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and Algebraic Analysis
Jung-Min Yang , Chun-Kyung Lee , and Kwang-Hyun Cho , Senior Member, IEEE

Abstract— This article investigates robust stabilizing control of
biological systems modeled by Boolean networks (BNs). A pop-
ulation of BNs is considered where a majority of BNs have the
same BN dynamics, but some BNs are inflicted by mutations
damaging particular nodes, leading to perturbed dynamics that
prohibit global stabilization to the desired attractor. The proposed
control strategy consists of two steps. First, the nominal BN is
transformed and curtailed into a sub-BN via a simple coordinate
transformation and network reduction associated with the desired
attractor. The feedback vertex set (FVS) control is then applied to
the reduced BN to determine the control inputs for the nominal
BN. Next, the control inputs derived in the first step and mutated
nodes are applied to the nominal BN so as to identify residual
dynamics of perturbed BNs, and additional control inputs are
selected according to the canalization effect of each node. The
overall control inputs are applied to the BN population, so that
the nominal BN converges to the desired attractor and perturbed
BNs to their own attractors that are the closest possible to the
desired attractor. The performance of the proposed robust control
scheme is validated through numerical experiments on random
BNs and a complex biological network.

Index Terms— Boolean networks (BNs), complex networks,
mutation, robust stabilization, systems biology.

I. INTRODUCTION

AS A unique modeling formalism for complex dynamical
networks, Boolean networks (BNs) have been receiving

much attention in various research fields, especially in systems
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biology [1]–[3]. Though dynamics of BNs may seem too
simplified compared with complicated aspects of biological
systems, they can still represent the major characteristics
of biological mechanisms, possibly after streamlining gene
expressions via clustering [4] and/or reduction [5] of network
dynamics. Indeed, Boolean variables having only 1 (on) and
0 (off) and their transitions described as logical rules on
other variables epitomize underlying dynamics of biomolec-
ular systems—activation and inhibition of gene expressions
and their evolution governed by the regulatory nodes [6].

The state of a deterministic BN is a collection of the values
of all the constituent nodes. Starting from an initial state,
BNs always converge to equilibrium states termed attractors.
An attractor is either a fixed point or cycle. Attractors represent
key phenotypes of long-term behaviors possessed by the
corresponding biological system [7], [8]. Hence, stabilizing
control is one of the most important research topics on BNs,
wherein a control law is applied to a set of selected nodes
so that the BN can be stabilized to a desired attractor.

In this article, we present a robust stabilizing control scheme
for perturbed BNs where a set of nodes are selected as constant
control inputs. We consider a cell population in which a
majority of members have the same BN dynamics, whereas
some cells are inflicted by mutations that perturb specific
nodes, resulting in the change of BN dynamics. In particular,
we focus on the kind of mutations by which a number of
nodes are forced to have the opposite value of the desired
attractor. The dynamics of the resultant BNs, termed perturbed
BNs, becomes different from that of the nominal BN, and
thereby, global stabilization of the perturbed BNs toward the
desired attractor gets never achievable. Worse yet, it is often
the case that perturbed BNs evolve into undesirable attractors,
yielding fatal outcomes. For instance, instead of apoptosis,
cancer cells can degenerate into proliferation by mutations on
key tumor suppressor genes [9], [10]. The best way to alleviate
the adverse effect of mutations would be to apply additional
control inputs so as to drive perturbed BNs toward some other
attractors that have similar phenotypical characteristics to the
desired attractor. Furthermore, as the number of control inputs
is bounded by practical constraint, the stabilizing control
policy must be developed in favor of suppressing not only
the number of original control inputs for the nominal BN, but
also that of additional control inputs targeting perturbed BNs.
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A. Related Work

For the past decade, a number of efforts have been made to
develop an elegant mathematical framework of analyzing and
controlling BNs based on matrix operations called semi-tensor
product (STP) [11]–[13]. In view of the previous studies of
STP, the present topic is related to simultaneous stabilization
of a set of Boolean control networks (BCNs) and set stabiliza-
tion, namely, a BCN is stabilized with respect to a subset of
attractors. In [14], STP-based state and output feedback control
laws were proposed for achieving simultaneous stabilization
of multiple BCNs. In [15], ensemble controllability of BCNs
was introduced whereby a family of BCNs is steered between
two states via a free control sequence. In [16], on the other
hand, set stabilization of BCNs was addressed in which a time-
optimal controller is presented to make a BCN converge to an
invariant subset of states. In [17], the set stabilization problem
for probabilistic BNs with randomly chosen Boolean functions
was further investigated.

