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Abstract— Neuromorphic vision is a bio-inspired technology1

that has triggered a paradigm shift in the computer vision2

community and is serving as a key enabler for a wide range of3

applications. This technology has offered significant advantages,4

including reduced power consumption, reduced processing needs,5

and communication speedups. However, neuromorphic cameras6

suffer from significant amounts of measurement noise. This7

noise deteriorates the performance of neuromorphic event-based8

perception and navigation algorithms. In this article, we propose9

a novel noise filtration algorithm to eliminate events that do10

not represent real log-intensity variations in the observed scene.11

We employ a graph neural network (GNN)-driven transformer12

algorithm, called GNN-Transformer, to classify every active event13

pixel in the raw stream into real log-intensity variation or14

noise. Within the GNN, a message-passing framework, referred15

to as EventConv, is carried out to reflect the spatiotemporal16

correlation among the events while preserving their asynchronous17

nature. We also introduce the known-object ground-truth label-18

ing (KoGTL) approach for generating approximate ground-truth19

labels of event streams under various illumination conditions.20

KoGTL is used to generate labeled datasets, from experiments21

recorded in challenging lighting conditions, including moon light.22

These datasets are used to train and extensively test our proposed23

algorithm. When tested on unseen datasets, the proposed algo-24

rithm outperforms state-of-the-art methods by at least 8.8% in25

terms of filtration accuracy. Additional tests are also conducted26

on publicly available datasets (ETH Zürich Color-DAVIS34627

datasets) to demonstrate the generalization capabilities of the28

proposed algorithm in the presence of illumination variations29

and different motion dynamics. Compared to state-of-the-art30

solutions, qualitative results verified the superior capability of31

the proposed algorithm to eliminate noise while preserving32

meaningful events in the scene.33
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sensor (DVS), event camera, event denoising (ED), graph neural 35

network (GNN), spatiotemporal filter, transformer. 36

I. INTRODUCTION 37

OVER the last decade, advances in image sensor tech- 38

nologies have rapidly progressed, providing several alter- 39

native solutions for scene perception and navigation. The 40

neuromorphic event-based camera also known as dynamic 41

vision sensor (DVS) is an asynchronous sensor that mimics 42

the neurobiological architecture of the human retina. It has 43

caused a paradigm shift in vision algorithms due to the way 44

visual data are acquired and processed. Instead of capturing 45

image frames as conventional cameras, event-based cameras 46

report asynchronous temporal differences in the scene and 47

form a continuous stream of events, which is generated when 48

the log intensity of each pixel changes (i.e., events) in the 49

order of microseconds (μs). The event-based camera has the 50

capability to overcome the limitations of conventional cameras 51

by providing data at low latency (20 μs), high temporal 52

resolution (>800 kHz), high dynamic range (HDR, 120 dB), 53

and no motion blur [1]. These sensors are able to operate in a 54

wide range of challenging illumination environments (i.e., low 55

light conditions) while consuming an extremely low amount 56

of power, e.g., 10–30 mW [1]. 57

Recently, event-based cameras have been successfully 58

employed to perform challenging tasks, such as object 59

tracking [2], object recognition [3], monitoring [4], depth 60

estimation [5], optical flow estimation [6], HDR image recon- 61

struction [7], segmentation [8], guidance [9], [10], and simulta- 62

neous localization and mapping (SLAM) [11]. In the literature, 63

the performance of such event-based applications degrades 64

in the presence of noise [1]. The noise associated with the 65

generated event data using DVS could be due to the lighting 66

conditions, motion dynamics in the scene, or sensor para- 67

meters. Extraction of meaningful event data in the presence 68

of noise is considered a major challenge and needs further 69

developments as mentioned in [1]. 70

In poor lighting conditions, events corresponding to features 71

or edges of moving objects are highly scattered and an over- 72

whelming amount of noise is present even if optimal camera 73

parameters are used [9], [11]. Due to the humongous amounts 74

of events generated by DVS, manually identifying and filter- 75

ing noise out is a challenging task, and therefore, research 76

efforts are needed, especially toward noise identification and 77

filtration in the presence of challenging lighting variations. 78

To date, a mathematical model that accurately describes the 79

noise associated with event streams is not yet formulated. 80

To circumvent such a challenge, machine learning approaches 81

can be employed to approximately model and characterize 82

the noise parameters and consequently filter out events that 83
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do not correspond to real intensity variations in the scene.84

However, the lack of labeled datasets to train event-denoising85

(ED) models has hindered the progress of machine learning86

solutions to this problem. In this article, we propose known-87

object ground-truth labeling (KoGTL) approach for generating88

approximate ground-truth labels for event streams. This is89

directed toward developing an ML-based ED technique that90

inherently copes with the nonlinear behavior of the noise91

associated with events.92

Graph neural networks (GNNs) have shown excellent93

progress in a plethora of applications [13], [14]. GNN operates94

on data structures in the non-Euclidean domain, and hence, it is95

considered part of the geometric deep learning framework.96

In particular, GNNs operate on graphs that model a group97

of objects referred to as nodes and their relationships, which98

are referred to as edges [15]. Such data structures are not99

supported by conventional deep neural networks (DNNs),100

convolutional neural networks (CNNs), or recurrent neural101

networks (RNNs). GNN preserves the structure of the input102

graph and exploits the knowledge of the dependencies between103

the nodes to infer knowledge about the data. Hence, we exploit104

this feature of GNN and propose to design a message-passing105

GNN model that can operate on event streams, preserve the106

asynchronous nature of events, and learn to solely outflow the107

noise-free DVS events.108

Recently, the transformers have attained significant attention109

in the machine learning community [16]. Vaswani et al. [17]110

proposed to model the sequence-to-sequence learning task111

using transformer. The self-attention mechanism within the112

transformer captures the relationships between input and113

output data and supports parallel processing of sequence114

recurrent networks. Transformers have recently been employed115

in many applications, including natural language processing116

and computer vision, to name a few [16], [18], [19]. In this117

work, we employ transformers within the proposed GNN for118

the task of identifying and eliminating the noise associated119

with events generated by DVS. To the best of our knowledge,120

no such research study exists in the literature where GNNs121

are employed together with transformers for event-based122

applications.123

We propose a novel ED model that can learn spatiotemporal124

correlations between newly arrived events and the previous125

active events in the same neighborhood. This is achieved by126

means of a GNN-Transformer that operates on event streams127

encoded into graph structures. Our proposed algorithm consists128

of a message-passing GNN model and a transformer network129

to perform binary classification of events into real-activity130

events or noise. The proposed GNN-Transformer-based ED131

algorithm has the following advantages: 1) it can seamlessly132

operate on raw event streams without any data preprocessing133

or camera parameters’ tuning; 2) it can efficiently perform in134

illumination conditions ranging from good light conditions to135

near darkness conditions; and 3) it shows robustness against136

different motion dynamics. The proposed GNN-Transformer137

is an accurate and general learning-based spatiotemporal event138

filter that outperforms existing denoising methods [20], [21],139

[22], [23], [24] in various testing scenarios. Through several140

tests on publicly available datasets [12], the proposed model141

has proven its effectiveness and capability to denoise incoming142

streams of events under challenging conditions in terms of143

illuminations and motion dynamics. Fig. 1 shows sample144

denoising results obtained when our proposed algorithm was145

used on a publicly available dataset recorded in low light146

Fig. 1. Denoising results using IndoorsCorridor publicly available dataset in
low light scenario [12]. Events (yellow dots) are overlaid on the corresponding
APS image for visualization. (a) Raw DVS stream of events and (b) Denoised
events using the proposed learning-based method (GNN-Transformer). Our
GNN-Transformer performs a binary classification to distinguish between
actual DVS events and noise. Note that our proposed algorithm does not
use APS images for denoising. All events that do not correspond to edges but
are visible in the APS image have been filtered out. Our GNN-Transformer
performs significantly better than the state-of-the-art methods in challenging
lighting conditions (i.e., low light).

