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Abstract— This article presents a novel neural-network-based
optimal event-triggered impulsive control method. First, a novel
general-event-based impulsive transition matrix (GITM) is con-
structed to represent the probability distribution evolving charac-
teristics regarding all system states across the impulsive actions,
rather than the prefixed timing sequence. On the foundation
of this GITM, the event-triggered impulsive adaptive dynamic
programming (ETIADP) algorithm and its high-efficiency ver-
sion (HEIADP) are developed to deal with the optimization
problems for stochastic systems with event-triggered impulsive
controls. It is shown that the obtained controller design scheme
can reduce the computational and communication burden caused
by updating the controller periodically. By analyzing the admis-
sibility, monotonicity, and optimality properties of ETIADP and
HEIADP, we further establish the approximation error bound of
the neural networks to address the connection between the ideal
and neural-network-based realizations of the present methods.
It is proven that the iterative value functions of both the ETIADP
and HEIADP algorithms fall in a small neighborhood of the
optimum as the iteration index increases to infinity. By adopting
a novel task synchronization mechanism, the proposed HEIADP
algorithm fully utilizes the computing resources of multiprocessor
systems (MPSs), while significantly reducing the memory require-
ment compared to traditional ADP approaches. Finally, we carry
out a numerical study to show that the proposed methods can
fulfill the desired goals.

Index Terms— Adaptive dynamic programming (ADP), event-
triggering, neural networks, optimal control, value iteration.

I. INTRODUCTION

ADAPTIVE dynamic programming (ADP) methodology
along with its relevant value/policy iteration schemes are

effective dealing with the optimization problems of compli-
cated and high dimensional systems, therefore being widely
investigated [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. In [11],
a value iteration ADP algorithm is developed to obtain the
optimum for the infinite horizon undiscounted discrete-time

Manuscript received 25 September 2022; accepted 18 December 2022. This
work was supported in part by the National Natural Science Foundation
of China under Grant 62203120 and Grant 62073085 and in part by the
Guangdong Basic and Applied Basic Research Foundation under Grant
2021A1515110870. (Corresponding author: Derong Liu.)

Mingming Liang is with the Auto Engineering Research Institute,
BYD Auto Industry Company Limited, Shenzhen 518118, China (e-mail:
liang.mingming@byd.com).

Derong Liu is with the Department of Mechanical and Energy Engineering,
Southern University of Science and Technology, Shenzhen 518055, China, and
also with the Department of Electrical and Computer Engineering, University
of Illinois Chicago, Chicago, IL 60607 USA (e-mail: liudr@sustech.edu.cn;
derong@uic.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3232635.

Digital Object Identifier 10.1109/TNNLS.2022.3232635

nonlinear systems, which permits the initializer to be an
arbitrary positive semidefinite function, thus improving the
universality and reliability of the ADP methods. In [12] and
[13], the local value iteration ADP algorithm with a novel
updating mechanism is introduced to relax the computational
burden while its admissibility and global optimality properties
are analyzed systematically. In [14], a novel value iteration-
based off-policy ADP algorithm is proposed for the optimal
control of continuous-time linear periodic systems, so that
approximate optimal solutions can be obtained directly from
the collected data, without the exact knowledge of system
dynamics. Bhattacharya et al. [15] focus on DP problems and
use policy iteration and rollout techniques to solve a class
of autonomous sequential repair problems where the system
states are partially observable. The stable value iteration algo-
rithm is suggested in [16] to resolve optimization problems for
nonlinear two-player zero-sum games based on ADP. It is also
shown in [16] that if the iteration index reaches a given num-
ber, the generated iterative control inputs make the closed-loop
system asymptotic stable. Zhu and Zhao [17] use the double
Q-learning technique and provide the double-loop iterative
realization methods for the ADP algorithms, to construct the
optimal controllers for zero-sum games of stochastic systems.
ADP also possesses great practical values. For example, it can
be used to obtain the optimal controllers for permanent magnet
synchronous motors [18], antilock brake systems [19], dc–dc
power converters [20], etc.

Researchers in recent years have been aiming at building
the high-performance impulsive controllers for the impulsively
controlled systems. Haddad et al. [21] extend the dissipativity
theory to nonlinear dynamical systems controlled by impulsive
controllers for which the corresponding invariant set stability
and Lyapunov theorems are established. Li et al. [22] design
the impulsive control schemes for nonlinear systems with
constant, unbounded time-varying or bounded time-varying
delays. Lakshmikantham et al. [23] present the concept of
impulsive evolution processes and analyze the corresponding
stability properties of the impulsive controllers via methods of
discontinuous Lyapunov functions. Dufour et al. [24] analyze
the Hamilton–Jacobi–Bellman (HJB) equation associated with
the optimal impulsive control problems of piecewise determin-
istic Markov processes (PDMPs). Miller et al. [25] develop
the martingale representation of the stochastic systems subject
to joint impulsive and gradual controls, while constructing
the optimal strategy based on the DP equation. Basu and
Stettner [26] provide the optimal impulsive controller design
schemes for zero-sum games under several weak assumptions
and weak Feller conditions. Dufour and Piunovskiy [27] study
continuous-time stochastic systems on a general Borel state
space governed by both impulsive and regular controllers to
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minimize the infinite-time horizon discounted cost. Heydari
[28] focuses on nonlinear impulsive systems and presents the
controller design schemes for obtaining the impulsive instants
in the optimal control problems with unlimited number of
impulses. Wei et al. [29] develop a novel iterative ADP algo-
rithm to solve the optimal impulsive control problems for infi-
nite discrete-time nonlinear systems. Wang and Balakrishnan
[30] give the optimal neuro-controller synthesis for impulse-
driven systems while using neural network approximation
structures to solve the optimality equations. Wang et al. [31]
extend the ideas in [30] to consider the optimal impulsive
control problems where the impulsive instants are calculated
by a prefixed function. The optimal impulsive control tech-
nologies have also been utilized to practical applications such
as the Internet congestion control problems [32], antiangio-
genic tumor therapies [33], and human immunodeficiency
virus treatments [34].

Event-triggered control, as a promising methodology for
reducing computational and communication costs, nowadays
becomes a hot topic in the community. Vamvoudakis [35]
proposes the event-triggered ADP algorithm for nonlinear
continuous-time systems, which reduces the controller updates
by sampling the state only when an event is triggered while
maintaining stability and optimality. Wang et al. [36] construct
an event-triggered adaptive robust control approach for nonlin-
ear systems through a neural DP strategy, achieving the robust-
ness of the designed controller under a suitable triggering
condition. Luo et al. [37] design the event-triggered optimal
controller directly based on the solution of the Hamilton–
Jacobi–Bellman equation and provide formal performance
guarantees of the controller by proving a predetermined upper
bound. Mu et al. [38] present an event-sampled integral
reinforcement learning algorithm for partially unknown non-
linear systems using a novel dynamic event-triggering strategy,
in which the actor network adopts the event-based communi-
cation to update the controller only at triggering instants. Zhao
and Liu [39] develop an event-triggered decentralized tracking
control approach for modular reconfigurable robots based on
ADP, while solving the local HJB equation via a local critic
with an asymptotically stable structure. Xue et al. [40], [41]
use event-triggered ADP to design controllers for uncertain
nonlinear dynamical systems.

Although the impulsive or event-triggered control technolo-
gies have made considerable progress, several problems still
have to be addressed. First, the regular time-based state transi-
tion probability matrix P (its (m, n)th entry is the probability
p(σn|σm, ν) where σm, σn is the discrete elements of the state
space X and ν is the controller) is strictly constrained by the
action time of controllers. Specifically, to reflect the probabil-
ity distribution evolving characteristics from the timing node k
to k + �, from P we can derive the multistep transition
matrix P� = P ∗ P ∗ · · · ∗ P︸ ︷︷ ︸

�

whose element p�(σn|σm, ν)

establishes the relationship between the system states x(k) and
x(k +�) (we use the symbol x ∈ X to generally refer to the
system state of the stochastic systems). However, the entire
transition matrix P� requires that the action time of ν must
be fixed at the time sequence (k, k + 1, . . . , k +�− 1) with
a prefixed time span � for all initial states x(k) ∈ X . This
restriction of the regular time-based transition matrices (P and
P�) makes them fail to reveal the impulsive transition dynam-
ics across the impulsive actions, since the time span between
two adjoining impulsive actions (which is also called the

“impulsive control cycle”) is adaptively changing according to
the current system state and not predefined. Consequently, the
regular time-based transition matrices (P and P�) can be used
to derive the evolution of the probability distribution at the
prefixed time sequence, but not the evolution of the probability
distribution across the impulsive actions. In summary, these
facts indicate that the restrictions of the regular time-based
transition matrices and the variable impulsive control cycles
of the impulsive controller show no compatibility and con-
flict with each other, which causes the traditional impulsive
control methods [24], [25], [26], [27] complicated and highly
specialized with low generality and uniformity. Noticing that
the “arrival of the impulsive action” can be treated as an
event, therefore to address the above issues, a novel general-
event-based impulsive transition matrix is needed to represent
the probability distribution evolving characteristics across the
impulsive actions.

Second, the impulsive control methods proposed in [24],
[25], [26], and [27] use DP to iteratively obtain the explicit
solutions of the optimality equations. However, due to
the increased difficulty of solving the exact solutions and the
“curse of dimensionality” issues of DP (especially when the
system dynamic characteristics are complex), these DP-based
methods are almost impossible to implement in reality. Fortu-
nately, the above DP-associated problems can be successfully
avoided by the newly developed ADP methodology, which
uses approximate structures to efficiently and numerically
approach the optimum. Nevertheless, there are still no reports
on utilizing ADP to solve the optimal impulsive control
problems for discrete stochastic systems. Besides, to derive the
optimal impulsive controllers for the stochastic systems under
the ADP framework, the new general-event-based impulsive
transition matrix which can reflect the impulsive transition
dynamics across the impulsive actions, is crucial and required.

Furthermore, existing researches on impulsive control via
ADP [28], [29], [30], [31]: 1) merely deal with the determin-
istic systems, and are invalid when the controlled systems are
stochastic as a consequence of the issues mentioned above
and 2) require the system states to be sampled periodically
and the controller/actuator be updated at each time step,
consuming huge computational and communication resources.
As for the existing event-triggered ADP approaches [35],
[36], [37], [38], [39], [40], [41], they: 1) mainly focus on
deterministic cases and there are no reports on how they can
be applied to impulsively controlled systems and 2) require
the triggering condition to be carefully designed by the deci-
sion maker prior to the optimization of the controller, thus
characterized by low portability and extendability, which also
indicates that the optimality of the triggering condition needs
improvement.

Finally, on the subject of algorithm execution, the traditional
ADP-based approaches including [1], [2], [3], [4], [5], [6], [7],
[8], [28], [29], [30], [31], [35], [36], [37], [38], [39] require
the iterative items to be updated globally at each step. This
updating mechanism may not be friendly to the computing
devices especially with limited memory sizes. Particularly,
if the complexity of the controlled systems increases, ADP
needs massive amount of sampled data to globally and pre-
cisely train the utilized neural networks at each iteration, which
poses a significant memory burden to the computing devices
and may even cause the algorithms unfeasible. On the other
hand, more and more modern computing devices come with
multiple processors, which are referred to as multiprocessor
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systems (MPSs), now widespread and playing critical roles in
various areas of daily life and industrial production. Hence,
considering the fact that traditional ADP algorithms are usu-
ally designed to run on a single processor, how to adapt ADP
to fully utilize the computing resources of MPSs remains an
urgent problem to be resolved.

