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Abstract— Heterogeneous tabular data are the most commonly
used form of data and are essential for numerous critical
and computationally demanding applications. On homogeneous
datasets, deep neural networks have repeatedly shown excellent
performance and have therefore been widely adopted. However,
their adaptation to tabular data for inference or data generation
tasks remains highly challenging. To facilitate further progress in
the field, this work provides an overview of state-of-the-art deep
learning methods for tabular data. We categorize these methods
into three groups: data transformations, specialized architectures,
and regularization models. For each of these groups, our work
offers a comprehensive overview of the main approaches. More-
over, we discuss deep learning approaches for generating tabular
data and also provide an overview over strategies for explaining
deep models on tabular data. Thus, our first contribution is to
address the main research streams and existing methodologies in
the mentioned areas while highlighting relevant challenges and
open research questions. Our second contribution is to provide
an empirical comparison of traditional machine learning methods
with 11 deep learning approaches across five popular real-world
tabular datasets of different sizes and with different learning
objectives. Our results, which we have made publicly available
as competitive benchmarks, indicate that algorithms based on
gradient-boosted tree ensembles still mostly outperform deep
learning models on supervised learning tasks, suggesting that
the research progress on competitive deep learning models for
tabular data is stagnating. To the best of our knowledge, this
is the first in-depth overview of deep learning approaches for
tabular data; as such, this work can serve as a valuable starting
point to guide researchers and practitioners interested in deep
learning with tabular data.

Index Terms— Benchmark, deep neural networks, discrete
data, heterogeneous data, interpretability, probabilistic modeling,
survey, tabular data, tabular data generation.

I. INTRODUCTION

EVER-INCREASING computational resources and the
availability of large, labeled datasets have accelerated

the success of deep neural networks [1], [2]. In particular,
architectures based on convolutions, recurrent mechanisms [3],
[4], or transformers [5] have led to unprecedented performance
in a multitude of domains. Although deep learning methods
perform outstandingly well for classification or data generation
tasks on homogeneous data (e.g., image, audio, and text
data), tabular data still pose a challenge to deep learning
models [6], [7], [8]. Tabular data—in contrast to image or
language data—are heterogeneous, leading to dense numerical
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and sparse categorical features. Furthermore, the correlation
among the features is weaker than the one introduced through
spatial or semantic relationships in image or speech data.
Hence, it is necessary to discover and exploit relations without
relying on spatial information [9]. Therefore, Kadra et al. [10]
called tabular datasets the “last unconquered castle” for deep
neural network models.

Heterogeneous data are the most commonly used form of
data [8], and it is ubiquitous in many crucial applications,
such as medical diagnosis based on patient history [11], [12],
[13], predictive analytics for financial applications (e.g., risk
analysis, estimation of creditworthiness, the recommendation
of investment strategies, and portfolio management) [14],
click-through rate (CTR) prediction [15], user recommen-
dation systems [16], [17], customer churn prediction [18],
cybersecurity [19], fraud detection [20], psychology [21],
anomaly detection [22], [23], [24], and so forth. In all these
applications, a boost in predictive performance and robust-
ness may have considerable benefits for both end users and
companies that provide such solutions. Simultaneously, this
requires handling many data-related pitfalls, such as noise,
impreciseness, different attribute types and value ranges, or the
missing value problem and privacy issues.

Meanwhile, deep neural networks offer multiple advantages
over traditional machine learning methods. First, these meth-
ods are highly flexible [25], allow for efficient and iterative
training, and are particularly valuable for AutoML [26], [27].
Second, tabular data generation is possible using deep neural
networks and can, for instance, help mitigate class imbalance
problems [28]. Third, neural networks can be deployed for
multimodal learning problems where tabular data can be
one of many input modalities [29], [30], for tabular data
distillation [31], [32], for federated learning [33], and in many
more scenarios.

Successful deployments of data-driven applications require
solving several tasks, among which we identified three core
challenges: 1) inference; 2) data generation; and 3) inter-
pretability. The most crucial task is inference, which is con-
cerned with making predictions based on past observations.
While a powerful predictive model is critical for all the
applications mentioned in the previous paragraph, the interplay
between tabular data and deep neural networks goes beyond
simple inference tasks. Before a predictive model can even
be trained, the training data usually need to be preprocessed.
This is where data generation plays a crucial role, as one of the
standard deployment steps involves the imputation of missing
values [34], [35] and the rebalancing of the dataset [36],
[37] (i.e., equalizing sample sizes for different classes). Fur-
thermore, it might be simply impossible to use the actual
data due to privacy concerns, e.g., in financial or medical
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applications [38], [39]. Thus, to tackle the data preprocessing
and privacy challenges, probabilistic tabular data generation
is essential. Finally, with stricter data protection laws such as
California Consumer Privacy Act (CCPA) [40] and the Euro-
pean General Data Protection Regulation (EU GDPR) [41],
which both mandate a right to explanations for automated
decision systems (e.g., in the form or recourse [42]), inter-
pretability is becoming a key aspect for predictive models used
for tabular data [43], [44]. During deployment, interpretability
methods also serve as a valuable tool for model debugging
and auditing [45].

Evidently, apart from the core challenges of inference, gen-
eration, and interpretability, there are several other important
subfields, such as working with data streams, distribution
shifts, as well as privacy and fairness considerations that
should not be neglected. Nevertheless, to navigate the vast
body of literature, we focus on the identified core problems
and thoroughly review the state of the art in this work. We will
briefly discuss the remaining topics at the end of this survey.

Beyond reviewing current literature, we think that an
exhaustive comparison between existing deep learning
approaches for heterogeneous tabular data is necessary to put
reported results into context. The variety of benchmarking
datasets and the different setups often prevent the comparison
of results across papers. In addition, important aspects of
deep learning models, such as training and inference time,
model size, and interpretability, are usually not discussed.
We aim to bridge this gap by providing a comparison of
the surveyed inference approaches with classical—yet very
strong—baselines such as XGBoost [46]. We open-source
our code, allowing researchers to reproduce and extend our
findings.

In summary, the aims of this survey are to provide the
following:

1) a thorough review of existing scientific literature on deep
learning for tabular data;

2) a taxonomic categorization of the available approaches
for classification and regression tasks on heterogeneous
tabular data;

3) a presentation of the state of the art and promising paths
toward tabular data generation;

4) an overview of existing explanation approaches for deep
models for tabular data;

5) an extensive empirical comparison of traditional
machine learning methods and deep learning models on
multiple real-world heterogeneous tabular datasets;

6) a discussion on the main reasons for the limited success
of deep learning on tabular data;

7) a list of open challenges related to deep learning for
tabular data.

Accordingly, this survey is structured as follows. We dis-
cuss related works in Section II. To introduce the reader to
the field, in Section III, we provide definitions of the key
terms, a brief outline of the domain’s history, and propose
a unified taxonomy of current approaches to deep learning
with tabular data. Section IV covers the main methods for
modeling tabular data using deep neural networks. Section V
presents an overview on tabular data generation using deep

neural networks. An overview of explanation mechanisms
for deep models for tabular data is presented in Section VI.
In Section VII, we provide an extensive empirical comparison
of machine and deep learning methods on real-world data,
which also involves model size, runtime, and interpretability.
In Section VIII, we summarize the state of the field and give
future perspectives. Finally, we outline several open research
questions before concluding in Section IX.

II. RELATED WORK

To the best of our knowledge, there is no study dedicated
exclusively to the application of deep neural networks to
tabular data, spanning the areas of supervised and unsuper-
vised learning, data synthesis, and interpretability. Prior works
cover some of these aspects, but none of them systematically
discusses the existing approaches in the broadness of this
survey.

However, there are some works that cover parts of the
domain. There is a comprehensive analysis of common
approaches for categorical data encoding as a preprocessing
step for deep neural networks by Hancock and Khoshgof-
taar [47]. The authors compared existing methods for cate-
gorical data encoding on various tabular datasets and different
deep learning architectures. We discuss the key categorical
data encoding methods in Section IV-A1.

A recent survey by Sahakyan et al. [43] summarizes expla-
nation techniques in the context of tabular data. Hence, we do
not provide a detailed discussion of explainable machine
learning for tabular data in this article. However, for the sake
of completeness, we present some of the most relevant works
in Section VI and highlight open challenges in this area.

Gorishniy et al. [48] empirically evaluated a large number of
state-of-the-art deep learning approaches for tabular data on a
wide range of datasets. He et al. [49] demonstrated that a tuned
deep neural network model with a ResNet-like architecture
shows comparable performance to some state-of-the-art deep
learning approaches for tabular data.

Recently, Shwartz-Ziv and Armon [8] published a study
on several different deep models for tabular data, including
TabNet [6], NODE [7], and Net-DNF [50]. In addition,
they compared deep learning approaches to gradient boosting
decision tree (GBDT) algorithms regarding accuracy, training
effort, inference efficiency, and hyperparameter optimization
time. They observed that deep models had the best results
on their chosen datasets, and however, not one single deep
model could outperform all the others in general. The deep
models were challenged by GBDTs, leading the authors to
conclude that efficient tabular data modeling using deep neural
networks is still an open research problem. In the face of
this evidence, we aim to integrate the necessary background
for future research on the inference problem and on the
intertwined challenges of generation and explainability into
a single work.