conditions [12]. Our proposed algorithm operates on event 147

graphs constructed from the incoming raw event streams where 148

nodes represent the event properties (pixel location and time 149

of arrival). The node of interest, i.e., the event that has just 150

been observed, is connected through edges to the rest of the 151

nodes that represent recent activity in the neighborhood. Then, 152

node features are processed to generate seven messages that 153

are sent out along the graph edges in preparation for inference 154

and event classification. Messages are then aggregated to form 155

a graph signature, based on which the node of interest is 156

classified into real-activity event or noise. Since classification 157

is done based on the graph signature rather than the raw node 158

features, the proposed algorithm has achieved generalization 159

across various testing datasets. 160

To train and test the proposed model, we develop an experi- 161

mental protocol to acquire event streams from motion in differ- 162

ent directions and under various lighting conditions. The pro- 163

posed KoGTL approach is used to label events as real-activity 164

events (class 1) or noise (class 0). The training dataset is then 165

constructed using graph samples that encode event features 166

and neighborhood properties, and their corresponding labels 167

generated using KoGTL. It is worth noting that the proposed 168

algorithm accepts input graphs of variable sizes, i.e., varying 169

number of events in a particular spatiotemporal neighborhood. 170

This property of the proposed ED method is very crucial since 171

it allows for coping with the asynchronous nature of event 172

acquisition. Experimental evaluations on various training and 173

testing datasets demonstrate the excellent performance of the 174

proposed algorithm compared to the existing state-of-the-art 175

methods. The main contributions of this work are given as 176

follows. 177

1) We introduce a novel KoGTL approach to generate a 178

labeled dataset of noise and real-activity events. This 179

dataset includes varied lighting conditions and relative 180

motions in the visual scene. 181

2) We design a novel message-passing framework, dubbed 182

EventConv, on graphs constructed from DVS events. 183

Messages encapsulate the spatiotemporal properties of 184

events in a neighborhood while accounting for the 185

asynchronous nature of data acquisition. 186

3) We develop a novel ED GNN-Transformer architecture 187

based on the novel EventConv layer to distinguish 188

between real-activity and noise events. 189
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4) We perform extensive evaluations of the proposed algo-190

rithm on our labeled dataset and other publicly available191

event datasets. Experiments are conducted to validate the192

proposed model’s generalization capabilities on unseen193

data involving different motion dynamics and challeng-194

ing lighting conditions.195

5) We release a new dataset (ED-KoGTL) with labeled196

neuromorphic camera events acquired from motions197

in different directions and under various illumination198

conditions. Our labeled dataset is publicly available199

to the research community <https://github.com/Yusra-200

alkendi/ED-KoGTL> for benchmark comparison.201

The rest of this article is organized as follows. In Section II,202

we review related work. In Section III, we describe the203

proposed algorithm and dataset in detail. The experimental204

results are presented in Section IV. Finally, the conclusions205

are drawn in Section V.206

II. BACKGROUND AND RELATED WORKS207

A. Event Denoising208

The importance of the ED module to event-based com-209

puter vision algorithms has been demonstrated through sev-210

eral research works, such as for object recognition [25],211

object tracking [26], image reconstruction [26], and segmen-212

tation [27]. DVS produces noise due to various reasons. Noise213

could be generated due to thermal noise and junction leakage214

currents under constant lighting conditions. This type of noise215

is referred to as background activity (BA) noise. False negative216

events also generate noise and occur when there is no change217

in the log intensity. Furthermore, when a sudden change in218

illumination happens, a huge amount of random noise occurs219

in the event stream.220

The BA events differ from real-activity events. BA lacks221

temporal correlation with the newly arrived events in the spa-222

tial neighborhood while real-activity events show meaningful223

correlation. Several event noise reduction methods have been224

proposed in the literature. These methods can be categorized225

into conventional methods [21], [22], [23], [28], [29], [30]226

and deep learning methods [20], [26], [31]. The most widely227

prevalent filtering approach is based on the nearest neighbor228

(NNb) method and hence on spatiotemporal correlation [22],229

[23], [28]. In such filters, the properties of the previously230

generated events in a spatiotemporal neighborhood are utilized231

to determine a newly arrived event represents real activity.232

The parameters of the spatiotemporal window have to be233

tuned by the user. Fig. 2 shows the representation of event234

spatiotemporal neighborhood, where the newly arrived event235

data at ti is marked as a red pixel and its spatial neighborhood236

is shown in blue. Therefore, such approaches require additional237

memory resources to retain the previous and the newly arrived238

events’ properties for processing.239

The BA filter proposed by Delbruck [28] classifies events240

that have less than eight other events in their spatiotemporal241

neighborhood as noise. One drawback of such an approach is242

observed when two BAs are close enough in one spatiotem-243

poral region where the filter would consider them as real-244

activity events. Furthermore, Liu et al. [23] proposed a filter245

to tackle the problem of increased memory requirements by246

subsampling pixels into groups, where instead of projecting247

every pixel into a memory cell, one memory cell would hold248

a subsampled group of pixels. The filtration accuracy relies249

heavily on the subsampling factor, where the filtration accu-250

racy decreases when the subsampling factor is greater than 2.251

Fig. 2. Example of event spatiotemporal neighborhood.

Fig. 3. Examples of memory strategy of different spatiotemporal filters [22]:
(a) one memory cell per pixel [28], (b) one memory cell per two subsampling
group [23], and (c) two memory cells for each column and row [22].

Khodamoradi and Kastner [22] proposed another storage 252

technique for events and their timestamps to utilize less 253

memory space. In particular, the most recent event in every 254

row and column is stored along with its corresponding polarity 255

and timestamp into two 32-bit memory cells. Hence, if two 256

events are acquired in the same column, but two different 257

rows, within a short temporal window, the recent event will 258

override the old one in the memory. This is a serious limitation 259

of this approach as establishing spatial correlation is deemed 260

impossible, and thereby, more real-activity events could be 261

sorted out as noise. Fig. 3 shows the techniques used to 262

store events in the memory prior to filteration as proposed 263

in [22], [23], and [28]. 264

To overcome memory and computational complexity issues, 265

Feng et al. [21] proposed a density matrix in which each 266

arriving event is projected into its spatiotemporal region. 267

The denoising process in this method consists of two steps: 268

1) removing random noises and 2) removing hot pixels (per- 269

manent active or permanent broken event pixels). Moving 270

to the learning-based denoising approaches, in the litera- 271

ture, Baldwin et al. [20], [31] and Duan et al. [26] proposed 272

a CNN and U-net network to filter DVS noises, respectively. 273

It is also evident that the performance of the existing denois- 274

ing methods relies on tunable parameters, e.g., spatiotemporal 275

window size, event camera settings, environmental illumi- 276

nation conditions, and camera motion dynamics [20], [21], 277

[22], [26], [31]. Such parameters are application-dependent 278

and manually tuning them may lead to satisfactory denois- 279

ing results, especially in good lighting conditions. Despite 280

setting the camera parameters to their optimal values though, 281

features or edges of moving objects in very low illumination 282

conditions are highly scattered and very noisy. In order to 283

extract meaningful information from varying light conditions, 284

the need for a method that can reject these noises and sharpen 285

the real event data is essential. Nevertheless, spatiotemporal 286

correlation-based and deep learning methods of ED remain 287

largely unexplored. 288
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B. GNNs and Transformers289

