories do not influence each
other. For each novel category c, a hypernetwork on top of
the support branch S generates the weights for its classifier.
Thus, no meta fine-tuning is required.

I. Increase the Variance of Novel Categories
TIP [44] expands the few training examples for novel

categories with data augmentation techniques such as Gaussian
noise or cutout. However, naively adding data augmentation
impairs detection performance. Therefore, Li and Li [44] (TIP)
used an additional transformed guidance consistency loss,
implemented by ℓ2 norm, which constrains support vectors f Si
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and f Sj generated by original image ISi and transformed image
ISj = φ(ISi ) to be close to each other. This results in more
similar and representative support vectors even for different
support images, thus improving the detection performance of
novel categories. Moreover, during training, the query branch
Q also receives transformed as well as original images. The
features of the transformed query image IQ are fed into the
RPN to predict RoIs. These RoIs are then cropped from the
features of the original nontransformed query image via RoI
Align [42]. This forces the detector to predict consistent RoIs
independent of the transformation used for the query image.

J. Incorporate Context Information
Typically, by applying RoI pool or RoI align, region pro-

posals are pooled to a specific squared size of, e.g., 7 × 7.
However, this might lead to information loss during training,
which could be remedied with abundant training data. With
only a few training examples available, this information loss
could result in misleading detections. Therefore, DCNet [62]
uses three different resolutions and performs parallel pooling.
Similar to the pyramid pooling module in the PSPNet [93] for
semantic segmentation, this helps to extract context informa-
tion, where larger resolutions help to focus on local details,
while smaller resolutions help to capture holistic information.
In contrast to the pyramid pooling module, the branches are
fused with attention-based summation.

Han et al. [61] (QA-FewDet) found that query RoIsR might
be noisy and may not contain complete objects. Therefore,
they built a heterogeneous graph that uses graph convolutional
layers [84]. Pairwise edges between proposal nodes incorpo-
rate both local and global contexts of different RoIs in order
to improve classification and bounding box regression.

K. Category-Agnostic Bounding Box Regression
Even though parameters for binary classification and

bounding box regression are shared for all categories, most
approaches compute them for each category-specific RoI
independently. In contrast, GenDet [51], MM-FSOD [50],
SQMG [41], and Sylph [67] share the bounding box compu-
tation among different categories. This follows the intuition
that even though different categories vary in their visual
appearances, regression of bounding box values has common
traits. Moreover, it saves computation overhead.

Summary of Best Performing Dual-Branch Meta Learning
Approaches

In the following, we summarize selected dual-branch meta
learning approaches that perform best on FSOD benchmark
datasets (see Section IX), in order to highlight their key
concepts.

Meta-DETR [64] is the first approach building on top
of the transformer-based detector DETR. Without depending
on accurate region proposals, Meta-DETR circumvents the
challenge to adapt these for novel categories. Moreover, in its
attention-based aggregation module, the correlation between
different categories is incorporated, which reduces misclas-
sification. With an additional loss based on cosine similarity,
the learned features are more discriminative and, thus, enhance
generalization.

FCT [66] also uses a transformer, but instead of DETR, the
ResNet backbone of Faster R-CNN is simply replaced by the
improved Pyramid Vision Transformer PVTv2. However, sup-
port and query features are aggregated at multiple levels to

better align the features. Moreover, a multirelation detector
computes similarities between support and query features to
output the final detections.

IFC [48] does not build on top of transformers but utilizes
an interactive self-attention module to capture the discriminat-
ing features from scarce novel categories. Moreover, a novel
feature aggregation mechanism is introduced, which aims
at shrinking redundant information while enhancing feature
sensitivity and stability for both novel and base categories.
Finally, an orthogonal cosine loss enhances foreground distin-
guishability.

One of the few approaches not requiring fine-tuning is
SQMG [41]. In SQMG, both support and query features
are enhanced through mutual guidance. First, this helps to
generate more category-aware region proposals. Second, the
individual relevance of multiple support images is also incor-
porated. Moreover, SQMG focuses on correct classification
with different training techniques. To alleviate the confusion
of similar categories, a two-way contrastive training strategy
with an adaptive margin is employed. To combat the imbalance
between many background proposals versus few foreground
proposals, an additional focal loss is incorporated. Finally, the
bounding box regression is shared among different categories
in order to focus on classification.

Conclusion on Dual-Branch Meta Learning Approaches
Dual-branch meta learning approaches are very common

in FSOD. They enable fast adaption for novel categories or
can even be applied to novel categories without fine-tuning
but with a simple forward pass, i.e., meta testing. This is
especially useful for real-world applications. However, they
require a complex episodic training scheme, as described in
Section V-A. Nevertheless, by utilizing attention-based aggre-
gations and incorporating metric learning techniques, dual-
branch meta learning approaches can achieve state-of-the-art
results, as we will discuss in Section IX.

VI. SINGLE-BRANCH META LEARNING

Single-branch architectures for FSOD follow another
approach. Since there are no query and support branches,
the general architecture resembles the architecture for generic
object detectors such as Faster R-CNN [70]. However, there
is no single approach from which others deviate. Still, all
approaches use episodic training as described in Section V-A,
which is typical for meta learning. In Fig. 7, we display
our categorization of single-branch meta learning approaches,
which we further describe in the following.