The above issues motivate us to carry out the present
research, and we summarize the main novelties in the fol-
lowing three aspects.

1) A novel general-event-based impulsive transition matrix
(GITM) is established, which can reveal the probability distri-
bution evolving characteristics across the predefined general
events. Due to this advanced property, this novel transition
matrix plays a key role in the developments of the ETIADP
and HEIADP methods. Moreover, the GITM possesses strong
extendability. Specifically, the “general event” of GITM is not
only limited to “the arrival of the impulsive instants,” but also
can be further customized into “the jumping behavior of the
system happens,” “the switching behavior of the controller
happens” or “the triggering condition is violated,” etc. Hence,
these unique features of GITM substantially improve the
universality of the ADP-based approaches.

2) A new event-triggered impulsive controller (ETIC) design
scheme is developed and for the first time ADP is applied to
obtain the optimal ETICs for stochastic systems, whereas value
iteration is employed to address the “curse of dimensionality”
issues and effectively approximate the optimums including the
optimal triggering condition.

3) The high-efficiency event-triggered impulsive ADP
(HEIADP) algorithm is developed to fully utilize the comput-
ing resources of MPSs while reducing its memory requirement.

The advantages and differences of the developed methods
compared to the existing methods are emphasized as follows.

1) Existing impulsive control methods use the traditional
state transition probability matrices which require that the
action time of the impulsive controller must have the same
length for each system state. Unfortunately, for the impulsive
controller, its impulsive control cycles are always adaptively
changing with the system states and not fixed. This mis-
match between the variable impulsive control cycles and the
requirements of the regular time-triggered transition matrices
causes the traditional impulsive control methods complicated
and highly specialized with low generality and uniformity.
In comparison, the proposed ETIADP and HEIADP algorithms
are based on the GITMs which reflect the “impulsive” dynam-
ics, possess greater flexibility and improve the extendability of
the ADP approaches. (Please see Remark 1 for more details
about the advantages of the GITM over the traditional one.)

2) Existing DP based impulsive control methods may cause
the “curse of dimensionality” problems, making the algorithms
unusable in reality. In comparison, the proposed methods
are ADP based, which means neural networks are used to
effectively approximate the optimums, thus successfully avoid-
ing the DP-related issues. In addition, to the best of our
knowledge, it is the first time ADP is utilized to design the
optimal impulsive controllers for stochastic systems.

3) Existing impulsive control methods for deterministic sys-
tems cannot be directly extended to stochastic systems, offer-
ing limited generality. In comparison, the proposed methods
can effectively solve the optimal impulsive control problems
of stochastic systems, due to the established GITMs.

4) Existing impulsive control methods require the system
states to be sampled periodically and the controller/actuator
to be updated at each time step, consuming huge compu-

tational and communication resources. In comparison, the
event-triggering mechanism is introduced to the optimal
impulsive controller design scheme for the first time, further
improving its efficiency. In other words, according to our
literature research, there has been no reports on how to obtain
the optimal event-triggered controllers for impulsive stochastic
systems, which is another contribution of our article.

5) Existing ADP methods, when implemented in computing
devices, consume huge memory spaces if the system complex-
ity is high. In comparison, the proposed HEIADP algorithm
can significantly reduce the memory burden.

6) Existing ADP methods, when executed in MPSs, are
faced with the “task unsynchronization” problem, resulting in
low utilization rate of the multiprocessor computing resources.
In comparison, the proposed HEIADP algorithm can overcome
the above issue by adopting a novel MPS task scheduling
scheme.

II. PROBLEM STATEMENT

A. System Dynamics and the ETIC Design

The controlled systems are modeled as follows:
x(k + 1) = F(x(k), a(k), ω(k)) (1)

where x and a are the system state and control action,
respectively. ω(k) is the random variable which has its own
probability distribution. In turn, the global state space and
control action space are denoted by X and A, respectively.
If the current system state is x(k) with the control action
being a(k), then, the value of the following state x(k + 1)
is governed by a probability distribution p(·|x(k), a(k)). The
equilibrium of (1) is x = 0 when the control action is
zero, meaning p(0|0, 0) = 1. The timing instants where the
event-triggered impulsive controller is active are of two types:
the decision-making instants and impulsive control instants.
If the current time is the decision-making instant, then the
ETIC determines whether the current “controller updating
event (CUE)” is triggered or not, and specifies when the
succeeding impulsive action takes place. If the current time is
the impulsive control instant, the ETIC applies the impulsive
action to the system. In particular, we use {θl}, l = 0, 1, . . . , to
represent the sequence of the decision-making instants. When
l = 0, we have θ0 = 0. The symbol G is used to denote the
collection of all possible impulsive intervals (the time length
from the current decision-making (impulsive control) instant
to the following one), i.e., G = {T1,T2, . . . ,Tmax}. Obviously,
we have θl+1 − θl ∈ G, l = 0, 1, . . .

In practical engineering, the frequency of the impulsive
actions of the ETIC should be regulated. Specifically, if the
frequency is too high, it may cause wear and tear of the
controller and affect system reliability; If the frequency is too
low, it may not achieve the desired controller performance.
Hence, to acquire a proper balance between controller perfor-
mance and reliability, a delay function ψ(x, l) : X ×N≥0 → G
which is used to adjust the frequency of the impulsive actions,
is designed. If the current time satisfies k = θl which is exactly
the decision-making instant and the current CUE is triggered,
then based on the current system state x(θl), ψ outputs the
current “impulsive” control cycle (i.e., the time span bounded
by the current decision-making instant θl and the next one θl+1)
of the ETIC. In other words, we have θl+1 − θl = ψ(x(θl), l).
Meanwhile, under the above conditions, the control law cluster
u(x, l) = [u(x,T1, l), u(x,T2, l), . . . , u(x,Tmax, l)] assigns
u(x(θl), ψ(x(θl), l), l) as the impulsive magnitude of the
succeeding impulsive action which is applied at the impulsive
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TABLE I

REGISTER DYNAMICS

TABLE II

RECORDER DYNAMICS

TABLE III

COUNTER DYNAMICS

control instant, i.e., θl+1 − 1, of the current impulsive control
cycle (as its name suggests, the control law cluster u(x, l)
is composed of a series of control laws which are defined
by u(x, ρ, l) : X × G × N≥0 → A). On the other hand, if at
the current time k = θl , the CUE is not triggered, then, the
time span and the impulsive action of the current impulsive
control cycle are kept the same as that of the last “triggered”
one. In addition, if the current time index is not the impulsive
control instant, then, the ETIC is in idle state and there is no
control input, whether the current CUE is triggered or not.

We set up a register r(k) ∈ R along with the counter c(k)
in the ETIC. Specifically, these two components r(k) and c(k)
are used to signal the arrival of the decision-making or impul-
sive control instant to the controller. Moreover, construct the
recorder r̂ = [r̂ ′, r̂ ′′]T ∈ R̂, where r̂ ′ and r̂ ′′ record the outputs
of ψ(x, l) and u(x, l) at the triggered impulsive control cycle,
respectively. Then, we can define the “impulsive” state ς as

ς =
[

x
r̂

]
∈ X̂ = X × R̂.

Let the function 
(ς, l) : X̂ × N≥0 → {0, 1} denote
the CUE scheduling/triggering strategy, where 
(ς(θl), l) = 1
means the CUE is triggered or equivalently, the time span and
the impulsive action of the current impulsive control cycle
are both updated, and 
(ς(θl), l) = 0 means the previously
calculated cycle length and impulsive action are applied to
the current “impulsive control cycle” (CUE is not triggered,
and the current control cycle inherits the attributes of the last
triggered one). Through monitoring the system state trajectory
x(k), the components r, r̂ and c renew their values accordingly.
Suppose the current system state is x(k), the updating rules
of these items are demonstrated in Tables I–III, with the
corresponding initial values configured as r(0) = 0, r̂(0) =
[T1, 0]T and c(0) = 0.

From Table I, if r(k) = 0, then, ETIC treats k as the current
decision-making instant, i.e., k = θl . When r(k) = 1, ETIC
then recognizes k as the current impulsive control instant.
As for the recorder r̂(k), the corresponding dynamics is shown
in Table II, where r̂ memorizes the cycle length of the current
“triggered” impulsive control cycle, along with the impulsive
action applied in the above period. In turn, if the current CUE
is not triggered, r̂ remains unchanged. Table III demonstrates
the dynamics of c(k), which records the total number of impul-
sive actions applied to the system before the current time k.
Therefore, we can derive θc(k) ≤ k ≤ θc(k)+1 −1, meaning that

(ς, c(k)), ψ(x, c(k)) and u(x, c(k)) are functioning in the
ongoing impulsive control cycle [θc(k), θc(k)+1).

The collection of all accessible values of the register r is
denoted by R which consists of r0, r1, . . . , r|R|, with r0 = 0.
We use

e = er,ς =
[

r
ς

]
∈ E = R × X̂

to represent the “expanded” system state. As for the global
space X̂ of all the “impulsive” states, it is discrete and count-
able and we list its elements as σ1, σ2, . . . , σ|X̂ |. Then, we use
�l(e) = [� 〈1〉

l (e),� 〈2〉
l (e)]T as the abstract mathematical

description of the ETIC where � 〈1〉
l returns the output of the

triggering strategy at the decision-making instants

�
〈1〉
l (e) =

{

(ς, l), r = 0
0, otherwise

(2)

while � 〈2〉
l returns the control action of ETIC at the impulsive

control cycle [θl, θl+1)

�
〈2〉
l (e) =

⎧⎪⎪⎨
⎪⎪⎩

u(x, 1, l), r = 0, 
(ς, l) = 1, ψ(x, l) = 1
r̂ ′′, r = 0, 
(ς, l) = 0, r̂ ′ = 1
r̂ ′′, r = 1
0, otherwise.

(3)

Equation (3) shows that the decision procedure of the ETIC is
subject to the following five factors: 1) the current expanded
state; 2) the total count of impulsive actions applied before
the present time; 3) the delay function ψ; 4) the triggering
strategy 
; and 5) the control law cluster u. Therefore, more
accurately the ETIC ought to be marked with the symbol
�l,
,ψ,u(e) instead of �l(e). Nonetheless, to conveniently
analyze the properties of ETIC, we still adopt �l or �l(e)
to represent �l,
,ψ,u(e) if no confusion occurs. Moreover, the
operating mechanism of the ETIC is demonstrated intuitively
in Fig. 1.

Based on the preceding analysis, we now define
the event-triggered impulsive policy employed across
all impulsive control cycles as h̃ = (
(ς, 0), ψ(x, 0),
u(x, 0), . . . , 
(ς, l), ψ(x, l),u(x, l), . . .). In addition, we use
Kl , Ml and Cl to represent the collections of all possible
triggering strategies, delay functions, and control law clusters
applied at the lth impulsive control cycle, respectively.
Then, the event-triggered impulsive policy space is
expressed as

� = K0 × M0 × C0 × K1 × M1 × C1

× · · · × Kl × Ml × Cl × · · ·
in which × means the Cartesian product. For the space
Cl, we have Cl = CT1,l × CT2,l × · · · × CTmax,l where
Cρ,l, ρ ∈ G, represents the control law space {Cρ,l

∣∣u(·, ρ, l) ∈
Cρ,l}.
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Fig. 1. Output trajectories of the ETIC and corresponding register (for
illustration purpose only).