III. TABULAR DATA AND DEEP NEURAL NETWORKS

A. Definitions

In this section, we give definitions for central terms used in
this work. We also provide pointers to the original works for
more detailed explanations of the methods.
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Fig. 1. Unified taxonomy of deep neural network models for heterogeneous
tabular data.

The key concept in this survey is a (deep) neural network.
Unless stated otherwise we use this concept as a synonym
for feedforward networks, as described in [2], and name the
concrete model whenever we deviate from this concept. A deep
neural network defines mapping f̂

y = f (x) ≈ f̂ (x; W ) (1)

that learns the value of the model parameters W (i.e., the
“weights” of a neural network) that results in the best approx-
imation of the true underlying and unknown function f . In this
case, x is a multidimensional data sample (i.e., x ∈ R

n) with
corresponding target y (where typically, y ∈ R

k for k classes
and y ∈ R for regression tasks) from a dataset of tuples
{(xi , yi)}i∈I . The network is called feedforward if the input
information flows in one direction to the output without any
feedback connections.

Throughout this survey, we focus on heterogeneous data
that usually contain a variety of attribute types. These include
both continuous and discrete attributes of different types (e.g.,
binary values, ordinal values, and high-cardinality categorical
values). This is fundamentally different from homogeneous
data modalities, such as images, audio, or text data where
only a single feature type is present.

Categorical variables are an attribute type of particular
importance. According to Lane’s definition [51], categorical
variables are qualitative values. They “do not imply a numeri-
cal ordering,” unlike quantitative values, which are “measured
in terms of numbers.” Usually, a categorical variable can

TABLE I

EXAMPLE OF A HETEROGENEOUS TABULAR DATASET. HERE, WE SHOW
FIVE SAMPLES WITH SELECTED VARIABLES FROM THE ADULT

DATASET [54]. SECTION VII-A PROVIDES FURTHER

DETAILS ON THIS DATASET

take one out of a limited set of values. Examples of typical
categorical variables include gender, user_id, product_type and
topic.

Tabular data, sometimes also called structured data [52],
are the subcategory of the heterogeneous data format that
is usually presented in a table [53] with data points as
rows and features as columns. In summary, for the scope
of this work, we refer to a dataset with a fixed number of
features that are either continuous or categorical as tabular.
Each data point can be understood as a row in the table,
or—taking a probabilistic view—as a sample from the
unknown joint distribution. An illustrative example of five
rows of heterogeneous, tabular data is provided in Table I.

B. Brief History of Deep Learning on Tabular Data

Tabular data are one of the oldest forms of data to be
statistically analyzed. Before digital collection of text, images,
and sound was possible, almost all data were tabular [55], [56],
[57]. Therefore, it was the target of early machine learning
research [58]. However, deep neural networks became popular
in the digital age and were further developed with a focus on
homogeneous data. In recent years, various supervised, self-
supervised, and semisupervised deep learning approaches have
been proposed, which explicitly address the issue of tabular
data modeling again. Early works mostly focused on data
transformation techniques for preprocessing [59], [60], which
are still important today [47].

A huge stimulus was the rise of e-commerce, which
demanded novel solutions, especially in advertising [15],
[61]. These tasks required fast and accurate estimation on
heterogeneous datasets with many categorical variables, for
which the traditional machine learning approaches are not
well suited (e.g., categorical features that have high cardinality
can lead to very sparse high-dimensional feature vectors and
nonrobust models). As a result, researchers and data scientists
started looking for more flexible solutions, e.g., those based
on deep neural networks, that can capture complex nonlinear
dependencies in the data.

In particular, the CTR prediction problem has received a
lot of attention [15], [62]. A large variety of approaches were
proposed, most of them relying on specialized neural network
architectures for heterogeneous tabular data.

A more recent line of research, sparked by Shavitt and
Segal [63], evolved based on the idea that regularization may
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improve the performance of deep neural networks on tabular
data [10]. This has led to an intensification of research on
regularization approaches.

Due to the tremendous success of attention-based
approaches such as transformers on textual [64] and visual
data [65], [66], researchers have recently also started applying
attention-based methods and self-supervised learning tech-
niques to tabular data. After the introduction of transformer
architectures to the field of tabular data [6], a lot of research
effort has focused on transformer architectures that can be
successfully applied to very large tabular datasets.

C. Challenges of Learning With Tabular Data

As we have mentioned in Section II, deep neural networks
often perform less favorably compared to more traditional
machine learning methods (e.g., tree-based methods) when
dealing with tabular data. However, it is often unclear why
deep learning cannot achieve the same level of predictive
quality as in other domains such as image classification and
natural language processing. In the following, we identify and
discuss four possible reasons.

1) Low-Quality Training Data: Data quality is a common
issue with real-world tabular datasets. They often include
missing values [34], extreme data (outliers) [67], and
erroneous or inconsistent data [68] and have a small
overall size relative to the high-dimensional feature
vectors generated from the data [69]. Also, due to the
expensive nature of data collection, tabular data are
frequently class-imbalanced. These challenges affect all
machine learning algorithms; however, most of the mod-
ern decision tree-based algorithms can handle missing
values or different/extreme variable ranges internally
by looking for appropriate approximations and split
values [46], [70], [71].

2) Missing or Complex Irregular Spatial Dependencies:
There is often no spatial correlation between the vari-
ables in tabular datasets [72] or the dependencies
between features are rather complex and irregular. When
working with tabular data, the structure and relationships
between its features have to be learned from scratch.
Thus, the inductive biases used in popular models for
homogeneous data, such as convolutional neural net-
works, are unsuitable for modeling this data type [50],
[73], [74].

3) Dependency on Preprocessing: A key advantage of
deep learning on homogeneous data is that it includes
an implicit representation learning step [2], so only a
minimal amount of preprocessing or explicit feature con-
struction is required. However, for tabular data and deep
neural networks, the performance may strongly depend
on the selected preprocessing strategy [75]. Handling
the categorical features remains particularly challenging
[47] and can easily lead to a very sparse feature matrix
(e.g., by using a one-hot encoding scheme) or introduce
a synthetic ordering of previously unordered values (e.g.,
by using an ordinal encoding scheme). Finally, pre-
processing methods for deep neural networks may lead

to information loss, leading to a reduction in predictive
performance [76].

4) Importance of Single Features: While typically changing
the class of an image requires a coordinated change in
many features, i.e., pixels, the smallest possible change
of a categorical (or binary) feature can entirely flip a
prediction on tabular data [63]. In contrast to deep neural
networks, decision-tree algorithms can handle varying
feature importance exceptionally well by selecting a
single feature and appropriate threshold (i.e., splitting)
values and “ignoring” the rest of the data sample. Shavitt
and Segal [63] have argued that individual weight reg-
ularization may mitigate this challenge and motivated
more work in this direction [10].

With these four fundamental challenges in mind, we continue
by organizing and discussing the strategies developed to
address them. We start by developing a suitable taxonomy.

D. Unified Taxonomy

In this section, we introduce a taxonomy of approaches that
allows for a unified view of the field. We divide the works
from the deep learning with tabular data literature into three
main categories: data transformation methods, specialized
architectures, and regularization models. In Fig. 1, we provide
an overview of our taxonomy of deep learning methods for
tabular data.

1) Data Transformation Methods: The methods in the first
group transform categorical and numerical data. This is usually
done to enable deep neural network models to better extract
the information signal. Methods from this group do not require
new architectures or adaptations of the existing data processing
pipeline. Nevertheless, the transformation step comes at the
cost of an increased preprocessing time. This might be an
issue for high-load systems [77], particularly in the presence
of categorical variables with high cardinality and growing
dataset size. We can further subdivide this area into single-
dimensional encodings and multidimensional encodings. The
former encodings are employed to transform each feature
independently while the latter encoding methods map an entire
record to another representation.

2) Specialized Architectures: The biggest share of works
investigates specialized architectures and suggests that a dif-
ferent deep neural network architecture is required for tabular
data. Two types of architectures are of particular importance:
hybrid models fuse classical machine learning approaches
(e.g., decision trees) with neural networks, while transformer-
based models rely on attention mechanisms.

3) Regularization Models: Finally, the group of regular-
ization models claims that one of the main reasons for the
moderate performance of deep learning models on tabular data
is their extreme nonlinearity and model complexity. Therefore,
strong regularization schemes are proposed as a solution. They
are mainly implemented in the form of special-purpose loss
functions.

We believe that our taxonomy may help practitioners find
the methods of choice that can be easily integrated into their
existing tool chain. For instance, applying data transformations
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can result in performance improvements while maintaining
the current model architecture. Conversely, using specialized
architectures, the data preprocessing pipeline can be kept
intact.