A. Metric Learning
Similar to dual-branch meta learning, metric learning plays

a key role in single-branch approaches.
One of the first approaches for FSOD—RepMet [94]—

defines the FSOD task as a distance metric learning problem.
For localization, RepMet simply uses the RoIs R from Faster
R-CNN [70]. Embedded feature vectors f + of these RoIs are
compared to multiple learned representatives for each category,
in order to determine the category for an RoI. To learn an
adequate feature embedding, an additional embedding loss is
used, which enforces a minimum margin between the distance
of the embedded vector to the closest representative of the
correct category and the distance to the closest representative
of the wrong category.
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Fig. 7. Categorization of single-branch meta learning approaches. Best
viewed in color.

RepMet uses the positive region proposals of a category
but discards its negative proposals. However, for learning
the embedding space, negative—especially hard negative—
proposals are essential. Therefore, NP-RepMet [95] also learns
negative embedded feature vectors f − and negative repre-
sentative vectors per category. The embedding spaces for the
representatives are learned by utilizing a triplet loss [33].

PNPDet [96] uses cosine similarity for distance metric
learning of the objects’ categories to allow for better gener-
alization to novel categories. Cosine similarity computes the
similarity of the input image’s features with learned prototypes
of each category.

Takeaway: Metric learning helps in creating more discrim-
inative features for better distinguishing between different
categories.

B. Reduce Learnable Parameters
Since few training examples of novel categories might not

be sufficient to train a deep neural network, some approaches
reduce the number of learnable parameters for few-shot fine-
tuning.

After training MetaDet [97] on the base dataset, category-
agnostic weights (i.e., backbone and RPN of Faster R-CNN)
are frozen, and an episodic training scheme is applied to learn
how to predict category-specific weights first for the base
categories Cbase and then for the novel categories Cnovel. For
inference, the meta model can be detached, and the detector
looks like the standard Faster R-CNN.

Li et al. [98] (MetaRetinaNet) reduced the number of learn-
able parameters by freezing all backbone layers after training
on Dbase and instead learn coefficient vectors v initialized to
ones. These learnable coefficient vectors v are multiplied with
the convolution weights w, resulting in a modified convolution
operation: fout = fin ⊗ (w ⊙ v)⊕ b.

Zhang et al. [96] (PNPDet) freezed the whole network after
training on Dnovel. For few-shot fine-tuning, a second small
subnetwork is introduced for learning to classify the novel cat-
egories Cnovel. This disentangling of novel and base categories
prevents a decreasing performance on base categories.

Takeaway: When training on data scarce Dnovel, the number
of learnable parameters should be reduced.

C. Learnable Learning Rate

Fu et al. [99] designed their Meta-single shot detector
(SSD) such that the model’s parameters can adjust fast—
with just one parameter update—to the novel categories Cnovel.
All parameters from the original SSD detector [100] get
an additional learnable learning rate. During meta learning,
these learning rates are learned individually by a meta learner
from the distribution of the current task, resulting in neither
overfitting nor underfitting.

D. Balanced Loss Function
Li et al. [98] highlighted that for meta training, in each

episode, different training examples of different categories

are sampled, and they achieve different performances. This
performance imbalance hinders stability and makes it difficult
to adapt the model to novel categories. Thus, in their MetaReti-
naNet, a balancing loss is introduced, which constrains the
detector to achieve similar performance across episodes.

Conclusion on Single-Branch Meta Learning Approaches
Single-branch meta learning approaches are much less

explored in FSOD. Thus, more advanced dual-branch
approaches or transfer learning approaches are able to surpass
the approaches presented here.

VII. TRANSFER LEARNING

Meta learning approaches depend on complex episodic
training. In contrast, transfer learning approaches utilize a
fairly simple two-phase approach on a single-branch archi-
tecture, most often a Faster R-CNN [70], as first proposed by
Wang et al. [101] (TFA) and shown in Fig. 8.

In the first phase, the detector is trained on the base
categories Cbase. Afterward, all detector weights are frozen
except for RoI head, which is responsible for bounding box
regression and classification. In the second phase, transfer
learning is performed, by fine-tuning the last layers on the base
categories Cbase and novel categories Cnovel. For fine-tuning, the
training set is composed of balanced subsets of base category
data Dbase and novel category data Dnovel with K shots for
each of the base and novel categories. The only modification to
Faster R-CNN is the use of cosine similarity for classification,
which is crucial to compensate for differences in feature
norms of base categories Cbase and novel categories Cnovel,
as analyses in [102] have shown. Wang et al. [101] showed
that this simple approach is sufficient to adequately learn the
novel categories Cnovel and outperform earlier meta learning
approaches that are more complex.

Building upon this simple approach, many modifications
have been proposed. Fig. 9 shows all transfer learning
approaches categorized by the architecture employed and by
their modifications. In the following, we describe all the
proposed modifications, grouped by the categories shown.

A. Modifications of the RPN
For the very few-shot setting, where the number of instances

K for novel categories Cnovel is very low, the RPN was
identified as a key source for errors [107]. For example,
if the detector must learn to detect a category from a single
example, the detector can model the categories’ variation only
by proposing multiple RoIs that match the object’s ground
truth, which is similar to random cropping augmentation,
as shown in [102] (see Section VII-C). If the RPN misses
even one of these RoIs, the performance on this novel category
may drop noticeably. Therefore, Zhang et al. [107] (CoRPN)
modified the RPN, by replacing the single binary foreground
classifier in the RPN with M binary classifiers. The goal
is that at least one classifier identifies the relevant RoI as
foreground. Vu et al. [109] (FORD + BL) added an atrous
spatial pyramid pooling (ASPP) [127] context module before
the RPN to increase its receptive field. This helps in identifying
relevant RoI as foreground.

As in TFA [101], in the second training phase, the weights
of the RPN are frozen in many transfer learning approaches.
Fan et al. [106] (Retentive R-CNN) observed that the RPN
suppresses RoIs of novel categories Cnovel after it was trained
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Fig. 8. Realization with transfer learning.