B. Development of the GITM

Suppose at the time k, the expanded state of the system
is e(k) = eri ,σm . Under that condition, p�(er j ,σn |eri ,σm ,�l),
� = 1, 2, . . . , denotes the probability that the stochas-
tic system goes to the state er j ,σn at the time index k +
� when the ETIC �l is utilized at the time indexes k
to k + � − 1. According to the operating mechanism of
ETIC, at the lth impulsive control cycle, 
(ς, l), ψ(x, l),
and u(x, l) are employed to determine the controller out-
puts. Thereupon, we define the corresponding GITM as
P
(ς,l),ψ(x,l),u(x,l) which is as in (4), shown at the bottom of
the page. Specifically, the (m, n)th component of the GITM is
p(σn|σm, 
(ς, l), ψ(x, l),u(x, l)) which represents the proba-
bility that the impulsive state ς evolves to ς(θl+1) = σn at the
(l + 1)th decision-making instant starting from ς(θl)= σm at
the lth decision-making instant. The elements of P satisfy

p(σn|σm, 
(ς, l), ψ(x, l),u(x, l))

=
|R|∑
j=0

pϕ(σm ,l)
(
er j ,σn |er0,σm ,�l

)
(5)

where

ϕ(ς, l) =
{
ψ(x, l), 
(ς, l) = 1
r̂ ′, 
(ς, l) = 0.

(6)

Remark 1: From (5) and (6), it is worth mentioning that
GITM is only governed by the triggering strategy 
(ς, l),
control law cluster u(x, l) and delay function ψ(x, l), and
is not affected by the adaptively changing impulsive control
cycles of the ETIC. This advantage of the GITM over the
traditional one is also demonstrated intuitively in Figs. 2 and 3.
In these figures, the area of the rectangle whose label and
corresponding time index are σi and k, respectively, represents
the probability of the system state being σi at k, while the
shaded rectangles connected by the dashed lines represent the

Fig. 2. Changes of the probability distribution of system states over time
(for illustration purpose only).

Fig. 3. Changes of the probability distribution of system states across the
predefined general events (for illustration purpose only).

probability distribution of system states at a certain time point
or upon the general event occurs. Specifically, Fig. 2 shows
that the traditional transition matrices require the action time
of the controller during system transition must be the same
(e.g., 1 or 2 time units) for all current states with the same time
index, in order for it to describe the changes of the probability
distribution over time. Fig. 3 indicates that when a general
event happens, the corresponding system states may not be at
the same time (for example, after the lth impulsive action is
applied, the probability of state σ2 being at time k + 1 is 20%,
while there is a 30% chance that the system occupies σ3 at
time k + 2). Fig. 3 also demonstrates the variable transition
time from one general event to another, which causes the
traditional matrices fail to represent the general-event-based

P
(ς,l),ψ(x,l),u(x,l)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p(σ1|σ1, 
(ς, l), ψ(x, l),u(x, l)) p(σ2|σ1, 
(ς, l), ψ(x, l),u(x, l)) · · · p
(
σ|X̂ |

∣∣∣σ1, 
(ς, l), ψ(x, l),u(x, l)
)

p(σ1|σ2, 
(ς, l), ψ(x, l),u(x, l)) p(σ2|σ2, 
(ς, l), ψ(x, l),u(x, l)) · · · p
(
σ|X̂ |

∣∣∣σ2, 
(ς, l), ψ(x, l),u(x, l)
)

...
...

...
...

p
(
σ1

∣∣∣σ|X̂ |, 
(ς, l), ψ(x, l),u(x, l)
)

p
(
σ2

∣∣∣σ|X̂ |, 
(ς, l), ψ(x, l),u(x, l)
)

· · · p
(
σ|X̂ |

∣∣∣σ|X̂ |, 
(ς, l), ψ(x, l),u(x, l)
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)
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impulsive dynamics. By comparing Figs. 2 and 3, it shows that
the established GITM can describe the probability distribution
evolving characteristics across the “general events” while the
traditional matrices cannot (from now on, the “general event”
of GITM specifically refers to “the arrival of the decision-
making instant”). With the above superiority of the GITM
compared to the traditional transition matrices, ADP is then
empowered such that it can be used in solving the optimal
impulsive control problems of stochastic systems. GITM also
plays a key role in analyzing the convergence, admissibility,
and error boundedness properties of the ETIADP and HEIADP
methods.

Choose the event-triggered impulsive policy as h̃ = (

(ς, 0), ψ(x, 0),u(x, 0), . . . , 
(ς, l), ψ(x, l),u(x, l), . . .) and
let e(θl) = er0,ς . Under the above situation, the expected
infinite horizon cost subjected to h̃ is

J h̃
(
er0,ς , l

) = E

⎧⎨
⎩

∞∑
k=θl

U
(
e(k),�c(k)(e(k))

)⎫⎬⎭. (7)

The content within the bracket of (7) is a random variable
whose expectation is calculated by the operator E{·}. The
utility function U(·, ·) in (7) is expressed as U(e,�l) =
Q(e,� 〈2〉

l ) + π(�
〈1〉
l )�(e,� 〈2〉

l ). Specifically, at each time
index k, the function Q gives the immediate cost regarding
the current expanded state e(k) and the corresponding control
action � 〈2〉

l . � represents the costs of resampling the current
state, recalculating the outputs of the ETIC (or utilizing
the computational resources) and utilizing the communication
resources, when the controller updating event is triggered. The
function π is expressed as

π
(
�

〈1〉
l

)
=
{

1, �
〈1〉
l = 1

0, otherwise.
(8)

Designers should carefully make the choices of the functions
Q and � in order for the impulsive controllers and systems
functioning properly and healthily. That is, the degree of the
penalty (i.e., the utility function U ) should be stepped up
if the impulsive action frequency increases. The reason for
that is that the impulsive controller/actuator can be abused or
severely damaged and their lifespans may be shortened if the
impulsive action frequency is too high, which therefore ought
to be suppressed.

Definition 1: If h̃ = (
(ς, 0), ψ(x, 0),u(x, 0), . . . , 
(ς, l),
ψ(x, l),u(x, l), . . .) makes J h̃(er0,ς , l) < ∞ hold for any ς ∈
X̂ , l ∈ N≥0, then we say the event-triggered impulsive policy
h̃ or the triplet (
(ς, l), ψ(x, l),u(x, l)) is admissible.

Assumption 1: As for the control laws, we have u(0, ρ, l) =
0,∀ρ ∈ G,∀l ∈ N≥0. Q(·, ·) ≥ 0 and �(·, ·) ≥ 0 are both
positive semi-definite functions, where

Q
(

e,� 〈2〉
l

){= 0, x = 0,� 〈2〉
l = 0

> 0, otherwise
(9)

�
(

e,� 〈2〉
l

){= 0, x = 0,� 〈2〉
l = 0

> 0, otherwise.
(10)

The objective of this article is to obtain h̃∗ = (
∗(ς, 0),
ψ∗(x, 0),u∗(x, 0), . . . , 
∗(ς, l), ψ∗(x, l),u∗(x, l), . . .) so that
the performance index function (7) is minimized by the
optimal policy h̃∗. To simplify things, hereafter we con-
centrate attention on searching in the “stationary” policy
space �′, whose elements, i.e., the stationary event-triggered

impulsive policy h = (
(ς, 0), ψ(x, 0),u(x, 0), . . . , 
(ς, l),
ψ(x, l),u(x, l), . . .), satisfy 
(ς) = 
(ς, 0) = · · · =

(ς, l) = · · · , ψ(x) = ψ(x, 0) = · · · = ψ(x, l) = · · · ,
and u(x) = u(x, 0) = · · · = u(x, l) = · · · . Therefore, the
“stationary” triggering strategy, performance index function,
control law cluster, delay function, ETIC and GITM are not
subjected by l, and are denoted by 
(ς),J h(er0,ς ),u(x) =
[u(x,T1), . . . , u(x,Tmax)], ψ(x),�(e) and P
,ψ,u, respec-
tively [as a matter of fact, it can be proved that the optimal
h̃∗ is stationary, i.e., h̃∗ = h∗ = (
∗, ψ∗,u∗, 
∗, ψ∗,u∗, . . .)].

In addition, define the impulsive utility function U
,ψ,u(ς),
impulsive value function V r0(ς), and impulsive performance
index function J h,r0(ς) as U
,ψ,u(·), V r0(·), J h,r0(·) : X̂ → R,
respectively. Particularly, U
,ψ,u(ς) is the accumulated cost of
one impulsive control cycle, during which the impulsive state
at the decision-making instant equals to ς, that is,

U
,ψ,u(ς) = E

{
θl+ϕ(ς)−1∑
κ=θl

U(e(κ),�)

∣∣∣∣e(θl) =
[

r0
ς

]}
.

V r0(ς) denotes the value of the impulsive state ς at the
decision-making instant where the expanded system state is

e =
[

r0
ς

]
=

[
0
ς

]
. Given the policy h, J h,r0(ς) is the corre-

sponding performance index regarding to the current impul-
sive state ς with the current time being an decision-making
instant. The corresponding vectorized forms U
,ψ,u,Vr0 and
Jh,r0 are all |X̂ |-dimensional vectors whose i th elements are
U
,ψ,u(σi ), V r0(σi ) and J h,r0(σi), respectively.

III. EVENT-TRIGGERED IMPULSIVE ADP ALGORITHM

A. Derivation of the ETIADP Algorithm

Define the set of all “impulsive” equilibrium points as �o =
{ς |x = 0, r̂ ′′ = 0, r̂ ′ ∈ G} (it is guaranteed that any admissible
ETIC can drive the impulsive system into the impulsive states
ς ∈ �o, and once the impulsive trajectory enters inside the
space �o, it remains there and never leaves). Let the elements
of the initial value function Vr0

0 satisfy

V r0
0 (ς) =

{
0, ς ∈ �o

> 0, otherwise.
(11)

Then, the initial triggering strategy 
0(ς), delay function
ψ0(x) and control law cluster u0(x) are calculated by
(
0, ψ0,u0) = arg min


∈K,ψ∈M,u∈C

{U
,ψ,u + P
,ψ,uVr0
0

}
∀i = 1, 2, . . . , obtain the iterative value functions Vr0

i via
Vr0

i = U
i−1,ψi−1 ,ui−1 + P
i−1,ψi−1 ,ui−1 Vr0
i−1. (12)

The iterative triggering strategy 
i (ς), delay function ψi (x),
and control law cluster ui (x) are derived through
(
i , ψi ,ui )= arg min


∈K,ψ∈M,u∈C

{U
,ψ,u + P
,ψ,uVr0
i

}
. (13)

Then, ETIADP iterates through (12) and (13) with i → ∞.

B. Convergence and Monotonicity Analysis

Theorem 1: For i = 0, 1, . . . , let Vr0
i , 
i , ψi , and ui be

obtained by (11)–(13). Choose the constants ζ ∈ R>0 and
η, η ∈ R≥0, such that

η ≤ 1 ≤ η < ∞, (14)

P
,ψ,uJh∗,r0 ≤ ζU
,ψ,u (15)
and

ηJh∗,r0 ≤ Vr0
0 ≤ ηJh∗,r0 (16)
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hold for any 
 ∈ K, ψ ∈ M and u ∈ C. Then, the iterative
value function Vr0

i converges to the optimum, that is,
lim

i→∞
Vr0

i = Jh∗,r0 . (17)

Remark 2: It is obvious that there must exist constants ζ ,
η, and η satisfying (14)–(16). In other words, as long as
the initial value function is chosen as (11), the sequence of
iterative value functions obtained by the ETIADP algorithm
converges to the optimal performance index function. In terms
of the monotonicity property, Theorem 1 shows that the
value sequence may be neither monotonically decreasing nor
monotonically increasing. Nevertheless, under several condi-
tions, the value sequence can increase (decrease) monotoni-
cally, which is illustrated by the following theorem.

