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Signal Propagation: The Framework for Learning
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Abstract— We propose a new learning framework, signal
propagation (sigprop), for propagating a learning signal and
updating neural network parameters via a forward pass, as an
alternative to backpropagation (BP). In sigprop, there is only
the forward path for inference and learning. So, there are no
structural or computational constraints necessary for learning to
take place, beyond the inference model itself, such as feedback
connectivity, weight transport, or a backward pass, which exist
under BP-based approaches. That is, sigprop enables global
supervised learning with only a forward path. This is ideal for
parallel training of layers or modules. In biology, this explains
how neurons without feedback connections can still receive a
global learning signal. In hardware, this provides an approach
for global supervised learning without backward connectivity.
Sigprop by construction has compatibility with models of learning
in the brain and in hardware than BP, including alternative
approaches relaxing learning constraints. We also demonstrate
that sigprop is more efficient in time and memory than they are.
To further explain the behavior of sigprop, we provide evidence
that sigprop provides useful learning signals in context to BP.
To further support relevance to biological and hardware learning,
we use sigprop to train continuous time neural networks with the
Hebbian updates and train spiking neural networks (SNNs) with
only the voltage or with biologically and hardware-compatible
surrogate functions.

Index Terms— Biological learning, local learning (LL), neural
networks, neuromorphics, optimization, parallel learning.

I. INTRODUCTION

THE success of deep learning is attributed to the back-
propagation (BP) of errors’ algorithm [1] for training

artificial neural networks (ANNs). However, the constraints
necessary for BP to take place are (1) incompatible with
learning in the brain and in hardware and (2) computationally
inefficient, bottlenecking memory, time, and parallel learning.
These learning constraints under BP come from calculating
the contribution of each neuron to the network’s output error.
This calculation during training occurs in two phases. First, in
the forward pass phase, the input is fed completely through
the network, storing the neurons activations for the second
phase and producing an output. Second, in the backward pass
phase, the error between the input’s target and the network’s
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output is fed in reverse order of the forward pass through
the network to compute parameter updates using the stored
neurons activations.

These two phases of learning have the following learning
constraints. The forward pass stores the activation of every
neuron for the backward pass, increasing memory overhead.
The forward and backward passes need to complete before
receiving the next inputs, thereby pausing resources. Network
learning parameters can only be updated after and in reverse
order of the forward pass, which is sequential and synchro-
nous. The backward pass requires its own feedback connec-
tivity to every neuron, increasing structural complexity. The
feedback connectivity needs to have weight symmetry with
forward connectivity, known as the weight transport problem.
The backward pass uses a different type of computation than
the forward pass, adding computational complexity. In total,
these constraints prohibit parallelization of computations dur-
ing learning; increase memory usage, run time, and the number
of computations; and bound the network structure.

These learning constraints under BP are difficult to rec-
oncile with learning in the brain [2], [3]. Particularly, the
backward pass is considered to be problematic [2], [3], [4],
[5], [6] as: 1) the brain does not have the comprehensive
feedback connectivity necessary for every neuron; 2) neither
is neural feedback known to be a distinct type of computa-
tion, separate from feedforward activity; and 3) the feedback
and feedforward connectivity would need to have weight
symmetry.

These learning constraints also hinder efficient implemen-
tations of BP and error-based learning algorithms on hard-
ware [7], [8]: 1) weight symmetry is incompatible with
elementary computing units which are not bidirectional;
2) the transportation of nonlocal weight and error informa-
tion requires special communication channels in hardware;
and 3) spiking equations are nonderivable, noncontinuous.
Hardware implementations of learning algorithms may provide
insight into learning in the brain. An efficient, empirically
competitive algorithm to BP on hardware will likely parallel
learning in the brain.

All these constraints can be categorized by their overall
effect on learning for a network as follows: 1) backwardpass
unlocking would allow for all the parameters to be updated in
parallel after the forward pass has completed and 2) forward-
pass unlocking would allow for the individual parameters to
be asynchronously updated once the forward pass has reached
them, without waiting for the forward pass to complete. These
categories directly reference parallel computation, but also
have implications on network structure, memory, and run
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time. For example, backwardpass locking implies top-down
feedback connectivity. A similar terminology was used in [9],
where 1) is backward locking and 2) is update locking.
Alternative learning approaches to address backwardpass and
forwardpass unlocking have been proposed, refer to Section II
and Fig. 1, but do not solve all these constraints and are based
on relaxing learning constraints under BP.

We propose a new learning framework, signal propagation
(SP or sigprop), for propagating a learning signal and updating
neural network parameters via a forward pass. Sigprop has no
constraints on learning, beyond the inference model itself, and
is completely forwardpass unlocked. At its core, sigprop gener-
ates targets from learning signals and then reuses the forward
path to propagate those targets to hidden layers and update
parameters. Sigprop has the following desirable features. First,
inputs and learning signals use the same forward path, so there
are no additional structural or computational requirements
for learning, such as feedback connectivity, weight transport,
or a backward pass. Second, without a backward pass, the
network parameters are updated as soon as they are reached
by a forward pass containing the learning signal. Sigprop does
not block the next input or store activations. So, sigprop is
ideal for parallel training of layers or modules. Third, since
the same forwardpass used for inputs is used for updating
parameters, there is only one type of computation. Compared
with alternative approaches, sigprop addresses all the above
constraints and does so with a global learning signal.

Our work suggests that learning signals can be fed through
the forward path to train neurons. Feedback connectivity is not
necessary for learning. In biology, this means that neurons
which do not have feedback connections can still receive a
global learning signal. In hardware, this means that global
learning (e.g., supervised or reinforcement) is possible even
though there is no backward connectivity.