Fig. 9. Transfer learning approaches categorized by detector architecture and
types of modifications. Best viewed in color.

only on Dbase in the first phase. They found that unfreezing
the weights of the RPN’s final layer that classifies whether
objects are foreground or background is sufficient to improve
the RPN in the second phase. The same conclusion was
drawn by Sun et al. [102] (FSCE), Kaul et al. [108] (LVC),
and Wang et al. [110] (CIR), and as a result, all RPN weights
were unfrozen. In addition, FSCE and CIR doubled the number
of proposals that pass nonmaximum suppression (NMS) to get
more proposals for novel categories. FSCE compensates for
this by sampling only half the number of proposals in the
RoI head used for loss computation, as they observed that in
the second training phase, the discarded half contains only
backgrounds.

Takeaway: To reduce the number of missed detections, the
RPN weights should be adapted during fine-tuning on Dnovel
and the number of proposals passing NMS can be increased.

B. Modifications of the Feature Pyramid Network
Next to unfreezing the RPN, Sun et al. [102] (FSCE)

showed that also fine-tuning the feature pyramid network
(FPN) in the second phase improves the performance com-
pared to freezing its weights. They assume that the concepts
from the base categories cannot be transferred to novel cate-
gories without any fine-tuning.

Wu et al. [111] (MPSR) observed that the scales of the FPN
do not compensate for the sparsity of the scales of the few
samples of novel categories. Therefore, in a refinement branch,
specific data augmentation is applied to solve this issue (see
Section VII-C). Wang et al. [110] (CIR) designed a context
module to enlarge the receptive field of the FPN, which also
addresses the problem of varying scales and, in particular,
improves the detection of small objects.

Takeaway: Also, FPN weights should be adapted during
fine-tuning [102].

Fig. 10. Augmentation for novel categories regarding scale and translation
in FSSP [125].

C. Increase the Variance of Novel Categories

If training instances for novel categories Cnovel are limited,
also the variance of the data regarding these categories is lim-
ited. Therefore, some approaches try to increase the variance
of the data for novel categories.

In the refinement branch of MPSR [111], each object is
cropped by a square window and resized to various scales.
This increases the variance regarding object sizes. This aug-
mentation is also employed in FSOD-UP [113] and CME [46].
A similar approach is taken by Xu et al. [125] (FSSP), where
in an auxiliary branch, the objects are augmented regarding
scale and translation, as shown in Fig. 10.

Zhang and Wang [105] (Halluc.) introduced a hallucinator
network that learns to generate additional training examples
for novel categories Cnovel. To achieve this, the features in the
RoI head f R of novel category samples are augmented by
leveraging the shared within-class feature variation from base
categories Cbase.

Kaul et al. [108] (LVC) showed in their experiments that
data augmentation, i.e., color jittering, random cropping,
mosaicing, and dropout for the extracted features for each
ROI, significantly improves the performance. Sun et al. [102]
(FSCE) described the similarity between the augmentation
with several random image crops and multiple RoI proposals
from the RPN. Thus, increasing the number of proposed RoIs
per novel category instance as described in Section VII-A
is also increasing the variance of novel categories as
it resembles random cropping augmentation. According
to [105], increasing the variance of novel categories primarily
benefits the extreme few-shot scenario with very few samples
K per novel category.

If additional unlabeled data containing novel categories
are available, techniques from semisupervised learning can
be applied to increase the number of samples for novel
categories. Liu et al. [117] (N-PME) pseudo-labeled the base
dataset Dbase after fine-tuning in order to find additional
samples of Cnovel in Dbase. The novel samples are then used for
an additional fine-tuning phase with more shots by including
the samples pseudo-labeled as one of the categories in Cnovel.
Since the bounding boxes for the additional samples are
rather imprecise, they are omitted for the regression loss.
Kaul et al. [108] (LVC) further improved this attempt by first
verifying that the searched novel samples indeed belong to
Cnovel and then correct the inaccurate bounding boxes. For
verification, they apply a vision transformer (ViT) [128], which
was trained in a self-supervised manner by self-distillation
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with no labels (DINO) [129], to get features that can be
used in a k-nearest neighbor classifier to compare to the
K shots of the novel categories. If novel samples can be
verified, they are included in Dnovel; otherwise, these regions
are ignored during the following additional fine-tuning on
the extended data. Bounding boxes for verified samples are
corrected in the fashion of Cascade R-CNN [130]. Using
the high-quality extended data, the detector can be finetuned
end-to-end without the need for freezing any components of
the detector. While this seems to improve the performance
significantly, it should be noted that for the FSOD benchmark
datasets Microsoft COCO and PASCAL VOC, searching for
novel objects in images of Dbase is sufficient, but for real-
world few-shot applications, such as medical applications or
the detection of rare species, additional (unlabeled) data are
needed, which could prove problematic.

Takeaway: Increasing the variance of training examples
from novel categories—e.g., by data augmentation or
pseudo-labeling additional data—improves detection accuracy,
especially when the number of training examples K is very
low.

D. Transfer Knowledge Between Base and Novel Categories
In LSTD [8], using a soft assignment of similar base

categories, weights of components for novel categories are ini-
tialized by base category weights to transfer base knowledge.
Chen et al. [126] (AttFDNet) initialized the parameters of the
novel object detector using parameters from the base object
detector and an imprinting initialization method [131], [132].
Also, Li et al. [116] (CGDP + FSCN) used imprinting for
initialization [131].