Theorem 2: If the initial value function of the ETIADP
algorithm satisfies Vr0

1 ≤ Vr0
0 (Vr0

1 ≥ Vr0
0 ), then, for i =

0, 1, . . . , we have 0 ≤ Vr0
i+1 ≤ Vr0

i (Vr0
i+1 ≥ Vr0

i ≥ 0).

C. Neural Network Implementation

The proposed ETIADP approximates the theoretical itera-
tive value functions and policies by adopting neural networks.
In detail, the value function Vr0

i is approximated by the
neural network V̂i(ς) (critic network), while the control law
cluster ui (x) = [ui (x,T1), . . . , ui (x,Tmax)], delay function
ψi (x) and triggering strategy 
i (ς) are approximated by the
neural networks ûi (x) = [ûi(x,T1), . . . , ûi (x,Tmax)], ψ̂i (x)
and 
̂i (ς), respectively (ûi (x), ψ̂i(x) and 
̂i (ς) together form
the “action network group”).

All the neural networks mentioned above consist of three
layers, namely the input, hidden, and output layers. Further-
more, the mathematical descriptions of the action network
group and critic network are

ûi (x, ρ) = W T
i,ρ

{
g
(
W

T
i,ρx + O i,ρ

)}
+ Oi,ρ , ρ ∈ G

ψ̂i (x) = γ
{

W T
i

{
g
(

W
T
i x + Oi

)}
+ Oi

}

̂i (ς) = μ

{
WT

i

{
g
(
WT

i ς + Oi

)}
+ Oi

}
and

V̂i(ς) = WT
i

{
g(W

T
i ς + Oi )

}
+ Oi

respectively. The input layer to hidden layer weight matri-
ces are denoted by W i,ρ (W i ,W i ,Wi ) while the hidden
layer to output layer weight matrices are denoted by Wi,ρ

(Wi ,Wi ,Wi ). The bias vectors attached to the hidden and
output layers are represented by O i,ρ (Oi ,Oi ,Oi ) and Oi,ρ
(Oi ,Oi ,Oi ), respectively. g(·), which is the tan-sigmoid func-
tion, is the transfer function of the hidden layers. The transfer
functions of the output layers of the networks ψ̂i and 
̂i are
γ (·) and μ(·), respectively. Let w = W T

i {g(W
T
i x + Oi)} + Oi

and w = WT
i {g(WT

i ς + Oi )} + Oi . Then, we have

γ (w) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
T1, 0 < w ≤ T1

T2, T1 < w ≤ T2
...

Tmax, Tmax −1 < w ≤ Tmax

(18)

μ(w) =
{

0, −1 < w ≤ 0
1, 0 < w ≤ 1.

(19)

At each iteration of ETIADP, the weight matrices and bias
vectors are properly tuned by employing the gradient decent
and error back propagation techniques such that the neural

Fig. 4. Implementation structure of the ETIADP algorithm.

networks precisely approximate the targets. Overall, the imple-
mentation structure of the ETIADP algorithm is illustrated by
Fig. 4.

IV. HIGH-EFFICIENCY EVENT-TRIGGERED

IMPULSIVE ADP ALGORITHM

A. Derivation of the HEIADP Algorithm

Modern computing devices are usually equipped with mul-
tiple processors and the neural processing unit (NPU, which
accelerates neural network operations such as convolutions and
matrix multiplications). For example, the Apple A14 Bionic
system on a chip (SoC), designed by Apple Inc., features
six central processors and includes the dedicated NPU that
is called “Neural Engine.” Meanwhile, the Kirin 9000 SoC
introduced by Huawei Technologies Company is an octa-core
chipset integrating a tri-core NPU. The simplified architecture
of the above MPSs is illustrated by Fig. 5(a), where, without
loss of generality, the MPS is assumed to have four central
processors c1, c2, c3, and c4. The MPSs, along with computing
techniques such as multithread programming and parallel
processing, enable the ETIADP algorithm to be executed in
a concurrent manner. Specifically, with the MPS shown in
Fig. 5(a) employed, the concurrent ETIADP algorithm at the
i th iteration step divides the original and impulsive global
system state spaces, i.e., X and X̂ , into smaller disjoint non-
empty subsets Xi,1, Xi,2, Xi,3, Xi,4 and X̂ i,1, X̂ i,2, X̂ i,3, X̂ i,4,
respectively, where

X = ∪4
j=1 Xi, j , X̂ = ∪4

j=1 X̂ i, j . (20)
and

X̂ i, j =
{
ς |ς =

[
x
r̂

]
, x ∈ Xi, j , r̂ ∈ R̂

}
⊆ X̂ . (21)

Then, Xi, j and X̂ i, j are sent to the processor c j , which
generates and gathers the required sample data for training
(ûi , ψ̂i , 
̂i , V̂r0

i+1) at Xi, j/X̂ i, j according to (12) and (13). After
the NPU receives all the sampled data which are obtained by
all processors and associated with the global spaces X and X̂ ,
it updates the neural networks V̂r0

i+1, ûi , 
̂i and ψ̂i . Imple-
mented in such a concurrent manner, the ETIADP algorithm
iteratively executes the above steps with i → ∞ and converges
to the optimum. The task scheduling for the MPS under the
concurrent ETIADP algorithm is demonstrated in Fig. 5(b).
However, this algorithm may result in the unsynchronization
of the task progresses across processors. Since the complexity
levels of the assigned tasks are different and the processors
may operate at different speeds, the consumed time for each
processor to complete its sample generation task of the current
iteration step usually differs from each other. Specifically,
as shown in Fig. 5(b), c1 is the first processor among the MPS

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 5. Comparison between the concurrent ETIADP and HEIADP algo-
rithms. (a) Simplified architecture of the MPS. (b) Task scheduling for
processors with the concurrent ETIADP algorithm implemented in the MPS.
(c) Task scheduling for processors with the concurrent HEIADP algorithm
implemented in the MPS (for illustration purpose only).

to finish collecting the required sample set at the i th iteration
step, then, it is in the idle state during [t1, t4] waiting for the
other processors to catch up. Similarly, c2 and c3, as the second
and third processors to complete their assigned tasks of the
current iteration, they also have to be in the idle state until
c4 gets its job done. Only at time t4, when all the sampled
data associated with the global spaces are gathered, can the
NPU kick in and train the neural networks (ûi , ψ̂i , 
̂i , V̂r0

i+1).
Overall, due to the unsynchronization problem, the concurrent
ETIADP algorithm leaves a number of processors of the MPS
unused at some time intervals during execution, and causes the
computational resources of the MPSs not being fully utilized.

To address this deficiency, a concurrent HEIADP algorithm
is proposed, which realizes synchronization by forcing the
current task of the MPS to transition from sample set gen-
eration to neural networks training, when the first processor
to finish the current assigned sample generation task occurs.
Fig. 5(c) shows the task scheduling for the processors with
the concurrent HEIADP algorithm implemented in the MPS.
According to Fig. 5(c), at time t ′

1, the first processor c3
among the MPS completes the assigned sample generation
task at the i th iteration step. At the same time, all current
sample generation tasks running on the other processors are
forced to terminate simultaneously, and all processors proceed
to send the already generated sample data to the NPU. Let

Fig. 6. Effective areas associated with the sample sets (for illustration purpose
only).

Bi, j ⊆ Xi, j and B̂i, j ⊆ X̂ i, j denote the actual “effective areas”
associated with the sample dataset generated by c j at the
i th iteration step. Suppose the sample dataset generated by c j
at i th iteration is Si, j = {(x1, y1), (x2, y2), . . . , (x|Si, j |, y|Si, j |)},
where x1, . . . , x|Si, j | ∈ Xi, j are the input data and y1, . . . , y|Si, j |
are the corresponding expected output data. Then, by choosing
a relatively small positive constant ξ, we define the set {x |‖x−
x1‖ ≤ ξ}∪{x |‖x −x2‖ ≤ ξ}∪· · ·∪{x |‖x −x|Si, j |‖ ≤ ξ} = Bi, j

as the “effective area” associated with Si, j . The concept of
“effective areas” is illustrated by Fig. 6. Then, the NPU trains
the neural networks (ûi , ψ̂i , 
̂i , V̂r0

i+1) at Bi = ∪4
j=1Bi, j or

B̂i = ∪4
j=1B̂i, j , while letting them inherit the values of their

corresponding predecessors at X\Bi or X̂\B̂i . Afterward, the
concurrent HEIADP algorithm repeat similar steps for the next
iteration, and so on. The above synchronization mechanism
ensures that the processors in the MPS are properly loaded
during the whole execution, thus making full use of the
multiprocessor computing power.

Another advantage of the HEIADP algorithm over the
ETIADP approach lies in its low memory usage. As for the
concurrent ETIADP approach, noticing that before the NPU
training the neural networks, the corresponding computing
devices or the MPSs have to store all the sample data
associated with the global state spaces, i.e., X and X̂ , into
the physical memory spaces. Therefore, when dealing with
complexed/large-scale controlled systems, or if the control
action space and system state space are of huge volume, the
required vast amounts of sample data may not be totally fit into
the limited physical memory spaces (i.e., the memory overflow
problems), causing the algorithms unfeasible. In contrast,
HEIADP at each iteration only locally updates the iterative

̂i , ψ̂i , ûi and V̂r0

i+1 with respect to the local state spaces Bi

and B̂i . Consequently, the size of the sample datasets which
the algorithm collects and stores at each iteration is also
reduced significantly, meaning that the memory burden and the
memory requirement for the concurrent execution are relaxed.
In summary, the present approach improves the utilization rate
of the computational resources of the MPS, while reducing
the memory requirement for large-scale problems. Next, the
mathematical abstraction of the concurrent HEIADP algorithm
is given.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LIANG AND LIU: NEURO-OPTIMAL EVENT-TRIGGERED IMPULSIVE CONTROL 9

B. Mathematical Abstraction of the Concurrent HEIADP

Given the set sequences {Bi} and {B̂i}, i = 0, 1, . . . , which
according to (21), should satisfy Bi ⊆ X and

B̂i =
{
ς |ς =

[
x
r̂

]
, x ∈ Bi , r̂ ∈ R̂

}
⊆ X̂ (22)

respectively. Define {αi(ς)}, i = 0, 1, . . . , as the sequence of
weight functions, where αi (·) : X̂ → [0, 1] satisfies{

0 < αi (ς) ≤ 1, ς ∈ B̂i

αi (ς) = 0, ς /∈ B̂i .
(23)

Then, let {Ai}, i = 0, 1, . . . , be a sequence of diagonal matri-
ces, such that Ai = diag(αi(σ1), . . . , αi (σm), . . . , αi (σ|X̂ |)).
The algorithm is initialized by the value function Vr0

0 which
is chosen according to (11), and the initial 
0, ψ0 and u0 are
computed by
(
0, ψ0,u0) = arg min