IV. DEEP NEURAL NETWORKS FOR TABULAR DATA

In this section, we discuss the use of deep neural networks
on tabular data for classification and regression tasks according
to the taxonomy presented in Section III. We provide an
overview of existing deep learning approaches in this area
of research in Table II and examine the three methodolog-
ical categories in detail: data transformation methods (see
Section IV-A), architecture-based methods (see Section IV-B),
and regularization-based models (see Section IV-C).

A. Data Transformation Methods

Most traditional approaches for deep neural networks on
tabular data fall into this group. Interestingly, data preprocess-
ing plays a relatively minor role in computer vision, even
though the field is currently dominated by deep learning solu-
tions [2]. There are many different possibilities to transform
tabular data, and each may have a different impact on the
learning results [47].

1) Single-Dimensional Encoding: One of the critical obsta-
cles for deep learning with tabular data is categorical variables.
Since neural networks only accept real number vectors as
inputs, these values must be transformed before a model can
use them. Therefore, the first class of methods attempts to
encode categorical variables in a way suitable for deep learning
models.

Approaches in this group [47] are divided into deterministic
techniques, which can be used before training the model, and
more complicated automatic techniques that are part of the
model architecture. There are many ways for deterministic data
encoding; hence, we restrict ourselves to the most common
ones without the claim of completeness.

The simplest data encoding technique might be ordinal or
label encoding. Every category is just mapped to a discrete
numeric value, e.g., {Apple, Banana} are encoded as {0, 1}.
One drawback of this method may be that it introduces an
artificial order to previously unordered categories. Another
straightforward method that does not induce any order is the
one-hot encoding. One additional column for each unique
category is added to the data. Only the column corresponding
to the observed category is assigned the value one, with the
other values being zero. In our example, Apple could be
encoded as (1,0) and Banana as (0,1). In the presence
of a diverse set of categories in the data, this method can lead
to high-dimensional sparse feature vectors and exacerbate the
“curse of dimensionality” problem.

One approach that needs no extra columns and does not
include any artificial order is the so-called leave-one-out
encoding. It is based on the target encoding technique pro-
posed in the work in [94], where every category is replaced
with the mean of the target variable of that category. The leave-
one-out encoding excludes the current row when computing
the mean of the target variable to avoid overfitting. This

approach is also used in the CatBoost framework [71], a state-
of-the-art machine learning library for heterogeneous tabular
data based on the gradient boosting algorithm [95].

A different strategy is hash-based encoding. Every category
is transformed into a fixed-size value via a deterministic hash
function. The output size is not directly dependent on the
number of input categories but can be chosen manually.

2) Multidimensional Encoding: A first automatic encoding
strategy is the value imputation and mask estimation (VIME)
approach [79]. The authors propose a self-supervised and
semisupervised deep learning framework for tabular data that
trains an encoder in a self-supervised fashion by using two
pretext tasks. Those tasks are independent of the concrete
downstream task that the predictor has to solve. The first
task of VIME is called mask vector estimation; its goal is
to determine which values in a sample are corrupted. The
second task, i.e., feature vector estimation, is to recover the
original values of the sample. The encoder itself is a simple
multilayer perceptron. This automatic encoding makes use of
the fact that there is often much more unlabeled than labeled
data. The encoder learns how to construct an informative
homogeneous representation of the raw input data. In the
semisupervised step, a predictive model, which is also a
deep neural network model, is trained using the labeled and
unlabeled data transformed by the encoder. For the encoder,
a novel data augmentation method is used, corrupting an unla-
beled data point multiple times with different masks. On the
predictions from all augmented samples from one original data
point, a consistency loss can be computed, which rewards
similar outputs. To summarize, the VIME network trains an
encoder, which is responsible to transform the categorical and
numerical features into a new homogeneous and informative
representation. This transformed feature vector is used as an
input to the predictive model. For the encoder itself, the
categorical data can be transformed by a simple one-hot encod-
ing and binary encoding. The experimental results highlight
how the self-supervised and semisupervised variants of the
VIME framework can boost the performance over that of other
baselines such as XGBoost. Even in the absence of unlabeled
data, learning encodings in the proposed manner is shown to
be beneficial for downstream performance.

Another stream of research aims at transforming the tabular
input into a more homogeneous format. Since the revival
of deep learning, convolutional neural networks have shown
tremendous success in computer vision tasks. Therefore, Sun
et al. [78] proposed the SuperTML method, which is a data
conversion technique to transform tabular data into an image
data format (2-D matrices), i.e., black-and-white images.
On three datasets, SuperTML shows performance comparable
with or superior to XGBoost.

The image generator for tabular data (IGTD) in [72] follows
an idea similar to SuperTML. The IGTD framework converts
tabular data into images to make use of classical convolutional
architectures. As convolutional neural networks rely on spatial
dependencies, the transformation into images is optimized
by minimizing the difference between the feature distance
ranking of the tabular data and the pixel distance ranking of
the generated image. Every feature corresponds to one pixel,
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TABLE II

OVERVIEW OF DEEP LEARNING APPROACHES FOR TABULAR DATA. WE ORGANIZE THEM IN CATEGORIES ORDERED CHRONOLOGICALLY INSIDE THE
GROUPS. THE “INTERPRETABILITY” COLUMN INDICATES WHETHER THE APPROACH OFFERS SOME FORM INTERPRETABILITY FOR THE MODEL’S

DECISIONS. THE KEY CHARACTERISTICS OF EVERY MODEL ARE SUMMARIZED IN THE LAST COLUMN

which leads to compact images with similar features close at
neighboring pixels. Thus, IGDTs can be used in the absence of
domain knowledge. The authors show relatively solid results
for data with strong feature relationships, but the method
may fail if the features are independent or feature similarities
cannot characterize the relationships. In their experiments,
the authors used only gene expression profiles and molecular
descriptors of drugs as data. This kind of data may lead
to a favorable inductive bias, so the general viability of the
approach remains unclear.

B. Specialized Architectures

Specialized architectures form the largest group of
approaches for deep tabular data learning. In this group,
the focus is on the development and investigation of novel
deep neural network architectures designed specifically for
heterogeneous tabular data. Guided by the types of available
models, we divide this group into two subgroups: hybrid
models (presented in IV-B1) and transformer-based models
(discussed in IV-B2).

1) Hybrid Models: Most approaches for deep neural net-
works on tabular data are hybrid models. They transform
the data and fuse successful classical machine learning
approaches, often decision trees, with neural networks. We dis-
tinguish between fully differentiable models, which can be
differentiated with respect to all their parameters and partly
differentiable models.

a) Fully differentiable models: The fully differentiable
models in this category offer a valuable property: They permit
end-to-end deep learning for training and inference by means
of gradient descent optimizers. Thus, they allow for highly
efficient implementations in modern deep learning frameworks
that exploit GPU or TPU acceleration throughout the code.

Popov et al. [7] proposed an ensemble of differentiable
oblivious decision trees [96]—also known as the NODE
framework for deep learning on tabular data. Oblivious deci-
sion trees use the same splitting function for all nodes on the
same level and can therefore be easily parallelized. NODE is
inspired by the successful CatBoost [71] framework. To make
the whole architecture fully differentiable and benefit from
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end-to-end optimization, NODE utilizes the entmax transfor-
mation [97] and soft splits. In the original experiments, the
NODE framework outperforms XGBoost and other GBDT
models on many datasets. As NODE is based on decision tree
ensembles, there is no preprocessing or transformation of the
categorical data necessary. Decision trees are known to handle
discrete features well. In the official implementation, strings
are converted to integers using the leave-one-out encoding
scheme. The NODE framework is widely used and provides
a sound implementation that can be readily deployed.

Frosst and Hinton [82] contributed another model relying
on soft decision trees (SDTs) to make neural networks more
interpretable. They investigated training a deep neural network
first, before using a mixture of its outputs and the ground-truth
labels to train the SDT model in a second step. The authors
showed that training a neural model first increases accuracy
over SDTs that are directly learned from the data. However,
their distilled trees still exhibit a performance gap to the neural
networks that were fit in the initial step. Nevertheless, the
model itself shows a clear relationship among different classes
in a hierarchical fashion. It groups different categorical values
based on the common patterns, e.g., digits 8 and 9 from
the MNIST dataset [98]. To summarize, the proposed method
allows for high interpretability and efficient inference, at the
cost of slightly reduced accuracy.

Follow-up work [89] extends this line of research to het-
erogeneous tabular data and regression tasks and presents the
SDT regressor (SDTR) framework. The SDTR is a neural
network, which imitates a binary decision tree. Therefore, all
neurons, such as nodes in a tree, get the same input from the
data instead of the output from previous layers. In the case of
deep networks, the SDTR could not beat other state-of-the-art
models, but it has shown promising results in a low-memory
setting, where single tree models and shallow architectures
were compared.