This article is organized as follows. In Section II, we detail
the improvements on relaxing learning constraints of sigprop
over alternative approaches. In Section III, we introduce
the signal propagation framework and learning algorithm.
In Section IV, we describe experiments evaluating the accu-
racy, run time, and memory usage of sigprop. We also demon-
strate that sigprop can be trained with a sparse learning signal.
In Section V, we demonstrate that sigprop provides a useful
learning signal that becomes increasingly similar to BP as
training progresses. We also demonstrate that sigprop can train
continuous time neural networks, and with a Hebbian plasticity
mechanism to update parameters in hidden layers, as further
support of its relevance to biological learning. In Section VI,
we demonstrate that sigprop directly trains spiking neural net-
works (SNNs), with or without surrogate functions, as further
support of its relevance to hardware learning.

II. RELAXING CONSTRAINTS ON LEARNING

Signal propagation (sigprop) is a new approach that
imposes no learning constraints, beyond the inference model
itself, while providing a global learning signal. Alternative
approaches, in contrast, are based on relaxing the learning
constraints under BP. Under this view of relaxing constraints,

we can also arrive at sigprop: once the learning constraints
under BP are done away with, the simplest explanation to
provide a global learning signal is to use the forward path,
the path constructing the inference model. That is, we project
the learning signal through the same path as the inputs. In
this section, we discuss alternative approaches; compare the
variations in constraints they relax; and see the difference in
removing constraints entirely, which results in the improve-
ment shown under sigprop. Refer to Fig. 1 for a visual
comparison.

Feedback alignment (FA), Fig. 1(b), uses fixed random
weights to transport error gradient information back to hidden
layers, instead of using symmetric weights [10]. It showed
that the sign concordance between the forward and feed-
back weights is enough to deliver effective error signals [7],
[11], [12]. During learning, the forward weights move to
align with the random feedback weights and have approxi-
mate symmetry, forming an angle below 90◦. FA addresses
the weight transport problem, but remains forwardpass and
backwardpass locked. Direct FA (DFA), Fig. 1(c), propagates
the error directly to each hidden layer and is additionally
backwardpass unlocked [13]. Sigprop improves on DFA and is
forwardpass unlocked. DFA performs similar to BP on CIFAR-
10 for small fully connected networks with dropout, but per-
forms more poorly for convolutional neural networks. Sigprop
performs better than DFA and FA for convolutional neural
networks.

The FA-based algorithms also rely on systematic feedback
connections to layers and neurons. Though it is possible [6],
[10], [12], there is no evidence in the neocortex of the com-
prehensive level of connectivity necessary for every neuron
(or layer) to receive feedback (reciprocal connectivity). With
sigprop, we introduce an algorithm capable of explaining how
neurons without feedback connections learn. That is, neurons
without feedback connectivity receive feedback through their
feedforward connectivity.

An alternative approach that minimizes feedback connectiv-
ity is local learning (LL), Fig. 1(f). In the LL algorithms [14],
[15], [16], [17], [18], the layers are trained independently by
calculating a separate loss for each layer using an auxiliary
classifier per layer. The LL algorithm has achieved perfor-
mance close to BP on CIFAR-10 and is making progress on
ImageNet. It trains each layer and auxiliary classifier with
BP. At the layer level, it has the weight transport problem
and is forwardpass and backwardpass locked. In [14], FA is
used to backwardpass unlock the layers. It does not use a
global learning signal, but learns greedily. In another approach,
synthetic gradients (SGs), Fig. 1(g), are used to train layers
independently [9], [19]. The SG algorithms train auxiliary
networks to predict the gradient of the backward pass from the
input, the synthetic gradient. Similar to LL, the SG methods
train the auxiliary networks using BP. Until the auxiliary
networks are trained, it has the weight transport problem
and is forwardpass and backwardpass locked at the network
level. In contrast, sigprop is completely forwardpass unlocked,
combines a global learning signal with LL, is compatible with
learning in hardware where there is no backward connectivity,
and is compatible with models of learning in the brain where
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comprehensive feedback connectivity is not seen, including
projections of the targets to hidden layers.

The forwardpass unlocked algorithms do not necessarily
address the limitations in the biological and hardware learning
models, as they have different types of computations for infer-
ence and learning. In sigprop, the approach to having a single
type of computation for inference and learning is similar to tar-
get propagation. Target propagation (TP), Fig. 1(d) [20], [21],
generates a target activation for each layer instead of gradients
by propagating backward through the network. It requires
reciprocal connectivity and is forwardpass and backwardpass
locked. In contrast, sigprop generates a target activation at each
layer by going forward through the network. An alternative
approach, equilibrium propagation (EP), is an energy-based
model using a local contrastive Hebbian learning with the
same computation in the inference and learning phases [6],
[22], [23]. The model is a continuous recurrent neural network
that minimizes the difference between two fixed points: when
receiving an input only and when receiving the target for error
correction. EP is closer to a framework, wherein symmetric
and random feedback (FA) weights work [24]. These models
of EP still require comprehensive connectivity for each layer
and are forwardpass locked. We demonstrate that sigprop
works in the EP framework without these problems, more
closely modeling neural networks in the brain.

Another approach that reuses the forward connectivity for
learning, as we do in sigprop, is error forward propagation,
Fig. 1(e) [25], [26], [27], [28], [29], [30]. Error forward prop-
agation is for closed-loop control systems or autoencoders.
In either case, the output of the network is in the same
space as the input of the network. These works calculate an
error between the output and the input of the network and
then propagate the error forward through the network, instead
of backward, calculating the gradient as in error BP. Error
forward propagation is backwardpass and forwardpass locked.
It also requires different types of computation for learning
and inference. In contrast, sigprop uses only a single type of
computation and is backwardpass and forwardpass unlocked.

III. SIGNAL PROPAGATION

The premise of signal propagation (sigprop) is to reuse the
forward path to map an initial learning signal into targets at
each layer for updating parameters. The network is shown in
Fig. 2(a); note that training uses the same forward path as
inference, except that instead of only feeding the network the
input x , we also feed it c the learning signal. The learning
signal is some context c, e.g., the label in supervised learning.
The learning signal and the input can have different shapes,
e.g., a supervised label is a single integer and the input is
an image. The target generator projects the learning signal
c and the first hidden layer projects the input x to have the
same shape (dense signal) or concordant shapes (sparse signal,
Section III-E) to be processed by the network, e.g., the target
generator projects the label to have the same shape as the input
or even the first hidden layer. After which, the forward pass
during training proceeds the same way as inference, except
with x and c as the new inputs instead of only the original
input x .