∈K0,ψ∈M0,u∈C0

{U
,ψ,u + P
,ψ,uVr0
0

}
(24)

where the constrained searching spaces of 
,ψ and u are
expressed as K0 = {
(·)|
(ς) = 
−1(ς),∀ς ∈ X̂\B̂0} ⊆
K,M0 = {ψ(·)|ψ(x) = ψ−1(x),∀x ∈ X\B0} ⊆ M and
C0 = {u(·)|u(x, ρ) = u−1(x, ρ),∀x ∈ X\B0,∀ρ ∈ G} ⊆ C,
respectively. Particularly, 
−1, ψ−1 and u−1(·, ρ) are chosen
arbitrarily in the sets K,M and Cρ, respectively. For any
i = 1, 2, . . . , obtain the iterative value functions Vr0

i via
Vr0

i = (E − Ai−1)V
r0
i−1

+Ai−1
(U
i−1 ,ψi−1,ui−1 + P
i−1 ,ψi−1,ui−1 Vr0

i−1

)
(25)

where E is the
∣∣X̂ ∣∣-dimensional identity matrix. The iterative

triggering strategy 
i(ς), control law cluster ui (x), and delay
function ψi (x) are derived through
(
i , ψi ,ui ) = arg min


∈Ki ,ψ∈Mi ,u∈Ci

{U
,ψ,u + P
,ψ,uVr0
i

}
(26)

where Ki = {
(·)|
(ς) = 
i−1(ς),∀ς ∈ X̂\B̂i} ⊆ K,Mi =
{ψ(·)|ψ(x) = ψi−1(x),∀x ∈ X\Bi } ⊆ M, and Ci =
{u(·)|u(x, ρ) = ui−1(x, ρ),∀x ∈ X\Bi ,∀ρ ∈ G} ⊆ C.

Then, HEIADP iterates through (25) and (26) with i → ∞.

C. Property Analysis

Theorem 3: For i = 0, 1, . . . , let Vr0
i , 
i , ψi , and ui be

obtained by (24)–(26). Define the function φ(δ) : N≥0 → N≥0,
where φ(0) = 0, such that

∪φ(δ+1)−1
i=φ(δ) B̂i = X̂ ∀δ = 0, 1, . . . ,∞. (27)

Given the constants ζ ∈ R>0 and η, η ∈ R≥0 satisfying
(14)–(16), respectively. Then, the iterative value function Vr0

i
converges to the optimum Jh∗,r0 , as i increases to infinity.

Proof: First, we prove that

Vr0
φ(δ) ≤

⎛
⎝1 + (η − 1)

δ−1∏
j=0

(
1 − βδ

1 + ζ

)⎞⎠Jh∗,r0 (28)

holds for δ = 0, 1, . . . , where
∏−1

j=0(·) = 1 and

βδ = min
φ(δ)≤i≤φ(δ+1)−1

{
min
ς∈B̂i

{αi (ς)}
}
. (29)

According to (16), (28) obviously holds for δ = 0. Based on
the left-hand side of (16), we can obtain

Vr0
1 = (E − A0)V

r0
0 + A0 min


∈K0,ψ∈M0,u∈C0

{U
,ψ,u+P
,ψ,uVr0
0

}
= (E − A0)V

r0
0 + A0 min


∈K,ψ∈M,u∈C

{U
,ψ,u + P
,ψ,uVr0
0

}
≤ (E−A0)V

r0
0 +A0 min


∈K,ψ∈M,u∈C

{U
,ψ,u+ηP
,ψ,uJh∗,r0
}
.

(30)

By adding ζ(η − 1/1 + ζ )U
,ψ,u to and subtracting the same
term from (30), it becomes

Vr0
1 ≤ (E − A0)V

r0
0

+A0 min

∈K,ψ∈M,u∈C

{
U
,ψ,u + ηP
,ψ,uJh∗,r0

+ζ η − 1

1 + ζ
U
,ψ,u + ζ

1 − η

1 + ζ
U
,ψ,u

}
.

(31)

Since P
,ψ,uJh∗,r0 ≤ ζ U
,ψ,u, (31) can be developed into

Vr0
1 ≤ (E − A0)V

r0
0

+A0 min

,ψ,u

{
U
,ψ,u + ηP
,ψ,uJh∗,r0

+ζ η − 1

1 + ζ
U
,ψ,u + 1 − η

1 + ζ
P
,ψ,uJh∗,r0

}
= (E − A0)V

r0
0

+A0 min

,ψ,u

{(
1 + ζ

η − 1

1 + ζ

)
U
,ψ,u

+
(
η − η − 1

1 + ζ

)
P
,ψ,uJh∗,r0

}

≤ η(E − A0)Jh∗,r0 +
(

1 + ζ
η − 1

1 + ζ

)
A0Jh∗,r0

=
(

E + (η − 1)

(
E − A0

1 + ζ

))
Jh∗,r0 . (32)

Similar to (30)–(32), for any 1 ≤ i ≤ φ(1), we can obtain

Vr0
i ≤

(
E + (η − 1)

(
E − Ai−1

1 + ζ

))
Jh∗,r0 . (33)

By (27), (29) and (33), we get

Vr0
φ(1) ≤

(
1 + (η − 1)

(
1 − β0

1 + ζ

))
Jh∗,r0 . (34)

Assume (28) holds for δ = l − 1, l = 1, 2, . . . Then, for
i = φ(l − 1) + 1, we have (35), shown at the bottom of the
page. By adding ζ(η−1/(1+ζ ))∏l−2

j=0(1− (β j/1+ζ ))U
,ψ,u

Vr0
φ(l−1)+1

= Aφ(l−1) min

∈Kφ(l−1),ψ∈Mφ(l−1),u∈Cφ(l−1)

{
U
,ψ,u + P
,ψ,uVr0

φ(l−1)

}
+ (

E − Aφ(l−1)
)
Vr0
φ(l−1)

≤ (
E − Aφ(l−1)

)
Vr0
φ(l−1) + Aφ(l−1) min


∈K,ψ∈M,u∈C

⎧⎨
⎩U
,ψ,u +

⎛
⎝1 + (η − 1)

l−2∏
j=0

(
1 − β j

1 + ζ

)⎞⎠P
,ψ,uJh∗,r0

⎫⎬
⎭ (35)
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to and subtracting the same term from (35), it becomes

Vr0
φ(l−1)+1

≤
⎛
⎝1 + (η − 1)

l−2∏
j=0

(
1 − β j

1 + ζ

)⎞⎠(E − Aφ(l−1)
)
Jh∗,r0

+Aφ(l−1) min

,ψ,u

⎧⎨
⎩
⎛
⎝1 + ζ

η − 1

(1 + ζ )

l−2∏
j=0

(
1 − β j

1 + ζ

)⎞⎠U
,ψ,u

+ 1 − η

(1 + ζ )

l−2∏
j=0

(
1 − β j

1 + ζ

)
P
,ψ,uJh∗,r0

+
⎛
⎝1 + (η − 1)

l−2∏
j=0

(
1 − β j

1 + ζ

)⎞⎠P
,ψ,uJh∗,r0

⎫⎬
⎭.

(36)

Combining similar terms of (36), we can obtain

Vr0
φ(l−1)+1

≤
⎛
⎝E + (η − 1)

l−2∏
j=0

(
1 − β j

1 + ζ

)(
E − Aφ(l−1)

1 + ζ

)⎞⎠Jh∗,r0 .

(37)

Similar to (35)–(37), for any φ(l − 1)+ 1 ≤ i ≤ φ(l), we get

Vr0
i ≤

⎛
⎝E + (η − 1)

l−2∏
j=0

(
1 − β j

1 + ζ

)(
E − Ai−1

1 + ζ

)⎞⎠Jh∗,r0

(38)

which indicates

Vr0
φ(l) ≤

⎛
⎝1 + (η − 1)

l−1∏
j=0

(
1 − β j

1 + ζ

)⎞⎠Jh∗,r0 . (39)

Using the same techniques as in (30)–(39), we can prove

Vr0
φ(δ)≥

⎛
⎝1 +

(
η − 1

) δ−1∏
j=0

(
1 − β j

1 + ζ

)⎞⎠Jh∗,r0 , δ = 0, 1, . . .

(40)

Since

ln

⎛
⎝ ∞∏

j=0

(
1 − β j

1 + ζ

)⎞⎠ =
∞∑
j=0

ln

(
1 − β j

1 + ζ

)

≤ −
∞∑
j=0

β j

1 + ζ
→ −∞ (41)

we have

lim
δ→∞

δ−1∏
j=0

(
1 − β j

1 + ζ

)
= exp(−∞) = 0. (42)

Equation (42) indicates that

lim
δ→∞

⎛
⎝1 + (η − 1)

δ−1∏
j=0

(
1 − β j

1 + ζ

)⎞⎠Jh∗,r0

= lim
δ→∞

⎛
⎝1 +

(
η − 1

) δ−1∏
j=0

(
1 − β j

1 + ζ

)⎞⎠Jh∗,r0

= Jh∗,r0 . (43)

From (43) and based on the facts (39) and (40), we immedi-
ately derive that

lim
i→∞ Vr0

i = lim
δ→∞ Vr0

φ(δ) = Jh∗,r0 . (44)

The proof is completed.
Remark 3: The convergence proof of Theorem 1 can be

obtained from that of Theorem 3 if we let Bi = X, B̂i =
X̂ ,∀i = 0, 1, . . . (thereupon, the ETIADP algorithm is in fact
a special case of the HEIADP algorithm, since if the sequence
of effective areas satisfy Bi = X, B̂i = X̂ ,∀i = 0, 1, . . . , the
HEIADP algorithm reduces to the ETIADP algorithm). More-
over, Theorem 3 shows that as long as the iterative impulsive
policies and iterative value functions get updated infinite times
for any ς ∈ X̂ , then, the HEIADP algorithm is guaranteed
to converge to the global optimum. However, in practical
applications, it is impossible for the algorithm to execute for
infinite iteration steps on the computing devices. Instead, the
convergence termination condition ‖Vr0

φ(δ) − Vr0
φ(δ−1)‖ < ε

is used to terminate the algorithm, and the iterative value
function which satisfies the termination condition for the first
time during algorithm execution, is treated as the “optimal”
performance index function. To guarantee the admissibility
of the corresponding obtained controller, an admissibility
criterion identifying the admissible policies is provided via the
following theorems, which also show the HEIADP algorithm
can obtain an admissible policy within finite iteration steps.

Theorem 4: For i = 0, 1, . . . , let Vr0
i , 
i , ψi and ui be

obtained by (24)–(26). If there exists δ ∈ N≥0, such that for
any φ(δ) ≤ i ≤ φ(δ + 1)− 1, the condition

V r0
i+1(ς)− V r0

i (ς) < αi (ς)U
i ,ψi ,ui (ς) ∀ς ∈ B̂i\�o (45)

holds, then, the iterative triggering strategy 
φ(δ+1)−1, delay
function ψφ(δ+1)−1, and control law cluster uφ(δ+1)−1 are
admissible.

Theorem 5: For i = 0, 1, . . . , let Vr0
i , 
i , ψi , and ui

be obtained by (24)–(26). Then, there must exist a finite
δ ∈ N≥0, with which (45) holds for any φ(δ) ≤ i ≤ φ
(δ + 1)− 1.