By learning and leveraging visual and semantic lingual
similarities between the novel and base categories, in the sec-
ond training phase, Khandelwal et al. [121] (UniT) transferred
weights for bounding box regression and classification from
base categories to novel categories. Zhu et al. [122] (SRR-
FSD) represented each category concept by a semantic word
embedding learned from a large corpus of text. The image
representations of objects are projected into this embedding
space to learn Cnovel from both the visual information and the
semantic relation. Cao et al. [119] (FADI) also incorporated
the categories’ semantic meaning: After training on Dbase, they
measure the semantic similarity of base and novel categories
via WordNet [133]. The authors argue, that in the second fine-
tuning phase, associating novel categories to multiple base
categories leads to scattered intraclass structures for the novel
categories. Thus, each novel category is associated to exactly
one base category with the highest similarity. Afterward, each
novel category is assigned a pseudo-label of the associated
base category. Then, the whole network is frozen—except
for the second fully connected layer in RoI Head—and the
network is trained such that it learns to align the feature dis-
tribution of the novel category to the associated base category.
This leads to low intraclass variation of the novel category but
inevitably to confusion between Cbase and Cnovel. Thus, in a
subsequent discrimination step, the classification branches for
Cbase and Cnovel are disentangled to learn a good discrimination.
In [124] (KR-FSOD), a semantic knowledge graph based on
word embeddings is used to describe a scene and relations
between objects. This helps to improve knowledge propagation
between novel and related categories.

Takeaway: For initializing the weights of components for
each novel category, knowledge from the semantically most
similar base category should be transferred [119].

E. Keep the Performance on Base Categories
Many approaches suffer from catastrophic forgetting when

trained on Cnovel. Although the model can be trained on Cbase
as well in the fine-tuning phase, the performance still drops
compared to before fine-tuning. Therefore, Fan et al. [106]
(Retentive R-CNN) proposed to duplicate the RPN and the
classification heads for RoI proposal and classification of Cbase
and Cnovel, respectively. During fine-tuning of the Cnovel head,
a cosine classifier is used to balance the variations in feature
norms of Cbase and Cnovel. The frozen RPN and RoI head
for Cbase shall keep the performance on the base categories.
Feng et al. [103] (BPMCH) combat catastrophic forgetting for
base categories Cbase during the fine-tuning phase mainly by
fixing the backbone Bbase and the classification head for these
categories and used an additional backbone Bnovel as a feature
extractor for novel categories Cnovel.

In MemFRCN [104], additional to the softmax-based clas-
sifier in the RoI head, representative feature vectors f R,ci

for each category ci are learned and stored to remember the
base categories Cbase after the RoI head is modified during
the fine-tuning phase. During inference, extracted features f R
can be compared to these category representatives by cosine
similarity. This is similar to support vectors in dual-branch
meta learning.

Guirguis et al. [123] (CFA) built on the continual learning
approaches GEM [134] and A-GEM [135], which observed
that catastrophic forgetting occurs when the angle between
loss gradient vectors of previous tasks and the gradient update
of the current task is obtuse. Therefore, CFA stores K shots
of the base categories in episodic memory, analogous to A-
GEM, in order to be able to compute gradients on Dbase.
During the fine-tuning phase, the episodic memory is static,
meaning that no further samples are added. The fine-tuning
is then conducted as follows. The base category gradient
gbase is calculated on a mini-batch drawn from the episodic
memory and the novel category gradient gnovel is calculated
on a mini-batch from Dnovel. If the angle between gbase and
gnovel is acute, gnovel is backpropagated as it is. Otherwise,
a new gradient update rule is derived, which averages the base
gradients gbase and novel gradients gnovel. It also adaptively
reweights them in case the novel gradients gnovel point toward
a direction that could lead to forgetting.

Takeaway: To prevent catastrophic forgetting and keep the
performance on base categories, the angle between gradients
of novel and base categories must be considered [123].

F. Modify the Training Objective
A modified loss, which updates the training objective, can

guide the detector toward focusing on foreground regions
or specific aspects, may improve the consistency in multiple
branches, and may also help to improve the inner class and
interclass variance of features for object classification. Further-
more, restricting the gradient flow in the detector or slightly
modifying the training scheme can improve the training of the
different components of the detector.

1) Additional Loss Terms: Chen et al. [8] (LSTD) used
additional background-depression and transfer-knowledge reg-
ularization terms in the loss function to help the detec-
tor focus on target objects and incorporate source-domain
knowledge. Li et al. [116] (CGDP + FSCN) identified unla-
beled instances of novel categories Cnovel in the base dataset
Dbase as problematic. They introduce an additional semisu-
pervised loss term to also utilize these unlabeled instances.
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Chen et al. [126] (AttFDNet) proposed two loss terms to
maximize the cosine similarity between instances of the same
category and to tackle the problem of unlabeled instances in
the dataset. Cao et al. [119] (FADI) introduced an additional
set-specialized margin loss to enlarge interclass separability.
In contrast to previous margin losses such as ArcFace [136],
they use scaling factors for different margins, where the scaling
factor for Cnovel is higher than for Dbase, as novel categories are
much more challenging. Liu et al. [117] (N-PME) used a mar-
gin loss to exploit error-prone pseudo-labels by evaluating the
uncertainty scores of both correct and incorrect pseudo-labels
for novel categories on additional data.