We provide a framework for any given input x or learning
signal c, not only for supervised learning with labels. For
example, in regression tasks, the inputs x and outputs y
commonly have the same type and shape; so, using the output
training targets y∗ as the learning signal c, the target generator
and the first hidden layer can be the same (weight sharing).
Nonetheless, the focus here is supervised learning.

In the following sections, we start with the general training
procedure in Section III-A, then prediction for both train-
ing and inference in Section III-B, the loss for training in
Section III-C, and details of target generators in Section III-D.

A. Training

Given a network, the forward pass starts with the input
x , a learning signal c, and the target generator. Assume the
network has two hidden layers, as shown in Fig. 2(a), where
Wi and bi are the weight and bias for layer i , respectively.
Let S1 and d1 be the weight and bias for the target generator,
respectively. The activation function f () is a nonlinearity. Let
(x, y∗) be a minibatch of inputs and labels of m possible
classes. We feed x into the first hidden layer to get h1.
We create a one-hot vector of each class cm , this is our learning
signal, and feed it into the target generator to get t1. Note that
x and cm have different shapes. Now, h1 and t1 have the same
shape

h1, t1 = f (W1x + b1), f (S1cm + d1) (1)

[h2, t2] = f (W2[h1, t1 + b2]) (2)

[h3, t3] = f (W3h2, t2 + b2). (3)

The outputted t1 is a target for the output of the first hidden
layer h1. This target is used to compute the loss L1(h1, t1) for
training the first hidden layer and the target generator. Then,
the target t1 and the output h1 are fed to the next hidden layer.
The forward pass continues this way until the final layer. The
final layer and each hidden layer have their own losses

J = L(h1, t1)+ L(h2, t2)+ L(h3, t3) (4)

where J is the total loss for the network. For hidden layers,
the loss L can be a supervised loss, such as Lpred (8) which
is used in Section IV. It can also be a Hebbian update rule,
such as (13) which is used in Section V. For the final layer,
the loss L is a supervised loss, such as Lpred (8).

In total, each layer processes its input and input-target to
create an output and output-target. The layer compares its
output with its output-target to update its parameters. In this
way, the layer locally computes its update from a global learn-
ing signal. The layer then sends its output and output-target
to the next layer which will compute its own update. This
process continues until the final layer has computed its update
and produces the network’s output (prediction). From this
procedure collectively, the network learns to process the input
to produce an output, and at the same time, it learns to make
an initial learning signal into a useful training target at each
hidden layer and final layer. In other words, the network itself,
which is the forward path, takes on the role of the feedback
connectivity in producing a learning signal for each layer.
This makes sigprop compatible with models of learning where
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Fig. 1. Comparison of learning algorithms relaxing learning constraints under BP. (a) BP algorithm and (b) and (c) FA and direct FA algorithms. FA-
based algorithms do not solve forwardpass locking and require additional connectivity. (d) Target propagation uses a single type of computation for training
and inference, but is forwardpass locked and requires feedback connectivity. (e) Error forward propagation for closed-loop systems or autoencoders reuses
the forward connectivity to propagate error, but is otherwise similarly constrained as BP. (f) LL with layerwise training using auxiliary classifiers. ∓LL is
forwardpass and backwardpass locked at the layer level as the auxiliary networks use BP. BP in the auxiliary networks may be substituted with an alternative
model, such as FA. (g) Synthetic gradient algorithm. *SG-based algorithms are only forwardpass and backwardpass unlocked after learning to predict the
synthetic gradient. (h) Signal propagation learning algorithm presented in this work. SP feeds the learning signal forward through the network to solve the
weight transport and forwardpass locking problems without requiring additional connectivity requirements. For SP, taking t3 with h3 produces y; however,
a classification layer may also be used Fig. 2. (Table) Direct error and direct target means that a model uses the error or target directly at layer hi . ◦Direct
target can be substituted in LL and SG, with direct error or temporary use of BP for example. Forprop stands for forward propagation. Forprop error and
Forprop target means the model uses the error or target starting at the input layer, instead of starting at the output layer as is done in BP. Global signal means
the learning signal is propagated through the network instead of sent directly to or formed at each hidden layer. Networks) The light gray arrows indicate the
feed forward path. Dark gray arrows indicate error gradient or target paths. If the dark gray arrows pass through a layer, the weights are not trained by the
error gradient or target. Dotted lines indicate the weights are not trained. Double lines, light or dark gray, are forwarding the context c or state hi , without
modification. Double arrows indicate going through one or more intermediate hidden layers. Wi and Si are trained weights and Bi are fixed random weights.
There are versions of these models where Bi is trained to be the transpose of Wi . The loss function is L and takes the output of the previous layer and
possibly some target y∗ when unspecified. The target generator layer S1 generates the initial training target ti from a learning signal, which is some privileged
information or context c, usually the label in supervised learning. The gradient is δ and the synthetic gradient is δ̂. Auxiliary networks are represented by the
double arrows going into ai and δ̂i .

backward connectivity is limited, such as in the brain and
learning in hardware (e.g., neuromorphic chips).

B. Prediction for Training and Inference

In training and inference, the prediction y is formed by
comparing the final layer’s output h3 with its target t3 (output
target)—Fig. 2(a). Sigprop does not need an explicit final
classification layer. However, a classification layer may be
used with no effect on performance (classification layer)—
Fig. 2(b). We describe both the versions of sigprop below.