Proof: Assume the conclusion is false. Then, for any δ ∈
N≥0, there always exist an integer 0 ≤ φ(δ) ≤ φ(δ + 1) −
φ(δ)− 1 and an impulsive state ς ∈ B̂φ(δ)+φ(δ)\�o satisfying

V r0

φ(δ)+φ(δ)+1
(ς)− V r0

φ(δ)+φ(δ)(ς) ≥ αφ(δ)+φ(δ)(ς)Uφ(δ)+φ(δ)(ς)
where Ui is used to represent U
i ,ψi ,ui . With δ → ∞,
we get limδ→∞ ‖Vr0

φ(δ)+φ(δ)+1
− Vr0

φ(δ)+φ(δ)‖ = 0 according to

Theorem 3. The above facts indicate

lim
δ→∞

αφ(δ)+φ(δ)(ς)Uφ(δ)+φ(δ)(ς) = 0, ς /∈ �o. (46)

It contradicts the positive definiteness of U . Hence, the
assumption is false and the conclusion holds.
According to the above convergence and admissibility analy-
sis, the HEIADP algorithm in the form of mathematical
abstraction is summarized in Algorithm 1.

Since the approximation structures such as neural net-
works are used in the ETIADP and HEIADP algorithms,
there exist errors between the approximated and theoretical
values. The following theorem analyzes the error dynamic
characteristics of the proposed methods, and establishes the
approximation error bound of the critic networks, by which
the approximated iterative value functions fall in a small
neighborhood of the optimum as i → ∞. In other words,
the following theorem addresses the connection between the
ideal and neural-network-based realizations of the proposed
methods.
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Theorem 6: Let the operators Li ,Lδ : R|X̂ | → R|X̂ | be
expressed by

Li
(
Vr0

) = (E −Ai−1)Vr0 +Ai−1 min

,ψ,u

{U
,ψ,u + P
,ψ,uVr0
}

(47)

and

Lδ

(
Vr0

) = Lφ(δ+1)−1 · · · Lφ(δ)+1 Lφ(δ)
(
Vr0

)
(48)

respectively, where i = 0, 1, . . . , δ = 0, 1, . . . Given the finite
positive constants ε ≤ 1 and ε ≥ 1, such that

εLδ

(
V̂r0
φ(δ)

)
≤ V̂φ(δ+1) ≤ εLδ

(
V̂r0
φ(δ)

)
(49)

holds for any δ = 0, 1, . . . Then, the approximate iterative
value functions V̂r0

i satisfy

ε

⎛
⎝1 +

δ∑
j=1

ζ̂ jε j−1 ε − 1

(1 + ζ ) j
+ ζ̂ δεδ

η − 1

(1 + ζ )δ

⎞
⎠Jh∗,r0 ≤ V̂r0

φ(δ+1)

≤ ε

⎛
⎝1 +

δ∑
j=1

ζ̂ jε j−1 ε − 1

(1 + ζ ) j
+ ζ̂ δεδ

η − 1

(1 + ζ )i

⎞
⎠Jh∗,r0 (50)

where ζ̂ = maxδ∈N≥0{ζ + 1 − βδ} and
∑<1

j=1(·) = 0.
Proof: First, we prove that

V̂r0
φ(δ+1) ≤ ε

⎛
⎝1 +

δ∑
j=1

ζ̂ jε j−1 ε − 1

(1 + ζ ) j + ζ̂ δεδ
η − 1

(1 + ζ )δ

⎞
⎠Jh∗,r0 .

(51)

Let δ = 0. Based on (34) and (49), we obtain

V̂r0
φ(1) ≤ εL1

(
V̂r0

0

) = εL1
(
Vr0

0

) = εVr0
φ(1) ≤ εηJh∗,r0 . (52)

Define �φ(δ)+m = Lφ(δ)+m−1 · · · Lφ(δ)+1 Lφ(δ)(V̂
r0
φ(δ)),∀m =

1, . . . , φ(δ+ 1)− φ(δ), and assume (51) holds for δ = l − 1,
l = 1, 2, . . . Then, for i = φ(l) + 1, we have (53), shown at
the bottom of the page.

Similar to (36)–(37), by adding ζ(
∑l

j=1 ζ̂
j−1ε j−1(ε−1/(1+

ζ ) j) + ζ̂ l−1εl(η − 1/(1 + ζ )l))U
,ψ,u to and subtracting the
same term from (53), we get

�φ(l)+1 ≤
⎧⎨
⎩E +

l∑
j=1

ζ̂ j−1ε j−1 ε − 1

(1 + ζ ) j−1

(
E − Aφ(l)

1 + ζ

)

+ζ̂ l−1εl η − 1

(1 + ζ )l−1

(
E − Aφ(l)

1 + ζ

)}
Jh∗,r0 .

(54)

In fact, it can further be derived that, for any m = 1, . . . ,
φ(l + 1)− φ(l)

�φ(l)+m ≤
⎧⎨
⎩E +

l∑
j=1

ζ̂ j−1ε j−1 ε − 1

(1 + ζ ) j−1

(
E − Aφ(l)+m−1

1 + ζ

)

Algorithm 1 HEIADP Algorithm
Initialization:

Give the calculation precision ε;
Construct the initial Vr0

0 according to (11);
Use P 〈ς〉 = P 〈σm〉 to denote the mth row vector of P;
Define the function φ(δ) and denote the sequences of
“effective areas” as {B̂κ} ⊆ X̂ and {Bκ} ⊆ X, κ = 0, 1, . . . ,
which satisfy (22) and (27).

Iteration:
1: Let i = 0, δ = 1;
2: Obtain the initial triggering strategy 
0, delay function ψ0,

and control law cluster u0 by (24);
3: Let i = i + 1;
4: Obtain the iterative value function Vr0

i as follows
If ς ∈ B̂i−1, then

V r0
i (ς) = (1 − αi−1(ς))V

r0
i−1(ς)+ αi−1(ς)

(
U
i−1,ψi−1,ui−1 (ς)

+P 〈ς〉

i−1,ψi−1 ,ui−1

Vr0
i−1

)
,

else

V r0
i (ς) = V r0

i−1(ς),

end if ;
5: If i < φ(δ), then, go to Step 8. Else, go to Step 6;
6: If V r0

ι+1(ς)− V r0
ι (ς) < αι(ς)U
ι,ψι,uι (ς) holds for any ς ∈

B̂ι\�o and φ(δ− 1) ≤ ι ≤ i − 1, then, the current iterative
controller is admissible. Go to Step 7. Else, let δ = δ +
1 and go to Step 8;

7: If ‖Vr0
i −Vr0

φ(δ−1)‖ < ε, then, the algorithm converges. Go to
Step 10. Else, let δ = δ + 1 and go to Step 8;

8: Derive the iterative triggering strategy 
i (ς), control law
cluster ui (x) and delay function ψi (x) by

(
i , ψi ,ui ) = arg min

∈Ki ,ψ∈Mi ,u∈Ci

{U
,ψ,u + P
,ψ,uVr0
i

};
9: Go to Step 3;

10: return Vr0
i ,ui−1(x), ψi−1(x) and 
i−1(ς).

+ ζ̂ l−1εl η − 1

(1 + ζ )l−1

(
E − Aφ(l)+m−1

1 + ζ

)⎫⎬
⎭Jh∗,r0 .

(55)
(55) yields

�φ(l+1) ≤
⎧⎨
⎩1 +

l∑
j=1

ζ̂ j−1ε j−1 ε − 1

(1 + ζ ) j−1

(
1 − βl

1 + ζ

)

+ζ̂ l−1εl η − 1

(1 + ζ )l−1

(
1 − βl

1 + ζ

)}
Jh∗,r0

≤
⎛
⎝1 +

l∑
j=1

ζ̂ jε j−1 ε − 1

(1 + ζ ) j + ζ̂ lεl η − 1

(1 + ζ )l

⎞
⎠Jh∗,r0 .

(56)

�φ(l)+1

= (
E − Aφ(l)

)
V̂r0
φ(l) + Aφ(l) min


,ψ,u

{
U
,ψ,u + P
,ψ,uV̂r0

φ(l)

}

≤ (
E − Aφ(l)

)
V̂r0
φ(l) + Aφ(l) min


,ψ,u

⎧⎨
⎩U
,ψ,u +

⎛
⎝ε +

l−1∑
j=1

ζ̂ jε j ε − 1

(1 + ζ ) j
+ ζ̂ l−1εl η − 1

(1 + ζ )l−1

⎞
⎠P
,ψ,uJh∗,r0

⎫⎬
⎭ (53)
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Combining (56) with the fact V̂r0
φ(l+1) ≤ εLl(V̂

r0
φ(l)) =

ε�φ(l+1), we have

V̂r0
φ(l+1) ≤ ε

⎛
⎝1 +

l∑
j=1

ζ̂ jε j−1 ε − 1

(1 + ζ ) j + ζ̂ lεl η − 1

(1 + ζ )l

⎞
⎠Jh∗,r0 .

(57)
Using the same techniques as (52)–(57), we can prove

V̂r0
φ(δ+1) ≥ ε

⎛
⎝1 +

δ∑
j=1

ζ̂ jε j−1 ε − 1

(1 + ζ ) j
+ ζ̂ δεδ

η − 1

(1 + ζ )δ

⎞
⎠Jh∗,r0 .

(58)
Let q = (ζ̂ ε/1 + ζ ). Then, as δ → ∞, (57) and (58) become

lim
δ→∞ ε

(
1 + ζ̂

ε − 1

1 + ζ

1 − qδ

1 − q
+ ζ̂ δεδ

η − 1

(1 + ζ )δ

)
Jh∗,r0

= ε
(
1 + ζ − ζ̂

)
1 + ζ − ζ̂ ε

Jh∗,r0 ≤ V̂r0∞ ≤ ε
(
1 + ζ − ζ̂

)
1 + ζ − ζ̂ ε

Jh∗,r0

(59)
which completes the proof.

V. SIMULATION EXAMPLE

Consider the stochastic process {x(k)} generated by the
dynamics F(x, a, ω) which is expressed as[

x1(k + 1)
x2(k + 1)

]
= �T

[ −x1(k)+ a(k)x2(k)
sin(a(k)) cos2(x1(k))− x2(k)

]

+
[

x1(k)+�Tω1(k)
x2(k)+�T (a(k)+ sin(a(k))+ ω2(k))

]
.

(60)

The symbol x =
[

x1
x2

]
represents the system state, a rep-

resents the control action (a is the output of � 〈2〉, and a is

the output of � 〈1〉), ω =
[
ω1
ω2

]
represents the random variable

and �T = 0.01. Due to the existence of ω, (60) is essentially
a stochastic system (see Chapters 3–5 of [10] for more
explanations). Both the state and control spaces are finite and
countable. All possible impulsive intervals of ETIC are given
by G = {T1,T2,T3,T4,T5}, where T1 = 1,T2 = 2,T3 = 3,
T4 = 4 and T5 = 5. By constructing the corresponding register
r, recorder r̂ and the “expanded” state e, the utility function
is defined by U(e, [a, a]T) = Q(e, a)+ π(a)�(e, a) where

Q(e, a) = xTQx + aTZe,aa (61)

�(e, a) = xTQx + aTZa. (62)

Q = 0.8 ∗ ϒ,Q = Z = 0.2 ∗ ϒ (ϒ is the two dimensional
unit matrix) and Ze,a is

Ze,a =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0.95 ∗ ϒ, r̂ ′ = 5, r = 1
1.11 ∗ ϒ, r̂ ′ = 4, r = 1
1.6 ∗ ϒ, r̂ ′ = 3, r = 1
2.65 ∗ ϒ, r̂ ′ = 2, r = 1
6.51 ∗ ϒ, a �= 0, r = 0
0, otherwise.