The proposed methodology is also related to pinning control
of BNs in that only a fraction of nodes are selected as control
inputs. In [18], pinned nodes are analytically selected in the
framework of STP so as to achieve global stabilization of
BNs. In [19], a pinning control method was presented for the
disturbance decoupling problem of BNs. In [20], a single-input
pinning control method was proposed to steer BNs toward a
desired state via a free control sequence. In [21], finally, model
reduction and pinning control were combined to make a BN
converge toward a desired attractor.

Besides STP-based approaches, a number of previous stud-
ies exist on analysis and control pertaining to perturbations or
mutations in biological systems with logical models. In rough
terms, they can be classified according to the types of per-
turbation. In [22]–[24], the effect of function perturbations
in BNs was studied, while gene or node related mutations
or disturbances were studied in [25]–[27]. In addition, edge-
related perturbations in BNs were considered in [28] and [29].

B. Contributions and Paper Organization

The proposed methodology of robust stabilization consists
of two steps. In the first step, we employ the attractor-
specific coordinate transformation and reduction technique
introduced in [30] as the stabilizing control law for nominal
BNs. Given the desired fixed point attractor, the controlled
BN is transformed into an equivalent one having the mini-
mum sum-of-product (SOP) expression and is reduced further
while maintaining the desired attractor. The feedback vertex
set (FVS) control [31], [32] is then applied to the reduced
BN to identify the control inputs that can achieve global
stabilization to the desired attractor. Since the identified control
inputs can also deal with the stabilizing control problem for the
given nominal BN, the number of control inputs is curtailed
compared with the original FVS control and other eminent
stabilizing control methods.

In the second step, we tackle the problem of robust stabiliza-
tion by first providing the nominal BN with the control inputs
derived in the first step and mutated node values to single
out the dynamics of perturbed BNs. We then quantify the

canalization effect [33] of remaining nodes, namely, investigat-
ing how many state variables are fixed in favor of the desired
attractor by assigning constant control to each node. The
additional control inputs are determined according to the total
canalization number over perturbed BNs. To demonstrate the
superiority and applicability of the proposed scheme, numeri-
cal experiments are conducted in which our stabilizing control
is applied to random BNs and a real biological network.

In comparison with the prior work, this article has the
following contributions.

1) In contrast with the STP-based approaches [14]–[21],
this study aims to achieve robust stabilization against
model uncertainties in consideration of real biological
problems. Furthermore, though [14]–[21] presented ana-
lytical solutions to the stabilization problem via matrix
computations, they have a serious drawback of exponen-
tial complexity. On the other hand, while the complexity
of the proposed control scheme is also NP-complete
in theory, its computational burden for tackling the
stabilization problem of complex biological networks
is manageable, mostly due to the network reduction
undertaken in the first step of the method.

2) Unlike the previous studies in the framework of STP
[14]–[21], this study pursues constant control with
neither state/output feedback nor free Boolean con-
trol sequences utilized. Constant control bears much
practical strength, as it can be realized by gene
knockout or pharmacological activation or inhibition of
molecules [34]. In contrast, applying time-varying or
feedback control signals to real biological systems is
almost infeasible.

3) In spite of various approaches and perspectives on
perturbations and mutations [22]–[29], no prior work
exists on a control theoretic approach to minimizing
adverse effects of gene mutations on the collection of
BNs as presented in this article. Our study is worthwhile
in pragmatic terms as well since it accomplishes robust
stabilization of complex biological networks that are
computationally intractable as shown in many previous
studies.