GNNs are deep learning models that operate on290

non-Euclidean data structures such as graphs. GNNs consider291

the properties of each graph node and its connectivity within292

its neighborhood, regardless of the order in which data are293

provided to the neural network. It is also worth mentioning294

that the size of the input graph could be variable for the295

same network which makes GNN very well-suited for the296

application in hand. Due to its expressive power and model297

flexibility, GNN has recently been employed in a wide range of298

applications, e.g., visual understanding on images [32], [33].299

Interested readers can explore more details in this direction in300

these recent surveys [34], [35].301

There are different types of graph representations exhibiting302

various levels of complexity (i.e., number of connections and303

dimension) to address the problem in question. For instance,304

the work proposed in [36] and [37] designed graphs to305

represent point clouds and ground vehicle poses, respectively.306

The features of the nodes and edges in each graph encode the307

information necessary to perform the problem in hand, such308

as the point 3-D coordinates and the 2-D pose of the robot.309

In [36], a stack of EdgeConv layers is proposed to capture and310

exploit fine-grained geometric properties of point clouds that311

are then employed to carry out classification and segmentation312

for point cloud data. Another graph convolutional layer is pro-313

posed in [37], called PoseConv, to carry out global optimality314

verification of 2-D pose graph SLAM.315

There are several types of GNNs, designed to fit different316

graph structures for different tasks. Our proposed algorithm317

adopts a message-passing algorithm on graphs, which is car-318

ried out in two stages: message passing and aggregation [34].319

To construct a graph with a unique signature that reflects the320

nature of input data, in this work, spatiotemporal correlation321

functions are used. This is to reflect the nonlinear nature of322

the noise associated with DVS event streams. In addition, the323

graph isomorphism problem might occur when two different324

graphs might have an identical representation when reduced325

by the aggregation function. Inspired by [38], we employ a326

nonlinear activation within the aggregation stage to handle the327

graph isomorphism issue. This is to generate a unique graph328

signature to represent the spatiotemporal correlation between329

the nodes of the constructed graphs.330

Recently, transformers have demonstrated the state-of-the-331

art performance on a multitude of applications, including332

natural language processing [18] and vision systems [16],333

[39], [40]. The self-attention head captures the relationship334

between inputs and outputs and supports parallel processing of335

sequential recurrent networks. In this article, we demonstrate336

the scalability of transformers on neuromorphic vision sensors337

and their capability to handle the asynchronous nature of338

events. This is designed within the graph layer that employs a339

message-passing algorithm to process the dynamic and variant340

nature of event streams. The output of the graph is then341

processed by the transformer, prior to the final classification342

stage that removes noise from the event stream.343

III. PROPOSED FRAMEWORK344

In this article, a novel GNN-Transformer is proposed and345

trained to predict whether an incoming DVS event represents346

noise or a real log-intensity variation in the scene. Real log-347

intensity variation is a representation of a meaningful feature348

within the scene, e.g., the edge of an object. The overall349

framework of the proposed ED algorithm is shown in Fig. 4. 350

In the following, we explain each component in detail. 351

A. Known-Object Ground-Truth Labeling 352

The availability of labeled datasets is key to the success 353

of supervised learning algorithms. To that end, we propose 354

a novel offline methodology, referred to as KoGTL, which 355

classifies the DVS event stream into two main classes: real or 356

noise event. We use KoGTL to generate labeled datasets and 357

train a neural network to predict whether an event represents 358

noise or real activity in the scene. 359

1) Experimental Setup: The main idea behind the KoGTL 360

is to use a multitrial experimental approach to record 361

event streams and then perform labeling. More specifically, 362

a dynamic active pixel vision sensor (DAVIS346C) is mounted 363

on a Universal Robot UR10 6-DOF arm [41], in a front for- 364

ward position and repeatedly moved along a certain (identical) 365

trajectory under various illumination conditions. The UR10 366

manipulator ensures a repeatability margin of 100 μs along 367

a trajectory when performed repeatedly. The DAVIS346C 368

provides a spatial resolution of 346 × 260, a minimum latency 369

of 12 μs, a bandwidth of 12 MEvent/s, and a dynamic range 370

of 120 dB [42]. The events are recorded along with two 371

other measurements: 1) the camera pose at which the data 372

were recorded, which we obtain through kinematics of the 373

robot arm, and 2) the intensity measurements from the scene 374

obtained using the augmented active pixel sensor, which is 375

referred to as APS images hereafter. 376

Four experimental scenarios are adopted where data are 377

acquired from the repeated transnational motion of the robot 378

along square trajectories under different lighting conditions: 379

particularly ∼750, ∼350, ∼5, and ∼0.15 lux. Streams of 380

events with the corresponding APS images and robot poses 381

were acquired for about 5 s per experimental scenario. 382

Although the camera motion is identical in all experiments and 383

the depicted scene (APS image) does not change, the proper- 384

ties of the event streams vary due to changes in illumination. 385

Two of the experimental scenarios are used for training the 386

proposed ED method, while the other two are used exclusively 387

for testing and model evaluation. 388

2) Labeling Framework: The proposed KoGTL labeling 389

algorithm is divided into three main stages, including event- 390

image synchronization, event-edge fitting, and event labeling, 391

as shown in Fig. 5. 392

a) Event-image synchronization: All the recorded exper- 393

iments are first synchronized based on the time at which 394

the robot arm has started moving [Fig. 5-(I)]. Consequently, 395

following identical camera trajectories allows for synchroniz- 396

ing events and APS images across different lighting condi- 397

tions. More specifically, events recorded under poor lighting 398

conditions can be overlaid on APS images captured at the 399

same camera pose under good lighting conditions, given that 400

the scene is identical across all experiments. This facilitates 401

matching events recorded in low-lighting conditions to alter- 402

native APS image features representing the same scene, which 403

is extremely crucial for the success of the second stage. This 404

would not have been possible using the APS images captured 405

in low-lighting conditions where variations in intensities and 406

hence features (edges) from the scene are absent. 407

b) Event-edge fitting: In the second stage, Canny edge 408

detector [43] is used to extract edges from the APS images 409

captured along the trajectory under good lighting conditions. 410

The events captured between two consecutive APS images 411
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Fig. 4. Proposed ED framework. A GNN-Transformer-based ED algorithm is developed and trained on event datasets and generated and labeled using the
proposed KoGTL approach. The proposed algorithm classifies incoming event streams into real-activity events or noise.