1) Output Target, Fig 2(a): The network’s prediction y
at the final layer is formed by comparing the output h3 and
outputted target t3 [Fig 2(a)]

y = y3 = O(h3, t3) (5)

where O is a comparison function. Two such comparison
functions are the dot product and L2 distance. We use the
less complex Odot

Odot(hi , ti ) = hi · tT
i (6)

but both the versions give similar performance using the
losses in Section III-C. Each hidden layer can also output a

prediction, and these are known as early exits (faster responses
from earlier layers during inference)

y = yi = O(hi , ti ). (7)

2) Classification Layer, Fig 2(b): The final layer of the
network may be replaced with the standard output layer used
in neural networks, e.g., the classification layer for supervised
learning, as shown in Fig 2(b). This simplifies predictions
during inference, matching standard neural network design.
In this case, the learning signal c (e.g., labels in supervised
learning) would be projected to the final layer of the network,
as per standard training of networks. The target t3 is no longer
used during inference to form y, so neither is the context
generator.

C. Training Loss

In sigprop, losses compare neurons with themselves over
different inputs and with each other. Lpred is the basic loss we
use.

1) Prediction Loss: The prediction loss is a cross entropy
(CE) loss using a local prediction (7). The local prediction is
from a dot product between the layer’s local targets ti and
the layer’s output hi . Given a hidden layer’s local targets
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ti = (t1
i , . . . , tm

i ) and a size n minibatch of outputs hi =
(h1

i , . . . , hn
i ) of the same hidden layer

Lpred(hi , ti ) = CE
�
y∗i ,−Odot(hi , ti )

�
(8)

where hi and ti have the same size output dimension. The
CE loss uses y∗i , which is a reconstruction of the labels y∗
at each layer i from the positional encoding of the inputs x
and context cm , starting from the activations h1 and targets
t1 formed at the first hidden layer. In particular, we form a new
batch [h1, t1] by interleaving h1 and t1 such that each sample’s
activations in h1 is concatenated after its corresponding target
t1. Then, at each layer i , we assign a label for each sample
hi j depending on which target tik the sample came after,
where 0 ≤ k < j . Many different encodings are available,
depending on the task and target generator. An alternative is
to use the approach in Section V which merges the context c,
and therefore generated targets t1, with the inputs x to form
a single combined input xt , an input-target in Section III-D2,
and then either compares them with each other or uses an
update rule over multiple iterations. The second option is
natural for continuous networks where multiple iterations (e.g.,
time steps) can support robust update rules.

D. Target Generators

The target generator takes in a learning signal as some
context c to condition learning on and then produces the
initial target, which is fed forward through the network to
produce targets at each hidden layer. There are many possible
formulations of the target generator, such as fixed or learned,
projecting to the input or first hidden layer, and sharing
weights with the first hidden layer. We recommend deciding
based on the task, selected learning signal(s), and implemen-
tation constraints. For example, in segmentation tasks where
outputs have the same shape as the inputs, we can use the
output training segmentation targets for the learning signal
and have the target generator share weights with the first
hidden layer. We describe three formulations below to address
different learning scenarios, particularly hardware constrained,
continuous, and spike-time learning.

1) Target-Only, Fig 2(a) and (b): This is the version
described in (1) and conditions only on the class label.
This version of the target generator can interfere with batch
normalization statistics as h1 and t1 do not necessarily have
similar enough distribution. Batch normalization statistics may
be disabled or be put in inference mode when processing the
targets, therefore only collecting statistics on the input.

2) Target-Input, Fig 2(a) and (b): Another context we
condition on is the class label and input. We feed a one-hot
vector of the labels y∗m through the target generator to produce
a scale and shift for the input. We take the scaled and shifted
output as the target for the first hidden layer

t1 = h1 f (S1cm + d1)+ f (S2cm + d2). (9)

The target t1 is now more closely tied to the distribution of
the input. We found that this formulation of the target works
better with batch normalization. Even though this version has
similar performance to (1), it increases memory usage as each
input will have its own version of the targets.

3) Target-Loop, Fig 2(c): The last option is to incorporate
a form of feedback. The immediate choice is to condition on
the activations of the predictions y3 and labels y∗m

t1 = f
�
S1 y3 + S1 y∗m + d1

�
(10)

or using the final layer’s output and error e3 with the target
t3 to correct it

t1 = f (S1(h3 − εe3)+ d1) (11)

� f

�
S1

�
h3 − ε

dL

dh3

�
+ d1

�

where ε controls how much error e3 to integrate. We use it in
Section V for continuous networks.

E. Sparse Learning

Sigprop can be a form of sparse learning. We reformulate
the target generator to produce a sparse target, which is a
sparse learning signal. We make the targets ti as sparse as
possible such that at minimum, they can still be taken with
each layer’s weights Wi , via a convolution or dot-product,
and then fed-forward through the network. To make the target
sparse, we reduce the output size of Si in the target generator.
We use sparse learning throughout this article, except when
otherwise written.

For convolutional layers, the output size of Si is made the
same size as the weights. For example, let there be an input
of 32 × 28 × 28 and a convolutional hidden layer of 32 ×
16 × 3 × 3, where 32 is the in-channels, 28 × 28 is the
width and height of the input, 16 is the out-channels, and 3 ×
3 is the kernel. The dense target’s shape is 32 × 28 × 28.
In contrast, the sparse target’s shape is reduced to 10 × 32 ×
3 × 3. As a result, even though convolutional layers have
weight sharing, there is no weight sharing when convolving
with a sparse target.

For fully connected layers, the output size of Si is made
smaller than the input size of the weights. For example, let
there be an input of 1024 and a fully connected hidden layer
of 1024 × 512 features. The dense target’s shape would be
1024. In contrast, the sparse target’s shape is < 1024. Then,
we resize the target to match the layer input size of 1024 by
filling it with zeros. With the sparse target, the layer is no
longer fully connected.