4) Though we adopt the stabilizing control law from our
previous result [30], this work has a significant improve-
ment over it. While [30] ensures global stabilization of
a given BN toward a desired attractor, it cannot resolve
the predicament that a number of nodes are permanently
perturbed as opposed to the desired values. Moreover,
the stabilizing control law of [30] is applicable only to
a single BN. On the other hand, the proposed scheme
can tackle the problem of simultaneously stabilizing a
number of BNs with different dynamics as affected by
mutations. In this way, each BN can be steered toward
its own attractor having similar biological characteristics
to the desired one.

The rest of this article is organized as follows. In Section II,
the stabilizing control of nominal BNs without mutation is
addressed. In Section III, the main result on robust stabiliza-
tion for perturbed BNs is proposed based on the coordinate
transformation and algebraic manipulation. In Section IV,
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we validate the proposed scheme by conducting numerical
experiments on a population of large-scale random BNs and
a real biological network, the metastasis influence network.
Finally, Section V concludes this article.

II. STABILIZING CONTROL OF NOMINAL BNS

The notations and stabilizing control law addressed in this
section are adopted from our previous work [30].

A. Attractor-Specific Coordinate Transformation

Notation: N denotes the set of non-negative integers. For
a finite set A, |A| ∈ N is the cardinality of A. For Boolean
variables a, b ∈ {0, 1}, “a′” denotes negation or logical NOT

of a, “ab” denotes conjunction or logical AND of a and b, and
“a + b” denotes disjunction or logical OR of a and b.

A BN having n state variables or nodes x1, . . . , xn ∈ {0, 1}
is represented by

xi(t + 1) = fi (x(t)), i = 1, . . . , n (1)

where t ∈ N is the discrete time variable, x(t) is the state
vector such that

x(t) := (x1(t), . . . , xn(t))

and fi : {0, 1}n → {0, 1}, i = 1, . . . , n, is a Boolean logic
serving as the state transition equation of xi . For later usage,
let N := {1, . . . , n}. xi(t) will be often denoted by i ∈ N
whenever convenient. This BN is alternatively represented by
a Boolean mapping

F = ( f1, . . . , fn) : {0, 1}n → {0, 1}n. (2)

Among fixed point attractors and cyclic ones possessed by
F , assume that a fixed point attractor

c = (c1, . . . , cn)

represents the state corresponding to the most desirable pheno-
type of the biological system characterized by F . Tc, a simple
coordinate transformation with respect to c, is introduced as
follows:

Tc : x = (x1, . . . , xn) → y := (y1, . . . , yn)

yi =
{

xi if ci = 1

x ′
i if ci = 0.

(3)

We utilize Tc to transform F into an equivalent BN G such
that

G = (g1, . . . , gn) : {0, 1}n → {0, 1}n

yi(t + 1) = gi(y(t)), i = 1, . . . , n. (4)

Without loss of generality, each gi(y(t)) is supposed to be
reduced to the minimum SOP expression after going through
the transformation.

As (3) signifies, Tc is an attractor-specific transformation,
whereby the desired attractor c of F is now represented by one
vector 1n := (1, 1, . . . , 1) in G. The latter feature provides
a shortcut to solving global stabilization of the original BN
F . Since 1n is a fixed point of G and gi(y(t)) has the
SOP expression, each gi(y(t)) contains at least one product

(or AND) term consisting only of state variables with no
negation operator attached; otherwise, logic 1 could not be a
fixed value of the state transition equation yi(t +1) = gi(y(t)).
We call such terms plus products. Those terms having state
variables with negation operator are called non-plus products.
Denote by Pi and P ′

i the set of plus products and non-plus
products in gi(y(t)), respectively.

Pi is regarded as a logical embodiment of the convergence
tendency of the original BN F toward the i th node value ci

of c. The correlation between Pi and ci can be understood
intuitively. Clearly, the convergence of G to 1n (or of F to c)
is attainable only if one or more terms of Pi turn on to 1.
Non-plus products in P ′

i do not contribute to the convergence,
because as G approaches 1n , all terms of P ′

i become 0 owing
to the existence of state variables with negation operator.

