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Eye-LRCN: A Long-Term Recurrent Convolutional
Network for Eye Blink Completeness Detection
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Abstract— Computer vision syndrome causes vision problems1

and discomfort mainly due to dry eye. Several studies show2

that dry eye in computer users is caused by a reduction in3

the blink rate and an increase in the prevalence of incomplete4

blinks. In this context, this article introduces Eye-LRCN, a new5

eye blink detection method that also evaluates the completeness6

of the blink. The method is based on a long-term recurrent7

convolutional network (LRCN), which combines a convolutional8

neural network (CNN) for feature extraction with a bidirectional9

recurrent neural network that performs sequence learning and10

classifies the blinks. A Siamese architecture is used during CNN11

training to overcome the high-class imbalance present in blink12

detection and the limited amount of data available to train blink13

detection models. The method was evaluated on three different14

tasks: blink detection, blink completeness detection, and eye state15

detection. We report superior performance to the state-of-the-art16

methods in blink detection and blink completeness detection, and17

remarkable results in eye state detection.18

Index Terms— Blink completeness detection, computer vision19

syndrome (CVS), eye state detection, long-term recurrent convo-20

lutional networks (LRCNs), Siamese neural networks.21

I. INTRODUCTION22

COMPUTER vision syndrome (CVS) [1] is a temporary23

condition that causes eye and vision problems [2] by24

focusing the eyes on a computer screen for long, uninterrupted25

periods of time. Some of its symptoms are blurred vision,26

double vision, tired eyes, irritation, and redness. The main27

contributor to CVS is dry eye, caused by a reduced eye blink28

rate (EBR) and an increased prevalence of incomplete blinks29

when being exposed to screens for long periods of time [3].30

Eye blinking is essential to keep the ocular surface healthy31

and hydrated. It keeps a stable tear film over the anterior ocular32

surface, cleaning it when it comes in contact with dust and33

dirt, and preventing the cornea from dryness. Blinking is a34

protective mechanism for the eye and it is vital for corneal35
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health and optical performance [4]. In fact, the best way to 36

avoid dry eye symptoms is to blink regularly [5]. The average 37

EBR ranges from 10 to 22.4 blinks per minute. A lower 38

EBR contributes to decrease the quality of the eye tear film 39

and stresses the cornea, resulting in dry eye symptoms and 40

sometimes inflammation. 41

Looking at screens during long periods of time may reduce 42

the EBR by 60% [1]. Cardona et al. [6] studied the influence 43

of the level of dynamism of different screen-related tasks on 44

the EBR, blink amplitude, and tear film integrity. Their results 45

show that the EBR can decrease to 1/3 or 1/2 of baseline levels 46

depending on the dynamism and the cognitive demands of the 47

task [3], [7]. A positive correlation between the percentage 48

of incomplete blinks and the dynamism of the task is also 49

reported. 50

Regarding the completeness of a blink, it is defined by 51

whether the two eyelids touch or not during the blink. 52

Portello et al. [8] studied the influence of blink completeness 53

in CVS, concluding that the impact of a high prevalence 54

of incomplete blinks may be as significant as a low EBR. 55

Incomplete blinks are one of the causes of Meibomian gland 56

dysfunction [9], which results in a disruption and instability 57

of the tear film causing dry eye even with normal aqueous tear 58

production. Meibomian gland dysfunction is now recognized 59

to be the most common cause of evaporative dry eye [10]. 60

Therefore, complete and incomplete blink classification is of 61

utmost importance to identify the causes and worsening of dry 62

eye. 63

This article presents Eye-LRCN, a new eye blink detection 64

method that also takes into account blink completeness. Our 65

approach is based on a long-term recurrent convolutional 66

network (LRCN) [11] that uses a Siamese architecture to 67

overcome the high imbalance present in blink detection prob- 68

lems. Balanced mini-batches were used to train the Siamese 69

network, which have proven to be very effective on unbalanced 70

problems [12]. The Siamese network is combined with a 71

bidirectional long short-term memory (LSTM) network [13] 72

that performs sequence learning based on the temporal context 73

of past and future inputs. It has been proven that bidirectional 74

networks are substantially better than their unidirectional 75

counterparts in many fields such as speech recognition [14] or 76

traffic prediction [15] but, to the best of our knowledge, their 77

impact on blink detection problems has not yet been studied. 78

The rest of this article is structured as follows. Section II 79

provides a brief review of the state-of-the-art eye blink detec- 80

tion. Section III presents Eye-LRCN. Section IV defines the 81
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experimental framework to evaluate the proposed method82