IV. EXPERIMENTS

We compare sigprop (SP) with FA and LL. We also show
results for BP as reference. The models are shown in Fig. 1.
FA uses fixed random weights to transport error gradient
information back to hidden layers, instead of using symmetric
weights. For LL, we show the results for two model versions.
The first uses BP at the layer level (LL-BP), and the second
uses FA in the auxiliary networks to have a BP-free model that
relaxes learning constraints under BP (LL-FA). LL-FA per-
forms better than using FA or DFA alone. We use LL-BP and
LL-FA with predsim losses on the VGG8b architecture [14].
We trained several network on the CIFAR-10, CIFAR-100, and
SVHN datasets. We used a VGG architecture. The experiments
were run using the PyTorch Framework. All training was done
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Fig. 2. Different versions of sigprop (SP). (a) For sigprop, the prediction
y is formed by taking t3 with h3. sigprop does not need a classification
layer (output target). (b) However, a classification layer may be used without
effecting performance. In this case, the last hidden layer’s outputs are sent
to the classification layer. The classification layer has a benefit for inference.
During inference, the target t3 is no longer needed to make predictions, so the
context c and target generator are not used (classification layer). (c) This is
the version of sigprop used in Sections V for the continuous rate model. The
classification layer feeds back into the input layer creating a feedback loop,
so y is the context c: y = c. This feedback loop allows the target of hidden
layers earlier in the network to incorporate information from hidden layers
later in the network without incurring the overhead of reciprocal feedback
to every neuron. Continuous networks have multiple iterations which is ideal
for this version of sigprop. The other versions of sigprop may also be used
(Target loop).

Fig. 3. Training in sigprop (SP). The learning signals c and inputs x are
fed into the network. Then, each layer successively brings the learning signal
5 : [1, 0] closer to the images of 5, but farther away from learning signal
7 : [0, 1] and images of 7. The same is done for 7. Before the first layer 1),
the images and learning signal of the same class are not closer to each other
than to other classes. In the first layer 2), we nudge 5 : [1, 0] and the image
of 5 closer; the same for 7. This continues in the following layer 3) and then
the final layer 4), at which point the learning signal and inputs of the same
class are close each other, but farther from the other class. In general, each
layer successively bring inputs x and their respective learning signals c closer
together than all other inputs and learning signals.

on a single GeForce GTX 1080. For each layer to have a
separate loss, the computational graph was detached before
each hidden layer to prevent the gradient from propagating
backward past the current layer. The target generator was
conditioned on the classes, producing a single target for each
class.

Results for BP, LL-BP, LL-FA, and SP: A batch size of
128 was used. The training time was 100 epochs for SVHN
and 400 epochs for CIFAR-10 and CIFAR-100. ADAM was
used for optimization [31]. The learning rate was set to 5e−4.

The learning rate was decayed by a factor of .25 at 50%,
75%, 89%, and 94% of the total epochs. The leaky ReLU
activation with a negative slope of 0.01 was used [32]. Batch
normalization was applied before each activation function [33]
and dropout after. The dropout rate was 0.1 for all the datasets.
The standard data augmentation was composed of random
cropping for all the datasets and horizontal flipping for CIFAR-
10 and CIFAR-100. The results are over a single trial for VGG
models.

The CIFAR-10 dataset [34] consists of 50 000 32 × 32 RGB
images of vehicles and animals with ten classes. The CIFAR-
100 dataset [34] consists of 50 000 32 × 32 RGB images of
vehicles and animals with 100 classes. The SVHN dataset [35]
consists of 32 × 32 images of house numbers. We use both
the training of 73 257 images and the additional training of
531 131 images.

A. Efficiency

We measured the training time and maximum memory
usage on CIFAR-10 for BP, LL-BP, LL-FA, and SP. The
version of SP used is 2b with the Lpred loss. The results are
summarized in Table I. LL and SP training time are measured
per layer as they are forwardpass unlocked and layers can be
updated in parallel. However, BP is not forwardpass unlocked,
so layers are updated sequentially and is therefore necessarily
measured at the network level. Measurements are across all the
seven layers, which is the source of the high variance for LL
and SP, and over 400 epochs of training. To ensure training
times are comparable, we compare the epochs at which SP,
LL, and BP converge toward their lowest test error. We also
include the first epochs that have performance within 0.5%
of the best reported performance. All the learning algorithms
converge within significance of their best performance around
the same epoch. Given efficiency per iteration, SP is faster than
the other learning algorithms and has lower memory usage.

The largest bottleneck for speed of LL and SP is successive
calls to the loss function in each layer. BP only needs to call
the loss function once for the whole network; it optimizes the
forward and backward computations for all the layers and the
batch. SP and LL would benefit from using a larger batch size
than BP. The batch size could be increased in proportion to
the number of layers in the network. This is only pragmatic in
cases where memory can be sacrificed for more speed (e.g.,
not edge devices). We also provide per-layer measurements
in Table II. At the layer level, SP remains faster and more
memory-efficient than LL and BP. It is interesting to note that
LL and SP tend to be slower and faster in different layers
even though both are using the same architecture. For memory,
SP uses less memory than LL and BP regardless of the layer.
However, there is a general trend for LL and SP: the layers
closer to the input have more parameters, so are slower and
take up more memory than layers closer to the output.

B. Sparse Local Targets

We demonstrate that sigprop (SP) can train a network
with a sparse learning signal. We use the larger VGG8b(2x)
architecture to leave more room for possible improvement
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TABLE I

TRAINING TIME PER SAMPLE AND MAXIMUM MEMORY USAGE PER BATCH OVER ALL LAYERS FOR VGG8b

TABLE II

TRAINING TIME PER SAMPLE AND MAXIMUM MEMORY USAGE

PER BATCH PER LAYER ON CIFAR-10 FOR VGG8b

when using this sparse target. The version of sigprop is 2b
with the Lpred loss. We use the CIFAR10 dataset with the
same configuration as in Section IV. We see that the network
trains faster and uses less memory, shown in Tables III and IV,
with negligible change in accuracy.