B. Network Reduction and FVS Control

An interesting property of G is that even though all terms
except for one plus product are removed from each state
transition equation, the reduced BN still maintains 1n as its
fixed point. Furthermore, the control inputs solving the global
stabilization problem of the reduced BN with respect to 1n

serve as a solution to the same problem for G [30, Th. 1].
Equivalently, the latter implies that the original BN F can be
globally stabilized to c by applying the control inputs derived
with respect to the reduced BN.

We now present a network reduction scheme that yields the
reduced BN H from G such that

H = (h1, . . . , hn) : {0, 1}n → {0, 1}n

zi(t + 1) = hi (z(t)), i = 1, . . . , n (5)

where z(t) := (z1(t), . . . , zn(t)) and hi(z(t)) are derived as
follows.

1) Among Pi of each yi , i = 1, . . . , n, take one plus
product, termed hi (y(t)), according to the selection
algorithm addressed in [30, Algorithm 1].

2) Set hi(z(t)) to be the state transition function of zi in
which zi replaces yi , i = 1, . . . , n.

In other words, H is derived from G simply by discarding
all terms except one plus product from gi(y(t)) and by
substituting y(t) with z(t). The selection of the plus product is
made in such a way that it minimizes the number of feedback
loops associated with the plus product and the rest of state
variables [30, Algorithm 1].

The FVS control [31], [32] is applied to H to induce the
set of minimum FVSs

� ⊂ 2N

where 2N denotes the power set of N . The set notation �
is needed to depict the general case where more than one
minimum FVS are derived with respect to H . We take an
arbitrary element

�H := {φ1, . . . , φm} ∈ � (6)

with |�H | = m. By the definition of FVS, setting control
inputs zφi := 1, ∀i = 1, . . . , m, makes H acyclic. Since 1n is
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still maintained as an attractor of H , the latter control globally
stabilizes H to 1n. As addressed earlier, �H also achieves
global stabilization of F to c. The values of control inputs for
F are determined by conducting the inverse transformation
T −1

c : �H → x. Given φi ∈ �H , T −1
c is defined as follows:

T −1
c : xφi =

{
1 cφi = 1

0 cφi = 0.
(7)

Since �H is derived with respect to the reduced BN H , it is
highly likely that |�H | is much less than |�F |, where �F

denotes the minimum FVS derived with respect to F . The
superiority of this stabilization scheme over the original FVS
control and other eminent stabilizing control schemes is fully
validated in [30].

Example 1: Consider a synthetic BN F with ten nodes
(n = 10) whose state transition equations are given by

x1(t + 1) = x ′
10(t)x7(t)

x2(t + 1) = (x5(t) + x9(t))x ′
8(t)

x3(t + 1) = x8(t)x1(t)

x4(t + 1) = (x5(t) + x2(t))
′(x4(t) + x7(t))

x5(t + 1) = x2(t) + x10(t)

x6(t + 1) = x5(t) + x3(t)x ′
4(t)

x7(t + 1) = x6(t)x8(t)

x8(t + 1) = x ′
2(t)

x9(t + 1) = x9(t)x ′
8(t)

x10(t + 1) = (x1(t) + x3(t))
′x2(t).

Suppose that among six attractors of F

c := (0, 1, 0, 0, 1, 1, 0, 0, 0, 1)

with 6.2% basin of attraction represents the most desirable
phenotype. Then, the coordinate transformation

Tc : yi =
{

xi i ∈ {2, 5, 6, 10}
x ′

i i ∈ {1, 3, 4, 7, 8, 9} (8)

is applied according to (3) so as to derive the transformed BN
G such that

y1(t + 1) = y7(t) + y10(t)

y2(t + 1) = y5(t)y8(t) + y8(t)y ′
9(t)

y3(t + 1) = y1(t) + y8(t)

y4(t + 1) = y2(t) + y5(t) + y4(t)y7(t)

y5(t + 1) = y2(t) + y10(t)

y6(t + 1) = y5(t) + y4(t)y ′
3(t)

y7(t + 1) = y8(t) + y ′
6(t)

y8(t + 1) = y2(t)

y9(t + 1) = y9(t) + y ′
8(t)

y10(t + 1) = y1(t)y2(t)y3(t). (9)

One can identify plus and non-plus products of each state
variable. For instance

P1 = {y7, y10} P ′
1 = ∅

P2 = {y5y8} P ′
2 = {y8y ′

9}.