in three different tasks: blink detection, blink completeness83

detection, and eye state detection. Section V reports the results84

achieved by the proposed method and establishes a comparison85

with those obtained by some representative approaches pre-86

sented in the review of the state-of-the-art. Finally, Section VI87

closes this article with the final conclusions obtained from this88

research.89

II. RELATED WORK90

A blink is a rapid action in which the eyelids progressively91

close and reopen again. It is an action over time that takes92

around 572 ± 25 ms [16] during which the eye is fully93

closed for about 50 ms [17]. An ordinary webcam recording at94

30 frames per second (frames/s) is enough to capture the fully95

closed eye and, therefore, to differentiate between complete96

and incomplete blinks. Visual blink detection methods use97

either consumer-level webcams [18], [19], [20], [21] or more98

specialized sensors like eye trackers [22], [23] to acquire their99

input data. Blink detection methods usually separate the task in100

two parts: 1) face and eye detection and 2) blink detection. For101

face and eye detection there are powerful and efficient state-102

of-the-art methods such as the Viola–Jones algorithm [24]. For103

this reason, most of blink detection models delegate face and104

eye detection to these methods and focus only on the blink105

detection procedure itself.106

There is not a clear definition of what a blink is in the107

state-of-the-art. Some works use the term blink to refer to108

a single eye picture in which the eye is fully closed, while109

others use it to refer to a sequence of frames in which the eye110

closes and reopens again. In this context, it is important to111

differentiate between blink detection and eye state detection.112

In blink detection, a blink is defined as a sequence of frames113

in which the eyelids close and reopen again, although in some114

cases the eye does not close completely. In eye state detection,115

individual eye images are classified as open or closed eyes.116

It can be defined either as a binary problem or as a regression117

problem in which the percentage of eye closure is calculated.118

Note that blink detection methods can be based on eye state119

detection of individual frames.120

Next, we include a brief review of some representative121

blink detection and eye state detection methods found in the122

literature. At the end of the section, we present the rationale123

of our approach compared to these methods.124

A. Blink Detection Methods125

These methods commonly use videos as input data, and are126

grouped into those that analyze individual frames and those127

that use sequences of frames. Following the first approach,128

Soukupová and Cech [25] proposed a real-time algorithm that129

uses a support vector machine (SVM) to detect blinks using130

the eye aspect ratios in a short temporal window or a hidden131

Markov model followed by a state machine to recognize blinks132

using the eye closure lengths.133

Concerning works that analyze sequences of frames,134

Fogelton and Benesova [19] used a tracker to obtain the motion135

vectors in the eye region. Blink detection is performed by136

means of a state machine fed with the average motion vectors,137

normalized with standard deviation and time constraint to 138

achieve invariance of the eye region size. They also introduced 139

Researcher’s Night, a large real-world dataset with more than 140

1800 annotated eye blinks. Later, the same authors presented 141

the first eye blink detection method capable of evaluating blink 142

completeness [26]. They extracted motion vectors from the eye 143

region, which were then fed to a unidirectional recurrent neural 144

network (RNN). 145

Hu et al. [27] introduced the HUST-LEBW dataset, the first 146

eye-blink in the wild dataset that involves spatial–temporal 147

sequence information. The authors formulated eye-blink detec- 148

tion as a binary spatial–temporal pattern recognition problem. 149

They used kernelized correlation filters for eye tracking and 150

a modified LSTM model to predict eye blinks. A compar- 151

ative study on the HUST-LEBW dataset demonstrates the 152

suitability of their approach for eye blink detection in the 153

wild, showing superior performance than other evaluated 154

methods. 155

Lamba et al. [28] proposed an eye blink detection method 156

using feature level fusion. They introduced the eye-eyebrow 157

facet ratio, which is formed by fusing the eye facet ratio and 158

the eyebrow-to-nose facet ratio. Their method outperformed 159

other eye blink recognition systems in the ZJU dataset [29]. 160

Different computer vision applications can be addressed 161

by solving the blink detection problem. For example, 162

Han et al. [30] presented a driver drowsiness detection method 163

based on eyelid movement, whilst Jordan et al. [31] proposed 164

solving the same task through a convolutional neural network 165

(CNN)-based system embedded in connected glasses. Other 166

interesting applications include fatigue recognition [32] and 167

deep fake videos detection [33]. 168

B. Eye State Detection Methods 169

The most recent eye state detection methods found in the 170

literature can be mainly grouped into two categories: those that 171

compute a feature vector from input images and then classify 172

it into open/closed using classical machine learning methods, 173

and those that solve the task by means of CNNs. 174

With respect to the former group, Song et al. [34] pre- 175

sented the closed eyes in the wild dataset and proposed a 176

method that combines features from a new descriptor based 177

on histograms of oriented gradients, local ternary patterns, 178

and Gabor wavelets. Next, they used these features to train 179

different classifiers and evaluated them on still images from 180

two datasets, ZJU and closed eyes in the wild, achieving 181

the best results with the SVM classifier. For their part, 182

Remeseiro et al. [18] analyzed the low-level features of the 183

eye region using uniform histograms and discrete wavelets, 184

which were used to feed different classifiers. The proposed 185

method was evaluated on their own dataset, obtaining the best 186

results with a multilayer perceptron (MLP). More recently, 187

Eddine et al. [20] presented EyeLSD, a new framework 188

to localize the eyes and identify their states without the 189

face detection step. In particular, they proposed two novel 190

descriptors based on local binary patterns, which were used 191

to train SVM and MLP classifiers. Their approaches were 192

evaluated on the ZJU dataset, achieving a lower performance 193

than Song et al. [34] but improving computational efficiency. 194
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Regarding the use of CNNs, Anas et al. [35] proposed two195