V. IN CONTINUOUS TIME

We demonstrate that sigprop can train a neural model in the
continuous setting using a Hebbian update mechanism, in addi-
tion to the discrete setting. Biological neural networks work
in continuous time, have no indication of different dynamics
in inference and learning, and use Hebbian-based learning.
Sigprop improves learning in this scenario by bringing a
global learning signal into Hebbian-based learning, without the
comprehensive feedback connectivity to neurons and layers

TABLE III

EFFICIENCY OF TARGETS OVER ALL LAYERS ON CIFAR-10 FOR

VGG8b(2x). TRAINING TIME PER SAMPLE, MAXIMUM

MEMORY USAGE PER BATCH

TABLE IV

EFFICIENCY OF TARGETS PER LAYER ON CIFAR-10 FOR VGG8b(2x).
TRAINING TIME PER SAMPLE AND MAXIMUM

MEMORY USAGE PER BATCH

that previous approaches require, not observed in biological
networks. In addition, sigprop improves compatibility for
learning in hardware, such as neuromorphic chips, which
have resource and design constraints that limit backward
connectivity.

In the model presented in this section, the target generator
is conditioned on the activations of the output layer to produce
a feedback loop—Fig. 2(c). The feedback loop is always
active, during training and inference. With this feedback
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loop, we demonstrate in Section V-A that sigprop provides
useful learning signals by bringing forward and feedback loop
weights into alignment. In Section V-B, we measured the
performance of this model on the MNIST and Fashion-MNIST
datasets [36], [37].

A. Continuous Recurrent Neural Network Model

The learning framework, EP, proposed in [6] is one way
to introduce physical time in deep continuous learning and
have the same dynamics in inference and learning, avoiding
the need for different hardware for each. EP has been used
with symmetric or random feedback weights. We combine
sigprop with EP such that there are no additional constraints on
learning, beyond the Hebbian update. We trained deep recur-
rent networks with a neuron model based on the continuous
Hopfield model [38]

ds j

dt
= dρ

�
s j

�
ds j

⎛
⎝�

i→ j

wi jρ(si )+
�

i∈O→ j∈I

wi jρ(si )+ b j

⎞
⎠

− s j

r j
− β

�
j∈O

�
s j − d j

�
(12)

where s j is the state of neuron j , ρ(s j ) is a nonlinear
monotone increasing function of its firing rate, b j is the bias,
β limits the magnitude and direction of the feedback, O is
the subset of the output neurons, I is the subset of the input
receiving neurons, and d j is the target for the output neuron
j . The input receiving neurons, s j ∈ I , are the neurons with
forward connections from the input layer. The networks are
entirely feedforward except for the final feedback loop from
the output neurons si ∈ O to the input receiving neurons
s j ∈ I . All the weights and biases are trained. The weights
in the feedback loop connections may be fixed or trained.
The output neurons receive the L2 error as an additional input
which nudges the firing rate toward the target firing rate d j .
The target firing rate d j is the one-hot vector of the target
value; all the tasks in this section are classification tasks.

The EP learning algorithm can be broken into the free phase,
the clamped phase, and the update rule. In the free phase, the
input neurons are fixed to a given value and the network is
relaxed to an energy minimum to produce a prediction. In the
clamped phase, the input neurons remain fixed and the rate of
output neurons s j ∈ O is perturbed toward the target value
d j , given the prediction s j , which propagates to the connected
hidden layers. The update rule is a simple contrastive Hebbian
(CHL) plasticity mechanism that subtracts s0

i s0
j at the energy

minimum (fixed point) in the free phase from sβ
i sβ

j after the
perturbation of the output, when β > 0

�Wi j ∝ ρ(si )
d

dβ

�
ρ
�
s j

�� ≈ 1

β
ρ
�
s0

i

��
ρ
�

sβ
j

�
− ρ

�
s0

j

��
. (13)

The clamping factor β allows the network to be sensitive to
internal perturbations. As β → +∞, the fully clamped state
in general CHL algorithms is reached where perturbations
from the objective function tend to overrun the dynamics and
continue backward through the network.

B. Signal Propagation Provides Useful Learning Signals

We look at the behavior of our model during training and
how the feedback loop drives weight changes. Precise symmet-
ric connectivity was thought to be crucial for effective error
delivery [1]. FA, however, showed that approximate symmetry
with reciprocal connectivity is sufficient for learning [10], [11],
[12]. DFA showed that approximate symmetry with direct
reciprocal connectivity is sufficient. In Sections III and IV,
we showed that no feedback connectivity is necessary for
learning. Here, we conduct an experiment to show that the
same approximate symmetry is found in sigprop.

We provide evidence that sigprop brings weights into align-
ment within 90◦, known as approximate symmetry. In com-
parison, BP has complete alignment between weights, known
as symmetric connectivity. Note that this is not a measure
of approximation to BP—sigprop is a new and different
approach; instead, this is a measure of the quality of the learn-
ing signal in deeper layers, contextualized by observations of
learning with BP, particularly symmetry. In this experiment,
the sigprop network architecture forms a loop, so all the
weights serve as both feedback and feedforward weights. For a
given weight matrix, the feedback weights are all the weights
on the path from the downstream error to the presynaptic
neuron. In general, this is all the other weights in the network
loop. The weight matrices in the loop evolve to align with each
other as seen in Fig. 4. More precisely, each weight matrix
roughly aligns with the product of all the other weights in the
network loop. In Fig. 4, the weight alignment for a network
with two hidden layers W1 and W2 and one loop back layer
W3 is shown.

Information about W3 and W1 flows into W2 as
roughly W3W1, which nudges W2 into alignment
with the rest of the weights in the loop. From (13),
(W2 ∝ ρ(�s0

2 )(ρ(�sβ
3 )− ρ(�s0

3))) where (�s2 ← ρ(�s1)W1), which
means information about W1 accumulates in W2. Similarly,
(W1 ∝ ρ(�s0

1 )(ρ(�sβ
2 )− ρ(�s0

2 ))), except since the network
architecture is a feedforward loop, (�s1 ← ρ(�s3)W3), which
means information about W3 accumulates in W1. The result
is shown in column c of the bottom row of Fig. 4, where
a weight matrix is fixed and the rest of the network’s
weights come into alignment with the fixed weight. Note that
W3W1 has the same shape as W T

2 and serves as its “feedback”
weight.