Katzir et al. [50] followed the related idea. Their Net-DNF
builds on the observation that every decision tree is merely
a form of a Boolean formula, more precisely a disjunctive
normal form. They use this inductive bias to design the
architecture of a neural network, which is able to imitate the
characteristics of the GBDT algorithm. The resulting Net-DNF
was tested for classification tasks on datasets with no missing
values, where it showed the results that are comparable to
those of XGBoost [46]. However, the authors did not men-
tion how to handle high-cardinality categorical data, as the
used datasets contained mostly numerical and few binary
features.

Linear models (e.g., linear and logistic regression) provide
global interpretability but are inferior to complex deep neural
networks. Usually, handcrafted feature engineering is required
to improve the accuracy of linear models. Liu et al. [87]
used a deep neural network to combine the features in a
possibly nonlinear way; the resulting combination of fea-
tures then serves as input to the linear model. In their
approach—termed DDN2LR—this enhances the simple, inter-
pretable linear model. In experimental evaluations, DNN2LR
can outperform other more complex DNN models while main-
taining some extent of interpretability.

The work by Cheng et al. [81] proposes a hybrid archi-
tecture that consists of linear and deep neural network
models—Wide&Deep. A linear model that takes single fea-
tures and a wide selection of handcrafted logical expressions
on features as an input is enhanced by a deep neural net-
work to improve the generalization capabilities. In addition,
Wide&Deep learns an n-dimensional embedding vector for
each categorical feature. All embeddings are concatenated
resulting in a dense vector used as input to the neural net-
work. The final prediction can be understood as a sum of
both models. Experiments with a real-world system for app
recommendation confirmed that users installed apps suggested
by Wide&Deep were significantly more often than those
provided by the previous model. A similar work by Guo
and Berkhahn [99] proposes an embedding using deep neural
networks for categorical variables.

Another contribution to the realm of Wide&Deep models is
DeepFM [15]. The authors demonstrate that it is possible to
replace the handcrafted feature transformations with learned
factorization machines (FMs) [100]. The FM is an extension
of a linear model designed to capture lower order interac-
tions between features within high-dimensional and sparse
data efficiently. Higher order interactions are modeled by
a deep neural network. Similar to the original Wide&Deep
model, DeepFM also relies on the same embedding vectors
for its “wide” and “deep” parts. In contrast to the original
Wide&Deep model, however, DeepFM alleviates the need for
manual feature engineering. The experimental results show
a solid improvement in CTR prediction tasks compared to
a variety of models relying on either low- or high-order
dependencies only and compared to other hybrid approaches.

Finally, network-on-network (NON) [86] is a classifica-
tion model for tabular data, which focuses on capturing
the intrafeature information efficiently. It consists of three
components: a fieldwise network consisting of one unique
deep neural network for every column to capture the column-
specific information, an across-field network, which chooses
the optimal operations based on the dataset, and an operation
fusion network, connecting the chosen operations allowing for
nonlinearities. As the optimal operations for the specific data
are selected, the performance is considerably better than that
of other deep learning models. However, decision trees, the
current state-of-the-art models for tabular data, were not listed
among the baselines. Also, training as many neural networks
as columns and selecting the operations on the fly may lead
to a long computation time.

b) Partly differentiable models: This subgroup of hybrid
models aims at combining nondifferentiable approaches with
deep neural networks. Models from this group usually utilize
decision trees for the nondifferentiable part.

The DeepGBM model [62] combines the flexibility of
deep neural networks with the preprocessing capabilities of
GBDTs. DeepGBM consists of two neural networks—CatNN
and GBDT2NN. While CatNN is specialized to handle sparse
categorical features, GBDT2NN is specialized to deal with
dense numerical features.

In the preprocessing step for the CatNN network, the cate-
gorical data are transformed via ordinal encoding (to convert
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the potential strings into integers), and the numerical features
are discretized, as this network is specialized for categorical
data. The GBDT2NN network distills the knowledge about
the underlying dataset from a model based on GBDTs by
accessing the leaf indices of the decision trees. This embed-
ding based on decision tree leaves was first proposed in [101]
for the random forest algorithm. Later, the same knowledge
distillation strategy has been adopted for GBDTs [102].

Using the proposed combination of two deep neural net-
works, DeepGBM has a strong learning capacity for both
categorical and numerical features. Distinctively, the authors
implemented and tested DeepGBM’s online prediction per-
formance, which is significantly higher than that of GBDTs.
On the downside, the leaf indices can be seen as meta
categorical features since these numbers cannot be directly
compared. Also, it is not clear how other data-related issues,
such as missing values, different scaling of numeric features,
and noise influence the predictions produced by the models.

The TabNN architecture, introduced by Ke et al. [84],
is based on two principles: explicitly leveraging expressive
feature combinations and reducing model complexity. It distills
the knowledge from GBDTs to retrieve feature groups; it
clusters them and then constructs the neural network based on
those feature combinations. Also, structural knowledge from
the trees is transferred to provide an effective initialization.
The experimental results show that the performance of a
GBDT model can be further improved by leveraging its feature
sets in combination with neural encoders. Furthermore, TabNN
shows promising results on streaming data. However, the
construction of the network already takes different extensive
computation steps of which one is only a heuristic to avoid
an NP-hard problem. Unfortunately, these computational chal-
lenges and the unavailability of an implementation limit the
practical usability of the network.

In similar spirit to DeepGBM and TabNN, the work by
Ivanov and Prokhorenkova [88] proposed using GBDTs for the
data prepossessing step. They exploited the fact that decision
trees are special cases of directed graphs and process decision
trees using graph neural networks. Thus, the proposed frame-
work exploits the topology information from the decision trees
using graph neural networks [103]. The resulting architecture
is coined boosted graph neural network (BGNN). In multiple
experiments, BGNN demonstrates that the proposed architec-
ture is superior to other state-of-the-art graph neural networks
in terms of predictive performance and training time and also
outperforms GDBT models on most of the datasets.

2) Transformer-Based Models: Transformer-based appro-
aches form another subgroup of model-based deep neural
methods for tabular data. Inspired by the recent surge of
interest in transformer-based methods and their successes on
text and visual data [66], [104], researchers and practition-
ers have proposed multiple approaches using deep attention
mechanisms [5] for heterogeneous tabular data.

TabNet [6] is one of the first transformer-based models
for tabular data. Like a decision tree, the TabNet archi-
tecture comprises multiple subnetworks that are processed
in a sequential hierarchical manner. According to [6], each
subnetwork corresponds to one decision step. To train TabNet,

Fig. 2. Interpretable learning with the TabNet [6] architecture. We compare
the attributions provided by the model for a sample from the UCI Adult dataset
with those provided by the game theoretic KernelSHAP framework [116].
(a) TabNet attributions. (b) KernelSHAP attributions.

each decision step (subnetwork) receives the current data
batch as input. TabNet aggregates the outputs of all decision
steps to obtain the final prediction. At each decision step,
TabNet first applies a sparse feature mask [105] to perform
soft instancewise feature selection. The authors claim that the
feature selection can save valuable resources, as the network
may focus on the most important features. The feature mask
of a decision step is trained using attentive information from
the previous decision step. To this end, a feature transformer
module decides which features should be passed to the next
decision step and which features should be used to obtain
the output at the current decision step. Some layers of the
feature transformers are shared across all decision steps. The
obtained feature masks correspond to local feature weights
and can also be combined into a global importance score.
Accordingly, TabNet is one of the few deep neural networks
that offers different levels of interpretability by design. Indeed,
experiments show that each decision step of TabNet tends to
focus on a particular subdomain of the learning problem (i.e.,
one particular subset of features). This behavior is similar to
convolutional neural networks. TabNet also provides a decoder
module that is able to preprocess input data (e.g., replace
missing values) in an unsupervised way. Accordingly, TabNet
can be used in a two-stage self-supervised learning procedure,
which improves the overall predictive quality. The experi-
ments confirm the improved feature selection process, which
leads to smaller models with less trainable parameters. Also,
TabNet outperforms tree-based models and MLPs consistently
while providing a more accurate interpretation of the feature
importance. One of the popular Python [106] frameworks
for tabular data provides an efficient implementation of Tab-
Net [107]. Recently, TabNet has also been investigated in the
context of fair machine learning [108], [109]. Attention-based
architectures offer mechanisms for interpretability, which is
an essential advantage over many hybrid models. Fig. 2
shows attention maps of the TabNet model and KernelSHAP
explanation framework on the Adult dataset [54].

Another supervised and semisupervised approach is intro-
duced by Huang et al. [90]. Their TabTransformer architecture
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uses self-attention-based transformers to map the categorical
features to contextual embedding. This embedding is more
robust to missing or noisy data and enables interpretability.
The embedded categorical features are then together with the
numerical ones fed into a simple multilayer perceptron. If,
in addition, there is an extra amount of unlabeled data, unsu-
pervised pretraining can improve the results, using masked
language modeling or replacing token detection. Extensive
experiments show that TabTransformer matches the perfor-
mance of tree-based ensemble techniques, showing success
also when dealing with missing or noisy data. The TabTrans-
former network puts a significant focus on the categorical
features. It transforms the embedding of those features into
contextual embedding, which is then used as input for the
multilayer perceptron. This embedding is implemented by
different multihead attention-based transformers, which are
optimized during training.