CNN architectures based on the well-known LeNet [36]: one196

to address binary eye state detection (closed and open eyes)197

and the other for three-class eye state detection (closed, open,198

and partially open eyes). A more up-to-date CNN architecture199

was considered in [37]. In particular, the authors used a200

pretrained ResNet50 [38] and fine-tuned it using a mix of the201

ZJU dataset and their own dataset. Finally, Cortacero et al. [21]202

presented a new open-source dataset for eye state detection203

(RT-BENE) and proposed a set of baseline CNNs using204

standard backbone architectures. They also proposed a method205

that uses mask R-CNN [39] to perform semantic labeling206

of the eye region. The CNN-based models outperformed the207

R-CNN method, which was trained with few samples due to208

the time-consuming annotation process.209

C. Rationale of the Approach210

Two main problems arise when training deep neural net-211

works (DNNs) for blink detection. First, the available datasets212

for blink detection are relatively small compared to the213

datasets used for training deep learning models for other tasks214

such as object recognition [40] or image segmentation [41].215

Cortacero et al. [21] analyzed the impact of dataset size in216

training DNNs for blink detection, showing that increasing the217

dataset size improves the performance of the trained models.218

The second problem is that blink detection is a highly219

unbalanced problem. Blinks are fast actions that last less than220

half a second and, therefore, very few frames can be annotated221

as blinks during video recording. In the Researcher’s Night222

dataset [19] about 5% of the frames are considered part of a223

blink and about 1.3% of the visible eye pictures are considered224

to be fully closed eyes; whilst the percentage of closed eyes225

pictures in the RT-BENE dataset [21] is around 4.3%.226

Some of the blink detection methods based on DNNs use227

different techniques to reduce the effect of these problems.228

To mention a few, some research works use data augmentation229

to prevent the overfitting caused by training models with230

a small number of samples [35], [37], others use transfer231

learning to reduce the impact of the lack of data [37], and232

others applied oversampling techniques to reduce the class233

imbalance between open and closed eyes [21], [35].234

However, to the best of our knowledge, there is no previous235

research focused on finding a solution to both problems.236

We present Eye-LRCN, a novel approach to blink detection237

and blink completeness detection that has been designed with238

these two issues in mind. Our approach is based on the one239

proposed by Li et al. [33], which also uses a LRCN for blink240

detection. The main novelties with respect to their approach241

is the use of a Siamese architecture for CNN training and the242

use of a bidirectional LSTM [13] instead of a unidirectional243

LSTM. Note that Siamese architectures have proven effective244

for other problems with high-class imbalance [42], [43], [44],245

being also a popular solution for one-shot and few-shot246

learning problems [45]. Bidirectional LSTM have proven to247

be considerably better than their unidirectional counterparts248

in many fields such as speech recognition [14] or traffic249

prediction [15]. We combine the Siamese architecture with250

data augmentation and transfer learning, making our approach 251

robust to class imbalance and having a relatively small number 252

of training samples. Furthermore, our approach, which is 253

mainly intended for blink detection and blink completeness 254

detection, can also be used for eye state detection. 255

III. METHODOLOGY 256

This section presents Eye-LRCN, an LRCN to solve the 257

problem of eye blink detection. Broadly speaking, LRCNs 258

combine CNNs and RNNs to get the best of both architectures. 259

On the one hand, CNNs provide very good performance when 260

working with image data and are excellent feature extractors, 261

but they are not designed to deal with sequential data. On the 262

other hand, RNNs are excellent for working with sequential 263

data, but they are not as good as CNNs when dealing with 264

images. LRCNs can map variable length inputs (e.g., video 265

frames) to variable length outputs (e.g., blink predictions), 266

leveraging the performance of CNNs for visual recognition 267

problems [11]. Fig. 1 depicts an overview of the Eye-LRCN 268

method, which receives a video as input and performs image 269

sequence analysis through a three-step process summarized as 270

follows. 271

1) The eye images are passed through a CNN that acts as 272

a feature extractor. The CNN is trained to discriminate 273

between images of open, closed, and partially closed 274

eyes. The position of the extracted features in the feature 275

space determines the degree of openness of the eye. 276

2) The extracted features serve as input to a bidirectional 277

LSTM [13] that performs sequence learning taking into 278

account the temporal context of the input data. 279

3) A fully connected (FC) layer with a softmax activation 280

function is in charge of determining which class each 281

eye image belongs to. The number of units in this layer 282

varies depending on the task the network is trained for. 283

It is worth noting that this methodology was developed for 284

blink detection and blink completeness detection. However, 285

given the similarity of these problems with eye state detection, 286

our proposal is also suitable for this other task. 287

A. Feature Extraction 288

The goal of this step is to train a network capable of 289

discriminating between images of open, closed, and partially 290

closed eyes. For this purpose, the network should capture 291

some relevant properties of eye images in order to generate a 292

feature space where the samples of each class are together and 293

separated from the samples of the other classes. A Siamese 294

architecture is used to overcome the high-class imbalance 295

present in blink detection datasets and the small number of 296

samples available for training. 297

Siamese neural networks are composed of twin networks 298

that receive different inputs, which are joined by an energy 299

function at the top of the network [46]. This function computes 300

some metric between the highest-level feature representation 301

on each side of the network. Siamese networks ensure consis- 302

tency in their predictions, guaranteeing that similar samples are 303

mapped nearby in the feature space and distinct samples are 304

mapped distantly. In practice, twin networks are represented 305
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Fig. 1. Eye-LRCN: a CNN extract the relevant features from the input images, the generated embeddings are fed to a bidirectional LSTM that performs
sequence learning, and its outputs feed a FC layer with a softmax activation function. Note that only one of the two layers of the bidirectional LSTM is shown
for simplicity reasons, and that the number of units of the FC layer depends on the learning task. This example illustrates the blink completeness detection
problem that requires three units to determine if the eye image does not belong to a blink (0), belongs to a blink (1), or is fully closed (2).

by a single network through which both inputs are processed,306

ensuring symmetry and parameter sharing.307

As stated before, we use a Siamese CNN trained to dis-308

criminate between images of open, closed, and partially closed309

eyes. The Siamese architecture is based on the one proposed310

by Koch et al. [46] for few-shot learning image recognition.311

The main difference with their approach is the learning task,312

in addition to the Siamese design. Fig. 2 shows the architecture313

used during training. A CNN feature extractor receives an314

eye image as input and converts it into a feature vector. Note315

that our method can be used with any CNN architecture. The316

output of the CNN is forwarded to a FC layer composed of317

256 units. In each training step, a pair of images is propagated318

through the twin network generating two 256-feature vectors,319

v1 and v2. The Siamese networks are joined by applying320

the feature-wise L1 distance between the two vectors. Note321

that L1 is the most preferable metric for high-dimensional322

applications since it provides the best contrast between the323

different points [47]. A final single sigmoid unit is used to324

calculate the probability p that both images belong to the same325

class, defined as follows:326

p = σ

⎛
⎝�

j

δ j

���v( j)
1,L1

− v( j)
2,L1

���
⎞
⎠ (1)327

where σ is the sigmoid activation function and δ j represent328

the parameters learned by the model during training, weighting329

the importance of the feature-wise L1 distance.330

Siamese neural networks are trained using pairs of images.331

Given that we want the network to learn the similar-332

ity/dissimilarity between open, closed, and partially closed eye333

images, the training samples can be reused in different pairs.334

In this manner, the number of pairs used to train the network335

Fig. 2. Siamese architecture to train the CNN feature extractor. The output
of the network is the probability that both inputs belong to the same class.