(tAPS,i <= tevent < tAPS,i+1) are accumulated for every lighting412

scenario forming a 2-D vector, as shown in Fig. 5-(I). Using413

the iterative closest point (ICP) fitting technique [44], event414

data are fit to their corresponding APS edge data. Fitting was415

done in several stages because of the high temporal resolution416

of DVS data acquisition. Events might slightly deviate from417

APS edges due to imperfections in the time synchronization418

of events and APS data. Therefore, ICP is used to perfectly419

overlay them and correct any resulting spatial shift, as shown420

in Fig. 5-(II).421

c) Event labeling: In the third stage, events that were fit422

to edges in the APS images are labeled as real-activity events423

(Class 1), as shown in Fig. 5-(III). Other events that fall out424

of a spatial window around edge pixels (between +B and −B425

pixels) are considered noise (Class 0). For our dataset, events426

are classified as noise when they are more than two pixels427

away (i.e., B = 2) from an edge in the APS image. This428

window size was selected based on visual observation of the429

fitting results using multiple B values.430

B. Proposed GNN-Transformer Algorithm for ED431

In this section, we explain the proposed GNN-Transformer432

for ED, as shown in Fig. 6. GNN-Transformer consists of433

three main stages: event graph construction, message passing434

on graphs, and event classification.435

1) Event Graph Construction: Unlike conventional image436

frames, event data arrive asynchronously within a spatial437

resolution of H × W pixels (Fig. 6-I). Every pixel encodes438

log-intensity variations in the visual scene and is represented 439

by a tuple e =< x , y, t , p >, where (x , y) are the pixel 440

coordinates at which an event occurred, t is the event’s 441

timestamp, and p is the event’s polarity (either 1 or −1, signi- 442

fying an increase or a decrease in the intensity, respectively). 443

A sequence of events within a spatiotemporal neighborhood 444

is referred to as a local volume. The local volume is defined 445

in terms of its spatial (L × L) and temporal (T ) dimensions 446

around the event of interest. For example, if L = 1 and 447

T = 1, the local volume includes the events arriving in a 448

spatial window of 3 × 3 pixels around the event of interest 449

in the previous 1 ms. 450

When a new event arrives, ei (Fig. 6-II), a graph G that rep- 451

resents the local volume of the event is constructed (Fig. 6-III). 452

The nodes of the graph are all the events in the defined local 453

volume. Every node has three features < (x j), (y j ), (t j ) >, 454

where j is a node in the graph, x j and y j are the pixel 455

coordinates at which the event occurred, and t j is the event’s 456

timestamp. In this work, we omit the use of event polarity 457

as a node feature because event polarity is affected by the 458

sensitivity of events to changes in scene illumination, which 459

may vary with different camera parameters. Directed edges 460

are added from every node in the graph to the event of 461

interest. More specifically, all neighboring events (nodes) will 462

be connected to the newly arrived event (node or event of 463

interest) that will be identified by the neural classifier. It is 464

worth noting that the graph could be of variable size, i.e., every 465

sample might include a different number of nodes. A very 466
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Fig. 5. KoGTL labeling framework. KoGTL is a novel DVS event labeling
methodology developed to classify DVS events, acquired under various
illumination conditions, into two main classes: real event or noise. The
proposed KoGTL labels events that are acquired using a multitrial experi-
mental approach, along with two measurements, camera pose and intensity
measurements of the scene.

important property of GNNs is their ability to handle graphs467

of varying sizes, i.e., including variable number of nodes.468

This makes our approach more flexible since it facilitates the469

operation on events arriving asynchronously at a variable rate.470

2) Message Passing on Graph—EventConv Layer: After471

constructing the event graph, messages are exchanged along472

the outgoing edges, from source nodes j to the node repre-473

senting the newly arrived event i in the graph. The process474

of computing, sending, and aggregating the messages at the475

receiving node i is carried out by the proposed EventConv476

layer. Every node constructs a message consisting of its three477

features and sends it to node i for further processing. After478

receiving all the messages, node i , which represents the newly479

arriving event, processes and aggregates them. More specifi-480

cally, the average of each of the node features <(x), (y), (t)>481

across the graph is computed [Fig. 6-(1)]. The average values482

x , y, and t are then used to estimate the spatiotemporal483

correlations among the events in the event graph G. More484

specifically, the relationship between the event of interest and485

its neighboring events in space and time is encoded into seven486

quantities, which are (Q1) the spatial difference in x , (Q2) the487

spatial difference in y, (Q3) the temporal difference, (Q4) the488

standard deviation in x , (Q5) the standard deviation in y, (Q6)489

the standard deviation in t , and (Q7) the euclidean distance.490

The computations of these quantities are shown in Fig. 6-(1)491

and denoted as (Q1,L , . . . , Q7,L ), where L represents the node492

index. These quantities were selected based on the results493

of an ablation study, as described in the following. Each of494

these quantities is passed through a linear layer followed by a495

sigmoid activation function prior to aggregation. Quantities of496

the same type across the received messages are summed up.497

This operation results in a 1-D vector representing a unique498

graph signature, which is referred to as h. The uniqueness of499

graph G signature circumvents the problem of isomorphism 500

where two different graphs are represented by the same 501

signature after being reduced in the aggregation stage [38]. 502

Message passing and aggregation steps are carried out as part 503

of the GNN, which is used in conjunction with transformers 504

to perform classification. The steps explained above are shown 505

in Fig. 6-(1). 506

3) Proposed GNN-Transformer Classifier: The overall 507

architecture of the proposed learning-based classifier consists 508

of two main parts, including a GNN and a transformer. 509

In this section, more details about the structure selection are 510

explained. Overall, for every acquired event in the stream, 511

a graph is constructed to reflect the spatiotemporal correlations 512

between this event and the previous events in its neighborhood. 513

The proposed GNN operates on these graphs and outputs 514

a graph signature, previously referred to as h. This graph 515

signature is passed to the transformer for further processing. 516

More particularly, the graph signature h is mapped to another 517

representation by the transformer network, and finally, the 518

binary classification is performed. The output of the proposed 519

GNN-Transformer is a noise-free event stream that accurately 520

resembles the activity in the scene. 521

Transformer is a sequence-to-sequence encoder–decoder 522

network [17]. The self-attention mechanism encapsulates the 523

interactions between all elements of a given sequence for 524

structured prediction tasks. The attention mechanism with 525

the query–key–value (QKV) model enables the transformer 526

to have extremely long-term memory [17] and to execute 527

dependencies between input and output and consequently 528

execute more parallelization. The multihead attention layer 529

comprises multiple stacks of self-attention. A multihead atten- 530

tion mechanism encapsulates a given sequence of elements 531

into multiple jointly complex relationships by projecting them 532

into three learnable weight matrices, called query, key, and 533

value. In these matrices, computed weight distribution on 534

the input sequence reflects the uniqueness of graph signature 535

through assigning higher values to more representative ele- 536

ments. Basically, each element in a given input sequence in 537

the multihead attention layer is updated by concatenating and 538

aggregating global representative information. 539

Given a graph signature h with n elements (h1, h2, …, hn), 540

the objective of self-attention is to encode the global interac- 541

tion information that exists among the elements. To achieve 542

this, three learnable weight matrices are defined: queries 543

(W Q ∈ R n × dq ), keys (W K ∈ R n × dk ), and values (W V ∈ 544

R n × dv ), where W is the learnable weight matrix, n is the 545

size of the input features in h, and dq , dk , and dv represent 546

the dimensions of query, key, and value vectors, respectively, 547

dq = dk = dv = n in our model. In the first step, the input 548

sequence h is projected onto these weight matrices to obtain 549

Q = hW Q , K = hW K , and V = hW V . Z ∈ R n × dv is the 550

output of self-attention layer and is computed as follows: 551

Z(Q, K , V ) = softmax

(
QK T√

dq

)
V . (1) 552

The most commonly used attention functions are the addi- 553

tive attention [45] and dot product attention [17]. In our 554

model, dot-product attention, which is a simple matrix mul- 555

tiplication, is selected to update the state within the encoder 556

and decoder units. This makes the attention process and its 557

computations much faster and more space-efficient. In the 558

multihead attention process, outputs from d self-attention units 559
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Fig. 6. Framework of our GNN-Transformer classifier for ED. Note: x and y are the pixel coordinates at which the event occurred. t is the event’s timestamp.
i and j are the source and destination nodes where a message is transferred in Step1-(1) EventConv layer, respectively. Q1,L , . . . , Q7,L are quantities that
reflect spatiotemporal properties in the graph, where L represents the node index and m denotes the number of events in the local volume. h is the event
graph signature. α is a learning parameter. σ is a sigmoid activation function.