Activating the plus product selection algorithm [30], we reduce
G to H by removing all terms except one plus product for each
yi , which is underlined in (9). The network graphs of G and
H are illustrated in the left part of Fig. 1. Finally, FVS control
to H yields the solution

� = {�H }, �H = {2, 9} (m = 2).

Since c2 = 1 and c9 = 0, the control inputs for the original
BN F are {x2 = 1, x9 = 0}. ♦

III. ROBUST STABILIZATION OF PERTURBED BNS

A. Problem Statement

In this study, we envisage that the population of biological
networks modeled by F is vulnerable to mutations, which
perturb the value of specific nodes. Since stability toward the
desired state c is our main interest, we examine the kind of
mutations that fix some nodes to the complementary values
of their positions in c, e.g., fixing the i th node to c′

i . Since
G is equivalent with F , we describe perturbed BNs in the
formulation of G. Let d , 1 ≤ d < n, be the number of
mutations that occur in the given population of biological
networks and denote each perturbed BN by G j , j = 1, . . . , d .
G j is supposed to have a mutation at the σ j th node, namely,
yσ j is fixed to 0 as a result of mutation. Thus, we can represent
each G j as

G j := G|yσ j =0, j ∈ {1, . . . , d}. (10)

Remark 1: Though the abovementioned formulation that a
perturbed BN has only one mutation is maintained throughout
this section, it is only for the brevity of notations. The
proposed scheme imposes no restriction on the number of
mutated nodes in a perturbed BN. As will be shown in
Section IV, we conduct the numerical experiment on random
and biological BNs by setting that each perturbed BN contains
up to two mutated nodes. Note that the dynamics of each
perturbed BN may significantly diverge from the nominal
BN under the influence of multiple mutations. Thus, from a
control perspective, G and G1, . . . , Gd should be regarded as
d + 1 different BNs.

The main objective is to determine a set of constant control
inputs so that while G is stabilized to c, each G j , j =
1, . . . , d , is stabilized to its own attractor as near as possible
to c. In this article, we use the Hamming distance between
two attractors as the proximity measure. Taking into account
the requirement that the convergence of the nominal BN F
toward c be always ensured, we propose a stabilizing control
policy wherein a proper set of m control inputs �H ∈ �
derived with respect to the reduced BN H is applied by
default, and a number of additional control inputs are selected
to realize robust stabilization for perturbed BNs. Since the
number of control inputs is usually subject to practical bounds,
we stipulate that the number of total control inputs does
not exceed a prescribed limit. Let us formalize, as follows,
the robust stabilization problem under the aforementioned
conditions.
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Fig. 1. Illustration of applying the proposed scheme to G in Example 1.

Robust Stabilization Problem for BNs: Given a population
of the nominal BN G and perturbed BNs G1, . . . , Gd , let � ⊂
2N be the set of minimum FVSs derived with respect to the
reduced BN H , where |γ | = m, ∀γ ∈ �, and let m∗, m <
m∗ < n, be the maximum allowable number of control inputs.
Then, determine 1) �H := {φ1, . . . , φm} ∈ �, the set of m
control inputs for G, and 2) m∗ − m additional control inputs
�′

G := {φm+1, . . . , φm∗ } ⊂ N \ �H , so that applying �H ∪
�′

G stabilizes every perturbed BN G j , j = 1, . . . , d , to its
own attractor as near as possible to c where the proximity is
measured in the average Hamming distance.

