
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

The Symplectic Adjoint Method: Memory-Efficient
Backpropagation of Neural-Network-Based

Differential Equations
Takashi Matsubara , Member, IEEE, Yuto Miyatake , and Takaharu Yaguchi, Member, IEEE

Abstract— The combination of neural networks and numerical
integration can provide highly accurate models of continuous-
time dynamical systems and probabilistic distributions. However,
if a neural network is used n times during numerical integration,
the whole computation graph can be considered as a network n
times deeper than the original. The backpropagation algorithm
consumes memory in proportion to the number of uses times
of the network size, causing practical difficulties. This is true
even if a checkpointing scheme divides the computation graph
into subgraphs. Alternatively, the adjoint method obtains a
gradient by a numerical integration backward in time; although
this method consumes memory only for single-network use, the
computational cost of suppressing numerical errors is high. The
symplectic adjoint method proposed in this study, an adjoint
method solved by a symplectic integrator, obtains the exact
gradient (up to rounding error) with memory proportional to
the number of uses plus the network size. The theoretical
analysis shows that it consumes much less memory than the
naive backpropagation algorithm and checkpointing schemes.
The experiments verify the theory, and they also demonstrate
that the symplectic adjoint method is faster than the adjoint
method and is more robust to rounding errors.

Index Terms— Adjoint method, backpropagation, checkpoint-
ing scheme, neural networks, ordinary differential equation
(ODE), symplectic integrator.

I. INTRODUCTION

ALTHOUGH neural networks are attracting attention
as powerful tools for image recognition and natural-

language processing [1], [2], their potential for learning
dynamical systems is equally noteworthy. We emphasize that
they also show promise for learning dynamical systems [3].
A feedforward neural network that has more than one layer

Manuscript received 22 December 2021; revised 3 October 2022,
20 December 2022, and 9 January 2023; accepted 31 January 2023. This
work was supported in part by the Japan Science and Technology Agency
(JST) Core Research for Evolutionary Science and Technology (CREST)
under Grant JPMJCR1914, in part by JST Precursory Research for Embryonic
Science and Technology (PRESTO) under Grant JPMJPR21C7, and in part
by the Japan Society for the Promotion of Science (JSPS) Grants-in-Aid
for Scientific Research (KEKNHI) under Grant 19K20344. (Corresponding
author: Takashi Matsubara.)

Takashi Matsubara is with the Graduate School of Engineering Sci-
ence, Osaka University, Osaka 560-8531, Japan (e-mail: matsubara@sys.es.
osaka-u.ac.jp).

Yuto Miyatake is with the Cybermedia Center, Osaka University, Osaka
560-8531, Japan (e-mail: miyatake@cas.cmc.osaka-u.ac.jp).

Takaharu Yaguchi is with the Graduate School of System Informatics, Kobe
University, Hyogo 657-8501, Japan (e-mail: yaguchi@pearl.kobe-u.ac.jp).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2023.3242345.

Digital Object Identifier 10.1109/TNNLS.2023.3242345

and sufficiently many hidden units is known to approximate
an arbitrary nonlinear function [4]. For a target system defined
in discrete time, let a state u at the nth time step be denoted
un , and the state transition be

un+1 = α(un, un−1, . . .). (1)

The neural network learns the state transition α. In particular,
a set of present and past states {un, un−1, . . .} is given to
the neural network as input, and the output of the neural
network represents the next state un+1 [5], [6], [7], [8], [9].
This approach is known as the nonlinear autoregressive with
exogenous input (NARX) model, or more specifically, as the
time-delay neural network (TDNN). When the target system
is described by an ordinary differential equation (ODE)

du
dt

= f (t, u(t)) (2)

one can sample the state u periodically and consider a discrete-
time map, such as [8]

u(t + 1t) = u(t) + 9(t, u(t)) (3)

where 1t denotes the step size. This is a special case of the
TDNN in (1). However, a neural network often struggles with
approximating the discrete-time map 9 in (3). This is because
9 is defined by the integral

9(t, u(t)) =

∫ t+1t

t
f (ξ, u(ξ))dξ (4)

which is highly nonlinear even if the time-derivative f is
not. To handle the nonlinearity, fractional order methods and
fuzzy logic systems (FLSs) have been proposed to model
dynamical systems [10], [11], [12], [13], [14], [15], [16],
[17], [18], [19], [20]. Several studies have used numerical
integration techniques for learning an ODE [21], [22]. For
example, the Runge–Kutta neural network (RKNN) has an
internal feedforward neural network fNN that approximates the
time-derivative f and uses it four times per step according to
the Runge–Kutta method [23]

9NN (t, u(t)) =
1t
6

(k1 + 2k2 + 2k3 + k4

k1 = fNN (t, u(t))

k2 = fNN

(
t +

1t
2

, u(t) +
1t
2

k1

)
k3 = fNN

(
t +

1t
2

, u(t) +
1t
2

k2

)
k4 = fNN (t + 1t, u(t) + 1tk3). (5)

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0003-0642-4800
https://orcid.org/0000-0002-5742-6251

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Block diagram of the system identification.

The whole architecture 9NN can be regarded as a neural
network four times deeper than the internal neural network
fNN and approximates the discrete-time map 9. Several other
studies also proposed neural networks inspired by numerical
integrators [24], [25], [26], [27]. Their architectures are not
feedforward, and the backpropagation algorithm should be
modified manually [28].

Recent developments in automatic differentiation have made
it possible to easily train neural networks that have special
architectures [29], [30]. Following that, numerous studies
have investigated new architectures for specific subclasses
of continuous-time dynamical systems, including Hamilto-
nian systems on canonical coordinates [31], on arbitrary
coordinates [32], and with constraints [33], [34], [35],
Euler–Lagrange systems [36], and port-Hamiltonian sys-
tems [37]. These systems are associated with special geometric
structures (e.g., symplectic structure), and the neural networks
will be able to learn these systems with high accuracy if their
architectures represent such structures well. ODEs with other
conditions [38], [39] and ODEs obtained by spatially discretiz-
ing partial differential equations (PDEs) using grids [40] and
meshes [41] have also been investigated.

The developments have also enabled to train neural net-
works that use numerical integrators with adaptive time-
stepping, such as the Dormand–Prince method [42]. Using
such integrators, neural networks can deal with continuous-
time dynamics even when it is sampled irregularly (i.e., with
variable time step sizes), whereas other methods, such as
recurrent neural networks cannot (see [43] for comparison).
In this article, we focus on explicit integrators, the internal
states and outputs of which are defined by explicit functions
and calculable forward in time. In the context of the sys-
tem identification, we depict the block diagram in Fig. 1.
We assume that the target system is a black box, and only
the sampled data [denoted by x̃(T)] is available. Given an
initial condition x0, a numerical integrator solves the initial
value problem with the time-derivative defined by a neural
network, obtaining the terminal value x(T) and the error
e between the sampled data x̃(T) and the terminal value
x(T). The backpropagation algorithm can be applied to obtain
the gradients of the error e w.r.t. the parameters. Then, the
parameters are updated to minimize the error e. This is a native
approach to training neural networks for identifying the target
system.

Memory consumption poses a difficulty for such
approaches. The automatic differentiation algorithm obtains

the gradient of a cost function L with respect to parameters θ

by tracing the computation graph in the backward direction.
The computation graph is composed of the operations and
arguments that appear during the numerical integration. For
example, the RKNN has four internal stages and consumes
four times more memory than its internal neural network
fNN per step. Moreover, for accurate integration, an adaptive
integrator may divide a given period 1t into multiple time
steps. Let N , s, and L denote the number of time steps in a
given period 1t , the number of internal stages, and the size of
the neural network fNN . Then, the memory consumption for
naive backpropagation is O(NsL), making a straightforward
application troublesome. Assuming that the computational
cost of backpropagation is the same as that of forward
propagation, the total computational cost is O(2NsL).

To reduce memory consumption, the neural ODE using
the adjoint sensitivity method has been proposed [43]. This
approach to solving an ODE obtains the gradient ∇L of
a cost function L by solving another ODE, the adjoint
system [21], [45], [46], [47]. The adjoint method has been
widely used to obtain the gradient with respect to the initial
condition x0 for data assimilation. In practice, it uses a
numerical integrator and solves the adjoint system backward
in time together with the main ODE forward in time. Neural
ODE applies the adjoint method to obtaining the gradient
with respect to the parameters for training the neural network
fNN . The adjoint method does not save the computation graph
over time but calculates the time derivative of the gradient
while consuming the memory only for the backpropagation
of a single use of the neural network. Thus, the memory
consumed is proportional only to L , not to N or s. Instead,
the computational cost is increased by the additional backward
integration of the state x . Moreover, the adjoint method suffers
from numerical errors [44]. With a sufficiently small step
size, it can partly (but never entirely) suppress these errors,
but this leads to a larger number of time steps Ñ and a
much higher computational cost (N +2Ñ)sL , where typically
Ñ ≫ N . Therefore, there must be a tradeoff between memory
consumption and computational cost.