(63)

Q(e, a) is the immediate cost regarding the current expanded
state e and the corresponding impulsive action a at each time k.
In particular, Ze,a in Q is constructed in order to suppress the
abuse of high frequency impulsive actions, thus guaranteeing
the healthy operations of the impulsive controllers/actuators

Algorithm 2 MPS Task Scheduling Scheme for the Concur-
rent HEIADP Algorithm
Initialization:

Let i = 0, δ = 0;
Denote the processors in the MPS as c1, c2, . . . , cn ;
Let φ(0) = 0;
Construct the sequences of state subsets as {B̂κ} ⊆ X̂ and
{Bκ} ⊆ X, κ = 0, 1, . . . , where B0 = B̂0 = ∅;
Divide the global original state space X into disjoint
nonempty subsets X0,1, X0,2, . . . , X0,n, such that X =
∪n

j=1 X0, j ;
Divide the global impulsive state space X̂ into subsets
X̂0,1, X̂0,2, . . . , X̂0,n, according to (21);
∀ j = 1, 2, . . . , n, send X0, j and X̂0, j to the central
processor c j .

Iteration:
1: ∀ j = 1, . . . , n, processor c j generates and gathers

the required sample set1 for training (ûi , ψ̂i , 
̂i , V̂r0
i+1) at

Xi, j/X̂ i, j according to (12) and (13);
2: The first processor in the MPS to complete the assigned

sampled data generation task informs the others to
terminate their ongoing sampled data generation tasks
simultaneously;

3: Obtain the corresponding effective areas Bi and B̂i of the
currently acquired sample set from all processors;

4: If Bi ∪ Bi = X and B̂i ∪ B̂i = X̂ , then

Bi+1 = B̂i+1 = ∅
δ = δ + 1

φ(δ) = i + 1

else

Bi+1 = Bi ∪ Bi

B̂i+1 = B̂i ∪ B̂i

end if ;
5: The NPU trains (ûi , ψ̂i , 
̂i , V̂r0

i+1) at Bi or B̂i , while letting
them inherit the values of their corresponding predecessors
at X\Bi or X̂\B̂i ;

6: Let i = i + 1;
7: Construct the subsets Xi,1, Xi,2, . . . , Xi,n, such that

X\Bi ⊆ ∪n
j=1 Xi, j ;

8: Construct the subsets X̂ i,1, X̂ i,2, . . . , X̂ i,n, according
to (21);

9: ∀ j = 1, 2, . . . , n, send Xi, j and X̂ i, j to the central
processor c j , and go to Step 1.

and systems. Notice that the value of the recorder r̂ ′ represents
the time interval from the current impulsive action to the
following one. Hence, with r̂ ′ stepping down, the frequency
of the impulsive actions goes up, and the penalty Ze,a is
accordingly strengthened and increased. Besides, �(e, a) is the
computational and communication cost caused by the ETIC
resampling the system state and updating its output.

By utilizing the MPS task scheduling scheme in Algo-
rithm 2, it is guaranteed that condition (27) is satisfied.
Then, according to Theorem 3, the concurrent HEIADP should
theoretically approach to the impulsive optimum of (60).
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Fig. 7. (a) Initial x1 trajectory. (b) Initial x2 trajectory. (c) Initial ETIC
control trajectory. (d) Initial impulsive value function.

The trajectories of the system states with x(0) = [−1, 1]T

are demonstrated in Fig. 7(a) and (b) which are subject to
the initial iterative ETIC. Fig. 7(c) illustrates the trajectory
of the control input by the initial ETIC, which is obviously
not admissible judging from Fig. 7(a)–(c). Fig. 7(d) shows the
initial impulsive value function Vr0

0 with the recorder r̂ fixed as
r̂ = [1, 0]T. Fig. 8(a) and (b) give the trajectories of the system
states controlled by the optimal ETIC obtained by HEIADP.
In addition, Fig. 8(c) represents the control trace of the optimal
ETIC, while Fig. 8(d) shows the optimal control law cluster
obtained by HEIADP. The trace of the optimal ψ∗ is shown
by Fig. 9(a). Fig. 9(b) shows the triggered and nontriggered
impulsive control cycles as the system is running, where the
values 1 and 0 indicate the triggered and nontriggered cycles,
respectively. Fig. 9(c) displays the mapping rule of the optimal
ψ∗ (each state x is assigned to a color which represents the
output ψ∗(x) ∈ G = {1, 2, 3, 4, 5}) which is responsible
for determining the optimal impulsive control cycle for the
current state. Similarly, Fig. 9(d) shows the mapping rule of

∗, where the recorder r̂ is specified by r̂ = [1, 0.25]T, and
the blue and yellow colors indicate “CUE is not triggered”
and “CUE is triggered,” respectively, for the corresponding
state. The converged impulsive performance index functions of
ETIADP and HEIADP are demonstrated in Fig. 10(a) and (b).
Through Fig. 10(a) and (b), we get the conclusion that with
the MPS task scheduling scheme in Algorithm 2 utilized,
the condition (27) is satisfied and HEIADP approaches the
same impulsive optimum as ETIADP does, thus verifying the
results in Theorem 3 along with Remark 3. In the experiment,
the algorithm is terminated at the iteration step i∗ = φ(δ∗).
Fig. 10(c) shows that V r0

i+1(ς) − V r0
i (ς) − Ui(ς) < 0 holds

when i = φ(δ∗ − 1) and ς ∈ {ς |r̂ = [1, 0]T, ς /∈ �o}. In fact,
the experimental results also show that the above inequality
is true for any φ(δ∗ − 1) ≤ i ≤ φ(δ∗) − 1 and ς /∈ �o. This
fact indicates that the admissibility criteria (45) holds, which
guarantees that the obtained ETIC is admissible.

Now let 
 ≡ 1. Then, the ETIADP or HEIADP turns into
the time-triggered ADP algorithm. Under this condition, the
converged value function and state and control trajectories
are illustrated in Figs. 10(d)–(f). Once the triggering strategy

Fig. 8. Converged items by HEIADP. (a) Optimal x1 trajectory. (b) Optimal
x2 trajectory. (c) Optimal ETIC control trajectory. (d) Optimal control law
cluster.

Fig. 9. Optimal ψ∗ and 
∗ by HEIADP. (a) Output trajectory of ψ∗.
(b) Triggered and nontriggered cycles. (c) Mapping rule of ψ∗. (d) Mapping
rule of 
∗.

is fixed as 
 ≡ 1, then, the controller updates periodically,
consuming more computational and communication resources,
and the policy space becomes �t = M0 ×C0 ×M1×C1×· · ·
in which the time-triggered ADP finds the optimal time-
triggered controller. However, �t has a lower volume than
the event-triggered impulsive policy space associated with the
proposed methods, i.e., �t ⊂ � = K0×M0×C0×K1×M1×
C1×· · · . Therefore, the performance of the optimal ETIC in �
should theoretically be better than the optimal time-triggered
controller in �t , which is validated in Fig. 10(b).

Fig. 11 compares the memory/CPU usage of the concurrent
ETIADP with that of the concurrent HEIADP. From Fig. 11(a),
it is noticed that the CPU utilization rate of the ETIADP
algorithm significantly drops at some time periods, during
which some processors in the MPS finish their sample gen-
eration tasks of the current iteration earlier than the others,
thus transitioning to the idle state and waiting for the others
to catch up. This unsynchronization across processors cause
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Fig. 10. (a) Optimal impulsive value function obtained by ETIADP.
(b) Converged impulsive value functions by HEIADP. (c) Admissibility
criteria. (d) Optimal state trajectory when 
 ≡ 1. (e) Optimal state trajectory
when 
 ≡ 1. (f) Optimal control trajectory when 
 ≡ 1.

Fig. 11. (a) CPU usage as the concurrent ETIADP is running. (b) CPU usage
as the concurrent HEIADP is running. (c) Memory usage as the concurrent
ETIADP is running. (d) Memory usage as the concurrent HEIADP is running.

the algorithm not fully utilizing the computing resources of
the MPS. In contrast, in Fig. 11(b), the CPUs are properly
loaded the whole execution time of the concurrent HEIADP
algorithm, due to the novel MPS task scheduling scheme.
As for the memory consumption, Fig. 11(c) and (d) show
that ETIADP (which represents the traditional ADP-based
methods wherein the iterative items are updated globally) has
a peak memory usage of nearly 100%. In contrast, HEIADP
introduces a novel updating mechanism which reduces the
memory usage to around 20%–25%, thus more suitable to run
on computing devices with limited memory sizes. Therefore,

based on the above experimental results, HEIADP can effec-
tively improves the operating efficiency (in terms of CPU
utilization and memory footprint) compared to the traditional
ADP-based approaches, while approaching the optimum.

VI. CONCLUSION

To obtain the optimal ETIC of the stochastic systems, the
ETIADP is proposed with its convergence and error bounded-
ness properties analyzed. The HEIADP is also developed to
fully utilize the computing resources of MPSs. The effective-
ness of the methods is verified by the numerical study.

REFERENCES

[1] D. Liu and Q. Wei, “Finite-approximation-error-based optimal control
approach for discrete-time nonlinear systems,” IEEE Trans. Cybern.,
vol. 43, no. 2, pp. 779–789, Apr. 2013.

[2] D. Liu and Q. Wei, “Policy iteration adaptive dynamic programming
algorithm for discrete-time nonlinear systems,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 25, no. 3, pp. 621–634, Mar. 2014.

[3] D. Liu, S. Xue, B. Zhao, B. Luo, and Q. Wei, “Adaptive dynamic
programming for control: A survey and recent advances,” IEEE Trans.
Syst., Man, Cybern., Syst., vol. 51, no. 1, pp. 142–160, Jan. 2021.

[4] D. Liu, Y. Xu, Q. Wei, and X. Liu, “Residential energy scheduling for
variable weather solar energy based on adaptive dynamic programming,”
IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 36–46, Jan. 2018.

[5] D. Liu, Q. Wei, D. Wang, X. Yang, and H. Li, Adaptive Dynamic
Programming With Applications in Optimal Control. Cham, Switzerland:
Springer, 2017.

[6] D. Liu, D. Wang, and H. Li, “Decentralized stabilization for a class of
continuous-time nonlinear interconnected systems using online learning
optimal control approach,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 25, no. 2, pp. 418–428, Feb. 2014.

[7] Q. Wei, D. Liu, Y. Liu, and R. Song, “Optimal constrained self-learning
battery sequential management in microgrid via adaptive dynamic pro-
gramming,” IEEE/CAA J. Autom. Sinica, vol. 4, no. 2, pp. 168–176,
Apr. 2017.

[8] D. Liu, X. Yang, D. Wang, and Q. Wei, “Reinforcement-learning-based
robust controller design for continuous-time uncertain nonlinear systems
subject to input constraints,” IEEE Trans. Cybern., vol. 45, no. 7,
pp. 1372–1385, Jul. 2015.

[9] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time
nonlinear HJB solution using approximate dynamic programming:
Convergence proof,” IEEE Trans. Syst., Man, Cybern., B, Cybern.,
vol. 38, no. 4, pp. 943–949, Aug. 2008.