C. Classification Results

We provide evidence that sigprop with EP has comparable
performance to EP with symmetric weights and report the
performance results of the experiment in Section V-B. A two-
and another three-layer architectures of 1500 neurons per
layer were trained. The two-layer architecture was run for
60 epochs and the three-layer architecture for 150 epochs. The
best model during the entire run was kept. On the MNIST
dataset [36], the generalization error is 1.85–1.90% for both
the two-layer and three-layer architectures, an improvement
over EP’s 2–3%. The best validation error is 1.76–1.80%
and the training error decreases to 0.00%. To demonstrate
that sigprop provides useful learning signals in Section V-B,
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Fig. 4. Signal propagation updates bring weights into alignment within 90◦ , approaching BP symmetric weight alignment. Sigprop provides useful targets
for learning. The weight alignment for a network with two hidden layers W1 and W2 and one loop back layer W3 is shown. The weight matrices form a loop
in the network and come into alignment with each other during training on the Fashion-MNIST dataset. Each weight matrix aligns with the product of the
other two weights forming the network loop. Wxy�Wz means the angle between weight z and the matrix multiplication of the weights x and y. (Learned)
The loop back layer is trained. However, even a fixed loop back layer reaches a similar angle of alignment. (Layers) The loop back layer converges before
the 1st and 2nd hidden layers can. The 1st hidden layer is the least aligned with the 2nd hidden layer and the loop back layer because it is dominated by the
input signal. The alignment angles are taken for every sample and error bars are one standard deviation.

we trained the network on the more difficult Fashion-MNIST
dataset [37]. The generalization error is 11.00%. The best
validation error is 10.95%, and the training error decreases
to 2%.

VI. SPIKING NEURAL NETWORKS

We demonstrate that sigprop can train a spiking neural
model with only the voltage (spike) and improves the
hardware compatibility of surrogate functions by reducing
them to local update rules. This is an improvement over
BP-based approaches as they: struggle to learn with only
the voltage; require going backward through nonderivable,
noncontinuous spiking equations; and require comprehensive
feedback connectivity—all of which are problematic for
hardware and biological models of learning [8], [39], [40],
[41], [42], [43], [44].

Spiking is the form of neuronal communication in biological
and hardware neural networks. SNNs are known to be efficient
by parallelizing computation and memory, overcoming the
memory bottleneck of ANNs [45], [46], [47]. However, SNNs
are difficult to train. A key reason is that spiking equations
are nonderivable, noncontinuous, and spikes do not necessarily
represent the internal parameters, such as membrane voltage
of the neuron before and after spiking [8]. Spiking also has
multiple possible encodings for communication when consid-
ering time which is nontrivial, whereas ANNs have a single
rate value for communication [8]. One approach to training
SNNs is to convert an ANN into an SNN after training [48],
[49], [50]. Another approach is to have an SNN in the forward
path, but have a BP-friendly surrogate model in the backward
path, usually approximately making the spiking differentiable
in the backward path to update the parameters [8], [51], [52].

We trained SNNs with sigprop. The target is forwarded
through the network with the input, so learning is done before
the spiking equation. That is, we do not need to differentiate a
nonderivable, noncontinuous spiking equation to learn. Also,
SNN has the same dynamics in inference and learning and
has no reciprocal feedback connectivity. This makes sigprop

ideal for ON-chip, as well as OFF-chip, training of SNNs.
We measure the performance of this model on the MNIST
and Fashion-MNIST datasets.

A. Spiking Neural Network

We train a convolutional SNN with integrate-and-fire (IF)
nodes, which are treated as activation functions. The IF neuron
can be viewed as an ideal integrator where the voltage does
not decay. The subthreshold neural dynamics are

v t
i = v t−1

i + ht
i (14)

where v t
i is the voltage at time t for neurons of layer i , and ht

i
is the layer’s activations. The surrogate spiking function for
the IF neuron is the arc tangent

g(x) = 1

π
arctan(πx)+ 1

2
(15)

where the gradient is defined by

g(x) = 1

1+ (πx)2 . (16)

The neuron spikes when the subthreshold dynamics reach
0.5 for sigprop, and 1.0 for the BP and shallow models.
All the models are simulated for four time steps, directly
using the subthreshold dynamics. The SNN has four layers.
The first two are the convolutional layers, each followed by
batch normalization, an If node, and a 2 × 2 maxpooling.
The last two layers are fully connected, with one being the
classification layer. The output of the classification layer is
averaged across all four time steps and used as the network
output. ADAM was used for optimization [31]. The learning
rate was set to 5e− 4. Cosine annealing [53] was used as the
learning rate schedule with the maximum number of iterations
Tmax set to 64. The models are trained on the MNIST and
Fashion-MNIST datasets for 64 epochs using a batchsize of
128. We use automatic mixed precision for 16-bit floating
operations, instead of the only the full 32-bit. The reduced
precision is better representative of hardware limitations for
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TABLE V

TEST ERROR FOR A SPIKING CONVOLUTIONAL NEURAL NETWORK

learning. We use the classification layer version of sigprop
Fig. 2(b).

B. Results

We compare four spiking models on the MNIST and
Fashion-MNIST datasets—Table V. The BP model propagates
backward through the spiking equations at each layer using
a differentiable surrogate. The shallow model only trains the
classification layer. The SP surrogate model uses the same
differentiable surrogate as BP does, but SP propagates forward
through the network and therefore does not need to go through
the spiking equation to deliver a learning signal. That is, the
parameter update and surrogate are before or perpendicular
to spiking, possibly as separate compartment. Finally, the SP
voltage model uses the neuron’s voltage (i.e., directly uses
the spiking equation) to calculate the loss and update the
parameters, and no surrogate is used.