As the foregoing problem statement attests, robust stabiliza-
tion proposed in this study does not necessarily imply global
stabilization of every perturbed BN. G j may globally converge
to its own fixed point attractor, or it may reach one of the
multiple attractors including cyclic ones. In such a case, the
average Hamming distance between the desired attractor and
all the possible attractors is used as the proximity measure.
If |�| ≥ 2, the use of an arbitrary control input set in �
ensures global stabilization of the nominal BN G. In the
case of robust stabilization, by contrast, the efficiency of the
solution in terms of the number of control inputs can vary
depending on the selected control input set �H ∈ �. Hence,
the robust stabilization problem considers the selection of not
only additional control inputs but also the control input set for
the nominal BN (provided that |�| ≥ 2).

Assumption 1: We will develop our methodology by assum-
ing that

∀ j ∈ {1, . . . , d}, σ j /∈ �H . (11)

Under the abovementioned assumption, the mutation does not
occur to the control inputs �H . This is not a burdensome
requirement, since for a complex BN with many nodes, usually
multiple minimum FVSs are derived. Hence, given a profile
of possible mutations, one can select �H that does not contain
any mutated node. The latter scheme will be demonstrated in
our numerical experiment.

Even though the control inputs �H are applied, the exis-
tence of the mutated node yσ j prohibits the global stabilization
of G j to 1n . Furthermore, owing to the canalization effect [35]
of the mutated node yσ j , some other nodes may be forced to
reach 0 or may not be stabilized to either 0 or 1. Hence,

selecting additional control inputs from such nodes would be
the most reasonable strategy. To this end, we first introduce a
notation S1 for S := {i1, . . . , ik} ⊂ N to indicate that all the
nodes in the index set S are assigned logic 1, or

S1 := {i1 = 1, . . . , ik = 1}.
In association with S1, let G(S1) denote the BN G wherein

the nodes of S are evaluated to 1. Note that all the subse-
quent canalization propagated from S1 is reflected by G(S1).
According to this notation and the previous result [30], G(�1

H )
is tantamount to {yi = 1|∀i = 1, . . . , n}, or all the nodes
converge to logic 1 by the control inputs �1

H .
Example 2: We return to the transformed BN G (9) in

Example 1. Assume that there exist two perturbed BNs G1 and
G2 (d = 2) having the mutation at y3 and y8, respectively,
or σ1 = 3 and σ2 = 8. By applying �1

H = {y2 = 1, y9 = 1}
and computing subsequent canalization, we obtain G1(�

1
H )

and G2(�
1
H ) as follows:

2y1(t + 1) = 1 y1(t + 1) = y7(t) + y10(t)

y2(t + 1) = 1 y2(t + 1) = 1

y3(t + 1) = 0 y3(t + 1) = y1(t)

y4(t + 1) = 1 y4(t + 1) = 1

y5(t + 1) = 1 y5(t + 1) = 1

y6(t + 1) = 1 y6(t + 1) = 1

y7(t + 1) = 1 y7(t + 1) = 0

y8(t + 1) = 1 y8(t + 1) = 0

y9(t + 1) = 1 y9(t + 1) = 1

y10(t + 1) = 0 y10(t + 1) = y1(t)y3(t)

(G1(�
1
H )) (G2(�

1
H )) (12)

where mutated node values are marked in bold. Clearly, the
control inputs �1

H derived in the prior work [30] cannot solve
the present robust stabilization problem, since only a subset
of nodes converges to the desired value (1’s) in two perturbed
BNs—80% in G1 and 50% in G2, resulting in average 65%.
The network graphs of G1(�

1
H ) and G2(�

1
H ) are drawn in the

right part of Fig. 1. Note that we eliminate all the incoming
and outgoing edges of �H , σ j ( j = 1, 2), and the nodes fixed
to 1. Those nodes not fixed to 1 and their remaining edges
clearly illustrate the adverse effect of the mutation. ♦
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B. Determining Additional Control Inputs via Canalization

As shown in Example 2, G j(�
1
H ) allows us to identify

which nodes in G j deviate from the desired value 1 as the
result of mutation. To depict the latter information in detail,
we divide the node set N of G j(�

1
H ) into

N = {σ j }∪̇V j
z ∪̇V j

n (13)

where σ j is the mutated node, V j
z is the set of nodes whose

state transition equations take logic 0 or non-constant Boolean
logic, and V j

n logic 1. By definition, �H ⊂ V j
n . We also define

Vz := V 1
z ∪ · · · ∪ V d

z (14)

as the union of V j
z values.