are concatenated into one vector [Z1, Z2, . . . , Zd] and are560

then projected by an output weight matrix W o ∈ R nd × n
561

as follows:562

MultiHead(Q, K , V ) = Concat(Z1, Z2, . . . , Zd)W o. (2)563

Furthermore, the multihead attention transformer facilitates564

identification of jointly complex relationships and makes the565

model easier to interpret.566

a) Transformer encoder: The architecture of the encoder567

and decoder layers within the transformers follows the original568

structure in [17], which consists of a multihead self-attention569

(MHA) unit and a feedforward network FFN. The mathemat-570

ical operations in a single encoder unit can be formulated as571

follows:572

qi = ki = vi = LN(hi−1) (3)573

yi−1 = hi−1 (4)574

y �
i = MHA(qi , ki , vi ) + yi−1 (5)575

yi = FFN
(
LN

(
y �

i

))+y �
i576

i =1, 2, . . . , N (6)577 [
FEi , FEi+1, . . . , FE N

] = [
yi , yi+1, . . . , yN

]
(7)578

where N denotes the number of encoder layers, MHA rep-579

resents the multihead self-attention module, LN denotes the580

operation of layer normalization [46], and FE denotes the581

output of the decoder layer. FFN is the feedforward network, 582

which contains two fully connected layers with a ReLU 583

activation function in between as in the following equation: 584

FFN(x) = max(0, xW1 + b1)W2 + b2. (8) 585

b) Transformer decoder: For the transformer decoder 586

unit, it takes the decoder’s outputs as inputs and has two MHA 587

modules followed by an FFN. The mathematical operations 588

within a single decoder unit can be formulated as follows: 589

zi−1 = [
FEi , FEi+1, . . . , FEl

]
(9) 590

qi = ki = vi = LN(zi−1) (10) 591

z�
i = MHA(qi , ki , vi ) + zi−1 (11) 592

q �
i = k �

i = v �
i = LN(zi−1) (12) 593

z��
i = MHA

(
q �

i , k �
i , v

�
i

) + z�
i−1 (13) 594

zi = FFN
(
LN

(
z��

i

)) + z��
i 595

i = 1, 2, . . . , l (14) 596[
FDi , FDi+1, . . . , FDl

] = [
zi , zi+1, . . . , zl

]
(15) 597

where l denotes the number of decoder layers and FD repre- 598

sents the output of the transformer unit (FD ∈ Rn × 1), which 599

reveals the important features to uniquely represent the graph 600

signature (h). 601

The output of the coupled GNN-Transformer is finally 602

passed to a fully connected layer that generates a 2 × 1 tensor 603
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Fig. 7. Ablation study results—loss curves obtained upon training various network architectures as part of the automated search for the best suited neural
network architecture.

for every sample in the dataset, where 2 is the number of604

classes: real log-intensity change or noise. The output tensor605

is passed to a softmax function (16), where it is rescaled so606

that the elements are in the range [0, 1] and sum up to unity.607

The rescaled elements represent the probabilities that the event608

under investigation represents noise or real activity609

Softmax(xi) = exi∑2
j=1 ex j

. (16)610

Supervised learning is performed using the backpropagation611

algorithm to train the GNN-Transformer network. Pytorch [47]612

implementation is used for constructing all the neural networks613

and performing training and testing. The training process is614

carried out to minimize the cross-entropy loss function using615

the Adam optimizer [48] with a learning rate of 0.001.616

c) Ablation study: To select the most suited structures617

of both the GNN and the transformer, an automated search618

routine was developed. The automated search routine spanned619

several parameters, including the graph structure, the message620

operation, the aggregation functions, the number of EventConv621

layers in the GNN, the activation functions, and the number622

of encoder–decoder units in the transformer. Such parameters623

reflect the nonlinear capacity of the model and hence need624

to be carefully selected to best suit the problem in question.625

It was observed that several architectures have achieved com-626

parable performance and were able to correctly classify the627

majority of real-activity and noise events.628

Fig. 7 reports the loss obtained by the highest perform-629

ing architectures on the training dataset among the tested630

neural networks. The loss curves are grouped based on the631

adopted neural network architecture: GNN, GNN in conjunc-632

tion with a transformer of a single encoder–decoder layer633

(GNN-Transformer 1E1D), GNN in conjunction with a trans-634

former of a double encoder–decoder layer (GNN-Transformer635

2E2D), and GNN in conjunction with a transformer of a triple636

encode–decoder layer (GNN-Transformer 3E3D). For every637

architecture, the number of quantities composing the messages638

that characterize the spatiotemporal correlation within the639

graph was varied. More specifically, four combinations of640

quantities in the message were tested as indicated in the641

following.642

1) 3Qs-MSG: Q1, Q2, and Q3.643

2) 4Qs-MSG: Q1, Q2, Q3, and Q7.644

3) 6Qs-MSG: Q1, Q2, Q3, Q4, Q5, and Q6 . 645

4) 7Qs-MSG: Q1, Q2, Q3, Q4, Q5, Q6, and Q7. 646

The performance of all the attempted networks is evaluated 647

using unseen testing datasets, which are composed of streams 648

of events obtained experimentally. The performance evaluation 649

metrics used to compare the training and validation results are 650

the accuracy, signal ratio (SR), noise ratio (NR), and signal-to- 651

noise ratio (SNR) as computed with respect to the ground-truth 652

labels obtained using our proposed KoGTL for each event. 653

The training and testing results have proven that the 654

GNN-Transformer architecture with 7Qs-MSG in the Event- 655

Conv layer as described in Section III-B2 and a transformer 656

with a double encoder–decoder layer showed the best per- 657

formance among all candidate neural classifiers in terms of 658

the noise filtration accuracy as reported in Table IV (see the 659

Appendix). The proposed GNN-Transformer architecture is 660

shown in Fig. 6-IV. 661

It is worth noting that the quantities included in the mes- 662

sages play a pivotal role in reflecting the spatiotemporal 663

correlation of the event and its neighboring events and thus 664

in the overall performance of the filter as clearly shown in 665

loss curves of the GNN-Transformer 3E3D. More specifically, 666

although the architecture of the neural network was complex 667

enough, the number of quantities in the message drastically 668

affected the filter’s performance. 669

IV. EXPERIMENTAL EVALUATIONS 670

The proposed GNN-Transformer algorithm for ED is tested 671

qualitatively and quantitatively in multiple scenarios to demon- 672

strate its validity, effectiveness, and generalization. The train- 673

ing process, including training and testing data preparation, 674

is described in Section IV-A. In Section IV-B, the eval- 675

uation metrics used to quantify the results are presented. 676

Section IV-C presents the quantitative performance analyses 677

of the developed GNN-Transformer model. Moreover, the 678

GNN-Transformer model is benchmarked against other exist- 679

ing ED methods, where the developed model’s capability, 680

effectiveness, and validity are discussed. In addition, the 681

performance of the model is evaluated qualitatively on part of 682

the datasets that we have recorded but have not exposed to the 683

network during training, as well as several publicly available 684

datasets as presented in Section IV-D. This is to prove the 685

model’s generality and robustness to various illumination 686

conditions and unseen data. 687
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A. Training and Testing Datasets688