ARM-net [91] is an adaptive neural network for relation
modeling tailored to tabular data. The key idea of the ARM-net
framework is to model feature interactions with combined
features (feature crosses) selectively and dynamically by first
transforming the input features into exponential space and
then determining the interaction order and interaction weights
adaptively for each feature cross. Furthermore, the authors
propose a novel sparse attention mechanism to generate the
interaction weights given the input data dynamically. Thus,
users can explicitly model feature crosses of arbitrary orders
with noisy features filtered selectively. On five real-world
datasets, ARM-net shows its superior effectiveness in rep-
resenting feature interactions compared to various baselines,
which model the feature interactions in different ways.

Self-attention and intersample attention transformer
(SAINT) [9] is a hybrid attention approach, combining
self-attention [5] with intersample attention over multiple
rows. When handling missing or noisy data, this mechanism
allows the model to borrow the corresponding information
from similar samples, which improves the model’s robustness.
The technique is reminiscent of nearest neighbor imputation.
In addition, all features are embedded into a combined dense
latent vector, enhancing existing correlations between values
from one data point. To exploit the presence of unlabeled data,
a self-supervised contrastive pre-training can further improve
the results, minimizing the distance between two views of the
same sample and maximizing the distance between different
ones. Like the VIME framework (Section IV-A1), SAINT
uses CutMix [110] to augment samples in the input space and
uses mixup [111] in the embedding space. The experimental
results show that SAINT outperforms tree-based models
like XGBoost as well as other deep learning approaches for
tabular data on average. When unlabeled data are available,
the performance can be improved further using the proposed
pretraining.

Finally, even some new learning paradigms are being pro-
posed. For instance, the nonparametric transformer (NPT) [92]
does not construct a mapping from individual inputs to outputs
but uses the entire dataset at once. By using attention between
data points, relations between arbitrary samples can be mod-
eled and leveraged for classifying test samples. Experiments

confirmed that this new approach can reach state-of-the-
art results on most datasets by using intersample attention
mechanisms.

C. Regularization Models

The third group of approaches argues that extreme flexi-
bility of deep learning models for tabular data is one of the
main learning obstacles and strong regularization of learned
parameters may improve the overall performance.

One of the first methods in this category was the regu-
larization learning network (RLN) proposed by Shavitt and
Segal [63], which uses a learned regularization scheme. The
main idea is based on the observation that features in tab-
ular datasets have very different importances. Contrarily to
other data modalities data such as images or text, a single
tabular feature may change the entire prediction. Therefore,
the authors apply trainable regularization coefficients to each
single weight in a neural network, hence allowing high
sensitivity with respect to certain inputs or network parts
while being insensitive to others. To efficiently determine
the corresponding coefficients, the authors propose a novel
loss function termed “counterfactual loss.” The regularization
coefficients lead to a very sparse network, which also provides
the importance of the remaining input features.

In their experiments, RLNs outperform deep neural net-
works and obtain the results comparable to those of the GBDT
algorithm, but the evaluation relies on a dataset with mainly
numerical data to compare the models. The RLN paper does
not address the issues of categorical data. For the experiments
and the example implementation, datasets with exclusively
numerical data (except for the gender attribute) were used.
A similar idea is proposed in [112], where regularization
coefficients are learned only in the first layer with a goal to
extract feature importance.

Kadra et al. [10] stated that simple multilayer percep-
trons can outperform state-of-the-art algorithms on tabular
data if deep learning networks are properly regularized. The
authors propose a “cocktail” of regularization with 13 different
techniques that are applied jointly. From those, the optimal
subset and their subsidiary hyperparameters are selected. They
demonstrate in extensive experiments that the regulariza-
tion “cocktails” can not only improve the performance of
multilayer perceptrons but these simple models also outper-
form tree-based architectures. On the downside, the extensive
per-dataset regularization and hyperparameter optimization
take much more computation time than the GBDT algorithm.

There are several other noteworthy works [113], [114],
[115], indicating that strong regularization of deep neural
networks can be beneficial for tabular data.

V. TABULAR DATA GENERATION

For many applications, the generation of realistic tabular
data is fundamental. Three of the main purposes are data
augmentation [117], data imputation (i.e., the filling of missing
values) [118], [119], and rebalancing [36], [37], [120], [121].
Another highly relevant topic is privacy-aware machine learn-
ing [38], [39], [122] where generated data can potentially be
leveraged to overcome privacy concerns.
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A. Methods
While the generation of images and text is highly

explored [123], [124], [125], generating synthetic tabular data
is a less frequent concern. The mixed structure of discrete and
continuous features along with their different value distribu-
tions still poses a significant challenge.

Classical approaches for the data generation task include
Copulas [126], [127] and Bayesian networks [128]. Among
Bayesian networks, those based on the Chow–Liu approxima-
tion [129] are especially popular [38], [130], [131], [132].

In the deep learning era, generative adversarial networks
(GANs) [133] have proven highly successful for the generation
of images [123], [134]. GANs were recently introduced as
an original way to train a generative deep neural network
model. They consist of two separate models: a generator
G that generates samples from the data distribution and a
discriminator D that estimates the probability that a sample
came from the ground-truth distribution. Both G and D are
usually chosen to be nonlinear functions such as multilayer
perceptrons. To learn a generator distribution pg over data
x, the generator G(z; θg) maps the samples from a noise
distribution pz(z) (e.g., the Gaussian distribution) to the input
data space. The discriminator D(x; θd) outputs the probability
that a data point x comes from the training data’s distribution
pdata rather than from the generator’s output distribution pg.
During joint training of G and D, G will start generating
successively more realistic samples to fool the discriminator
D. For more details on GANs, we refer the interested reader
to the original paper [133].

In Table III, we provide an overview of tabular generation
approaches that use deep learning techniques. Note that due
to the enormous number of approaches, we list the most
influential works that address the problem of data generation
with a particular focus on tabular data. We exclude works that
are targeted toward highly domain-specific tasks.

Although it was found that GANs lag behind at the genera-
tion of discrete outputs such as natural language [125], they are
still frequently chosen to generate tabular data. Vanilla GANs
or derivates, such as the Wasserstein GAN (WGAN) [135],
WGAN with gradient penalty (WGAN-GP) [136], Cramér
GAN [137], or the Boundary seeking GAN [138], which
is designed to model discrete data, are commonly used
in the literature to generate tabular data (cf. Table III).
Moreover, VeeGAN [139] is frequently used as a reference
for tabular data generation [38], [130], [131]. Apart from
GANs, autoencoder-based architectures—in particular those
relying on variational autoencoders (VAEs) [140]—have been
proposed [130], [141].

In the following, we will briefly discuss the most rele-
vant approaches that helped shape the domain. For example,
MedGAN [39] was one of the first works and provides a deep
learning model to generate patient records. As all the features
in their work are discrete, this model cannot be easily trans-
ferred to arbitrary tabular datasets. The table-GAN approach
in [142] adapts the deep convolutional GAN for tabular data.
Specifically, the features from one record are converted into a
matrix so that they can be processed by convolutional filters of
a convolutional neural network. However, it remains unclear

to which extent the inductive bias used for images are suitable
for tabular data.

The approach by Xu et al. [130] focuses on the correlation
between the features of one data point. The authors first pro-
pose the mode-specific normalization technique for data pre-
processing that allows to transform non-Gaussian distributions
in the continuous columns. They express numeric values in
terms of a mixture component number and the deviation from
that component’s center. This allows to represent multimodal
and skewed distributions. Their generative solution, coined
CTGAN, uses the conditional GAN architecture to enforce
learning proper conditional distributions for each column.
To obtain categorical values and to allow for backpropagation
in the presence of categorical values, the gumbel-softmax
trick [143] is utilized. The authors also propose a model based
on VAEs, named tabular VAE (TVAE), which outperforms
their suggested GAN approach. Both approaches can be con-
sidered state of the art.

While GANs and VAEs are prevalent, other recently
proposed architectures include machine-learned causal mod-
els [144] and invertible flows [38]. When privacy is the main
factor of concern, models, such as PATE-GAN [145], provide
generative models with certain differential privacy guarantees.
Although very relevant for practical applications, such privacy
guarantees and related federated learning approaches with
tabular data [146] are outside the scope of this review.

Fan et al. [122] compared a variety of different GAN archi-
tectures for tabular data synthesis and recommended using
a simple, fully connected architecture with a vanilla GAN
loss with minor changes to prevent mode collapse. They also
use the normalization proposed in [130]. In their experiments,
the WGAN loss or the use of convolutional architectures on
tabular data does boost the generative performance.