can be increased. In particular, the number of training pairs 336

for a dataset composed of n images is calculated as 337

N = n2 − n

2
. (2) 338

The class imbalance between open and closed eyes is solved 339

by training the network with balanced mini-batches. Balanced 340

mini-batches have been shown to be effective for problems 341

with unbalanced data and show greater generalization ability 342

than other techniques such as oversampling and undersam- 343

pling [12]. Let C be the number of classes in the dataset and 344

B the batch size, a balanced mini-batch is composed of the 345

following. 346

1) B/2 pairs of images such that the two images belong to 347

different classes ci and c j , ∀i, j ∈ {1, . . . , C}, i �= j . 348

2) B/2C pairs of images such that the two images belong 349

to the same class ci , ∀i ∈ {1, . . . , C}. 350

B. Bidirectional LSTM 351

In blink detection problems the temporal dimension is very 352

important. During incomplete blinks the eye never closes 353
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completely, making it difficult for CNNs to predict if an eye354

image belongs to a blink or not by just looking at individual355

frames. In general, CNNs achieve very good performance356

classifying open and fully closed eyes, but standalone CNNs357

are not enough when predicting incomplete blinks.358

Recurrent neural networks (RNNs) [48] are designed to359

work with sequential inputs, such as text, speech, or videos,360

for classification and prediction purposes. Unlike traditional361

neural networks, RNNs are not limited by the length of the362

inputs and can use the temporal context to generate better363

predictions. RNNs allow to retain information from previously364

processed inputs by using hidden states, allowing to analyze365

the current input in the context of the previous and next ones.366

We use a bidirectional LSTM [13] with two layers com-367

posed of 256 LSTM cells. This network receives sequences368

of feature vectors generated by the CNN feature extractor369

and, as stated before, each feature vector represents an eye370

picture and is composed of 256 features. The network performs371

many-to-many sequence predictions, with a sequence length of372

64 frames. Dropout regularization is applied after each LSTM373

layer with a probability of 0.5 to prevent overfitting.374

C. State Prediction375

The output of the bidirectional LSTM is propagated to a FC376

layer. The number of units in this last layer depends on the377

task the network performs; that is, it contains as many units378

as target classes. Regardless of the learning task considered,379

a softmax activation function is applied on the output of the FC380

layer to calculate the probability that the eye image belongs381

to each class. Finally, the predicted class is the one with the382

highest probability.383

The number of units in the FC layer for each learning task384

is detailed as follows.385

1) Simple blink detection: two units. The network has to386

deal with a binary classification problem to determine if387

the eye image belongs to a blink (1) or not (0).388

2) Blink completeness detection: three units. The network389

has to deal with a multiclass classification problem to390

determine if the eye image does not belong to a blink391

(0), belongs to a blink (1), or is fully closed (2). Note392

that a blink is complete if the eye is fully closed in at393

least one of the frames that compose the blink, otherwise394

the blink is incomplete.395

3) Eye state detection: two units. The network has to deal396

with a binary classification problem to determine if the397

input image corresponds to an open eye (0) or a closed398

eye (1). Note that Eye-LRCN was designed to solve the399

other two tasks, but it can be also used for eye state400

detection due to the similarity between them.401

IV. EXPERIMENTAL FRAMEWORK402

Several evaluation procedures related to blink detection can403

be found in the literature, without clear agreement on which404

one should be used for the problem at hand. This lack of405

consensus makes it difficult to compare the results obtained406

in different research works and, although many of them use407

the same datasets, the ground truth usually differs. Moreover,408

most datasets are created in laboratory environments and the 409

reported results may not correspond to real-world scenarios. 410

Another problem is the lack of consensus in the definition 411

of a blink. Many works consider a blink as a frame in which 412

the eye is fully closed [21], [35], while for others a blink 413

consists of a sequence of frames in which the eyelids close 414

and reopen again [19], [26], [27]. In our research, we consider 415

the second approach to be the most appropriate, but we 416

also carried out some experiments using the other one to 417

compare the performance of the proposed method with other 418

works. 419

The framework used to evaluate blink and blink com- 420

pleteness detection is the one proposed by Fogelton and 421

Benesova [26]. We also used their ground truth annotations for 422

the different datasets considered, which include: 1) for each 423

frame, the id of the blink to which it belongs (if the frame 424

does not belong to any blink, it is annotated as −1) and 2) for 425

each eye, if it is fully closed or not. Note that blinks on left 426

and right eyes are evaluated independently. These annotations 427

are translated into three labels: 0 means that the frame does 428

not belong to a blink, 1 means that the frame belongs to a 429

blink but the eye is not fully closed, and 2 means that the 430

frame belongs to a blink and the eye is fully closed. In this 431

context, an incomplete blink is represented as a sequence of 432

frames all annotated with label 1, whilst in a complete blink 433

at least one of the frames is annotated with label 2. 434

A. Model Training 435

The CNN and the bidirectional LSTM were trained indepen- 436

dently. More specifically, the CNN was trained first and then 437

the LSTM was trained using 256-feature vector sequences gen- 438

erated by the CNN. In both cases, a grid search was performed 439

for hyper-parameter optimization using the Researcher’s Night 440

dataset [19]. During this process, the network was trained 441

using the training split and the performance was measured on 442

the validation split. Once the hyper-parameters were adjusted, 443

the network was finally trained with the selected hyper- 444

parameters, using both training and validation splits. 445

1) Feature Extractor Training: The CNN used as feature 446

extractor was trained using a Siamese architecture to overcome 447

the high imbalance of blink detection problems and the limited 448