Several existing methods employ checkpointing schemes
[48], [49]. For example, ANODE and ACA retain each step
{xn}

N−1
n=0 as a checkpoint with a memory of O(N) during

the forward integration [44], [50]. To obtain the gradient,
they recalculate the state x from each checkpoint xn to the
next step xn+1 and apply the backpropagation algorithm to
the step composed of s stages; the memory consumption is
O(sL) for each step and O(N + sL) in total. They can,
thus, obtain a gradient-free from numerical errors and reduce
the computational cost compared with the adjoint method.
However, they still consume memory in proportion to both L
and the number of internal stages s. The latter is not negligible
for a high-order integrator: e.g., s = 6 in the Dormand–Prince
method [42]. Table I summarizes previous studies.

Given the above-mentioned tradeoff, we propose the sym-
plectic adjoint method. This is a special case of the adjoint
method. Inspired by a recent study by Sanz-Serna [47],
we design a numerical integrator so that the pair of numer-
ical integrators for the adjoint method and main ODE is
symplectic. A symplectic integrator conserves the symplectic
structure, which defines the relationship between the time-
derivative of the system state u and the gradient of the
cost function L. Thanks to this property, the symplectic

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MATSUBARA et al.: SYMPLECTIC ADJOINT METHOD: MEMORY-EFFICIENT BACKPROPAGATION 3

TABLE I
COMPARISON OF THE PROPOSED METHOD WITH EXISTING METHODS

adjoint method can obtain the exact gradient (up to rounding
errors) of a neural ODE. The symplectic adjoint method
uses the same step size for the forward and backward inte-
grations (i.e., Ñ = N), and hence, reduces the computa-
tional cost compared with the adjoint method. Each stage
in the numerical integrator can be obtained explicitly, and
the backpropagation can be performed for each stage sep-
arately. Combined with a nested checkpointing scheme, the
symplectic adjoint method consumes memory in proportion
only to L , not to N or s, up to the (often negligible)
memory for the checkpoints. Due to the nested checkpointing
scheme, the symplectic adjoint method requires some addi-
tional computation. Nevertheless, in practice, it works faster
than the adjoint method and is competitive with checkpointing
schemes.

We summarize the advantages of the proposed symplectic
adjoint method as follows: 1) fast computation—in discrete
time, the adjoint method suffers from numerical errors or
needs a smaller step size. The proposed method uses a
specially designed integrator that obtains the exact gradient
in discrete time. It works with the same step size as the
forward integration and is, thus, faster than the adjoint method
in practice. 2) Small memory consumption—except for the
adjoint method, existing methods apply the backpropagation
algorithm to the computation graph of the whole numerical
integration or a subset of it [44], [50], [51]. Memory con-
sumption is proportional to the number of steps/stages in the
graph times the network size. In contrast, the proposed method
applies the algorithm only to each use of the neural network,
and thus, the memory consumption is only proportional to the
number of steps/stages plus the network size. 3) Robust to
rounding error—the backpropagation algorithm accumulates
the gradient from each use of the neural network and tends
to suffer from rounding errors. The proposed method obtains
the gradient from each step as a numerical integration and
is, thus, more robust to rounding errors. 4) Compatible
with any ODE systems—while this advantage applies to
comparison methods, we emphasize that the proposed method
is compatible with any systems described by ODEs [31], [32],
[33], [34], [35], [36], [37], [38], [39], [40], [41], [43].

Preliminary and limited results were presented in a confer-
ence paper [52], in which the symplectic adjoint method was
evaluated mainly using computer-vision tasks and discussed in
the context of modern deep learning. In this article, we have
completely rewritten the introduction and evaluated the method
in the context of dynamical systems.

II. BACKGROUND THEORY

A. Adjoint Method
Consider a system

d
dt

x = f (t, x, θ) (6)

where x , t , and θ , respectively, denote the system state,
an independent variable (e.g., time), and parameters of the
function f . We assume that f is Lipschitz continuous. Then,
given an initial condition x(0) = x0, there exists a unique
solution x(t) given by [53]

x(t) = x0 +

∫ t

0
f (τ, x(τ), θ)dτ . (7)

We assume that the solution x(t) is evaluated at the terminal
t = T by a function L as L(x(T)). Our main interest is
in obtaining the gradients of L(x(T)) with respect to the
parameters θ . However, for simplicity, we first focus on the
initial condition x0, omitting θ .

Consider the solution x̄(t) arising from a perturbed initial
condition x̄0 = x0 + δ̄0. Suppose that x̄(t) = x(t)+ δ̄(t). Then

d
dt

δ̄ =
d
dt

(x̄ − x)

= f (x̄, t) − f (x, t)

=
∂ f
∂x

(x, t)(x̄ − x) + o(|x̄ − x |)

=
∂ f
∂x

(x, t)δ̄ + o(|δ̄|)

δ̄(0) = δ̄0. (8)

Dividing each element of δ̄ by each element of δ̄0 and taking
the limit as |δ̄0| → +0, we define the variational variable δ

and the variational system as
d
dt

δ(t) =
∂ f
∂x

(x(t), t)δ(t) for δ(0) = I. (9)

Therefore, the solution δ(t) of the variational system repre-
sents the variation of the solution x(t) in the main system.
Also, the variational variable δ(t) at time t represents the
Jacobian (∂x(t)/∂x0) of the state x(t) at time t with respect
to the initial condition x0.

We also define the adjoint variable λ and the adjoint system
as

d
dt

λ(t) = −
∂ f
∂x

(x, t)⊤λ(t) for λ(T) = λT . (10)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Remark 1: The quantity λ⊤δ is time-invariant, i.e.,
λ(t)⊤δ(t) = λ(0)⊤δ(0).
Proof

d
dt

(
λ⊤δ

)
=

(
d
dt

λ

)⊤
δ + λ⊤

(
d
dt

δ

)
=

(
−

∂ f
∂x

(x, t)⊤λ

)⊤
δ + λ⊤

(
∂ f
∂x

(x, t)δ
)

= 0. (11)

Remark 2: The adjoint variable λ(t) represents the gradient
(∂L(x(T))/∂x(t))⊤ if the final condition λT of λ is set to
(∂L(x(T))/∂x(T))⊤.

Proof: Using the time invariance of λ⊤δ, the facts that
δ(t) = (∂x(t)/∂x0) and λ(T) = (∂L(x(T))/∂x(T))⊤, and the
chain rule, we find

λ(t)⊤δ(t) = λ(T)⊤δ(T)

=
∂L(x(T))

∂x(T)

∂x(T)

∂x0

=
∂L(x(T))

∂x0

=
∂L(x(T))

∂x(t)
∂x(t)
∂x0

=
∂L(x(T))

∂x(t)
δ(t). (12)

Thus, backward integration of the adjoint variable λ works
as reverse-mode automatic differentiation. The adjoint method
obtains the gradient by solving the adjoint system [21], [45],
[46], [47]. (Note that, in proving Remark 2, we assumed
that the variational variable δ is nonsingular; this assumption
always holds if the function f is Lipschitz continuous and t
is finite).

B. Adjoint Method for System Identification
The adjoint method has been used for data assimilation,

where the initial condition x0 is optimized by a gradient-based
method. For system identification (i.e., parameter adjustment),
one can consider the parameters θ as a part of the augmented
state x̃ = [x θ]

⊤ of the system

d
dt

x̃ = f̃ (x̃, t), f̃ (x̃, t) =

[
f (t, x, θ)

0

]
, x̃(0) =

[
x0
θ

]
.

(13)

For the augmented adjoint variable λ̃ = [λ λθ]
⊤, the

augmented adjoint system is

d
dt

λ̃ = −
∂ f̃
∂ x̃

(x̃, t)⊤λ̃ = −

[
∂ f
∂x

⊤

0
∂ f
∂θ

⊤

0

][
λ

λθ

]
=

[
−

∂ f
∂x

⊤

λ

−
∂ f
∂θ

⊤

λ

]
.

(14)

Hence, the adjoint variable λ for the system state x is
unchanged from (10), the adjoint variable λθ for the parame-
ters θ depends on λ as

d
dt

λθ = −
∂ f
∂θ

(x, t, θ)⊤λ (15)

and λθ (T) = (∂L(x(T), θ)/∂θ)⊤. The variational system is
augmented in the same way. Hereafter, we let x denote the
state or augmented state without loss of generality.