B. Assessing Generative Quality

To assess the quality of the generated data, several per-
formance measures are used. The most common approach
is to define a proxy classification task and train one model
for it on the real training set and another on the artificially
generated dataset. With a highly capable generator, the predic-
tive performance of the artificial-data model on the real-data
test set should be almost on par with its real-data counter-
part. This measure is often referred to as machine learning
efficacy and used in [39], [131], and [147]. In nonobvious
classification tasks, an arbitrary feature can be used as a
label and predicted [39], [148], [149]. Another approach is
to visually inspect the modeled distributions per feature, e.g.,
the cumulative distribution functions [117], or compare the
expected values in scatter plots [39], [148]. A more quan-
titative approach is the use of statistical tests, such as the
Kolmogorov–Smirnov test [152], to assess the distributional
difference [149]. On synthetic datasets, the output distribution
can be compared to the ground truth, e.g., in terms of log
likelihood [130], [144]. Because overfitted models can also
obtain good scores, Xu et al. [130] proposed evaluating the
likelihood of a test set under an estimate of the GAN’s
output distribution. Especially in a privacy-preserving context,
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TABLE III

GENERATION OF TABULAR DATA USING DEEP NEURAL
NETWORK MODELS (IN CHRONOLOGICAL ORDER)

the distribution of the distance to closest record (DCR) can
be calculated and compared to the respective distances on
the test set [142]. This measure is important to assess the
extent of sample memorization. Overall, we conclude that
a single measure is not sufficient to assess the generative
quality. For instance, a generative model that memorizes the
original samples will score well in the machine learning
efficiency metric but fail the DCR check. Therefore, we highly
recommend using several evaluation measures that focus on
individual aspects of data quality.

VI. EXPLANATION MECHANISMS FOR DEEP

LEARNING WITH TABULAR DATA

Explainable machine learning is concerned with the prob-
lem of providing explanations for complex machine learn-
ing models. With stricter regulations for automated decision-
making [41] and the adoption of machine learning models
in high-stakes domains such as finance and healthcare [45],
[153], [154], interpretability is becoming a key concern.
Toward this goal, various streams of research follow different
explainability paradigms. Among these, feature attribution
methods and counterfactual explanations are two of the popu-
lar forms [155], [156], [157]. Because these techniques are
gaining importance for researchers and practitioners alike,
we dedicate the following to reviewing these methods.

A. Feature Highlighting Explanations

Local input attribution techniques seek to explain the behav-
ior of machine learning models instance by instance. Those

methods aim to highlight the influence of the inputs that have
on the prediction by assigning importance scores to the input
features. Some popular approaches for model explanations aim
at constructing classification models that are explainable by
design [158], [159], [160]. This is often achieved by enforcing
the deep neural network model to be locally linear. Moreover,
if the model’s parameters are known and can be accessed,
then the explanation technique can use these parameters to
generate the model explanation. For such settings, relevance-
propagation-based methods, e.g., [161], [162], and gradient-
based approaches, e.g., [163], [164], [165], have been sug-
gested. In cases where the parameters of the neural network
cannot be accessed, model-agnostic approaches can prove
useful. This group of approaches seeks to explain a model’s
behavior locally by applying surrogate models [116], [166],
[167], [168], [169], which are interpretable by design and are
used to explain individual predictions of black-box machine
learning models. In order to test the performance of these
black-box explanations techniques, Liu et al. [170] suggested
a python-based benchmarking library.

B. Counterfactual Explanations

From the perspective of algorithmic recourse, the main pur-
pose of counterfactual explanations is to suggest constructive
interventions to the input of a deep neural network so that
the output changes to the advantage of an end user. In simple
terms, a minimal change to the feature vector that will flip
the classification outcome is computed and provided as an
explanation. By emphasizing both the feature importance and
the recommendation aspect, counterfactual explanation meth-
ods can be further divided into three different groups: works
that assume that all features can be independently manipulated
[171] and works that focus on manifold constraints to capture
feature dependencies.

In the class of independence-based methods, where the input
features of the predictive model are assumed to be indepen-
dent, some approaches use combinatorial solvers to generate
recourse in the presence of feasibility constraints [172], [173],
[174], [175]. Another line of research deploys gradient-based
optimization to find low-cost counterfactual explanations in the
presence of feasibility and diversity constraints [176], [177].
The main problem with these approaches is that they abstract
from input correlations.

To alleviate this problem and to suggest realistic-looking
counterfactuals, researchers have suggested building recourse
suggestions on generative models [178], [179], [180], [181],
[182]. The main idea is to change the geometry of the
intervention space to a lower dimensional latent space, which
encodes different factors of variation while capturing input
dependencies. To this end, these methods primarily use (tabu-
lar data) VAEs [140], [183]. In particular, Mahajan et al. [181]
demonstrated how to encode various feasibility constraints
into such models. However, an extensive comparison across
this class of methods is still missing since it is difficult to
measure how realistic the generated data are in the context of
algorithmic recourse.

More recently, a few works have suggested to develop
counterfactual explanations that are robust to model shifts
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and noise in the recourse implementations [184], [185], [186].
A comprehensive treatment on how to extend these lines of
work to arbitrary high-cardinality categorical variables is still
an open problem in the field.

For a more fine-grained overview over the literature on
counterfactual explanations, we refer the interested reader
to the most recent surveys [187], [188]. Finally, Pawelczyk
et al. [157] implemented an open-source python library, which
provides support for many of the aforementioned counterfac-
tual explanation models.

VII. EXPERIMENTS

Although several experimental studies have been pub-
lished in recent years [8], [10], an exhaustive comparison
between existing deep learning approaches for heterogeneous
tabular data is still missing in the literature. For example,
important aspects of deep learning models, such as training
and inference time, model size, and interpretability, are not
discussed.

To fill this gap, we present an extensive empirical com-
parison of machine and deep learning methods on real-world
datasets with varying characteristics in this section. We discuss
the dataset choice (VII-A), the results (VII-B), and present
a comparison of the training and inference time for all the
machine learning models considered in this survey (VII-C).
We also discuss the size of deep learning models. Finally,
to the best of our knowledge, we present the first comparison
of explainable deep learning methods for tabular data (VII-
D). We release the full source code of our experiments for
maximum transparency.1

A. Datasets

In computer vision, there are many established datasets
for the evaluation of new deep learning architectures such as
MNIST [98], CIFAR [189], and ImageNet [190]. On the con-
trary, there are no established standard heterogeneous datasets.
Carefully checking the works listed in Section IV, we iden-
tified over 100 different datasets with different characteristics
in their respective experimental evaluation sections. We note
that the small overlap between the mentioned works makes
it hard to compare the results across these works in general.
Therefore, in this work, we deliberately select datasets cov-
ering the entire range of characteristics, such as data domain
(e.g., finance, e-commerce, geography, and physics), different
types of target variables (classification and regression), varying
number of categorical variables and continuous variables, and
differing sample sizes (small to large). Furthermore, most
of the selected datasets were previously featured in multiple
studies.

The first dataset of our study is the Home Equity Line of
Credit (HELOC) dataset provided by FICO [191]. This dataset
consists of anonymized information from real homeowners
who applied for home equity lines of credit. An HELOC is a
line of credit typically offered by a bank as a percentage of

1Open benchmarking on tabular data for machine learning models:
https://github.com/kathrinse/TabSurvey.

TABLE IV

MAIN PROPERTIES OF THE REAL-WORLD HETEROGENEOUS TABULAR
DATASETS USED IN THIS SURVEY. WE ALSO INDICATE THE

DATASET TASK, WHERE “BINARY” STANDS FOR BINARY

CLASSIFICATION AND “MULTI-CLASS” REPRESENTS

MULTICLASS CLASSIFICATION

home equity. The task consists of using the information about
the applicant in their credit report to predict whether they will
repay their HELOC account within a two-year period.

We further use the Adult Income dataset [54], which is
among the most popular tabular datasets used in the surveyed
work (five usages). It includes basic information about indi-
viduals such as age, gender, and education. The target variable
is binary; it represents high and low income.

The largest tabular dataset in our study is HIGGS, which
stems from particle physics. The task is to distinguish between
signals with Higgs bosons (HIGGS) and a background
process [192]. Monte Carlo simulations [193] were used to
produce the data. In the first 21 columns (columns 2-22), the
particle detectors in the accelerator measure kinematic proper-
ties. In the last seven columns, these properties are analyzed.
In total, HIGGS includes 11 million rows. We also binarize the
21st variable into a categorical variable with three groups since
DeepFM, DeepGBM, TabTransformer, and SAINT models
require at least one categorical attribute, to benchmark the
method’s special functionality on large datasets.

The Covertype dataset [54] is multiclassification dataset,
which holds cartographic information about land cells (e.g.,
elevation and slope). The goal is to predict which one out of
seven forest cover types is present in the cell.

Finally, we utilize the California Housing dataset [194],
which contains information about a number of properties. The
prediction task (regression) is to estimate the price of the
corresponding home.

The fundamental characteristics of the selected datasets are
summarized in Table IV.

B. Open Performance Benchmark on Tabular Data

1) Hyperparameter Selection: In order to do a fair eval-
uation, we use the Optuna library [199] with 100 iterations
for each model to tune hyperparameters. Each hyperparameter
configuration was cross-validated with five folds. The hyper-
parameter ranges used are publicly available online along with
our code. We laid out the search space based on the informa-
tion given in the corresponding papers and recommendations
from the framework’s authors.