In contrast, BP-based learning (without considerable modi-
fications and additions) struggles when only using the voltage
for learning [39], [40]. A differentiable nonlinear function
estimating the spiking behavior (i.e., surrogate) is necessary
for reasonable performance in BP learning. A surrogate is
also necessary for sigprop to come close to BP surrogate
performance. Even without a surrogate, the SP voltage model
is able to train the network significantly better than the shallow
model. To the best of our knowledge, sigprop is the only
learning framework with a global supervised (unsupervised,
reinforcement) learning signal that satisfies requirements for
hardware (ON-chip) learning [8], [54].

VII. DISCUSSION AND CONCLUSION

Alternative learning algorithms to BP relax constraints on
learning under BP, such as feedback connectivity, weight
transport, multiple types of computations, or a backward
pass. This is done to improve training efficiency, lowering
time or memory, or enabling distributed or parallel execution;
and, to improve compatibility with biological and hardware
learning models. However, relaxing constraints negatively
impacts performance. So, alternatives try varying relaxations
or supplementary modifications and additions in an attempt to
retain the performance found under BP. For instance, the best
performing and least constrained alternative algorithm, LL-FA,
uses a layerwise loss and random feedback to relax constraints,
but adds layerwise auxiliary networks to retain performance.
In contrast, sigprop has no constraints on learning, beyond
the inference model, and without constraining (e.g., layerwise)
additions or modifications.

TABLE VI

TEST ERROR FOR BP, FA, DFA, AND SP (BEST VS. BP)

We demonstrated that sigprop has faster training times
and lower memory usage than BP, LL-BP, and LL-FA. The
reason sigprop is more efficient than BP is clear, sigprop is
forwardpass unlocked, while BP is backwardpass locked. For
LL-BP and LL-FA, sigprop is more efficient as it has fewer
layers for learning, and it has no auxiliary networks. LL-BP
has two auxiliary layers for every hidden layer. LL-FA has
three auxiliary layers for every hidden layer. In Section IV-B,
we showed that sparse targets, which have a much smaller
size than the hidden layer outputs, are able to train the hidden
layer and dense targets, which have the same size as the
hidden layer outputs. A key feature of learning in the brain
and biological neural networks is sparsity. A small fraction of
the neurons weigh in on computations and decision-making.
It is encouraging that sigprop is able to learn just as well with
a sparse learning signal.

In Section V, we applied sigprop to a time-continuous
model using a Hebbian plasticity mechanism to update
weights, demonstrating sigprop has dynamical and structural
compatibility with biological and hardware learning. With this
continuous model, we also showed that sigprop is able to
provide useful learning signals. While sigprop improves the
performance of EP, the Fashion-MNIST results demonstrate
that there is room for growth. One problem may be that the
layers on the path from the input to the output have their
weight updates dominated by the input, so are struggling to
come into alignment with the loopback layer. In future work,
we will compensate to increase alignment.

In Section VI, we demonstrated a key feature of sigprop not
seen in other global learning algorithms: sigprop does not need
to go through a nonderivable, noncontinuous spiking equation
to provide a learning signal to hidden layers. This makes
sigprop ideal for hardware (ON-chip) learning. Furthermore,
sigprop is able to train an SNN using spikes (voltage), which
BP struggles to do, and at a reduced 16-bit precision. So,
no additional complex circuitry is necessary. This makes
ON-chip global learning (e.g., supervised or reinforcement)
more plausible with sigprop, whereas the complex neuron and
synaptic models of previous supervised learning algorithms
are impractical [8], [54]. This is in addition to sigprop not
having architectural requirements for learning and having the
same type of computation for learning and inference, which
on their own address hardware constraints restricting the use
of previous supervised learning algorithms [8], [54]. We are
working to implement sigprop on hardware neural networks.
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We demonstrated signal propagation, a new learning frame-
work for propagating a learning signal and updating neural
network parameters via a forward pass. Our work shows that
learning signals can be fed through the forward path to train
neurons. In biology, this means that neurons which do not have
feedback connections can still receive a global learning signal
through their incoming connections. In hardware, this means
that global learning (e.g., supervised or reinforcement) is
possible even though there is no backward connectivity. At its
core, sigprop reuses the forward path to propagate a learning
signal and generate targets. With this combination, there are no
structural or computational requirements for learning, beyond
the inference model. Furthermore, the network parameters
are updated as soon as they are reached by a forward pass.
So, sigprop learning is ideal for parallel training of layers
or modules. In total, we presented learning models across
a spectrum of learning constraints, with BP being the most
constrained and signal propagation being the least constrained.
Signal propagation has better efficiency, compatibility, and
performance than more constrained learning algorithms not
using BP.

APPENDIX

ADDITIONAL RESULTS

We trained several networks using BP, FA, DFA, and SP on
MNIST, CIFAR-10, and CIFAR-100. We used fully connected
(FC) architectures and a small convolutional architecture
(CONV) architecture. The results are shown in Table VI. Note
that the FA-based algorithms (FA and DFA) do not scale well;
they are combined them with LL, or another learning model,
to achieve reasonable performance.

A batch size of 64 was used. The training time was
300 epochs. The models were trained for 5 trials on each
dataset. The average and standard deviation of the top 2 vali-
dation accuracies from each trial are shown. RMSprop was
used for optimization [55]. The learning rate was set to
1e− 4 for fully connected networks and 5e− 5 on CIFAR-10
and CIFAR-100 for convolutional networks. The learning rate
was constant throughout training. No momentum or weight
decay was used. The datasets were scaled between 0 and 1. All
the models use the tanh activation function. For models with
dropout (DO) [56], a dropout rate of 0.1 was used on the input
layer, 0.25 on convolutional layers, and 0.5 on subsequent
layers. Dropout is applied after the loss and before each
hidden layer. The fully connected architectures are denoted
as layers Xnodes. The convolutional architecture is the one
found in [56], except with a tanh activation. The model is
three convolutional layers with channel sizes 96, 128, and 256,
interleaved with max pooling, and two dense layers of 2048.
Before taking the loss on convolutional layers, we applied
adaptive average pooling to lower the input size to (2, 2). The
experiments are meant to closely replicate the ones in [13] for
direct comparison to those FA and DFA results.
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