Example 3: In Example 2, given σ1 = 3 and σ2 = 8, V j
z ,

V j
n , and Vz are derived as

V 1
z = {10}, V 1

n = {1, 2, 4, . . . , 9}
V 2

z = {1, 3, 7, 10}, V 2
n = {2, 4, 5, 6, 9}

Vz = V 1
z ∪ V 2

z = {1, 3, 7, 10}.
♦

State variables in Vz are upset to 0 or become unstable
by the mutations. As mentioned before, a reasonable strategy
for robust stabilization is to quantify the favorable effect of
setting each state variable in Vz to be 1 and to determine the
additional control input based on the quantification. In doing
so, the following two aspects must be taken into consideration.

1) First, determining additional control inputs is conducted
in a recursive sense. Once an additional control input
is chosen, we derive the quantification of the favorable
effect in the next step after reflecting the latest chosen
control input (along with the previously selected control
inputs).

2) Next, the favorable effect of an additional control input
is evaluated over all the perturbed BNs, as our objective
is to achieve robust control. If choosing a candidate node
makes a perturbed BN converge to a fixed point that
is close to 1n while making another perturbed BN to
another fixed point very far away from 1n , it is unlikely
that such a node will be selected as the next control
input.

To formalize the favorable effect of an additional control
input, let us define the canalization number of each state
variable in Vz , adapting the definition addressed in [11].

Definition 1: Given the current control input set S ⊂ N
with �H ⊆ S and yi ∈ Vz \ S, where Vz is derived from
G j(�

1
H ), j = 1, . . . , d (see (13) and (14)), Ci, j

|S ∈ N is
the canalization number of yi on G j (S1) with respect to 1,
i.e., fixing yi = 1 canalizes Ci, j

|S state variables to 1 in

V j
z \ S of G j (S1) including itself. Also, Ci

|S := ∑d
j=1 Ci, j

|S
is the summation of the canalization numbers of yi over
j = 1, . . . , d .

G j(S1) represents the perturbed BN G j to which the control
inputs S1 are provided. Thus, Ci, j

|S specifies how many nodes
are fixed to logic 1 by applying the additional control input
yi = 1 to G j (S1). Here, one must count all successive

canalization effect caused by yi = 1 in computing Ci, j
|S , since

more than one state transition equation can be fixed to 1 in
a sequential way evolving from yi = 1. Also, only state
variables belonging to V j

z \ S are considered in deriving Ci, j
|S ,

as those in V j
n already converge to 1 by the control inputs

S. Clearly, the greater the value of Ci, j
|S is, the closer to 1n

the resultant attractor of G j is positioned when the additional
control input yi = 1 is furnished. Since the favorable effect
of the additional control input should be delivered over all
perturbed BNs, it would be the best policy to recursively select
the additional control inputs �′

G := {φm+1, . . . , φm∗ } in the
order of Ci

|S .
Once �′

G is determined, �H for G can be substituted by
another solution set among � under the assumption of |�| ≥ 2.
If a member of �, any of which succeeds in global stabilization
of G, has some entries belonging to �′

G , employing such a
solution set could reduce the number of overall control inputs.
Thus, if γ ∈ � exists for which γ ∩�′

G �= ∅, the original �H

is replaced by γ . If there exist more than one such a solution
set, γ having the greatest |γ ∩ �′

G | is chosen as the control
inputs for G.

Combining our discussions so far, we address in formal
terms the algorithm for robust stabilization as follows.

Algorithm 1 Algorithm for Robust Stabilization for the Pop-
ulation BNs Vulnerable to Mutations

0. Given a population of BN G (4) with the desired
attractor 1n , let G j , j = 1, . . . , d , be a perturbed BN
with the mutation at the σ j th node such that yσ j = 0 as
addressed in (10). Also let m∗ ∈ N be the maximum
allowable number of control inputs.