They are constructed from experiments recorded in our689

lab as well as other publicly available datasets. Training is690

exclusively done using our recorded dataset because of the691

availability of ground-truth labels to support supervised learn-692

ing. Testing, on the other hand, is done on both recorded and693

publicly available datasets where quantitative and qualitative694

evaluations are done.695

Recorded experiments were conducted following the696

approach described in Section III-A using the iniVation’s697

DAVIS346C DVS [42]. Four lighting conditions were used698

to record experiments; very good lighting (∼750 lux), office699

lighting (∼300 lux), low light condition (∼5 lux), and moon700

light condition (∼0.15 lux). Every experimental scenario701

includes scenes recorded when the camera is static or is start-702

ing translational motion, and scenes recorded when the camera703

is moving in four different directions. In the former case,704

static noise pixels can be detected and learned accordingly.705

The latter cases exhibit the dynamic nonlinear nature of event706

and noise generation as well as spatiotemporal correlations707

of an event and its neighborhood when the camera is in708

motion.709

Samples from the experiments recorded under very good710

lighting (∼750 lux) and low light conditions (∼5 lux) were711

used for quantitative analysis (training and testing). Each712

sample consists of a newly arrived event and its corresponding713

neighboring events within the defined spatial and temporal714

window. More specifically, for each scenario, a total of715

8000 samples were randomly selected from each of the five716

scenes (static and motion in four directions): 4000 real-activity717

events and 4000 noise samples. This is to ensure that the718

training dataset is balanced and is not biased toward one class719

more than the other. Hence, a total of 80k samples constitute720

the dataset, 80% of which are used for training and 20% are721

used for testing.722

Moreover, a qualitative analysis of the model’s performance723

on two recorded experiments (∼300 and ∼0.15 lux) and724

11 publicly available datasets was carried out. The publicly725

available datasets [12] include indoor and outdoor scenarios726

and were recorded at numerous illumination conditions and727

using different motion dynamics, as summarized in Table I.728

Prior to training the model, every sample event and its corre-729

sponding neighborhood are used to construct a graph, which is730

used as the input to the GNN. The size of the neighborhood,731

i.e., the local volume, is selected to be a maximum of ten732

nodes (or events) within 5 × 5 pixels window centered at the733

event of interest in the proceeding 50 ms. In case more events734

were acquired in this volume, only the latest ten are included735

in the graph. It is worth mentioning that the volume size736

was selected after several experiments with varying volume737

parameters. It was observed that ten neighboring events in738

the local volume are sufficient to delineate the spatiotemporal739

correlations and hence make a decision on whether the event740

of interest is real or noise.741

To expedite training and convergence, it is common practice742

to normalize all the inputs to the neural network to a common743

range. In this work, all inputs are rescaled to the range744

[0.05, 0.95], excluding values very close to 0 and 1 to avoid745

the issue of neuron saturation, which causes the problem of746

vanishing gradients. For example, the minimum and maximum747

values of sigmoid are 0 and 1, respectively. The corresponding748

derivative at those values drops to zero, causing gradients to749

vanish.750

TABLE I

DESCRIPTION OF THE PUBLICLY AVAILABLE DATASETS USED FROM [12]

B. Evaluation Metrics 751

To quantitatively evaluate the performance of the proposed 752

denoising model and compare to state-of-the-art models on 753

training and testing datasets, four evaluation metrics are used: 754

accuracy, SR, NR, and SNR. 755

d) Accuracy: This metric measures the model’s ability to 756

correctly predict real-activity events and noise, as defined in 757

the following equation: 758

Accuracy = TP + TN

TP + TN + FP + FN
(17) 759

where TP, FP, TN, and FN are the number of true positives, 760

false positives, true negatives, and false negatives pixels, 761

respectively. TP indicates the number of events that are cor- 762

rectly predicted as real-activity events, whereas TN indicates 763

the number of events that are correctly predicted as noise. 764

e) Signal ratio: This metric represents the proportion of 765

correctly predicted real-activity events with respect to the total 766

number of real-activity events in the scene, which is also 767

known as precision, as defined in the following equation: 768

SR = TP

TP + FP
. (18) 769

f) Noise ratio: This metric represents the proportion of 770

incorrectly predicted noise events with respect to the total 771

number of noise events in the scene, which is also known as 772

the false omission rate, as defined in the following equation: 773

NR = FN

TN + FN
. (19) 774
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g) Signal-to-noise ratio: This metric is the ratio of the775