number of training samples. According to some preliminary 449

results, the backbone CNN used during the experiments was 450

a ResNet18 [38] pretrained on the ImageNet dataset [40]. 451

Table I shows the grid search performed to fine-tune three 452

hyper-parameters of the CNN: batch-size, learning rate α, 453

and number of units in the FC layer. Balanced mini-batches 454

composed of 128 pairs of images were used to counteract class 455

imbalance. The pairs of images were generated randomly, but 456

always satisfying the mini-batch balance. During training, data 457

augmentation techniques were applied to 50% of the images 458

in order to prevent overfitting. Different techniques were 459

used and combined, including horizontal flips, image scaling 460

between 90% and 110% of their original size, translations of 461

up to 10% in both axes and more aggressive techniques such 462

as image blurring, sharpening, embossing, noise, and color 463

inversion, among others. The number of training pairs per 464

epoch was equal to the size of the training set. All eye images 465
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TABLE I

GRID SEARCH PERFORMED FOR HYPER-PARAMETER OPTIMIZATION.
THE SELECTED VALUES ARE MARKED IN BOLD FACE

were resized to 100 × 100 pixels before being processed by466

the network.467

The network was trained during 20 epochs, and using the468

Adam optimizer [49] with the following parameters: β1 = 0.9,469

β2 = 0.999, and � = 10−8.470

During hyperparameter optimization, the performance of471

the network was analyzed after each epoch, with the aim of472

evaluating its discrimination power to differentiate between473

open, closed, and partially closed eyes. In order to do this,474

we used clustering to classify the samples in the validation475

split. All the images in the training split were processed by476

the backbone network to extract a 256-feature representation477

of the images. Then, the centroid of each class (open, closed,478

and partially closed eyes) in the training split was calculated.479

Each image in the validation split was processed by the480

backbone network, and the distance between its 256-feature481

representation and the three centroids was calculated. Finally,482

the predicted class for each image was the one corresponding483

to the closest centroid.484

2) Bidirectional LSTM Training: The bidirectional LSTM485

receives sequences of 256-feature vectors generated by the486

feature extractor. Therefore, eye images are first processed by487

the CNN feature extractor before being fed to the RNN.488

Table I shows the grid search performed to fine-tune four489

hyper-parameters of the RNN: batch size, sequence length,490

learning rate α, and number of hidden units per layer. The491

sequence length represents the number of consecutive frames492

processed by the network on each step. The experiments493

carried out showed that the performance of the network was494

better when using a big sequence length. However, most495

consumer-level webcams record video at 30 or 60 frames/s and496

this frame rate should be considered to perform near real-time497

video processing. For this reason, sequence lengths greater498

than 64 were not considered. The maximum batch size has499

been also limited to 512 frames (eight sequences of 64 frames)500

to reduce memory usage during training.501

The network was trained during 25 epochs, and using the502

Adam optimizer with the following parameters: β1 = 0.9,503

β2 = 0.999, � = 10−8.504

B. Datasets505

The number of available datasets for blink detection has506

increased in recent years. Although a wide variety of datasets507

are available at this time, their size tends to be quite small.508

TABLE II

SUMMARY OF THE DATASETS USED IN THE EXPERIMENTATION

In this section, we introduce several datasets found in the 509

literature, which were used to train and evaluate the proposed 510

method. Table II summarizes the datasets considered in this 511

research, which are following described in depth. 512

1) Eyeblink8 Dataset [50]: It contains eight videos corre- 513

sponding to four different individuals (one of them wearing 514

glasses). The videos were recorded at 30 frames/s in a home 515

environment and the individuals act naturally (smiling, cover- 516

ing face with hands, and looking down). There are 480 eye 517

blinks in a total of 70 992 annotated frames with a spatial 518

resolution of 640 × 480 pixels. 519

2) Researcher’s Night Dataset [19]: It contains 107 videos 520

with 223 116 frames of people reading an article on a computer 521

screen while being recorded. In some videos, there is more 522

than one person in the image. People act naturally and around 523

20% wear glasses, with a total of 1849 blinks annotated. The 524

dataset is composed of Researcher’s Night 15 and Researcher’s 525

Night 30, which were recorded at 15 and 30 frames/s, respec- 526

tively, with a spatial resolution of 640 × 480. The dataset is 527

divided into training (1/4), validation (1/4), and test (1/2) 528

sets. 529

3) Talking Face Dataset [26]: It contains a single video 530

with 5000 frames corresponding to one single subject talking 531

in front of a camera. The video was recorded at 25 frames/s, 532

with a spatial resolution of 720 × 576. This dataset1 was 533

originally created to evaluate the precision in facial landmark 534

detection. This implies that there is no official ground truth for 535

eye blinks. For this reason, we used the annotations provided 536

by Fogelton and Benesova [26], who reported 61 blinks per 537

eye. 538

4) RT-BENE Dataset [21]: Unlike the datasets annotated 539

by Fogelton and Benesova [26], blinks are not considered as 540

sequences of frames. Eye images are classified between open 541

eyes (at least part of the sclera or pupil is visible) and closed 542

eyes (the eyelids are fully closed). There are 243 714 annotated 543

images, corresponding to 16 subjects, and with the following 544

distribution: 218 548 are open eyes, 10 444 are closed eyes, 545

and 14 722 are labeled as uncertain. The dataset is divided 546

into train and test splits, with the images of 12 subjects used 547

for train and the remaining four used for test. 548

C. Performance Measures 549

Blink detection is a highly unbalanced problem in which 550

the number of open eyes samples is much greater than the 551

number of closed eyes samples. In this type of the scenario, 552

the F1-score is a robust metric that is in fact used as a standard 553

1https://personalpages.manchester.ac.U.K./staff/timothy.f.cootes/data/talking
_face/talking_face.html
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in the state-of-the-art. The different methods analyzed in the554