[10] W. B. Powell, Approximate Dynamic Programming: Solving the Curses
of Dimensionality, 2nd ed. Hoboken, NJ, USA: Wiley, 2011.

[11] Q. Wei, D. Liu, and H. Lin, “Value iteration adaptive dynamic pro-
gramming for optimal control of discrete-time nonlinear systems,” IEEE
Trans. Cybern., vol. 46, no. 3, pp. 840–853, Mar. 2016.

[12] Q. Wei, F. L. Lewis, D. Liu, R. Song, and H. Lin, “Discrete-time local
value iteration adaptive dynamic programming: Convergence analysis,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 6, pp. 875–891,
Jun. 2018.

[13] Q. Wei, D. Liu, and Q. Lin, “Discrete-time local value iteration adaptive
dynamic programming: Admissibility and termination analysis,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 28, no. 11, pp. 2490–2502,
Nov. 2017.

[14] B. Pang and Z.-P. Jiang, “Adaptive optimal control of linear periodic
systems: An off-policy value iteration approach,” IEEE Trans. Autom.
Control, vol. 66, no. 2, pp. 888–894, Feb. 2021.

[15] S. Bhattacharya, S. Badyal, T. Wheeler, S. Gil, and D. Bertsekas,
“Reinforcement learning for POMDP: Partitioned rollout and policy
iteration with application to autonomous sequential repair problems,”
IEEE Robot. Autom. Lett., vol. 5, no. 3, pp. 3967–3974, Jul. 2020.

[16] R. Song and L. Zhu, “Stable value iteration for two-player zero-sum
game of discrete-time nonlinear systems based on adaptive dynamic
programming,” Neurocomputing, vol. 340, pp. 180–195, May 2019.

[17] Y. Zhu and D. Zhao, “Online minimax Q network learning for two-
player zero-sum Markov games,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, no. 3, pp. 1228–1241, Mar. 2022.

[18] A. G. Khiabani and A. Heydari, “Optimal torque control of permanent
magnet synchronous motors using adaptive dynamic programming,” IET
Power Electron., vol. 13, no. 12, pp. 2442–2449, Sep. 2020.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



LIANG AND LIU: NEURO-OPTIMAL EVENT-TRIGGERED IMPULSIVE CONTROL 15

[19] T. Sardarmehni and A. Heydari, “Sub-optimal switching in anti-lock
brake systems using approximate dynamic programming,” IET Control
Theory Appl., vol. 13, no. 9, pp. 1413–1424, Jun. 2019.

[20] A. Heydari, “Optimal switching of DC–DC power converters using
approximate dynamic programming,” IEEE Trans. Neural Netw. Learn.
Syst., vol. 29, no. 3, pp. 586–596, Mar. 2018.

[21] W. M. Haddad, V. Chellaboina, and N. A. Kablar, “Non-linear impulsive
dynamical systems. Part I: Stability and dissipativity,” Int. J. Control,
vol. 74, no. 17, pp. 1631–1658, 2001.

[22] X. Li, J. Cao, and D. W. C. Ho, “Impulsive control of nonlinear systems
with time-varying delay and applications,” IEEE Trans. Cybern., vol. 50,
no. 6, pp. 2661–2673, Jun. 2020.

[23] V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of
Impulsive Differential Equations. Singapore: World Scientific, 1989.

[24] F. Dufour, M. Horiguchi, and A. B. Piunovskiy, “Optimal impulsive con-
trol of piecewise deterministic Markov processes,” Stochastics, vol. 88,
no. 7, pp. 1073–1098, Jun. 2016.

[25] A. Miller, B. Miller, and K. Stepanyan, “A numerical approach to
joint continuous and impulsive control of Markov chains,” IFAC-
PapersOnLine, vol. 51, no. 32, pp. 462–467, 2018.

[26] A. Basu and Ł. Stettner, “Zero-sum Markov games with impulse con-
trols,” SIAM J. Control Optim., vol. 58, no. 1, pp. 580–604, Feb. 2020.

[27] F. Dufour and A. B. Piunovskiy, “Impulsive control for continuous-
time Markov decision processes,” Adv. Appl. Probab., vol. 47, no. 1,
pp. 106–127, Jan. 2016.

[28] A. Heydari, “Optimal impulsive control using adaptive dynamic pro-
gramming and its application in spacecraft rendezvous,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 32, no. 10, pp. 4544–4552, Oct. 2021.

[29] Q. Wei, R. Song, Z. Liao, B. Li, and F. L. Lewis, “Discrete-time impul-
sive adaptive dynamic programming,” IEEE Trans. Cybern., vol. 50,
no. 10, pp. 4293–4306, Oct. 2020.

[30] X. Wang and S. N. Balakrishnan, “Optimal neurocontroller synthesis
for impulse-driven systems,” Neural Netw., vol. 23, no. 1, pp. 125–134,
Jan. 2010.

[31] X. Wang, Y. Huang, H. Wang, and S. N. Balakrishnan, “Variable
time impulse system optimization with continuous control and impulse
control,” Asian J. Control, vol. 16, no. 1, pp. 107–116, Jan. 2014.

[32] K. Avrachenkov, O. Habachi, A. Piunovskiy, and Y. Zhang, “Infinite
horizon optimal impulsive control with applications to internet conges-
tion control,” Int. J. Control, vol. 88, no. 4, pp. 703–716, Nov. 2014.

[33] F. Cacace, V. Cusimano, and P. Palumbo, “Optimal impulsive control
with application to antiangiogenic tumor therapy,” IEEE Trans. Control
Syst. Technol., vol. 28, no. 1, pp. 106–117, Jan. 2020.

[34] S. H. Hou and K. H. Wong, “Optimal impulsive control problem with
application to human immunodeficiency virus treatment,” J. Optim.
Theory Appl., vol. 151, no. 2, pp. 385–401, Apr. 2011.

[35] K. G. Vamvoudakis, “Event-triggered optimal adaptive control algorithm
for continuous-time nonlinear systems,” IEEE/CAA J. Autom. Sinica,
vol. 1, no. 3, pp. 282–293, Jul. 2014.

[36] D. Wang, C. Mu, H. He, and D. Liu, “Event-driven adaptive robust
control of nonlinear systems with uncertainties through NDP strategy,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 47, no. 7, pp. 1358–1370,
Jul. 2017.

[37] B. Luo, Y. Yang, D. Liu, and H. Wu, “Event-triggered optimal control
with performance guarantees using adaptive dynamic programming,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 1, pp. 76–88,
Jan. 2020.

[38] C. Mu, K. Wang, and T. Qiu, “Dynamic event-triggering neural learning
control for partially unknown nonlinear systems,” IEEE Trans. Cybern.,
vol. 52, no. 4, pp. 2200–2213, Apr. 2022.

[39] B. Zhao and D. Liu, “Event-triggered decentralized tracking control of
modular reconfigurable robots through adaptive dynamic programming,”
IEEE Trans. Ind. Electron., vol. 67, no. 4, pp. 3054–3064, Apr. 2020.

[40] S. Xue, B. Luo, and D. Liu, “Event-triggered adaptive dynamic pro-
gramming for unmatched uncertain nonlinear continuous-time systems,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp. 2939–2951,
Jul. 2021.

[41] S. Xue, B. Luo, D. Liu, and Y. Gao, “Event-triggered ADP for tracking
control of partially unknown constrained uncertain systems,” IEEE
Trans. Cybern., vol. 52, no. 9, pp. 9001–9012, Sep. 2022.

Mingming Liang (Member, IEEE) received the B.S.
degree in automation from the Dalian University of
Technology, Dalian, China, in 2015, and the Ph.D.
degree in control theory and control engineering
from the University of Chinese Academy of Sci-
ences, Beijing, China, in 2020.

From 2020 to 2022, he was a Post-Doctoral Fel-
low with the School of Automation, Guangdong
University of Technology, Guangzhou, China. He is
currently an engineer with BYD Auto Industry Co.,
Ltd., Shenzhen, China. His current research inter-

ests include adaptive dynamic programming, optimal control, and stochastic
processes.

Derong Liu (Fellow, IEEE) received the B.S. degree
in mechanical engineering from the Nanjing Uni-
versity of Science and Technology, Nanjing, China,
in 1982, the M.S. degree in automatic control the-
ory and applications from the Institute of Automa-
tion, Chinese Academy of Sciences, Beijing, China,
in 1987, and the Ph.D. degree in electrical engineer-
ing from the University of Notre Dame, Notre Dame,
IN, USA, in 1994.

He was a Product Design Engineer with the
China North Industries Corporation, Jilin, China,

from 1982 to 1984. He was an Instructor with the Graduate School of Chinese
Academy of Sciences, Beijing, from 1987 to 1990. He was a Staff Fellow with
the General Motors Research and Development Center, from 1993 to 1995.
He was an Assistant Professor with the Department of Electrical and Computer
Engineering, Stevens Institute of Technology, from 1995 to 1999. He joined
the University of Illinois Chicago, Chicago, IL, USA, in 1999, and became a
Full Professor of electrical and computer engineering and computer science in
2006. He was selected for the 100 Talents Program by the Chinese Academy
of Sciences in 2008, and he served as the Associate Director for The State
Key Laboratory of Management and Control for Complex Systems with the
Institute of Automation, from 2010 to 2016. He is currently a Chair Professor
with the Southern University of Science and Technology, Shenzhen, China.
He has published 13 books and 270 papers in international journals.

Dr. Liu is a fellow of the International Neural Network Society and the
International Association for Pattern Recognition and a member of Academia
Europaea (The Academy of Europe). He was elected three times AdCom
Member of the IEEE Computational Intelligence Society in 2006, 2015, and
2022, respectively. He was the Editor-in-Chief of the IEEE TRANSACTIONS

ON NEURAL NETWORKS AND LEARNING SYSTEMS, from 2010 to 2015.
He was elected twice Distinguished Lecturer of the IEEE Computational
Intelligence Society in 2012 and 2016, respectively. He served as a member
for the Council of International Federation of Automatic Control from 2014 to
2017 and he served as the President for Asia Pacific Neural Network Society
in 2018. He was a General Chair of the 2014 IEEE World Congress on
Computational Intelligence, the 2016 World Congress on Intelligent Control
and Automation, and the 2017 International Conference on Neural Information
Processing. He received the Faculty Early Career Development Award from
the National Science Foundation in 1999, the University Scholar Award
from University of Illinois from 2006 to 2009, the Overseas Outstanding
Young Scholar Award from the National Natural Science Foundation of
China in 2008, and the Outstanding Achievement Award from Asia Pacific
Neural Network Assembly in 2014. He received the International Neural
Network Society’s Gabor Award in 2018; the IEEE Systems, Man and
Cybernetics Society Andrew P. Sage Best Transactions Paper Award in
2018; the IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING

SYSTEMS Outstanding Paper Award in 2018; the IEEE/CCA J. Automatica
Sinica Hsue-Shen Tsien Paper Award in 2018. He is a recipient of the IEEE
CIS Neural Network Pioneer Award in 2022. He has been named as a highly
cited researcher consecutively for six years from 2017 to 2022 by Clarivate.
He was a plenary/keynote speaker at 35 international conferences. He is
currently the Editor-in-Chief of Artificial Intelligence Review, the Deputy
Editor-in-Chief of the IEEE/CAA JOURNAL OF AUTOMATICA SINICA, the
Deputy Editor-in-Chief of the CAAI Artificial Intelligence Research, and the
Chair IEEE Guangzhou Section.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