number of correctly predicted real-activity events to the num-776

ber of noise events incorrectly labeled as real-activity events777

as described in the following equation:778

SNR = TP

FN
. (20)779

The performance of the denoising model is considered better780

with higher SR and SNR values and lower NR values.781

C. Quantitative Results782

1) Evaluation on Training and Testing Datasets: In this783

section, the performance of the proposed GNN-Transformer-784

based ED model is compared against state-of-the-art denois-785

ing methods, namely, EDnCNN [20], Yang filter [21],786

Khodamoradi filter [22], Liu filters [23], and NNb filter [24].787

All filters are tested on the same dataset, which was used to788

train our proposed approach. The dataset was randomly split789

into training and testing subsets, where 80% of the samples790

were used for training and 20% were used for testing (not791

exposed to the network during training).792

EDnCNN filter’s parameters were set to those mentioned in793

their published trained model that consists of 3 × 3 convolu-794

tional layers followed by two fully connected layers. To filter795

an event, a spatiotemporal window of 25 × 25 × 5 s centered796

at that event pixel is considered to construct the input feature797

to the model. More specifically, a 25 × 25 × k × 2 matrix is798

populated with the k most recent positive and negative events799

that were received prior to the event of interest, where k was800

set to 2. The pretrained EDnCNN model parameters [20] were801

used to perform accuracy evaluations on both our training and802

testing datasets. Yang filter’s parameters were set to the default803

values reported in [21]. More specifically, the time window804

was set to 5 ms, the spatial window is 5 × 5 pixels, and the805

density is 3. As for the Khodamoradi filter, the time window806

was set to 1 ms, as in [21] and [22]. Two downsampling807

factors S of Liu’s filter were used S = 1 and 2 where the808

timestamp of 2 × 2 and 4 × 4 pixels was stored in one809

memory cell and the time window was set to 1 ms, as tested810

in [21]. The working principle of Liu and Khodamoradi filters811

was previously mentioned in Section II (see Fig. 3(b) and (c),812

respectively). Finally, for the NNb filter, the size of the event’s813

local volume is set to 3 × 3 pixels for 1 ms, as reported in their814

work [24]. The performance of these denoising methods was815

compared to that of the proposed GNN-Transformer approach816

as presented next.817

Table II reports the filtration accuracy achieved by the818

GNN-Transformer network, EDnCNN filter, Yang filter, Kho-819

damoradi filter, Liu filter, and NNb filter when evaluated on820

the training and testing datasets. It is worth mentioning that821

the training and testing datasets have equal numbers of real822

and noise events (50% real events and 50% noise events).823

It is observed that the GNN-Transformer outperforms all the824

other alternatives in terms of filtration accuracy. The proposed825

model has outperformed EDnCNN by 10.6% on the training826

dataset and 8.4% on the testing dataset. It has also achieved827

12% higher training and testing accuracy compared to the828

Yang filter. The Yang filter has shown the best performance829

compared to other conventional filters (Khodamoradi, Liu, and830

NNb filters) in terms of filtration accuracy.831

A high SNR value does not necessarily mean that a fil-832

ter’s performance is better than others. Rather, a high SNR833

TABLE II

PERFORMANCE OF THE GNN-TRANSFORMER CLASSIFIER COMPARED
TO STATE-OF-THE-ART DENOISING METHODS ON

THE TRAINING AND TESTING DATASETS

value, a high SR value, and a low NR value together would 834

indicate a good filtering performance. A clear example is the 835

Khodamoradi filter, which achieved the highest SR (99%) and 836

the highest NR (92%) values among other filters. These values 837

mean that all input data have been considered real activity and 838

no noise filtration took place. In other words, the filter could 839

not distinguish between the incoming real-activity events and 840

the accompanying noise. 841

Another example is Liu’s filter, which achieved the lowest 842

NR (1-2%) and a relatively low SR (10-30%). In this case, 843

most of the input data have been considered as noise. This 844

implies the weak denoising capability of Liu’s filter. Mean- 845

ingful real-activity events have been filtered out, and conse- 846

quently, scene perception algorithms would fail to operate as 847

expected. 848

To conclude, the best ED model is expected to have a high 849

accuracy, SR, and SNR, and a low NR. Thus, our proposed 850

GNN-Transformer has clearly outperformed all alternative fil- 851

ters and proved its capability to generalize to unseen datasets. 852

Table II compares the number of correctly and incorrectly 853

predicted real-activity events from the training and testing 854

datasets. 855

2) Evaluation on Our Recorded Dataset—Continuous 856

Stream of Events: In this section, the proposed model is tested 857

online on a continuous stream of events and then compared to 858

state-of-the-art denoising techniques. In other words, instead 859

of randomly selecting samples from the recorded experiments, 860

the full stream of events generated by DVS is passed through 861

each filter, which is then evaluated, as per our labeled dataset. 862

Filtering techniques were tested in two scenarios; the exper- 863

iments recorded at ∼750 and ∼5 lux. In the first scenario, 864

filtering was done over 600 ms, where SR and NR were 865

evaluated every 10 ms, as shown in Fig. 8(a). The second 866

scenario was run for 170 ms and the evaluation was done 867

at 5-ms intervals, as shown in Fig. 8(b). Evaluations of SR, 868

NR, and SNR over the full period of time for both scenarios 869

are shown in Fig. 9(a) and (b). The total number of events 870

included in this test is 7M and 0.1M for the first and second 871

scenarios, respectively. 872

It is evident, through the conducted tests, that our proposed 873

GNN-Transformer-based ED technique has achieved the best 874

filtering performance compared to all the other filters. This 875

proves the effectiveness of the proposed ED approach and 876

shows robustness to different camera motion dynamics under 877
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Fig. 8. SR, NR, and SNR ED performances of the GNN-Transformer model and state-of-the-art denoising methods—using sample stream of events recorded
at (a) ∼750 and (b) ∼5 lux.

Fig. 9. SR, NR, and SNR ED performances of the GNN-Transformer model and state-of-the-art denoising methods—using sample stream of events recorded
at (a) ∼750 and (b) ∼5 lux. The performance of the denoising model is considered better with higher SR and SNR values and lower than NR values. It can
be observed that the best performing denoising methods are ours and EDnCNN [20]. However, for fair comparison and for these results to make sense, the
metrics have to be analyzed collectively. It was observed that EDnCNN has considered a large number of events as noise, which decreased the NR value
compared to ours. However, a significant amount of these filtered events belongs to meaningful features, i.e., were incorrectly labeled as noise, which resulted
in a lower SR value than ours.

illumination variations. According to our evaluations, the878

second-best learning-based ED technique is the EDnCNN [20]879

filter and the best conventional ED filter is Yang filter [21].880

Thus, further qualitative performance assessments of our pro-881

posed approach are conducted against those two filters only882

as presented in Section IV-D.883

3) Computational Time Complexity and Memory Analysis:884

In this section, time and memory analyses of the proposed885

approach will be discussed and compared to the EDnCNN886

filter since both are based on using neural networks. A set887

of 10 000 event samples was selected from the stairs dataset888

presented in [20] to conduct the timing analysis.889

The computational time analysis of the proposed algo-890

rithm was carried out on an ASUS laptop with Intel891

core i7 − 7700H Q@2.80 GHz × 4, NIVIDIA GeForce892

GTX 1050 Ti 4 GB. The analysis was done with and without893

GPU support in two modes: sequential mode—events were 894

passed to the filter successively, one after the other, and 895

batch mode—all events were passed to the filter as a single 896

batch. The time needed to filter the events in each mode was 897

recorded for both filters, as listed in Table III. In all cases, 898

the time needed to complete the filtration was shorter using 899

our proposed approach compared to EDnCNN. However, our 900

approach achieved a large speedup of up to two orders of 901

magnitude in the batch mode compared to the other filter 902

when run on CPU and a speedup of up to one order of 903

magnitude when run on GPU. This speedup is significant as 904

operation in the batch mode is certainly necessary due to 905

the high temporal resolution of the event camera and due 906

to the working principle of the event camera that enables 907

346 × 260 pixels to be active simultaneously. In other 908

words, the proposed approach is capable of handling batches 909
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TABLE III