experimentation were evaluated with the F1-score, which is555

defined as the harmonic mean of precision and recall556

F1-score = 2 ∗ precision ∗ recall

precision + recall
. (3)557

We also used the inference time to analyze the performance558

of the proposed method. Note that it refers to the average559

time that a model takes to infer a single input. This time only560

measures the feed-forward of the network, whilst other factors561

such as the transfer time of the images from CPU to GPU are562

not taken into account.563

V. RESULTS564

Four experiments were performed to evaluate Eye-LRCN,565

including a comparison with some variants of it and the state-566

of-the-art methods. The first two experiments analyze the blink567

detection problem following the procedure proposed in [26],568

which defines a blink as a sequence of frames in which569

the eyelids close and open again. The third experiment was570

designed for eye state detection and the fourth to analyze the571

performance of Eye-LRCN in terms of inference time.572

A. Experiment 1—Simple Blink Detection573

The target of the first experiment is to evaluate Eye-LCRN574

on simple blink detection and compare it with the state-of-575

the-art approaches [19], [26]. For this purpose, we used the576

evaluation method proposed in [26], which is based on the577

intersection over union (IOU) metric. If the predicted blink578

has an IOU greater than 0.2 with respect to the ground truth,579

then it will be considered as a true positive. Other relevant580

information includes the fact that two consecutive blinks are581

merged into a single one, and blinks on left and right eyes are582

evaluated independently.583

The model was trained using the train and validation splits584

of Researcher’s Night dataset. The performance of the model585

was evaluated on the Researcher’s Night test set, as well586

as on the Eyeblink8 and the Talking Face datasets. It is587

worth mentioning that the last two datasets were not used588

in the training process, showing the ability of the method to589

generalize and be applicable to new scenarios.590

In order to shed light on the role played by the different591

elements that make up Eye-LRCN, we also included in the592

comparison three variants of Eye-LRCN with slight modifica-593

tions:594

1) Eye-LRCN Without Data Augmentation: In order to mea-595

sure the impact of data augmentation techniques on the quality596

of Eye-LRCN results, we introduce a variant of Eye-LRCN in597

which no data augmentation techniques were applied during598

the training of the CNN feature extractor.599

2) Non-Siamese Eye-LRCN: The CNN feature extractor was600

not trained using a Siamese architecture. Instead, the network601

was trained as a standard CNN that receives as input an image602

of an eye and returns as output whether the eye is open, closed,603

or partially closed. Balanced class weights were applied in the604

loss function to counteract class imbalance. Once the network605

was trained, the classifier layer of the network was removed606

and the rest of the network is used as the feature extractor.607

TABLE III

F1-SCORE OF THE DIFFERENT METHODS CONSIDERED APPLIED TO
SIMPLE BLINK DETECTION. RN STANDS FOR RESEARCHER’S

NIGHT DATASET. BEST RESULTS ARE

MARKED IN BOLD FACE

3) Unidirectional Eye-LRCN: The bidirectional LSTM that 608

performs sequence learning was replaced by a unidirectional 609

LSTM, which allows making predictions based solely on 610

past inputs with the main advantage of being much less 611

computationally expensive. 612

Table III shows the results obtained with the different meth- 613

ods considered on the three evaluated datasets. The number of 614

ground truth blinks is also reported. As left and right eyes are 615

evaluated independently, the number of ground truth blinks is 616

almost doubled with respect to the ones reported in Table II. 617

In particular, this number is slightly lower than the double 618

because consecutive blinks are merged and, in some cases, 619

one of the eyes is not visible. 620

It is worth noting that the results presented in [19] were 621

achieved using a different evaluation procedure. Fogelton and 622

Benesova [26] proposed a new evaluation procedure, and used 623

it not only to evaluate their proposal but also to re-evaluate 624

the method presented in [19]. Therefore, the results reported 625

in [26] for both methods are the ones included in Table III. 626

As can be observed in Table III, Eye-LRCN and Non- 627

Siamese Eye-LRCN achieve better results than the ones 628

proposed by Fogelton and Benesova [19], [26] in the three 629

datasets considered. Eye-LRCN obtains the best results in 630

Researcher’s Night and Talking Face datasets, with an 631

improvement of 0.027 and 0.008 with respect to [26]. Non- 632

Siamese Eye-LRCN obtains the best results in Eyeblink8 633

dataset, with an improvement of 0.037 with respect to [26]. 634

Comparing the different Eye-LRCN variations, Non- 635

Siamese Eye-LRCN results are similar to Eye-LRCN, but they 636

are slightly worse in the Researcher’s Night dataset. Notice 637

that Researcher’s Night dataset is the most similar dataset to 638

real-world environments, demonstrating the adequacy of our 639

method to work on these scenarios. Regarding Unidirectional 640

Eye-LRCN, we observe that the results are considerably worse 641

than those of Eye-LRCN. From these results, we can state 642

that the use of bidirectionality in the LSTM has a great 643

impact on the quality of the predictions made by our method. 644

Eye-LRCN without data augmentation has the worst perfor- 645

mance of all proposed Eye-LRCN variants in all datasets. 646

The results show that the use of data augmentation techniques 647

has a great impact on the quality of the results obtained by 648