When the solution x(t) is evaluated by a functional C as

C(x(t)) =

∫ T

0
L(x(t), t)dt (16)

the adjoint variable λC that denotes the gradient λC(t) =

(∂C(x(T))/∂x(t))⊤ of the functional C is given by

d
dt

λC = −
∂ f
∂x

(x, t)⊤λC +

(
∂L(x(t), t)

∂x(t)

)⊤

, λC(T) = 0.

(17)

Chen et al. [43] introduced the neural ODE, an ODE in
which the time-derivative f is modeled by a neural network,
and used the adjoint method for training. In the original
implementation, the final value x(T) of the system state x
is retained after forward integration, and the pair (x, λ) is
integrated backward in time to obtain the gradients. The
right-hand sides of the main system in (6) and the adjoint
system in (10) are obtained by the forward and backward
propagations of the neural network f , respectively. Therefore,
the computational cost of the adjoint method is twice that of
the ordinary backpropagation algorithm.

After a numerical integrator discretizes the time, Remark 1
does not hold, and thus, the adjoint variable λ(t) is not
equal to the exact gradient [47], [50]. Moreover, in general,
numerical integration backward in time is not consistent with
that forward in time. Although a small step size (i.e., a small
tolerance) suppresses numerical errors, it also leads to a longer
computation time. These facts provide the motivation to obtain
the exact gradient with small memory.

III. SYMPLECTIC ADJOINT METHOD

A. Runge–Kutta Method
We first discretize the main system in (6). Let tn , hn , and

xn denote the nth time step, step size, and state, respectively,
where hn = tn+1 − tn . Previous studies employed one of the
Runge–Kutta methods, generally expressed as

xn+1 = xn + hn

s∑
i=1

bi kn,i

kn,i := f
(
Xn,i , tn + ci hn

)
Xn,i := xn + hn

s∑
j=1

ai, j kn, j . (18)

The coefficients ai, j , bi , and ci are summarized as the Butcher
tableau [21], [22], [47]. If ai, j = 0 for j ≥ i , the intermediate
state Xn,i is calculable from i = 1 to i = s sequentially; the
Runge–Kutta method is then considered explicit. Runge–Kutta
methods are not time-reversible in general, i.e., the numerical
integration backward in time is not consistent with that forward
in time.

Remark 3: When the system in (6) is discretized by the
Runge–Kutta method in (18), the variational system in (9)
is consistent if it is discretized by the same Runge–Kutta
method [22], [54].

Proof: By differentiating each term in the Runge–Kutta
method for the main system in (18) with respect to the initial
condition x0

δn+1 = δn + hn

s∑
i=1

bi dn,i

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MATSUBARA et al.: SYMPLECTIC ADJOINT METHOD: MEMORY-EFFICIENT BACKPROPAGATION 5

dn,i =
∂kn,i

∂x0
=

∂ f (Xn,i , tn + ci hn)

∂x0

=
∂ f (Xn,i , tn + ci hn)

∂ Xn,i
1n,i

1n,i :=
∂ Xn,i

∂x0
= δn + hn

s∑
j=1

ai, j dn, j . (19)

This is the variational system discretized by the same
Runge–Kutta method.

B. Symplectic Runge–Kutta Method for Adjoint System
We assume bi ̸= 0 for i = 1, . . . , s. We suppose the adjoint

system to be solved by another Runge–Kutta method with the
same step size as that used for the system state x , expressed
as

λn+1 = λn + hn

s∑
i=1

Bi ln,i

ln,i := −
∂ f
∂x

(Xn,i , tn + Ci hn)
⊤3n,i

3n,i := λn + hn

s∑
j=1

Ai, j ln, j . (20)

The final condition λN is set to (∂L(xN)∂xN)⊤. Because the
time evolutions of the variational variable δ and the adjoint
variable λ are expressible by two equations, the combined
system is considered a partitioned system. A combination of
two Runge–Kutta methods for solving a partitioned system
is called a partitioned Runge–Kutta method, where Ci = ci
for i = 1, . . . , s. We introduce the following condition for a
partitioned Runge–Kutta method.

Condition 1: bi Ai, j + B j a j,i −bi B j = 0 for i, j = 1, . . . , s,
and Bi = bi ̸= 0 and Ci = ci for i = 1, . . . , s.

Theorem 1 ([47]): The partitioned Runge–Kutta method in
(18) and (20) conserves a bilinear quantity S(δ, λ) if the
continuous-time system conserves the quantity S(δ, λ) and
Condition 1 holds.

Our proof is as follows.
Proof: Because the quantity S is conserved in continuous

time
d
dt

S(δ, λ) = 0. (21)

Because the quantity S is bilinear

d
dt

S(δ, λ) =
∂S
∂δ

dδ

dt
+

∂S
∂λ

dλ

dt
= S

(
dδ

dt
, λ

)
+ S

(
δ,

dλ

dt

)
(22)

which implies

S(dn,i , 3n,i) + S(1n,i , ln,i) = 0. (23)

The change in the bilinear quantity S(δ, λ) is

S(δn+1, λn+1) − S(δn, λn)

= S

(
δn +hn

∑
i

bi dn,i , λn +hn

∑
i

Bi ln,i

)
−S(δn, λn)

=

∑
i

bi hn S
(
dn,i , λn

)
+

∑
i

Bi hn S
(
δn, ln,i

)

+

∑
i

∑
j

bi B j h2
n S
(
dn,i , ln, j

)
=

∑
i

bi hn S

dn,i , 3n,i − hn

∑
j

Ai, j ln, j


+

∑
i

Bi hn S

1n,i − hn

∑
j

ai, j dn, j , ln,i


+

∑
i

∑
j

bi B j h2
n S
(
dn,i , ln, j

)
=

∑
i

hn
(
bi S

(
dn,i , 3n,i

)
+ Bi S

(
1n,i , ln,i

))
+

∑
i

∑
j

(
−bi Ai, j − B j a j,i + bi B j

)
h2

n S
(
dn,i , ln, j

)
.

(24)

If Bi = bi and bi Ai, j + B j a j,i − bi B j = 0, the change
vanishes, i.e., the partitioned Runge–Kutta conserves the
bilinear quantity S. Note that bi must be nonzero, because
Ai, j = B j (1 − a j,i/bi). Therefore, the bilinear quantity λ⊤

n δn
is conserved as

λ⊤

N δN = λ⊤

n δn for n = 0, . . . , N . (25)

Because the bilinear quantity S (including λ⊤δ) is con-
served, Remark 1 holds in discrete time. More precisely,
because Remark 3 indicates δn = (∂xn/∂x0), and λN is set
to (∂L(xN)/∂xN)⊤,

λ⊤

n δn = λ⊤

N δN

=
∂L(xN)

∂xN

∂xN

∂x0

=
∂L(xN)

∂x0

=
∂L(xN)

∂xn

∂xn

∂x0

=
∂L(xN)

∂xn
δn. (26)

Therefore, λn = (∂L(xN)/∂xn)
⊤; the adjoint system solved by

the Runge–Kutta method in (20) under Condition 1 provides
the exact gradient as the adjoint variable λn = (∂L(xN)/∂xn)

⊤.
The Dormand–Prince method, one of the most popular

Runge–Kutta methods, has b2 = 0 [42]. For such methods, the
Runge–Kutta method under Condition 1 in (20) is generalized
as

λn+1 = λn + hn

s∑
i=1

b̃i ln,i

ln,i := −
∂ f
∂x

(Xn,i , tn + ci hn)
⊤3n,i

3n,i :=

{
λn + hn

∑s
j=1 b̃ j

(
1 −

a j,i

bi

)
ln, j , if i ̸∈ I0

−
∑s

j=1 b̃ j a j,i ln, j , if i ∈ I0

(27)

where

b̃i =

{
bi , if i ̸∈ I0

hn, if i ∈ I0
I0 = {i |i = 1, . . . , s, bi = 0}. (28)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Note that this numerical integrator is no longer a Runge–Kutta
method and is an alternative expression for the “fancy” inte-
grator proposed in [47].

Theorem 2 ([47]): The combination of the integrators in
(18) and (27) conserves a bilinear quantity S(δ, λ) if the
continuous-time system conserves the quantity S(δ, λ).
The original study did not provide detailed proof. We introduce
a proof of the theorem as follows.