2) Loss for Auxiliary Branches: Similar to the
meta-learning approach TIP [44], Wu et al. [113] (FSOD-UP)
used a consistency loss to force features of two branches to
be similar. They apply the KL-Divergence loss between these
features. The context module of CIR [110] is trained in a
supervised manner by an auxiliary classification branch that
predicts a binary foreground–background segmentation map.
The two branches of MPSR [111] are loosely coupled via
shared weights and contributions of both branches to the loss
function. CME [46] builds on top of MPSR but introduces an
additional adversarial training as we described in Section V-E.
Also, Xu et al. [125] (FSSP) introduced an auxiliary branch.
It includes a full replication of the detection network used for
data augmentation. A modified classification loss combines
the decisions in the original branch and this auxiliary branch
that processes only one object with most of the background
removed.

Sun et al. [102] (FSCE) introduced a new branch in the
RoI head. In addition to the standard RoI head, they apply
a single fully connected layer as contrastive branch to be
able to measure similarity scores between learned object
proposal representations. On the contrastive branch, they use
a contrastive proposal encoding loss for training that enables
increasing the cosine similarity of representation from the
same category and reduce the similarity of proposals from dif-
ferent categories. Lu et al. [115] (DMNet) followed a similar
approach. They use an auxiliary classification branch in which
they compare extracted features to representatives for each
category by the Euclidean distance. The feature embedding
and the category representatives are learned by triplet-loss-
based metric learning.

3) Modified Gradient Flow: Qiao et al. [114] (DeFRCN)
additionally want to update the backbone in both training
phases, but they identified contradictions in training as prob-
lematic. The goals of RPN and ROI head are contrary since
the RPN tries to learn class-agnostic region proposals, whereas
the ROI head tries to distinguish categories. Their extensive
experiments showed that it is key to stop the gradient flow
from the RPN to the backbone and scale the gradient from
the ROI head to the backbone. During training on Dbase in
the first phase, they scale the gradient from the ROI head by
0.75 so that the backbone learns a little less than the rest of
the detector. During training on Dbase ∪ Dnovel in the second
phase, it proved necessary to scale the gradient by 0.01, which
is in the direction of freezing the backbone. Stopping the
gradient from the RPN and scaling the gradient from the ROI
head significantly boosts the performance, especially in the
second phase. The authors observed that this gradient scaling
also benefits Faster R-CNN as a generic object detector when
trained with sufficient data as well.

Guirguis et al. [123] (CFA) derived a new gradient update
rule that takes the angle between gradients for samples of

Dbase and samples of Dnovel into account in order to combat
catastrophic forgetting for base categories Cbase during the fine-
tuning phase, as already described in Section VII-E. While
this gradient update rule primarily intends to preserve the
performance on base categories Cbase, it also has a positive
impact on the performance regarding novel categories Cnovel.

4) Modified Training Scheme: Inspired by infants beginning
to learn from a single observation, in [109] (FORD + BL), it is
shown that instead of fine-tuning with K shots immediately,
the performance can be improved by first fine-tuning with a
single shot per category and only then fine-tuning with all
K shots. Wu et al. [118] (TD-Sampler) introduced a batch
sampling strategy for the fine-tuning phase that enables to use
all samples of Dbase instead of K shots per base category Cbase
and to use more samples of novel categories Cnovel per training
batch. This is achieved by selecting batches that contain a
large number of novel category samples and are unlikely to
significantly change the detector activation pattern, judged by
an estimated training difficulty (TD).

Takeaway: The loss should be modified regarding opti-
mized gradient flow and interclass separability. In an auxiliary
branch, a contrastive loss can help to improve the discrimina-
tive power of features, like in two-branch meta learning.

G. Use Attention
Attention blocks help to enhance features. In this sense,

Wu et al. [113] (FSOD-UP) used soft attention between
learned prototypes (see Section VII-H) and RPN outputs
to enhance features in an extra branch. Yang et al. [120]
(CoTrans) used the affinity between an anchor box and its
contextual field as a relational attention to integrate contexts
into the representation of the anchor box. Xu et al. [125]
(FSSP) first processed the image by a self-attention module
and then processed the attention-enriched input by a one-stage
detector. Therefore, the detector can focus on important parts
of the input image. Chen et al. [126] (AttFDNet) combined
top-down and bottom-up attention. Top-down attention is
learned in supervised fashion in a simplified nonlocal block
and a squeeze-and-excitation block. Bottom-up attention
is computed by a saliency prediction model (boolean map
based saliency (BMS) [137] or saliency attentive model
(SAM) [138]).

H. Modify Architecture
1) Architectures Based on Faster R-CNN: The majority

of transfer learning approaches are based on the Faster
R-CNN detector, as shown in Fig. 8. Benchmark results
confirm the superiority of this two-stage detector for transfer
learning approaches. Only few approaches deviate from this
architecture.

Li et al. [116] (CGDP + FSCN) observed that the perfor-
mance degradation for novel categories in Faster R-CNN is
mainly caused by false positive classifications, i.e., by category
confusion. Therefore, they refine the classification in an addi-
tional discriminability enhancement branch, which is trained
with misclassified false positive samples. It directly processes
the cropped image of the object to be classified. Then, the
classification result is fused with the one of the original Faster
R-CNN branch. Qiao et al. [114] (DeFRCN) also observed
many low classification scores for novel categories. Similar
to Li et al., they conclude that contrary requirements of
translation invariant features for classification and translation
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covariant features for localization are problematic. To tackle
this issue, they propose a prototypical calibration block, which
performs score refinement to eliminate high-scored false pos-
itive classifications.