2) Data Preprocessing: We prepossessed the data in the
same way for every machine learning model by applying zero-
mean, unit-variance normalization to the numerical features
and an ordinal encoding to the categorical ones using the
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TABLE V

OPEN PERFORMANCE BENCHMARK RESULTS BASED ON (STRATIFIED) FIVEFOLD CROSS VALIDATION. WE USE THE SAME FOLD SPLITTING STRATEGY
FOR EVERY DATASET. THE TOP RESULTS FOR EACH DATASET ARE IN BOLD, WE ALSO UNDERLINE THE SECOND-BEST RESULTS. THE

MEAN AND STANDARD DEVIATION VALUES ARE REPORTED FOR EACH BASELINE MODEL. MISSING RESULTS INDICATE THAT THE

CORRESPONDING MODEL COULD NOT BE APPLIED TO THE TASK TYPE (REGRESSION OR MULTICLASS CLASSIFICATION)

alphabetical order. According to Hancock and Khoshgof-
taar [47], the chosen encoding strategy shows comparable
performance to more advanced methods. The missing values
were substituted with zeros for the linear regression and
models based on pure neural networks since these methods
cannot accept them otherwise. We explicitly specify categor-
ical features for LightGBM, DeepFM, DeepGBM, TabNet,
TabTransformer, and SAINT since these approaches provide
special functionality dedicated to categorical values, e.g.,
learning an embedding of the categories. As we noted in
Section III-C, the results of experiments may be affected by
the data preprocessing.

3) Reproducibility and Extensibility: For maximum repro-
ducibility, we run all experiments in a docker container [200].
We underline again that our full code is publicly released so
that the experiments can be replicated. The mentioned datasets
are also publicly available and can be used as a benchmark
for novel methods. We would highly welcome contributed
implementations of additional methods from the data science
community.

4) Results: The results of our experiments are shown in
Table V. They draw a different picture than many recent
research papers may suggest: for all but the very large HIGGS
dataset, the best scores are still obtained by boosted decision
tree ensembles. XGBoost and CatBoost outperform all deep
learning-based approaches on the small and medium datasets,
the regression dataset, and the multiclass dataset. For the
large-scale HIGGS, SAINT outperforms the classical machine

learning approaches. This suggests that for very large tabu-
lar datasets with predominantly continuous features, modern
neural network architectures may have an advantage over
classical approaches after all. In general, however, our results
are consistent with the inferior performance of deep learning
techniques in comparison to approaches based on decision tree
ensembles (such as GBDT) on tabular data that were observed
in various Kaggle competitions [201].

Considering only deep learning approaches, we observe that
SAINT provided competitive results across datasets. However,
for the other models, the performance was highly dependent on
the chosen dataset. DeepFM performed best (among the deep
learning models) on the Adult dataset and second-best on the
California Housing dataset, but returned only weak results on
the HELOC dataset.

C. Run Time Comparison

We also analyze the training and inference time of
the models in comparison to their performance. We plot
the time–performance characteristic for the models in
Figs. 3 and 4 for the Adult and the HIGGS dataset, respec-
tively. While the training time of gradient boosting-based
models is lower than that of most deep neural network-based
methods, their inference time on the HIGGS dataset with
11 million samples is significantly higher: for XGBoost, the
inference time amounts to 5995 s, whereas inference times
for MLP and SAINT are 10.18 and 282 s, respectively. All
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Fig. 3. Train (left) and inference (right) time benchmarks for selected methods on the Adult dataset with 32.561 samples. The circle size reflects the accuracy
standard deviation.

Fig. 4. Train (left) and inference (right) time benchmarks for selected methods on the HIGGS dataset with 11 million samples. The circle size reflects the
accuracy standard deviation.

Fig. 5. Size comparison of deep learning models on the Adult dataset. The
circle size reflects the standard deviation.

gradient boosting and deep learning models were trained on
the same GPU.

D. Interpretability Assessment

As opposed to the pure on-task performance, interpretabil-
ity of the models is becoming an increasingly important
characteristic. Therefore, we end this section with a distinct
assessment of the interpretability properties claimed by some
methods. The model size (number of parameters) can provide
a first intuition of the interpretability of the models. Therefore,
we provide a size comparison of deep learning models in
Fig. 5.

Admittedly, explanations can be provided in very different
forms, which may each have their own use cases. Hence,
we can only compare explanations that have a common
form. In this work, we chose feature attributions as the
explanation format because they are the prevalent form of
post hoc explainability for the models considered in this
work. Remarkably, the models that build on the transformer
architecture (Section IV-B2) often claim some extent of inter-
pretability through the attention maps [9]. To verify this
hypothesis and assess the attribution provided by some of
the frameworks in practice, we run an ablation test with
the features that were attributed the highest importance over
all samples. Furthermore, due to the lack of ground-truth
attribution values, we compare individual attributions to the
well-known KernelSHAP values [116].

Evaluation of the quality of feature attribution is known to
be a nontrivial problem [202]. We measure the fidelity [203]
of the attributions by successively removing the features that
have the highest mean importance assigned (most relevant first
(MoRF) [203]). We then retrain the model on the reduced
feature set. A sharp drop in predictive accuracy indicates
that the discriminative features were successfully identified
and removed. We do the same for the inverse order, least
relevant first (LeRF), which removes the features deemed
unimportant. In this case, the accuracy should stay high
as long as possible. For the attention maps of TabTrans-
former and SAINT, we either use the sum over the entire
columns of the intrafeature attention maps as an importance
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Fig. 6. Resulting curves of the global attribution benchmark for feature
attributions (fifteen runs on Adult). Standard errors are indicated by the shaded
area. For the MoRF order, an early drop in accuracy is desirable, while for
LeRF, the accuracy should stay as high as possible. (a) MoRF. (b) LeRF.

estimate or only take the diagonal (feature self-attentions) as
attributions.

The obtained curves are visualized in Fig. 6. For the
MoRF order, TabNet and TabTransformer with the diagonal
of the attention head as attributions seem to perform best.
For LeRF, TabNet is the only significantly better method than
the others. For TabTransformer, taking the diagonal of the
attention matrix seems to increase the performance, whereas
for SAINT, there is almost no difference. We additionally
compare the attribution values obtained to values from the
KernelSHAP attribution method. Unfortunately, there are no
ground-truth attributions to compare with. However, the SHAP
framework has a solid grounding in game theory and is
widely deployed [43]. We only compare the absolute values
of the attributions, as the attention maps are constrained to
be positive. As a measure of agreement, we compute the
Spearman rank correlation between the attributions by the
SHAP framework and the tabular data models and show the
results in Table VI. The correlation we observe is surprisingly
low across all models, and sometimes, it is even negative,
which means that a higher SHAP attribution will probably
result in a lower attribution by the model.

In these two simple benchmarks, the transformer models
were not able to produce convincing feature attributions out-
of-the-box. We come to the conclusion that more profound
benchmarks of the claimed interpretability characteristics and
their usefulness in practice are necessary.

VIII. DISCUSSION AND FUTURE PROSPECTS

In this section, we summarize our findings and discuss
current and future trends in deep learning approaches for
tabular data (Section VIII-A). Moreover, we identify several
open research questions that could be tackled to advance the
field of tabular deep neural networks (Section VIII-B).

TABLE VI

SPEARMAN RANK CORRELATION OF THE PROVIDED ATTRIBUTION WITH
KERNELSHAP VALUES AS GROUND TRUTH. RESULTS WERE

COMPUTED ON 750 RANDOM SAMPLES

FROM THE ADULT DATASET

A. Summary and Trends

1) Decision Tree Ensembles Are Still State of the Art:
In a fair comparison on multiple datasets, we demonstrated
that models based on tree ensembles, such as XGBoost,
LightGBM, and CatBoost, still outperform the deep learning
models on most datasets that we considered and come with
the additional advantage of significantly less training time.
Even though it has been six years since the XGBoost publi-
cation [46] and over 20 years since the publishing of original
gradient boosting paper [95], we can state that despite much
research effort in deep learning, the state of the art for tabular
data remains largely unchanged. However, we observed that
for very large datasets, approaches based on deep learning
may still be able to achieve competitive performance and even
outperform classical models. In summary, we think that a
fundamental reorientation of the domain may be necessary.
For now, the question of whether the use of current deep
learning techniques is beneficial for tabular data can generally
be answered in the negative. This applies in particular to
small heterogeneous datasets that are common in applications.
Hence, instead of proposing more and more complex models,
we argue that a more profound understanding of the reasons
for this performance gap is needed.