Proof: By solving the combination of the integrators
in (18) and (27), the change in a bilinear quantity S(δ, λ)

conserved by the continuous-time dynamics is found to be

S(δn+1, λn+1) − S(δn, λn)

= S

(
δn + hn

∑
i

bi dn,i , λn + hn

∑
i

b̃i ln,i

)
− S(δn, λn)

=

∑
i

bi hn S
(
dn,i , λn

)
+

∑
i

b̃i hn S
(
δn, ln,i

)
+

∑
i

∑
j

bi b̃ j h2
n S
(
dn,i , ln, j

)
=

∑
i ̸∈I0

bi hn S

dn,i , 3n,i − hn

∑
j

b̃ j
(
1 − a j,i/bi

)
ln, j


+

∑
i

b̃i hn S

1n,i − hn

∑
j

ai, j dn, j , ln,i


+

∑
i ̸∈I0

∑
j

bi b̃ j h2
n S
(
dn,i , ln, j

)
=

∑
i ̸∈I0

bi hn
(
S
(
dn,i , 3n, j

)
+ S

(
1n,i , ln, j

))
+

∑
i ̸∈I0

∑
j

(
−bi b̃ j

(
1 − a j,i/bi

)
− b̃ j a j,i + bi b̃ j

)
×h2

n S
(
dn,i , ln, j

)
+

∑
i∈I0

b̃i hn S
(
1n,i , ln, j

)
−

∑
j

b̃ j a j,i h2
n S
(
dn,i , ln, j

)
=

∑
i ̸∈I0

bi hn
(
S
(
dn,i , 3n, j

)
+ S

(
1n,i , ln, j

))
+

∑
i∈I0

h2
n

(
S
(
dn,i , 3n, j

)
+ S

(
1n,i , ln, j

))
= 0. (29)

Hence, the bilinear quantity S(δ, λ) is conserved.
Remark 4: The Runge–Kutta method in (20) under con-

dition 1 and the numerical integrator in (27) are explicit
backward in time if the Runge–Kutta method in (18) is explicit
forward in time.

Proof: Equation (20) can be rewritten as

λn = λn+1 − hn

s∑
i=1

bi ln,i

ln,i = −
∂ f
∂x

(Xn,i , tn + ci hn)
⊤3n,i

3n,i = λn+1 − hn

s∑
i=1

b j
a j,i

bi
ln, j . (30)

Equation (27) can be rewritten as

λn = λn+1 − hn

s∑
i=1

b̃i ln,i

ln,i = −
∂ f
∂x

(Xn,i , tn + ci hn)
⊤3n,i

3n,i =


λn+1 − hn

s∑
j=1

b̃ j
a j,i

bi
ln, j , if i ̸∈ I0

−

s∑
j=1

b̃ j a j,i ln, j , if i ∈ I0.

(31)

Because ai, j = 0 for j ≥ i and a j,i = 0 for j ≤ i . The
intermediate adjoint variable 3n,i is calculable from i = s to
i = 1 sequentially, i.e., the integration backward in time is
explicit.

We emphasize that Theorems 1 and 2 hold for any ODE
systems, even if the systems have discontinuities [55], stochas-
ticity [56], or physics constraints [31]. This is because the
theorems do not depend on the properties of a particular
system but of Runge–Kutta methods in general.

A partitioned Runge–Kutta method that satisfies condition 1
is symplectic [21], [22]. It is known that a symplectic inte-
grator applied to a Hamiltonian system using a fixed step
size conserves a modified Hamiltonian that approximates the
system energy. The bilinear quantity S is associated with the
symplectic structure but not with a Hamiltonian. Regardless of
the step size, a symplectic integrator conserves the symplec-
tic structure, and thereby, conserves the bilinear quantity S.
Hence, we call this method the symplectic adjoint method.
For integrators other than Runge–Kutta methods, one can
design the integrator for the adjoint system so that the pair
of integrators is symplectic (see [57] for example).

All the above-mentioned considerations about the adjoint
method and symplectic adjoint method hold also for implicit
Runge–Kutta methods, in which one or more of the internal
stages and outputs are defined by implicit functions and calcu-
lated by a root-finding algorithm so that the computational cost
is not easily calculable. In contrast, the naive backpropagation
algorithm and ACA are not applicable to implicit functions
because they assume explicit ones. (For the backpropagation
algorithm for implicit functions, see [58]).

Algorithm 1 Forward Integration
Input: x0
Output: xN ,{xn}

N−1
n=0

1: for n = 0 to N − 1 do
2: Retain xn as a checkpoint

According to (18)
3: for i = 1 to s do
4: Get Xn,i using xn and kn, j for j < i
5: Get kn,i using Xn,i

6: end for
7: Get xn+1 using xn and kn,i

8: end for

C. Implementation of Symplectic Adjoint Method
The theory given in Section III-B was largely intro-

duced into numerical analysis in [47]. Because the original

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MATSUBARA et al.: SYMPLECTIC ADJOINT METHOD: MEMORY-EFFICIENT BACKPROPAGATION 7

Algorithm 2 Backward Integration

Input: xN ,{xn}
N−1
n=0

Output: λ0
1: for n = N − 1 to 0 do
2: Load checkpoint xn

According to (18)
3: for i = 1 to s do
4: Get Xn,i using xn and kn, j for j < i
5: Get kn,i using Xn,i .
6: Retain Xn,i as a checkpoint
7: end for

According to (27)
8: for i = s to 1 do
9: Get 3n,i using λn+1 and ln, j for j > i

10: Load checkpoint Xn,i

11: Get ln,i using 3n,i and Xn,i .
12: Discard checkpoint Xn,i

13: end for
14: Get λn using λn+1 and ln,i

15: Discard checkpoint xn

16: end for

expression included recalculations of intermediate variables,
we propose the alternative expression in (27) to reduce the
computational cost. The discretized adjoint system in (27)
depends on the vector-Jacobian product (VJP) 3⊤(∂ f/∂x).
To obtain it, the computation graph from the input Xn,i to the
output f (Xn,i , tn + ci hn) is required. When the computation
graph in the forward integration is entirely retained, the mem-
ory consumption and computational cost are of the same order
as those for the naive backpropagation algorithm. To reduce
memory consumption, we propose the strategy summarized in
the following and in Algorithms 1 and 2.

At the forward integration of a neural ODE component,
the pairs of system states xn and time points tn at time steps
n = 0, . . . , N − 1 are retained with a memory of O(N)

as checkpoints, and all computation graphs are discarded,
as shown in Algorithm 1. The backward integration is summa-
rized in Algorithm 2. From the checkpoint xn , the intermediate
states Xn,i for s stages are obtained following the Runge–Kutta
method in (18) and retained as checkpoints with a memory of
O(s), while all computation graphs are discarded. Then, the
adjoint system is integrated from n + 1 to n using (27). This
routine is repeated as n goes from N − 1 to 0.

Because the computation graph of the neural network f in
line 5 was discarded, it is recalculated, and the VJP λ⊤(∂ f/∂x)

is obtained using the backpropagation algorithm one-by-one
in line 11, where only a single use of the neural network is
recalculated at a time. This is why the memory consumption is
proportional to the number of checkpoints N+s plus the neural
network size L , as summarized in Table I. In contrast, existing
methods apply the backpropagation algorithm to the compu-
tation graph of a single step composed of s stages or multiple
steps. The memory consumption is proportional to the number
of uses of the neural network between two checkpoints (at least
s) times the neural network size L , in addition to the memory
for checkpoints. Due to the recalculation, the computational
cost of the proposed strategy is O(4NsL), whereas those of
the adjoint method [43] and ACA [44] are O((N + 2Ñ)sL)

and O(3NsL), respectively. However, the increase in the
computation time is much less than that expected theoretically
because of other bottlenecks (as demonstrated later).

Other implementation strategies are imaginable, such as
ones that retain no checkpoints or checkpoints for all stages.
Therefore, we call the above-mentioned implementation strat-
egy the nested checkpointing scheme. Unless otherwise stated,
we refer to the symplectic adjoint method with the nested
checkpointing scheme simply as the symplectic adjoint method
hereafter.

IV. EXPERIMENTS

We evaluated the performance of the proposed symplectic
adjoint method and existing methods using PyTorch 1.7.1 [30].
We implemented the symplectic adjoint method by extending
the adjoint method implemented in the package torchdiffeq
0.1.1 [43]. For the adjoint method, we used the same numerical
integrator as that for solving the main system unless otherwise
stated, following previous works [43], [44]. We reimplemented
ACA [44] because the interfaces of the official implemen-
tation were incompatible with torchdiffeq. The source code
is available at https://github.com/tksmatsubara/symplectic-
adjoint-method.

A. Continuous-Time Dynamical System
1) Experimental Settings: We evaluated the symplectic

adjoint method on learning continuous-time dynamical sys-
tems [31], [40], [59]. We followed the experimental settings
of HNN++, provided in [40],1 unless, otherwise, stated.