Wu et al. [111] (MPSR) used an auxiliary refinement
branch for data augmentation during training that is excluded
during inference. SVD [112] builds upon MPSR [111]. With
a singular value decomposition (SVD), they decompose the
backbone features f B into eigenvectors with their relevance
quantified by the corresponding singular values. The eigen-
vectors corresponding to the largest singular values are incor-
porated for localization since they are able to suppress cer-
tain variations. In contrast, the eigenvectors corresponding
to the smaller singular values are incorporated for category
discrimination since they encode category-related information.
This discrimination space is further refined by utilizing dictio-
nary learning [139] to facilitate classification. Wu et al. [113]
(FSOD-UP) adapted the few-shot learning idea of proto-
types [11], [140], [141] that reflect category information.
In contrast to category-specific prototypes in dual-branch
meta learning, they learn universal prototypes based on all
categories in an extra branch that processes backbone features.
These universal prototypes are invariant under different visual
changes and, thus, enhance the original features from the
backbone. After processing original and enhanced features in
the RPN, this processing in an auxiliary branch is repeated for
RPN features to compute the input for the ROI head.

2) Incorporating One-Stage Detectors: One of the earliest
FSOD approaches, LSDT [8], combines bounding box regres-
sion following the SSD [100] approach and Faster R-CNN [70]
concepts for object classification.

Yang et al. [120] (CoTrans) used SSD [100] as a one-stage
detector. They argue that the multiscale spatial receptive fields
in this architecture provide rich contexts, which are important
for knowledge transfer. Chen et al. [126] (AttFDNet) also
used the SSD detector, but added two attention branches,
to help the detector to focus on the important parts of the
image and six prediction heads that predict bounding boxes
and categories for objects at different scales.

Lu et al. [115] (DMNet) proposed a one-stage detector that
follows the design principles of SSD and YOLO, but uses
two decoupled branches for localization and classification. It is
argued that this decoupling facilitates adaptation with only a
few examples.

Xu et al. [125] (FSSP) show, how a fast one-stage detector,
namely YOLOv3 [142], can be made competitive with the
slower two-stage detector Faster R-CNN in the vanilla setup
as described in [101]. This is possible only by putting in a lot
of effort, namely incorporating a self-attention module, using
an additional auxiliary branch that contains a full replication
of the detection network, augmenting the input data of the
auxiliary branch, and applying an additional loss. However,
due to these modifications, the fast one-stage detector of
Xu et al. [125] is especially performing better than TFA [101]
for the extremely low-shot scenario.

Takeaway: In detectors based on Faster R-CNN, a score
refinement can help to reduce false positive classifica-
tions [114]. Single-stage detectors can profit from an auxiliary
branch in order to enable data augmentation [125].

Summary of Best Performing Transfer Learning Approaches
In the following, we summarize selected transfer learning

approaches with distinct concepts regarding the categories

described above that perform best on FSOD benchmark
datasets (see Section IX).

In DeFRCN [114], it was found that the class-agnostic local-
ization task in the RPN and the class-distinguishing task of the
ROI head are contrary. Therefore, it is key to stop the gradient
flow from the RPN to the backbone and scale the gradient from
the ROI head to the backbone. Then, it is possible to train all
components of the detector, including the backbone, in both
training phases, which significantly boosts the performance,
especially in the fine-tuning phase. In addition, a prototypical
calibration block performs score refinement in the ROI head
to eliminate high-scored false positive classifications, which
are a result of contrary requirements of translation invariant
features for classification and translation covariant features for
localization.

CFA [123] can be applied on top of DeFRCN to tackle
catastrophic forgetting of base categories during fine-tuning,
which occurs when angles between base category gradients
and novel category gradients are obtuse. Therefore, CFA
stores K shots of the base categories in episodic memory for
computing gradients on Dbase during fine-tuning. If the angle
between base and novel category gradients is obtuse, both
gradients are averaged and adaptively reweighted; otherwise,
the novel category gradient can be backpropagated without the
risk of catastrophic forgetting. This gradient update rule also
benefits the performance regarding novel categories.

Before fine-tuning, FADI [119] associates each novel cate-
gory to exactly one base category by measuring their semantic
similarity via WordNet. Then, the network is trained to align
the feature distribution of the novel category to the associated
base category. This leads to low intraclass variation of the
novel category but inevitably to confusion between Cbase and
Cnovel. Thus, in a subsequent discrimination step, the classifi-
cation branches for Cbase and Cnovel are disentangled to learn
good discrimination. In addition, a set-specialized margin loss
is employed to enlarge interclass separability.

If additional unlabeled data containing novel categories are
available, techniques from semisupervised learning can be
applied. On FSOD benchmark datasets Dbase can be used for
this purpose. LVC [108] pseudo-labels these data with the
detector that was finetuned on Dnovel in the second training
phase. First, the searched novel samples are verified to belong
to Cnovel by using features of a ViT to compare with the shots
of Dnovel in the nearest neighbor fashion. Then, the inaccurate
bounding boxes of verified samples are corrected similar to
Cascade R-CNN. Using the high-quality extended data for
novel categories, all components of the detector can be trained
in an additional fine-tuning phase.

Conclusion on Transfer Learning Approaches
Transfer learning approaches have a much simpler training

pipeline, as they do not require complex episodic training as in
meta learning. By incorporating specific techniques to be able
to finetune as much components of the detector as possible—
e.g., modifying the training objective or transferring knowl-
edge between base and novel categories—transfer learning
approaches are able to reach the state-of-the-art performance.

VIII. COMPARISON BETWEEN META LEARNING AND
TRANSFER LEARNING

After elaborating on different approaches for meta learning
as well as transfer learning, we now want to draw a com-
parison. Since single-branch meta learning is less explored in
recent works and also falls behind in terms of performance,
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TABLE I
COMPARISON BETWEEN DUAL-BRANCH META LEARNING AND

TRANSFER LEARNING

we discard it in the comparison. In Table I, we compare dual-
branch meta learning and transfer learning according to several
important aspects. Both seem promising for future work and
either could benefit by also incorporating ideas from the other
training scheme.