Eye-LRCN, helping the model to generalize and reducing 649

overfitting. 650
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TABLE IV

F1-SCORE OF THE DIFFERENT METHODS CONSIDERED APPLIED
TO BLINK COMPLETENESS DETECTION, BOTH FOR COMPLETE

(COMP.) AND INCOMPLETE (INCOM.) BLINKS. RN STANDS FOR

RESEARCHER’S NIGHT DATASET. BEST RESULTS

ARE MARKED IN BOLD FACE

B. Experiment 2–Blink Completeness Detection651

The objective here is to evaluate Eye-LRCN on blink com-652

pleteness detection. As in Experiment 1, we compare it with653

the three variants previously described (Eye-LRCN without654

data augmentation, Non-Siamese, and unidirectional) and the655

state-of-the-art method [26]. Regarding the evaluation proce-656

dure, we also used the one previously described but extended657

to differentiate between complete and incomplete blinks. Note658

that the F1-score for the complete and incomplete blinks was659

calculated independently. The model was also trained using660

the training and validation splits of the Researcher’s Night661

dataset, and evaluated over Researcher’s Night test set and the662

Eyeblink8 and the Talking Face datasets.663

Table IV shows the results achieved by the different methods664

considered on the three evaluated datasets. The number of665

ground truth complete and incomplete blinks is also reported.666

Notice that these numbers differ from those presented in667

Experiment 1 because complete and incomplete blinks are668

processed independently and, therefore, only double blinks of669

the same type are merged.670

As can be seen in Table IV, Eye-LRCN achieves more671

competitive results in complete blink detection for the three672

datasets evaluated. In the Researcher’s Night and Talking673

Face datasets, our approach obtains better results both on674

complete and incomplete blinks, being considerably better675

when detecting incomplete blinks, with an improvement of676

0.119 and 0.25 in the Researcher’s Night and Talking Face677

datasets, respectively. Regarding the Eyeblink8 dataset, our678

method achieves better results on complete blinks, but the679

method proposed in [26] performs better on incomplete blinks.680

Regarding Eye-LRCN variants, Eye-LRCN outperforms681

non-Siamese Eye-LRCN, especially in incomplete blink detec-682

tion. Unidirectional Eye-LRCN also obtains considerably683

worse results with respect to Eye-LRCN, but it works better684

than Non-Siamese Eye-LRCN for incomplete blink detection.685

This seems to indicate that the use of a Siamese architecture is686

more suitable for the detection of incomplete blinks. As in the687

previous experiment, Eye-LRCN without data augmentation688

TABLE V

THREEFOLD CROSS-VALIDATION PERFORMED IN THE EYEBLINK8
DATASET. EACH NUMBER REPRESENTS ONE OF THE EIGHT VIDEOS

IN THE DATASET. VIDEOS ARE NUMBERED FROM 1 TO 11, BUT

NUMBERS 5, 6 AND 7 DO NOT EXIST IN THE DATASET

obtains the worst results of all the proposed Eye-LRCN 689

variants, showing the impact of the use of data augmentation 690

techniques on the generalizability of the model. 691

C. Experiment 3—Eye State Detection 692

This experiment aims to study the performance of 693

Eye-LRCN in eye state detection tasks. In this case, the model 694

was trained to perform binary classification between open and 695

fully closed eyes. Note that our approach is not designed for 696

eye state detection, but with this experiment, we aim to show 697

that it can also obtain competitive results on this task. 698

The experiment includes a comparison with two different 699

approaches [21], [35]. There are some important differences 700

between these two methods and ours, which must be taken into 701

account in the evaluation procedure. In our approach left and 702

right eyes are evaluated independently, while the blink predic- 703

tion is performed per frame in [21], using both left and right 704

eyes as input. For this reason, and with the aim of providing 705

a fair comparison, our method was slightly modified: unlike 706

the first two experiments, the bidirectional LSTM receives as 707

input the concatenation of the left and right 256-feature vectors 708

instead of evaluating each one independently. 709

In eye state detection, blinks are evaluated as individual 710

closed eye images and not as sequences of frames. Hence, 711

the temporal context of the inputs may not be as relevant as 712

in simple blink and blink completeness detection. In order 713

to assess the impact of temporal context in this task, we also 714

evaluated a modified version of our method in which the RNN 715

was replaced by a feedforward neural network. We call this 716

modified version Eye-FFCN. The network has a unique hidden 717

layer with 32 units, followed by a single sigmoid unit in the 718

output layer. Dropout regularization with probability 0.5 is 719

applied after the hidden layer to prevent overfitting. The model 720

was trained during 25 epochs, with a learning rate α of 0.0001, 721

and a batch size of 32. We also included Non-Siamese Eye- 722

LRCN in the comparative in order to determine the impact of 723

the Siamese architecture in eye state detection tasks. 724

The performance of the models was evaluated on Eye- 725

blink8, Researcher’s Night, and RT-BENE datasets using the 726

same strategy as in [21]. Therefore, we used a threefold 727

cross-validation in Eyeblink8 and RT-BENE datasets (see 728

Tables V and VI); and the standard evaluation procedure using 729

the training, validation, and test splits in the Researcher’s 730

Night dataset. 731

Table VII shows the results obtained with the different 732

methods considered on three datasets. Note that Eye-LRCN 733

and Non-Siamese Eye-LRCN are not designed for this task, 734
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TABLE VI