Many physical phenomena can be modeled using
dx/dt = G∇ H(x), where H is system energy and G is
a coefficient matrix that determines the behaviors of the
energy [60]. Following the release code1, we chose physical
systems described by PDEs, namely, the Korteweg–De Vries
(KdV) equation and the Cahn–Hilliard equation. The KdV
equation conserves the system energy and has soliton solu-
tions [61], [62]. The energy function H and the time evolution
of the KdV equation are expressed as

H(u) =

∫
x

1
6
αu3

+
1
2
β

(
∂

∂x
u
)2

∂

∂t
u =

∂

∂x
∇ H(u). (32)

The coefficients α and β determine the spatiotemporal scales.
The Cahn–Hilliard equation, which is derived from free-energy
minimization, dissipates the system energy and describes,
e.g., the phase separation of copolymer melts [61], [62]. The
energy function H and the time evolution of the Cahn–Hilliard
equation are expressed as

H(u) =

∫
x

1
2
(u2

− 1)2
+ γ

1
2

(
∂

∂x
u
)2

∂

∂t
u =

∂2

∂x2 ∇ H(u) (33)

where the coefficient γ > 0 denotes the mobility of the
monomers. The mass u has an unstable equilibrium at u = 0
(totally melted) and stable equilibria at u = −1 and u = 1
(totally separated). We set the spatial mesh size to 50 and the

1https://github.com/tksmatsubara/discrete-autograd

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II
RESULTS OBTAINED FOR CONTINUOUS-TIME 1-D PHYSICAL SYSTEMS

number of periods in a time series to 500 and employed the
periodic boundary condition. We generated 90 time–series for
training and ten time–series for testing. All experiments were
done with double precision.

We implemented the energy function H using a neural
network composed of a convolution layer with a kernel size
of 3 preceding two fully connected layers with 200 hidden
units, and the differential operators ∂/∂x and ∂2/∂x2 as the
first- and second-order central difference operators.

The release code uses the option TORCH.BACKENDS.
CUDNN.DETERMINISTIC to avoid the nondeterministic behav-
ior and to improve reproducibility. In our experiments, we dis-
abled this option to accelerate the simulations and to compare
the results under a more practical situation. We used a batch-
size of 100 (instead of the original batch-size of 200) to put
a mini-batch into a single NVIDIA TITAN V GPU; when
using multiple GPUs, bottlenecks, such as data transfer across
GPUs, may affect performance, and a fair comparison becomes
difficult. Moreover, we used the eighth-order Dormand–Prince
method [21], which is a Runge–Kutta method with adaptive
time-stepping, composed of 13 stages. (The number of func-
tion evaluations per step was s = 12 because the last stage
was reused as the first stage of the next step). We set the
absolute and relative tolerances to atol = 10−9 and rtol =

10−7, respectively. We evaluated the performance using mean
squared errors (MSEs) in the system energy for long-term
predictions.

2) Performance: The medians ± standard deviations of
15 runs are summarized in Table II. Due to the accumulated
error in the numerical integration, the MSEs had large vari-
ances. All methods obtained similar MSEs because all methods
obtained the gradients exactly up to a rounding error (except
in the case of the adjoint method with a small tolerance, which
was nevertheless sufficiently accurate).

We found that, in most cases, the Dormand–Prince method
did not divide a given period (i.e., N = 1) for the KdV
equation; it divided a given period into around five-time
steps for the Cahn–Hilliard equation. We obtained the peak
memory consumption during additional training iterations
(mem. [MiB]), from which we subtracted the memory con-
sumption before training (i.e., memory occupied by the model
parameters, loaded data, and so on). The memory consumption
still included the optimizer’s states and the intermediate results
of the multiply–accumulate operation. Because of these bottle-
necks, the results agree only approximately with the theoretical
orders-of-magnitude in Table I. The symplectic adjoint method
consumed much less memory than the naive backpropagation
algorithm and ACA.

The computation time per iteration (time [ms/itr]) is also
consistent with theoretical values shown in Table I. For

obtaining the gradients, the adjoint method integrates the
adjoint variable λ, the size of which is equal to the sum of
the sizes of the parameters θ and the system state x . With
more parameters, the probability that at least one parameter
does not satisfy the tolerance value is increased. Accurate
backward integration requires a much smaller step size than
forward integration (i.e., Ñ is much greater than N), leading
to a longer computation time.

In conclusion, the symplectic adjoint method consumes
memory to the same extent as the adjoint method but is much
faster.

B. Continuous-Time 2-D Dynamical System
1) Experimental Settings: We extended the experimental

settings of HNN++, provided in [40], to enable physics sim-
ulations of 2-D PDE systems. In this case, the Cahn–Hilliard
equation is expressed as

H(u) =

∫
x,y

1
2
(u2

− 1)2
+ γ

1
2

((
∂

∂x
u
)2

+

(
∂

∂y
u
)2
)

∂

∂t
u =

(
∂2

∂x2 +
∂2

∂y2

)
∇ H(u). (34)

In addition, we used the Allen–Cahn equation, which also
expresses the phase separation of copolymer melts but does
not conserve the mass

∂

∂t
u = −∇H(u) (35)

and we used the same energy function H as in
the Cahn–Hilliard equation. We employed the fifth-order
Dormand–Prince method [42], composed of seven stages
(s = 6). For adopting the 2-D PDE systems, we used 2-D
convolution layers. We used a batch-size of 1 for a single
NVIDIA TITAN V GPU. The remaining experimental settings
were the same as those for the 1-D case.

2) Performance: The medians ± standard deviations of
15 runs are summarized in Table III. (One out of 15 trials
of the adjoint method did not converge in a reasonable time,
so we considered only the remaining 14 results). Compared
with the 1-D case, we used a lower order numerical integrator,
and the elements in the state u increased from 50 to 2500.
Hence, the numerical integrator divided a period 1t into more
time steps (around 20 for the Cahn–Hilliard equation and
around three for the Allen–Cahn equation). Although it is
not a common occurrence, the adjoint method suffers from
nonnegligible numerical errors in the backward integration,
and in this case, its training did not converge; smaller absolute
and relative tolerances were needed. Nonetheless, the results
were consistent with the theoretical ones in Table I. The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MATSUBARA et al.: SYMPLECTIC ADJOINT METHOD: MEMORY-EFFICIENT BACKPROPAGATION 9

TABLE III
RESULTS OBTAINED FOR CONTINUOUS-TIME 2-D PHYSICAL SYSTEMS

symplectic adjoint method obtained slightly better MSEs, but
because of the high variances, these improvements were not
significant. It consumed less memory than the adjoint method.
Following (30) and (31), a naive implementation of the
adjoint method retains the adjoint variables 3n,i at all stages
i = 1, . . . , s to obtain their time-derivatives ln,i , and then
adds them up to obtain the adjoint variable λn at the nth
time step. However, as (15) shows, the adjoint variable λθ for
the parameters θ is not used in obtaining its time-derivative
(d/dt)λθ . One can add up the adjoint variable 3θ n,i for
the parameters θ at stage i one-by-one without retaining it,
thereby reducing the memory consumption in proportion to the
number of parameters times the number of stages. A similar
optimization is applicable to the adjoint method.

C. Continuous Normalizing Flow
1) Experimental Settings: We evaluated the proposed sym-

plectic adjoint method on training continuous normalizing
flows, which learn probabilistic distributions [63]. A normal-
izing flow is a neural network that approximates a bijective
map g and obtains the exact likelihood of a sample u by the
change of variables log p(u) = log p(z)+log | det(∂g(u)/∂u)|,
where z = g(u) and p(z) denote the corresponding latent
variable and its prior, respectively [64], [65], [66]. In the
case of continuous normalizing flow, the map g is modeled
by stacked neural ODE components, in particular, u = x(0)

and z = x(T). The log-determinant of the Jacobian was
obtained by a numerical integration together with the system
state x as log | det(∂g(u)/∂u)| = −

∫ T
0 Tr(∂ f /∂x(x(t), t)dt .

The trace operation Tr was approximated by the Hutchinson
estimator [67]. We adopted the experimental settings of the
continuous normalizing flow FFJORD2 [63], unless stated,
otherwise.

We examined five real-tabular datasets: MINIBOONE,
GAS, POWER, HEPMASS, and BSDS300 [68]. All experi-
ments were done with single precision. The network architec-
tures were the same as those that achieved the best results in
the original experiments. All architectures except that for the
MINIBOONE dataset were composed of multiple neural ODE
components of different sizes, and each result was obtained
as the total usage of all components. We employed the fifth-
order Dormand–Prince integrator [42]. We set the absolute
and relative tolerances to atol = 10−8 and rtol = 10−6,
respectively. The neural networks were trained using the Adam
optimizer [69] with a learning rate of 10−3. We used a batch-
size of 1000 for all datasets to put a mini-batch into a

2https://github.com/rtqichen/ffjord

single NVIDIA GeForce RTX 2080Ti GPU with 11 GB of
memory, whereas the original experiments employed a batch-
size of 10 000 for the latter three datasets on multiple GPUs.
Nonetheless, the naive backpropagation algorithm consumed
the entire memory in the case of the BSDS300 dataset.