IX. DATASETS, EVALUATION PROTOCOLS, AND
BENCHMARK RESULTS

Evaluation of few-shot object detectors requires tailored
datasets that distinguish between base and novel categories.
Therefore, most approaches use specific splits of the common
object detection datasets PASCAL VOC [143] and Microsoft
COCO [144]. Only rarely, other datasets, such as FSOD,
ImageNet-LOC, or LVIS, are applied. Generally, few-shot
object detectors are evaluated in the K -shot-N -way manner,
i.e., Dnovel consists of K labeled examples for N novel
categories.

A. PASCAL VOC Dataset

The PASCAL VOC dataset [143] contains annotations for
20 categories. Commonly, the combination of VOC 07 + 12
trainval sets is used for training, and VOC 07 test set is used
for testing. For evaluating few-shot object detectors, most often
three category splits are used, each with 15 base categories and
five novel categories (N = 5).

1) Set 1: Cnovel = {bird, bus, cow, motorbike, sofa}.
2) Set 2: Cnovel = {aeroplane, bottle, cow, horse, sofa}.
3) Set 3: Cnovel = {boat, cat, motorbike, sheep, sofa}.

The number of shots K for novel categories is set to 1, 2,
3, 5, and 10. As an evaluation metric, the mean average
precision at an intersection over union (IoU) threshold of
0.5 is used (AP50). Unfortunately, the specific K -shot object
instances are not fixed, which leads to varying instances used
in different approaches. As stated by Wang et al. [101], this
high variance in training samples makes it difficult to compare
approaches against each other, as approach-based performance
differences may be insignificant compared to differences based
on different instances. Therefore, Wang et al. [101] proposed
a revised evaluation protocol, where results are averaged over
30 runs with different random samples of training shots.
Moreover, they also report the performance on base categories
since ignoring the performance for base categories might hide
a potential performance drop and is, therefore, not suitable
for evaluating the overall performance of a model. Currently,
approaches focusing on this topic also report results for
generalized FSOD (G-FSOD) performance, which refers to
the mean over novel and base categories.

In Table II, we list benchmark results of the described
approaches for the PASCAL VOC dataset. We split the table
according to whether the results are given for a single run or
averaged over multiple runs as proposed by Wang et al. [101].
Approaches that give results for both evaluation protocols
are marked with “←−” to act as anchors for comparison.
The performance gap between the two evaluation protocols
is not negligible and shows that the averaged results are more
reliable. Furthermore, we also denote whether fine-tuning on
Dnovel is required or if the results are achieved by simply meta
testing. Each approach is characterized by a small symbol at
the front. In general, both transfer learning and dual-branch
meta learning approaches can achieve similar results. The
main characteristics of the best performing approaches are
summarized at the end of Section V for dual-branch meta
learning and Section VI-D for transfer learning.

Although it is very commonly used, according to
Michaelis et al. [58], the PASCAL VOC dataset is too easy.
With a dual-branch meta learning approach and uninformative
all-black support images, they are still able to locate the novel
objects and reach a mAP50 of 33.2. However, we want to
highlight that in general, objects do not simply need to be
located but also classified, i.e., detectors need to also determine
which category is present in the image.

B. Microsoft COCO Dataset

In comparison to PASCAL VOC, the Microsoft COCO
dataset [144] is more challenging and contains annotations for
80 categories, including the 20 VOC categories. For FSOD,
most often, the 20 VOC categories are used as novel cate-
gories, leaving the remaining 60 categories as base categories.
Typically, the number of shots K is set to 10 and 30. However,
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TABLE II
AP50 PUBLISHED RESULTS ON THE PASCAL VOC BENCHMARK FOR ALL THREE SETS AND DIFFERENT NUMBER OF SHOTS K . WE SORT THE

APPROACHES BY THE MEAN OVER ALL NOVEL SETS AND SHOTS. —: NO RESULT REPORTED IN PAPER. ⋆: RESULTS ONLY REPORTED FOR
DIFFERENT SHOTS OR SETS, AND THEREFORE, THESE RESULTS ARE NOT INCLUDED HERE. *: DEVIATING EVALUATION PROTOCOL

PREVENTING FAIR COMPARISON AS DESCRIBED IN SECTION IX-C. ❢: DUAL-BRANCH META LEARNING. •: SINGLE-BRANCH
META LEARNING. ▷: TRANSFER LEARNING

some approaches focus on the extremely low-shot regime and
use only 1–3 shots per category.

For evaluation, the standard COCO metrics are used. The
primary metric is AP50:95: the mean of ten average precision
values with IoU thresholds in range [0.5, 0.95]. Moreover,
AP50 is reported, which corresponds to the Pascal VOC metric.
AP75 is more strict, as detections only count as positive when
their IoU with a ground-truth object is larger than 0.75.

We list published benchmark results for K = 1, K = 10,
and K = 30 in Table III. Similar to PASCAL VOC, the
evaluation of few-shot detectors on Microsoft COCO also
suffers from varying K -shot instances between approaches.

Therefore, we again split the tables according to whether the
revised evaluation protocol proposed by Wang et al. [101] was
used, where results are averaged over ten runs with different
random samples.

C. Deviating Evaluation Protocols
In general, object detection is the joint task of localizing

and classifying object instances. However, some few-shot
approaches deviate from this setting and create a simpler task.
For example, some approaches that explicitly focus on the
one-shot scenario (CoAE [57], AIT [56], OSWF [60], and
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TABLE III
BENCHMARK RESULTS FOR THE MICROSOFT COCO DATASET SORTED BY NOVEL AP50:95 FOR TEN-SHOT. —: NO RESULT REPORTED IN PAPER.