THREEFOLD CROSS-VALIDATION PERFORMED IN THE RT-BENE
DATASET. EACH NUMBER REPRESENTS ONE OF THE 16 INDIVIDUALS

IN THE DATASET. VIDEOS ARE NUMBERED FROM 0 TO 16, BUT

NUMBER 6 WAS DISCARDED FROM THE DATASET

BY THE ORIGINAL AUTHORS

TABLE VII

F1-SCORE OF THE DIFFERENT METHODS CONSIDERED APPLIED TO EYE

STATE DETECTION. RN STANDS FOR RESEARCHER’S NIGHT DATASET.
BEST RESULTS ARE MARKED IN BOLD FACE

since they predict blinks as sequences of frames rather than735

as individual frames.736

As can be observed, Eye-LRCN and its two variants outper-737

form the approach of Anas et al. [35] for the two datasets in738

which it has been evaluated. In particular, Eye-LRCN achieves739

an improvement of 0.076 and 0.073 in the Eyeblink8 and740

the RT-BENE datasets, respectively. In contrast, the approach741

proposed by Cortacero et al. [21] achieves better results than742

our method in the three datasets evaluated. These results743

suggest that a CNN-based architecture is more appropriate for744

eye state detection than our approach. That is, our architecture745

is more suitable for problems in which a blink is defined as746

an action over time, as is the case with simple blink and blink747

completeness detection.748

Eye-LRCN obtains slightly better results than the feedfor-749

ward version in the three datasets evaluated. These results sug-750

gest that the temporal context of the inputs has a very limited751

impact on eye state detection tasks. That is, the quality of the752

results depends mostly on the quality of the feature extractor.753

Regarding Non-Siamese Eye-LRCN, it obtains worse results754

than Eye-LRCN in Researcher’s Night and Eyeblink8 datasets,755

but beats Eye-LRCN in RT-BENE dataset.756

D. Experiment 4—Inference Time757

The objective of the last experiment is to make a comparison758

of the interference times of the proposed model and its759

variants. In this experiment, the inference time is defined as760

the average time it takes the network to feedforward a single761

frame. The average inference time per frame was calculated762

using 2000 iterations and a batch size of 512 frames. To better763

illustrate the topology of the evaluated networks, Table VIII764

shows the size, the number of parameters, and the depth of765

the models. Notice that the experimentation was carried out766

on an NVIDIA Titan XP GPU.767

TABLE VIII

TOPOLOGY OF THE DIFFERENT EYE-LRCN VERSIONS ANALYZED. THE
BACKBONE NETWORK USED IN THE CNN WAS A RESNET18 [38]

TABLE IX

INFERENCE TIME (MILLISECONDS) OF THE DIFFERENT METHODS

FOR SIMPLE BLINK AND BLINK DETECTION (B) AND EYE STATE

DETECTION (E) TASKS. NOTICE THAT LEFT AND RIGHT EYES ARE

EVALUATED AT THE SAME TIME IN EYE STATE DETECTION.
NOTE ALSO THAT THE CLASSIFIER IS A LSTM

IN ALL CASES BUT EYE-FFCN, WHICH USES A

FEEDFORWARD NEURAL NETWORK

Table IX shows the inference time of the different methods 768

on blink and blink completeness detection tasks (B in column 769

Task). As can be seen, almost 95% of the total inference 770

time of the model corresponds to the feature extractor. The 771

LSTM network performs sequence learning on 256-feature 772

inputs, which is not very computationally expensive. Using a 773

unidirectional LSTM network cuts this component’s inference 774

time by almost half. This reduction in time corresponds with 775

a reduction in the number of network parameters with respect 776

to its bidirectional counterpart, as can be seen in Table VIII. 777

However, as it constitutes a very small part of the total 778

inference time, this reduction does not have a significant 779

impact on the inference time. 780

The inference time of the different methods on eye state 781

detection task are also depicted in Table IX (E in column 782

Task). As can be seen, the inference time of the feature 783

extractor practically doubles with respect to those of column 784

B. This is because in eye state detection problem the blink is 785

analyzed at the frame level, and therefore the feature extractor 786

has to process both left and right eyes. It is worth mentioning 787

that the Eye-FFCN network classifier is notably faster than 788

the methods that use an LSTM, since it uses a feedforward 789

network that does not take into account the temporal context 790

when making predictions. 791

VI. CONCLUSION 792

Computer vision syndrome is highly related to a decrease 793

in blink rate and an increase in the prevalence of incom- 794

plete blinks and can have a significant impact on visual 795
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comfort and occupational productivity. For this reason, eye796

blink assessment is fundamental to determine the causes of797

the syndrome. Eye blink detection is a challenging problem798

because of the fast and spontaneous nature of blinking. In this799

context, we propose Eye-LRCN, a novel approach to blink800

detection and blink completeness detection based on a LRCN801

that combines a Siamese CNN for feature extraction with a802

bidirectional LSTM for sequence learning.803

We tackled two of the main issues that arise in blink detec-804

tion research. On the one hand, we used a Siamese architecture805

during CNN training to mitigate the class imbalance between806

closed and open eyes, allowing to generate relevant features807

that define the eye state based on their position in the feature808

space. On the other hand, we used transfer learning and data809

augmentation to deal with a small number of samples, as is810

usually the case in blink detection datasets.811

Our approach outperforms the state-of-the-art methods in812

simple blink detection and blink completeness detection in813

most of the datasets evaluated. More specifically, it is clearly814

superior when detecting incomplete blinks, showing a notice-815

able improvement over the other methods considered. Further-816

more, it obtains remarkable results in eye state detection, even817

though it was not designed for this task.818

As future research, we plan to continue exploring new ways819

of training and improving our Siamese network. In particular,820

we will use image triplets and perform on-line triplet selec-821

tion to train the network with the most challenging image822

combinations. Given that blinks are actions based on eye823

movements, we also plan to explore the use of optical flow to824

predict eye blinks. In recent years, some effective CNN-based825

methods for optical flow estimation have been introduced826

and could potentially be applied to blink detection. Since827

the feature extractor accounts for 95% of the total inference828

time of our model, we would also like to explore the use of829

other lightweight and efficient CNN architectures with a better830

balance between performance and computational cost. Finally,831

we would also like to address the timeframe variation problem,832

using normalization techniques to standardize the number of833

frames/s of the videos processed by the model based on the834

average eye state time.835
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