We also examined the MNIST dataset [70] using a single
NVIDIA RTX A6000 GPU with 48 GB of memory. Following
the original study, we employed a multiscale architecture and
set the tolerance to atol = rtol = 10−5. We set the learning
rate to 10−3 and then reduced it to 10−4 at the 250th epoch.
While the original experiments used a batch-size of 900, we set
the batch-size to 200 following the official code2. The naive
backpropagation algorithm consumed the entire memory.

2) Performance: The medians ± standard deviations of
three runs are summarized in Table IV. As expected, there
were no significant differences among the negative log-
likelihoods (NLLs) for most methods. The naive backprop-
agation algorithm obtained slightly worse results on the GAS,
POWER, and HEPMASS datasets. Because of the repeated
use of the neural network, each method accumulated the
gradient of the parameters θ for each use. Let θn,i denote the
parameters used in the i th stage of the nth step even though
their values are unchanged. The backpropagation algorithm
obtains the gradient (∂L/∂θ) with respect to the parameters
θ by accumulating the gradient over all stages and steps one-
by-one

∂L
∂θ

=

∑
n=0,...,N−1,

i=1,...,s

∂L
∂θn,i

. (36)

When the step size hn at the nth step is sufficiently small,
the gradient (∂L/∂θn,i) at the i th stage may be insignificant
compared with the accumulated gradient and be rounded off
during the accumulation. In contrast, ACA accumulates the
gradient within a step and then over time steps; this process
can be expressed informally as

∂L
∂θ

=

N−1∑
n=0

(
s∑

i=1

∂L
∂θn,i

)
. (37)

Furthermore, according to (20) and (15), the (symplectic)
adjoint method accumulates the adjoint variable λ (i.e., the
transpose of the gradient) within a step and then over time
steps

λθ,n = λθ,n+1 − hn

×

s∑
i=1

Bi

(
−

∂ f
∂θn,i

(Xn,i , t+Ci hn, θn,i)
⊤3n,i

)
. (38)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE IV
RESULTS OBTAINED FOR CONTINUOUS NORMALIZING FLOWS

In these cases, even when the step size hn at the nth step is
small, the gradient summed within a step (over s stages) may
still be significant and robust to rounding errors. This is the
reason the adjoint method, ACA, and the symplectic adjoint
method performed better than the naive backpropagation algo-
rithm for some datasets. Note that this approach requires
additional memory consumption to store the gradient summed
within a step, and it is applicable to the backpropagation
algorithm with a slight modification.

We obtained the peak memory consumption (mem. [MiB]),
from which we subtracted the memory consumption before
training. The results roughly agreed with the theoretical values
shown in Table I. The symplectic adjoint method consumed
much less memory than the naive backpropagation algorithm
and ACA; it also consumed less memory than the adjoint
method in some cases, such as the case for the 2-D dynamical
systems.

On the other hand, the computation time per iteration (time
[s/itr]) did not agree with the theory; the naive backpropaga-
tion algorithm was slower than that expected in many cases.
A method with high memory consumption may have to wait
for a retained computation graph to be loaded or for memory
to be freed, leading to an additional bottleneck. As with the
dynamical systems, the adjoint method was slower in many
cases, especially for the BSDS300 and MNIST datasets. The
symplectic adjoint method was free from the above bottlenecks
and had faster performance in practice; it was faster than the
adjoint method for all datasets but MINIBOONE.

Thus, the symplectic adjoint method is superior to (or
at least competitive with) the adjoint method and naive
backpropagation in terms of both memory consumption and
computation time. The proposed symplectic adjoint method
and ACA have a tradeoff between memory consumption and
computation time.

D. Detailed Investigations

We further evaluated the proposed symplectic adjoint
method on training continuous normalizing flows with differ-
ent settings.

Fig. 2. Computation time per iteration and NLL for MINIBOONE dataset
with different tolerances.

1) Robustness to Tolerance: The adjoint method provides
gradients with numerical errors. To evaluate the robustness
against tolerance, we employed the MINIBOONE dataset
and varied the absolute tolerance atol while maintaining the
relative tolerance at rtol = 102

×atol. The computation time
per iteration during training is summarized in the upper panel
of Fig. 2: it fell as the tolerance increased. After training,
we obtained the NLLs with atol = 10−8, as summarized in
the bottom panel of Fig. 2. The adjoint method performed
well only with atol < 10−4. With atol = 10−4, the numerical
error in the backward integration was nonnegligible, and the
performance degraded. With atol > 10−4, the adjoint method
destabilized. The symplectic adjoint method performed well
even with atol = 10−4. With 10−4 < atol < 10−2, it per-
formed to a certain level, while the numerical error in the
forward integration was nonnegligible. Because of the exact
gradient, the symplectic adjoint method is more robust to a
large tolerance than the adjoint method, and thus, is potentially
faster with an appropriate tolerance.

2) Different Runge–Kutta Methods: The Runge–Kutta
family includes various integrators characterized by their
Butcher tableaux [21], [22], [47], such as the Heun–Euler
(adaptive Heun), Bogack Shampine (bosh3), fifth-order
Dormand–Prince (dopri5), and eighth-order Dormand–Prince

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MATSUBARA et al.: SYMPLECTIC ADJOINT METHOD: MEMORY-EFFICIENT BACKPROPAGATION 11

TABLE V
RESULTS OBTAINED FOR GAS DATASET WITH DIFFERENT RUNGE–KUTTA METHODS

Fig. 3. Memory consumption and computation time with different numbers
of steps for Ñ = N .

(dopri8) methods. These methods have orders p = 2, 3, 5, and
8 using s = 2, 3, 6, and 12 function evaluations, respectively.
We examined these methods using the GAS dataset; the
results are summarized in Table V. The naive backpropagation
algorithm consumed the entire memory in some cases; this is
indicated in Table V by dashes. We omit the NLLs because
all methods used the same tolerance and achieved the same
NLLs.

Compared with ACA, the symplectic adjoint method sup-
pressed the memory consumption more significantly as the
number of function evaluations s increased; this agrees with
the theoretical predictions in Table I. In the Heun–Euler case,
all methods were extremely slow, and all but the adjoint
method consumed more memory. A lower order method has
to use an extremely small step size to satisfy the tolerance,
thereby increasing N , computation time, and the memory for
checkpoints. This indicates the limitations of methods that
depend on lower order integrators, such as MALI [51]. With
the eighth-order Dormand–Prince method, the adjoint method
performs more quickly because the backward integration eas-
ily satisfies the tolerance with a higher order method (i.e.,
Ñ ≃ N). Nonetheless, in terms of computation time, the fifth-
order Dormand–Prince method is the best choice; for this case,
the symplectic adjoint method greatly reduces the memory
consumption and is faster than all but ACA.

3) Memory for Checkpoints: To evaluate the memory con-
sumption with varying numbers of checkpoints, we used the
fifth-order Dormand–Prince method and varied the number
of steps N for MNIST by manually varying the step size.

We show the results on a log–log scale in Fig. 3. Note that,
with the adaptive stepping, FFJORD needed approximately
N = 200 steps for MNIST and fewer steps for other datasets.
Because we set Ñ = N , but Ñ > N in practice, the adjoint
method is expected to require a longer computation time.

The memory consumption roughly follows the theoreti-
cal predictions summarized in Table I. The adjoint method
needs a memory of O(L) for the backpropagation, and the
symplectic adjoint method needs an additional memory of
O(N + s) for checkpoints. Until the number of steps N
exceeds a thousand, the memory for checkpoints is negligible
compared with that for backpropagation. Compared with the
symplectic adjoint method, ACA needs a memory of O(sL)

for backpropagation over s stages. The increase in memory
is significant until the number of steps N reaches tens of
thousands. For some stiff (nonsmooth) ODEs, a numerical
integrator may need thousands of steps. This number can be
reduced by employing a higher order integrator, such as the
eighth-order Dormand–Prince method. For even stiffer ODEs,
implicit integrators may be used, but they are out of the scope
of this study and of those listed in Table I. We conclude that,
in practical ranges, the symplectic adjoint method needs the
same level of memory as the adjoint method and much less
than the other methods.

A possible implementation strategy alternative to the nested
checkpointing scheme in Algorithms 1 and 2 would be
retaining all intermediate states Xn,i during the forward inte-
gration. The computational cost and memory consumption of
this are O(3NsL) and O(Ns + L), respectively. In this case,
the memory needed for checkpoints could be nonnegligible
with a practical number of steps.