TIME IN SECONDS TO FILTER EVENTS USING OUR PROPOSED APPROACH
AND EDNCNN METHOD [20]. NOTE THAT μ AND σ REPRESENT THE

MEAN AND STANDARD DEVIATION, RESPECTIVELY

of events concurrently in a very short period of time and hence910

preserves the high temporal resolution of the sensor. It is also911

worth noting that the proposed approach exhibited the fastest912

performance when processing events in a batch mode on a913

CPU, which obviates the need for sophisticated hardware to914

achieve fast and accurate noise filtration. This makes the pro-915

posed approach suitable for limited computational power and916

resource-constrained platforms such as high-speed unmanned917

aerial vehicle (UAV) control [49], UAV navigation [50], and918

space applications [51].919

To project this analysis on a real-world scenario, consider920

the application of autonomous car driving where neuromorphic921

vision could be employed to observe the environment during922

navigation. As the speed of the vehicle increases, the number923

of generated events will proportionally increase resulting in a924

tremendous amount of events for processing. Faster processing925

of visual observations will thus result in a faster response926

to changes in the vehicle’s surroundings. This will definitely927

reduce the probability of collisions and will enhance the928

effectiveness of the overall system.929

The overall memory requirement per event classification is930

5 × 5 × Ng , where Ng is the number of events per graph931

and could range from 1 to 10 events, whereas in EDnCNN,932

the size of the input feature is 25 × 25 × 2 × 2. This933

clearly shows that our approach is more memory efficient934

than EDnCNN, where in case the graph in our approach935

had ten nodes (which is the maximum number of nodes per936

graph), the memory requirements are ten times less than that937

of EDnCNN.938

D. Qualitative Results939

In this section, two experiments from our recorded dataset,940

particularly those recorded at ∼300 and ∼0.15 lux, are used941

to qualitatively analyze the denoising performance of the pro-942

posed model against and EDnCNN and Yang filters. Sample943

filtering results, superimposed on APS images for better visu-944

alization, are shown in Fig. 10. The results clearly show that945

our model has filtered out most of the BA noise and maintained946

events representing relative motion of meaningful features in947

the scene as in Fig. 10(a). Although more scattered noise is948

present under low-lighting conditions as shown in Fig. 10(b),949

our proposed model was able to preserve the events that950

represent meaningful features (edges) in the scene. Conversely,951

the Yang filter has eliminated the majority of real-activity952

events from the scene while leaving some scattered ones that953

could be hard to interpret as edges or meaningful features.954

This proves the robustness of our model against illumination955

variations.956

To further prove the validity and generalization of our957

proposed model, we have extensively tested it and compared958

it against others using 11 publicly available datasets. These959

recorded data were acquired from different camera motion960

Fig. 10. Denoising results tested on our dataset (unseen data), denoised
events from DVS (yellow dots) overlaid on the corresponding APS image.
(a) Our dataset: Exp at ∼300-lux office light condition. (b) Our dataset: Exp
at ∼0.15-lux moon light condition.

Fig. 11. Sample of denoising results tested on published datasets (unseen
data), denoised events from DVS (yellow dots) overlaid on the corresponding
APS image. (a) Published datasets: DrivingTunnel. (b) Published datasets:
DrivingTunnelSun.

dynamics (type of motion and speed) and under different 961

lighting conditions. Fig. 11 shows two examples of denoised 962

events obtained using the proposed model, EDnCNN, and 963

Yang filter. It was noticed that EDnCNN eliminated a large 964

amount of events that belong to meaningful features in the 965

scene. For instance, the filtered event stream corresponding 966
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to the scene taken from the DrivingTunnelSun dataset shown967

in Fig. 11(a) lacks significant events that represent clear968

intensity variations as per the corresponding APS images.969

Such events were classified as noise using the EDnCNN filter.970

The same observation can be seen in the scenes from the971

other datasets such as DrivingCity4 in Fig. 11. Yang filter972

passes the majority of the events (both real and noise signals),973

thus making it more difficult to identify objects (edges)974

in the scene compared to our proposed model. Therefore,975

the GNN-Transformer-based ED model generalizes well to976

new scenarios under various illumination conditions with-977

out any further tuning of its parameters. More results are978

shown in Fig. 12 (see the Appendix), additional results docu-979

ment in <https://github.com/Yusra-alkendi/ED-KoGTL> and980

video <https://youtu.be/ZM76UaxbuJE>, which visualize the981

denoising performance of GNN-Transformer classifier com-982

pared to Yang filter [21] and EDnCNN [20].983

V. CONCLUSION984

In this work, we developed a novel algorithm to filter985

out the noise associated with event streams acquired by986

DVSs. The GNN-Transformer-based ED algorithm exploits987

the spatiotemporal correlations between events in a particular988

neighborhood to decide whether an incoming event represents989

noise or a log-intensity variation in the observed scene.990

To train the proposed GNN-Transformer model, a novel offline991

event labeling technique, KoGTL, is proposed to distinguish992

between noise and real events in event streams recorded under993

challenging lighting conditions. The labeled DVS data is made994

available to the public research community for benchmarking995

purposes. The proposed algorithm successfully operates on996

event streams irrespective of camera parameters, illumination997

conditions, and motion dynamics. This is attributed to the fact998

that the adopted graph structure of the input data preserves the999

spatiotemporal correlation between the events, rather than the1000

raw properties of the events, solely. Such operation is carried1001

out in the proposed EventConv layer. The proposed algorithm1002

also operates on event graphs of variable sizes and thus handles1003

the asynchronous nature of event streams.1004

Through extensive training and testing, the proposed algo-1005

rithm has proven to achieve significantly high denoising1006

performance under challenging illumination conditions. Our1007

model is also tested on 11 publicly available datasets that1008

were not exposed to the network during training. The model1009

is able to successfully denoise the event streams, despite the1010

fact that the data are recorded under conditions different than1011

those of the training data, including different environmental1012

conditions, various camera motions, and camera parameters.1013

The quantitative results have demonstrated the denoising capa-1014

bility of the proposed algorithm with at least 8.8% higher1015

filtration accuracy on testing sets compared to existing meth-1016

ods. Qualitatively, the results achieved by the proposed model1017

have verified its effectiveness and generalization to previously1018

unseen event graph data, irrespective of their sizes. This1019

work has unveiled the power and potential of GNNs and1020

transformers on event cameras.1021

In the future, we plan to demonstrate the significance1022

of our proposed denoising approach by integrating it into1023

other event-based computer vision algorithms such as motion1024

segmentation, object detection, object tracking, and object1025

recognition, under challenging lighting conditions. We also1026

plan to exploit the potential of GNNs and transformers for1027

Fig. 12. Additional qualitative denoising results tested on the published
dataset (unseen data), denoised events from DVS (yellow dots) overlaid on
APS image.

other event-based vision algorithms. Another possible exten- 1028

sion of the current work could be by integrating the denoising 1029

module together with vision algorithms and employing them 1030

for robot navigation purposes, autonomous driving cars [52], 1031

and healthcare applications such as human fall detection [53]. 1032

Eliminating noise events from the observed scene in such 1033

scenarios is foreseen to improve the accuracy of the vision 1034

algorithms responsible for localizing obstacles and detecting 1035

human fall accidents. Noise events, if not eliminated, may be 1036

mistaken for real changes in the scene intensities, which could 1037

result in false positive detections. In the case of autonomous 1038

driving, falsely detecting an obstacle along the way will 1039

interrupt the vehicle’s trajectory and may cause it to take 1040

longer paths and more time, which is undesirable. As for 1041

human fall detection, noise events may decrease the accuracy 1042

of localizing a human and estimating the temporal window 1043

for the accident by inflicting erroneous information into the 1044

observation. To that end, integrating the proposed denoising 1045

method into such systems is envisioned to enhance their 1046

accuracy and effectiveness. 1047
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TABLE IV

PERFORMANCE COMPARISON OF THE PROPOSED ED CLASSIFIER AND ITS
NETWORK VARIANTS ON THE TRAINING AND TESTING DATASETS.

NOTE THAT CASES I–IV DENOTE GNN, GNN-TRANSFORMER

1E1D, GNN-TRANSFORMER 2E2D, AND

GNN-TRANSFORMER 3E3D, RESPECTIVELY

APPENDIX1048

ADDITIONAL QUALITATIVE ED RESULTS1049

Fig. 12 presents additional qualitative denoising results1050

on other unseen published datasets of our proposed method1051

compared to the state-of-the-art denoising models [20], [21].1052
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