*: DEVIATING EVALUATION PROTOCOL PREVENTING FAIR COMPARISON AS DESCRIBED IN SECTION IX-C. ❢: DUAL-BRANCH META LEARNING.
•: SINGLE-BRANCH META LEARNING. ▷: TRANSFER LEARNING

CGG [58]) assume each query image IQ to have at least
one instance of the object category c from the support image
IS,c. Implicitly, this removes the classification task and only
requires localization. The same applies to the one-way training
and evaluation setting of DAnA [53], where the detector only

needs to estimate whether the current query image IQ contains
the object and where it is located, but the difficulty of correct
classification is eliminated. In order to report comparable
results, we therefore strongly recommend to always evaluate
with the N -way setting.
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In contrast, PNSD [68] and KFSOD [69] simplify the
generalization to novel categories by already utilizing a ResNet
pretrained on COCO such that the novel categories are not
really novel anymore.

D. Problems of Common Evaluation Protocols
1) High Variance for Different Samples: As pointed out

by Wang et al. [101], the use of different samples for novel
categories can lead to a high variance in performance and,
therefore, makes comparison difficult. Hence, we highly rec-
ommend to always report the average of the results over
multiple random runs.

2) ImageNet Pretraining and Choice of Novel Categories:
Most approaches use an ImageNet-pretrained backbone. While
this is common for generic object detection, it has a negative
side effect for FSOD: The novel categories are not truly novel
anymore, as the model has probably already seen images
of this category. However, omitting ImageNet pretraining
altogether results in worse performance even for the base
categories. To alleviate this problem, there are two options.

First, the ImageNet categories, which correspond to the
novel categories, can be excluded from ImageNet-pretraining
as done in CoAE [57], SRR-FSD [122], and AIT [56].
CoAE [57] and AIT [56] even remove all COCO-related
categories from ImageNet, which results in 275 categories
being removed. However, as argued by Zhu et al. [122] (SRR-
FSD), removing all COCO-related categories is not realistic,
as these categories are very common in the natural world
and removing 275 categories may affect the representational
power learned through pretraining. Therefore, Zhu et al. [122]
only removed categories corresponding to novel categories
for PASCAL VOC, resulting in 50 categories being removed
on average. Yet, this requires additional pretraining for every
different set of novel categories.

The second option for preventing foreseeing novel cate-
gories is using a dataset with novel categories that do not occur
in ImageNet. Such a dataset would also be more realistic.
Using categories such as cats as novel categories is absurd as
there are loads of annotated data. Therefore, a more realistic
approach would be to select novel categories that are indeed
rare. For example, the LVIS [145] dataset provides a natural
long tail with more and less frequent categories. A maximum
of ten training instances are available for rare categories.
Therefore, they can be used as novel categories. However,
Huang et al. [39] pointed out that some rare categories in
the training set do not appear in the validation set at all,
which hinders the performance evaluation and requires further
refinement of balanced splits and evaluation sets.

X. CURRENT TRENDS

A. Improvement of Techniques
Currently, dual-branch meta learning approaches improve

much by using attention for aggregating features of both
branches [48], [54], [64]. By aggregating before the RPN [55]
or using a proposal-free transformer as detector [64], the
issue of missing proposals for novel categories is effectively
solved. Transfer learning approaches currently improve much
by guiding the gradient flow to be able to train as many
components of the detector as possible [114]. In both types
of approaches, a current trend is the use of metric learning
concepts by modifying the loss function to enable better
category separation [48]. More trends are highlighted as part
of the comparison in Section VIII.

B. Extension to Related Research Areas
Besides these trends toward improving FSOD techniques,

the extension of FSOD concepts to further research areas,
such as a weakly supervised setting [146], self-supervised
learning [39], or to few-shot instance segmentation [147],
[148], is also a current trend.

C. Open Challenges
Many approaches focus on either improving meta learning

or transfer learning but often neglect that concepts between
both types of approaches are exchangeable as pointed out
in Table I, which leaves the potential for improvements
in future work. Since the mainly used FSOD benchmarks
PASCAL VOC and Microsoft COCO do not contain realistic
novel categories that represent rare objects, we would like to
encourage future research to additionally evaluate on more
realistic datasets such as LVIS or FSOD, as already done
in [50], [55], [101], and [149]. In addition, in [150], a frame-
work for creating a customized FSOD dataset is provided.
When employing FSOD in a realistic setting, including really
rare categories, likely, a domain shift will occur. Therefore,
concepts from cross-domain detection [23], [24], [25] should
be further explored in future work.

XI. CONCLUSION

In this survey, we provided a comprehensive overview of
the state of the art for FSOD. We categorized the approaches
according to their training scheme and architectural layout into
single- and dual-branch meta learning and transfer learning.
Meta learning approaches use episodic training to improve
the subsequent learning with few object instances per novel
category. Dual-branch meta leaning approaches utilize a sepa-
rate support branch receiving the image of a designated object,
to learn how to represent the objects’ category and where to
attend in the query image. Transfer learning approaches use a
more simplified training scheme, by simply fine-tuning on the
novel categories.

After introducing the main concepts, we elaborated on how
specific approaches differ from the general realization and
gave short takeaways in order to highlight key insights for
well performing methods. Based on an analysis of benchmark
results on the most widely used datasets PASCAL VOC and
Microsoft COCO, we identified current trends in the best
performing dual-branch meta learning and transfer learning
approaches. It remains an open question, which of these two
concepts will prevail.
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