V. CONCLUSION

The symplectic adjoint method proposed here solves the
adjoint system by a symplectic integrator with appropriate
checkpoints and thereby provides the exact gradient. It only
applies the backpropagation algorithm to each use of the neural
network, and thus, consumes much less memory than the naive
backpropagation algorithm and ACA. Its memory consumption
is competitive with that of the adjoint method because the
memory consumed by checkpoints is negligible in most cases.
It provides the exact gradient with the same step size as that
used for the forward integration and is, therefore, faster in
practice than the adjoint method, which requires a small step
size to suppress numerical errors.

Contrary to the theoretical prediction, the naive backprop-
agation algorithm is sometimes slower than the symplectic
adjoint method because it may have to wait for a retained
computation graph to be loaded or for memory to be freed.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Hence, if a memory budget is limited, the symplectic adjoint
method is superior in terms of both memory consumption and
computation time. The symplectic adjoint method and ACA
have a tradeoff between memory consumption and computa-
tion time; ACA always works faster, and the symplectic adjoint
method always consumes much less memory.

The symplectic adjoint method is based on the symplecticity
of numerical integrators, and a similar methodology poten-
tially designs integrators to obtain gradients for integrators
other than the Runge–Kutta family [57]; this is included in
future work. As shown in the experiments, the best integrator
and checkpointing scheme may depend on the target system
and computational resources. For example, Kim et al. [71]
have demonstrated that quadrature methods can reduce the
computational cost of the adjoint system for a stiff equation
in exchange for additional memory consumption. Practical
packages provide many integrators, from which the best ones
can be chosen [72], [73]. In the future, we will offer the
proposed symplectic adjoint method for inclusion in such
packages.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” 2018,
arXiv:1810.04805.

[3] O. Nelles, Nonlinear System Identification. Berlin, Germany: Springer,
2001.

[4] G. Cybenko, “Approximation by superpositions of a sigmoidal function,”
Math. Control, Signals Syst., vol. 2, no. 4, pp. 303–314, 1989.

[5] K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Trans. Neural Netw.,
vol. 1, no. 1, pp. 4–27, Mar. 1990.

[6] S. Chen, S. A. Billings, and P. M. Grant, “Non-linear system iden-
tification using neural networks,” Int. J. Control, vol. 51, no. 6,
pp. 1191–1214, 1990.

[7] J. Sjöberg, H. Hjalmarsson, and L. Ljung, “Neural networks in system
identification,” IFAC Proc. Volumes, vol. 27, no. 8, pp. 359–382, 1994.

[8] A. U. Levin and K. S. Narendra, “Recursive identification using feed-
forward neural networks,” Int. J. Control, vol. 61, no. 3, pp. 533–547,
Mar. 1995.

[9] D. S. Clouse, C. L. Giles, B. G. Horne, and G. W. Cottrell, “Time-delay
neural networks: Representation and induction of finite-state machines,”
IEEE Trans. Neural Netw., vol. 8, no. 5, pp. 1065–1070, Sep. 1997.

[10] A. Ibeas, A. Esmaeili, J. Herrera, and F. Zouari, “Discrete-time observer-
based state feedback control of heart rate during treadmill exercise,”
in Proc. 20th Int. Conf. Syst. Theory, Control Comput. (ICSTCC),
Oct. 2016, pp. 537–542.

[11] J. Na, S. Wang, Y.-J. Liu, Y. Huang, and X. Ren, “Finite-time con-
vergence adaptive neural network control for nonlinear servo systems,”
IEEE Trans. Cybern., vol. 50, no. 6, pp. 2568–2579, Jun. 2020.

[12] J. Na, Y. Huang, X. Wu, S. Su, and G. Li, “Adaptive finite-time fuzzy
control of nonlinear active suspension systems with input delay,” IEEE
Trans. Cybern., vol. 50, no. 6, pp. 2639–2650, Jan. 2019.

[13] S. Wang, X. Ren, J. Na, and T. Zeng, “Extended-state-observer-based
funnel control for nonlinear servomechanisms with prescribed tracking
performance,” IEEE Trans. Autom. Sci. Eng., vol. 14, no. 1, pp. 98–108,
Jan. 2016.

[14] S. Wang, J. Na, and X. Ren, “RISE-based asymptotic prescribed per-
formance tracking control of nonlinear servo mechanisms,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 48, no. 12, pp. 2359–2370, Dec. 2017.

[15] S. Wang, H. Yu, J. Yu, J. Na, and X. Ren, “Neural-network-based
adaptive funnel control for servo mechanisms with unknown dead-zone,”
IEEE Trans. Cybern., vol. 50, no. 4, pp. 1383–1394, Apr. 2020.

[16] F. Zouari, “Adaptive internal model control of a DC motor drive system
using dynamic neural network,” J. Softw. Eng. Appl., vol. 5, no. 3,
pp. 168–189, 2012.

[17] F. Zouari, K. B. Saad, and M. Benrejeb, “Adaptive backstepping
control for a single-link flexible robot manipulator driven DC motor,”
in Proc. Int. Conf. Control, Decis. Inf. Technol. (CoDIT), May 2013,
pp. 864–871.

[18] F. Zouari, K. B. Saad, and M. Benrejeb, “Adaptive backstepping control
for a class of uncertain single input single output nonlinear systems,” in
Proc. 10th Int. Multi-Conf. Syst., Signals Devices, Mar. 2013, pp. 1–6.

[19] F. Zouari, K. B. Saad, and M. Benrejeb, “Robust adaptive control for a
class of nonlinear systems using the backstepping method,” Int. J. Adv.
Robot. Syst., vol. 10, no. 3, p. 166, Mar. 2013.

[20] F. Zouari, A. Ibeas, A. Boulkroune, J. Cao, and M. M. Arefi, “Neural
network controller design for fractional-order systems with input nonlin-
earities and asymmetric time-varying pseudo-state constraints,” Chaos,
Solitons Fractals, vol. 144, Mar. 2021, Art. no. 110742.

[21] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential
Equations I: Nonstiff Problems, vol. 8. Berlin, Germany: Springer, 1993.

[22] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration:
Structure-Preserving Algorithms for Ordinary Differential Equations.
vol. 31. Berlin, Germany: Springer, 2006.

[23] Y.-J. Wang and C.-T. Lin, “Runge–Kutta neural network for identifica-
tion of dynamical systems in high accuracy,” IEEE Trans. Neural Netw.,
vol. 9, no. 2, pp. 294–307, Mar. 1998.

[24] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for
solving ordinary and partial differential equations,” IEEE Trans. Neural
Netw., vol. 9, no. 5, pp. 987–1000, Sep. 1998.

[25] P. Ramuhalli, L. Udpa, and S. S. Udpa, “Finite-element neural networks
for solving differential equations,” IEEE Trans. Neural Netw., vol. 16,
no. 6, pp. 1381–1392, Nov. 2005.

[26] K. S. McFall and J. R. Mahan, “Artificial neural network method
for solution of boundary value problems with exact satisfaction of
arbitrary boundary conditions,” IEEE Trans. Neural Netw., vol. 20, no. 8,
pp. 1221–1233, Aug. 2009.

[27] K. Rudd, G. Di Muro, and S. Ferrari, “A Constrained backpropagation
approach for the adaptive solution of partial differential equations,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 25, no. 3, pp. 571–584, Mar. 2014.

[28] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning rep-
resentations by back-propagating errors,” Nature, vol. 323, no. 6088,
pp. 533–536, Oct. 1986.

[29] A. Griewank and A. Walther, Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. Philadelphia, PA, USA:
SIAM, 2008.

[30] A. Paszke et al., “Automatic differentiation in PyTorch,” in Proc. Autodiff
Workshop Adv. Neural Inf. Process. Syst. (NeurIPS), 2017.

[31] S. Greydanus, M. Dzamba, and J. Yosinski, “Hamiltonian neural net-
works,” in Proc. Adv. Neural Inf. Process. Syst. (NeurIPS), 2019.

[32] Y. Chen, T. Matsubara, and T. Yaguchi, “Neural symplectic form:
Learning Hamiltonian equations on general coordinate systems,” in Proc.
Adv. Neural Inf. Process. Syst. (NeurIPS), 2021.

[33] M. Finzi, K. A. Wang, and A. G. Wilson, “Simplifying Hamiltonian
and Lagrangian neural networks via explicit constraints,” in Proc. Adv.
Neural Inf. Process. Syst. (NeurIPS), 2020.

[34] P. Jin, Z. Zhang, I. G. Kevrekidis, and G. E. Karniadakis, “Learning
Poisson systems and trajectories of autonomous systems via Poisson
neural networks,” IEEE Trans. Neural Netw. Learn. Syst., early access,
Feb. 18, 2022, doi: 10.1109/TNNLS.2022.3148734.

[35] T. Matsubara and T. Yaguchi, “FINDE: Neural differential equations for
finding and preserving invariant quantities,” 2022, arXiv:2210.00272.