2) Unified Benchmarking: Furthermore, our results high-
light the need for unified benchmarks. There is no consensus
in the machine learning community on how to make a fair
and efficient comparison. Shwartz-Ziv and Armon [8] showed
that the choice of benchmarking datasets can have a non-
negligible impact on the performance assessment. While we
chose common datasets with varying characteristics for our
experiments, a different choice of datasets or hyperparameter
such as the encoding use (e.g., one-hot encoding for cate-
gorical variables) may lead to a different outcome. Because
of the excessive number of datasets (in the 18 works listed
in Table II, over 100 different datasets are used), there is a
necessity for a standardized benchmarking procedure, which
allows to identify significant progress with respect to the state
of the art. With this work, we also propose an open-source
benchmark for deep learning models on tabular data. For
tabular data generation tasks, Xu et al. [130] proposed a sound
evaluation framework with artificial and real-world datasets
(Section V-B), but researchers need to agree on common
benchmarks in this subdomain as well.

3) Tabular Data Preprocessing: Many of the challenges
for deep neural networks on tabular data are related to the
heterogeneity of the data (e.g., categorical and sparse values).
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Therefore, some deep learning solutions transform them into a
homogeneous representation more suitable to neural networks.
While the additional overhead is small, such transforms can
boost performance considerably and should thus be among the
first strategies applied in real-world scenarios.

4) Architectures for Deep Learning on Tabular Data:
Architecturewise, there has been a clear trend toward
transformer-based solutions (Section IV-B2) in recent years.
These approaches offer multiple advantages over standard
neural network architectures, for instance, learning with atten-
tion over both categorical and numerical features. More-
over, self-supervised or unsupervised pretraining that leverages
unlabeled tabular data to train parts of the deep learning
model is gaining popularity, not only among transformer-based
approaches. Performancewise, multiple independent evalua-
tions demonstrate that deep neural network methods from the
hybrid (Section IV-B1) and transformer-based (Section IV-B2)
groups exhibit superior predictive performance compared to
plain deep neural networks on various datasets [9], [48],
[62], [84]. This underlines the importance of special-purpose
architectures for tabular data.

5) Deep Generative Models for Tabular Data: Powerful
tabular data generation is essential for the development of
high-quality models, particularly in a privacy context. With
suitable data generators at hand, developers can use large, syn-
thetic, and yet realistic datasets to develop better models, while
not being subject to privacy concerns [145]. Unfortunately, the
generation task is as hard as inference in predictive models,
so progress in both areas will likely go hand in hand.

6) Interpretable Deep Learning Models for Tabular Data:
Interpretability is undoubtedly desirable, particularly for tab-
ular data models frequently applied to personal data, e.g.,
in healthcare and finance. An increasing number of approaches
offer it out-of-the-box, but most current deep neural network
models are still mainly concerned with the optimization of a
chosen error metric. Therefore, extending existing open-source
libraries (see [157], [170]) aimed at interpreting black-box
models helps advance the field. Moreover, interpretable deep
tabular learning is essential for understanding model decisions
and results, especially for life-critical applications. However,
much of the state-of-the-art recourse literature does not offer
easy support of heterogeneous tabular data and lacks metrics
to evaluate the quality of heterogeneous data recourse. Finally,
model explanations can be used to identify and mitigate
potential unwanted biases and eliminate unfair discrimination
[204], [205].

7) Learning From Evolving Data Streams: Many modern
applications are subject to continuously evolving data streams,
e.g., social media, online retail, or healthcare. Streaming data
are usually heterogeneous and potentially unlimited. There-
fore, observations must be processed in a single pass and can-
not be stored. Indeed, online learning models can only access
a fraction of the data at each time step. Furthermore, they have
to deal with limited resources and shifting data distributions
(i.e., concept drift) [206]. Hence, hyperparameter optimization
and model selection, as typically involved in deep learning, are
usually not feasible in a data stream. For this reason, despite
the success of deep learning in other domains, less complex

methods, such as incremental decision trees [207], [208], are
often preferred in online learning applications.

B. Open Research Questions

Several open problems need to be addressed in future
research. In this section, we will list those we deem funda-
mental to the domain.

1) Information-Theoretic Analysis of Encodings: Encoding
methods are highly popular when dealing with tabular data.
However, the majority of data preprocessing approaches for
deep neural networks are lossy in terms of information content.
Therefore, it is challenging to achieve an efficient, almost
lossless transformation of heterogeneous tabular data into
homogeneous data. Nevertheless, the information-theoretic
view on these transformations remains to be investigated in
detail and could shed light on the underlying mechanisms.

2) Computational Efficiency in Hybrid Models: The work
by Shwartz-Ziv and Armon [8] suggests that the combination
of a GBDT and deep neural networks may improve the pre-
dictive performance of a machine learning system. However,
it also leads to growing complexity. Training or inference
times, which far exceed those of classical machine learning
approaches, are a recurring problem when developing hybrid
models. We conclude that the integration of state-of-the-art
approaches from classical machine learning and deep learn-
ing has not been conclusively resolved yet and future work
should be conducted on how to mitigate the tradeoff between
predictive performance and computational complexity.

3) Individual Regularizations: We applaud recent research
on individual regularization methods, in which we see a
promising direction to tackle the problem of highly sensitive
features. We believe that representing the towering influence
of certain features is crucial to success. Whether context- and
architecture-specific regularizations for tabular data can be
found remains an open question. In addition, it is relevant
to explore the theoretical constraints that govern the success
of regularization on tabular data more profoundly.

4) Novel Processes for Tabular Data Generation: For tab-
ular data generation, modified GANs and VAEs are prevalent.
However, the modeling of dependencies and categorical dis-
tributions remains the key challenge. Novel architectures in
this area, such as diffusion models, have not been adapted to
the domain of tabular data. Furthermore, the definition of an
entirely new generative process particularly focused on tabular
data might be worth investigating.

5) Interpretability: Going forward, counterfactual explana-
tions for deep tabular learning can be used to improve the per-
ceived fairness in human–artificial intelligence (AI) interaction
scenarios and to enable personalized decision-making [188].
However, the heterogeneity of tabular data poses problems for
counterfactual explanation methods to be reliably deployed in
practice. The problem of efficiently handling heterogeneous
tabular data in the presence of feasibility constraints remains
unsolved [157].

6) Transfer of Deep Learning Methods to Data Streams:
Recent work shows that some of the limitations of neural
networks in an evolving data stream can be overcome [25],
[209]. Conversely, changes in the parameters of a neural
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network may be effectively used to weigh the importance
of input features over time [210] or to detect concept drift
[211]. Accordingly, we argue that deep learning for streaming
data—in particular strategies for dealing with evolving and
heterogeneous tabular data—should receive more attention in
the future.

7) Transfer Learning for Tabular Data: Reusing knowledge
gained solving one problem and applying it to a different task
is the research problem addressed by transfer learning. While
transfer learning is successfully used in computer vision and
natural language processing applications [212], there are no
efficient and generally accepted ways to do transfer learning
for tabular data. Hence, a general research question can be how
to share knowledge between multiple (related) tabular datasets
efficiently.

8) Data Augmentation for Tabular Data: Data augmenta-
tion has proven highly effective to prevent overfitting, espe-
cially in computer vision [213]. While some data augmentation
techniques for tabular data exist, e.g., SMOTE-NC [214], sim-
ple models fail to capture the dependency structure of the data.
Therefore, generating additional samples in a continuous latent
space is a promising direction. This was investigated by Darabi
and Elor [37] for minority oversampling. Nevertheless, the
reported improvements are only marginal. Thus, future work
is required to find simple, yet effective random transformations
to enhance tabular training sets.

9) Self-Supervised Learning: Large-scale labeled data are
usually required to train deep neural networks; however, data
labeling is an expensive task. To avoid this expensive step,
self-supervised methods propose to learn general feature repre-
sentations from available unlabeled data. These methods have
also shown astonishing results in computer vision and natural
language processing [215], [216]. Only a few recent works in
this direction [79], [80], [217] deal with heterogeneous data.
Hence, novel self-supervised learning approaches dedicated to
tabular data might be worth investigating.

IX. CONCLUSION

This survey is the first work to systematically explore
deep neural network approaches for heterogeneous tabular
data. In this context, we highlighted the main challenges and
research advances in modeling, generating, and explaining tab-
ular data. We introduced a unified taxonomy that categorizes
deep learning approaches for tabular data into three branches:
data transformation methods, specialized architectures, and
regularization models. We believe that our taxonomy will
help catalog future research and better understand and address
the remaining challenges in applying deep learning to tabular
data. We hope that it will help researchers and practitioners
to find the most appropriate strategies and methods for their
applications.

In addition, we also conducted an unbiased evaluation of
the state-of-the-art deep learning approaches on multiple real-
world datasets. Deep neural network-based methods for het-
erogeneous tabular data are still inferior to machine learning
methods based on decision tree ensembles for small- and
medium-sized datasets (less than ∼1M samples). Only for
a very large dataset mainly consisting of continuous and

numerical variables, the deep learning model SAINT outper-
formed these classical approaches. Furthermore, we assessed
the explanation properties of deep learning models with the
self-attention mechanism. Although the TabNet model shows
promising explanatory capabilities, inconsistencies between
the explanations remain an open issue.

Due to the importance of tabular data to industry and
academia, new ideas in this area are in high demand and can
have a significant impact. With this review, we hope to provide
interested readers with the references and insights they need
to address open challenges and effectively advance the field.
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