[36] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho,
“Lagrangian neural networks,” in Proc. ICLR Workshop Integr. Deep
Neural Models Differ. Equ., 2020, pp. 1–9.

[37] Y. D. Zhong, B. Dey, and A. Chakraborty, “Dissipative SymODEN:
Encoding Hamiltonian dynamics with dissipation and control into deep
learning,” in Proc. ICLR Workshop Integr. Deep Neural Models Differ.
Equ., 2020, pp. 1–6.

[38] D. Pang, X. Le, X. Guan, and J. Wang, “LFT: Neural ordi-
nary differential equations with learnable final-time,” IEEE Trans.
Neural Netw. Learn. Syst., early access, Oct. 25, 2022, doi:
10.1109/TNNLS.2022.3213308.

[39] M. Lehtimaki, L. Paunonen, and M.-L. Linne, “Accelerating neural
ODEs using model order reduction,” IEEE Trans. Neural Netw. Learn.
Syst., early access, May 26, 2022, doi: 10.1109/TNNLS.2022.3175757.

[40] T. Matsubara, A. Ishikawa, and T. Yaguchi, “Deep energy-based mod-
eling of discrete-time physics,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), 2020.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10.1109/TNNLS.2022.3148734
http://dx.doi.org/10.1109/TNNLS.2022.3213308
http://dx.doi.org/10.1109/TNNLS.2022.3175757

MATSUBARA et al.: SYMPLECTIC ADJOINT METHOD: MEMORY-EFFICIENT BACKPROPAGATION 13

[41] M. Horie, N. Morita, T. Hishinuma, Y. Ihara, and N. Mitsume, “Isometric
transformation invariant and equivariant graph convolutional networks,”
in Proc. Int. Conf. Learn. Represent. (ICLR), 2022.

[42] J. R. Dormand and P. J. Prince, “A reconsideration of some embed-
ded Runge–Kutta formulae,” J. Comput. Appl. Math., vol. 15, no. 2,
pp. 203–211, Jun. 1986.

[43] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), 2018.

[44] J. Zhuang, N. Dvornek, X. Li, S. Tatikonda, X. Papademetris, and
J. Duncan, “Adaptive checkpoint adjoint method for gradient estimation
in neural ODE,” in Proc. Int. Conf. Mach. Learn. (ICLR), 2020.

[45] R. M. Errico, “What is an adjoint model?” Bull. Amer. Meteorolog. Soc.,
vol. 78, no. 11, pp. 2577–2591, Nov. 1997.

[46] Q. Wang, “Forward and adjoint sensitivity computation of chaotic
dynamical systems,” J. Comput. Phys., vol. 235, pp. 1–13, Feb. 2013.

[47] J. M. Sanz-Serna, “Symplectic Runge–Kutta schemes for adjoint equa-
tions, automatic differentiation, optimal control, and more,” SIAM Rev.,
vol. 58, no. 1, pp. 3–33, Jan. 2016.

[48] A. Griewank and A. Walther, “Algorithm 799: Revolve: An implementa-
tion of checkpointing for the reverse or adjoint mode of computational
differentiation,” ACM Trans. Math. Softw., vol. 26, no. 1, pp. 19–45,
Mar. 2000.

[49] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves,
“Memory-efficient backpropagation through time,” in Proc. Adv. Neural
Inf. Process. Syst., 2016, pp. 4132–4140.

[50] A. Gholaminejad, K. Keutzer, and G. Biros, “ANODE: Unconditionally
accurate memory-efficient gradients for neural ODEs,” in Proc. 28th Int.
Joint Conf. Artif. Intell., Aug. 2019, pp. 730–736.

[51] J. Zhuang, N. C. Dvornek, S. Tatikonda, and J. S. Duncan, “MALI:
A memory efficient and reverse accurate integrator for neural ODEs,”
in Proc. Int. Conf. Learn. Represent. (ICLR), 2021.

[52] T. Matsubara, Y. Miyatake, and T. Yaguchi, “Symplectic adjoint method
for exact gradient of neural ODE with minimal memory,” in Proc. Adv.
Neural Inf. Process. Syst. (NeurIPS), 2021.

[53] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ, USA:
Prentice-Hall, 2002.

[54] P. B. Bochev and C. Scovel, “On quadratic invariants and symplectic
structure,” BIT, vol. 34, no. 3, pp. 337–345, Sep. 1994.

[55] C. Herrera, F. Krach, and J. Teichmann, “Neural jump ordinary differ-
ential equations: Consistent continuous-time prediction and filtering,” in
Proc. Int. Conf. Learn. Represent. (ICLR), 2020.

[56] Z. Li, J. V. Murkute, P. K. Gyawali, and L. Wang, “Rogressive learning
and disentanglement of hierarchical representations,” in Proc. Int. Conf.
Learn. Represent. (ICLR), 2020.

[57] T. Matsuda and Y. Miyatake, “Generalization of partitioned Runge–Kutta
methods for adjoint systems,” J. Comput. Appl. Math., vol. 388,
May 2021, Art. no. 113308.

[58] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” in Proc.
Adv. Neural Inf. Process. Syst. (NeurIPS), 2019.

[59] S. Saemundsson et al., “Variational integrator networks for physi-
cally meaningful embeddings,” in Proc. Int. Conf. Artif. Intell. Statist.
(NeurIPS), vol. 108, 2020.

[60] D. Furihata and T. Matsuo, Discrete Variational Derivative Method:
A Structure-Preserving Numerical Method for Partial Differential Equa-
tions. Boca Raton, FL, USA: CRC Press, 2010.

[61] D. Furihata, “Finite difference schemes for ∂u/∂t=(∂/∂x)αδG/1u that
inherit energy conservation or dissipation property,” J. Comput. Phys.,
vol. 156, no. 1, pp. 181–205, Nov. 1999.

[62] D. Furihata, “A stable and conservative finite difference scheme for the
Cahn-Hilliard equation,” Numerische Math., vol. 87, no. 4, pp. 675–699,
Feb. 2001.

[63] W. Grathwohl, R. T. Q. Chen, J. Bettencourt, I. Sutskever, and
D. Duvenaud, “FFJORD: Free-form continuous dynamics for scalable
reversible generative models,” in Proc. Int. Conf. Learn. Represent.
(ICLR), 2018.

[64] L. Dinh, D. Krueger, and Y. Bengio, “NICE: Non-linear independent
components estimation,” in Proc. Workshop Int. Conf. Learn. Represent.
(ICLR), 2014.

[65] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using
real NVP,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2017.

[66] D. J. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in Proc. Int. Conf. Mach. Learn., vol. 37, 2015, pp. 3–6.

[67] M. F. Hutchinson, “A stochastic estimator of the trace of the influence
matrix for Laplacian smoothing splines,” Commun. Statist.-Simul. Com-
put., vol. 19, no. 2, pp. 433–450, Jan. 1990.

[68] G. Papamakarios, T. Pavlakou, and I. Murray, “Masked autoregressive
flow for density estimation,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), 2017.

[69] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent. (ICLR), 2015.

[70] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2323, Nov. 1998.

[71] S. Kim, W. Ji, S. Deng, Y. Ma, and C. Rackauckas, “Stiff neural ordinary
differential equations,” 2021, arXiv:2103.15341.

[72] A. C. Hindmarsh et al., “SUNDIALS: Suite of nonlinear and differen-
tial/algebraic equation solvers,” ACM Trans. Math. Softw., vol. 31, no. 3,
pp. 363–396, 2005.

[73] C. Rackauckas et al., “Universal differential equations for scientific
machine learning,” 2020, arXiv:2001.04385.

Takashi Matsubara (Member, IEEE) was an Assis-
tant Professor with the Graduate School of Sys-
tem Informatics, Kobe University, Hyogo, Japan,
from 2015 to 2020. He is currently an Associate
Professor with the Graduate School of Engineer-
ing Science, Osaka University, Osaka, Japan. His
research interests include Bayesian and geometric
inductive bias for data-driven modeling methods.

Yuto Miyatake was an Assistant Professor with the
Graduate School of Engineering, Nagoya University,
Nagoya, Japan. He has been an Associate Professor
with Cybermedia Center, Osaka University, Osaka,
Japan, since 2018. His research interests include
numerical analysis of differential equations, numer-
ical linear algebra, and computational uncertainty
quantification.

Takaharu Yaguchi (Member, IEEE) was an Assis-
tant Professor with the Graduate School of Infor-
mation Science and Technology, The University of
Tokyo, Tokyo, Japan. He has been an Associate
Professor with the Graduate School of System Infor-
matics, Kobe University, Hyogo, Japan, since 2015.
He has been working on mathematical engineer-
ing, with an emphasis on mathematical modeling,
numerical analysis, geometric mechanics, and deep
learning and its applications to physical simulation
and psychology.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