1. Reduce G to H according to [30, Algorithm 1] and
derive the set of minimum FVSs � ⊂ 2N where |γ | =
m, ∀γ ∈ �. Select �H := {φ1, . . . , φm} ∈ � which
satisfies condition (11).

2. Set S := �H , �′
G := ∅, and k := 1. For all j =

1, . . . , d , apply node evaluations S1 so as to derive
G j(S1) and Vz ⊂ N (refer to (13) and (14)).

3. For yi ∈ Vz \ S, derive Ci
|S by applying yi := 1 to each

G j(S1) and computing the canalization number Ci, j
|S .

4. Among Vz \ S, select an additional control input φm+k

such that

φm+k = arg max
i∈Vz\S

Ci
|S .

5. Replace S by S := S ∪ {φm+k}, �′
G by �′

G := �′
G ∪

{φm+k}, and k by k := k + 1. If k < m∗ − m, return to
Step 3; otherwise, proceed to the next step.

6. If ∃γ ∈ �: γ ∩ �′
G �= ∅, replace �H by �H := γ̂ such

that

γ̂ = arg max
γ∈�

|γ ∩ �′
G |.

The solution to the robust stabilization problem is given
by �H ∪ �′

G .
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As the following theorem attests, the abovementioned algo-
rithm provides the solution to the robust stabilization problems
for perturbed BNs G1, . . . , Gd .

Theorem 1: Given the nominal BN G and perturbed BNs
G j , j = 1, . . . , d , assume that the set of minimum FVSs
� ⊂ 2N is derived with respect to the reduced BN H , where
|γ | = m, ∀γ ∈ �. Then, the control input set �H ∪ �′

G
derived in Algorithm 1 solves the robust stabilization problem
for G j ’s with the maximum allowable number of control
inputs m∗ > m.

Proof: First, assume that m∗ = m + 1. By Steps 4–6 of
Algorithm 1, �′

G = {φm+1} where applying yφm+1 = 1 along
with �1

H makes G1, . . . , Gd converge to their attractors that
have the smallest sum of Hamming distances with 1n . Hence,
�H ∪ �′

G solves the robust stabilization problem for G j ’s.
Next, assume that m∗ > m + 1. For proving by induction,
suppose that at the end of the kth iteration, 1 ≤ k < m∗ − m,
the additional control input set �′

G := {φm+1, . . . , φm+k}
is derived by Algorithm 1 such that applying yφm+i := 1,
i = 1, . . . , k, along with �1

H makes G1, . . . , Gd converge
to their attractors yielding the smallest sum of Hamming
distances with 1n. Since k < m∗ − m, the iteration must
continue by returning to Step 3 of Algorithm 1, where S =
�H ∪ �′

G . Clearly, in view of Step 4, the next chosen control
input yφm+k+1 = 1 makes the resultant BNs converge to
the attractors that are as close to 1n as possible in terms
of the summation of Hamming distances. Hence, �′

G :=
{φm+1, . . . , φm+k, φm+k+1} serves as the optimal additional
control input set with the cardinality k +1. This completes the
proof. �

Since derivation of FVSs in Step 1 is NP-complete [36],
Algorithm 1 falls into a class of NP-completeness. However,
as demonstrated in [30], the computational load for Step 1 is
manageable even for complex BNs so long as the networks
have realistic average in-degree—about two for biological
networks [37]. Also, since the size of V j

z in the canalized
network G j(�

1
H ) is much reduced compared with n, the

computational load for obtaining Ci
|S in Step 3 is not serious

either as will be validated in our case study.
Example 4: We apply Algorithm 1 to the robust stabiliza-

tion problem for the population of BNs G in Example 1 in
which two perturbed BNs G1 and G2 exist as addressed in
Example 2. Assume that the maximum allowable number of
control inputs is m∗ = 3. As �H = {2, 9} with |�H | = m = 2,
one additional control input is available. Since Steps 1 and 2 of
Algorithm 1 are already undertaken in Examples 1–3, let us
turn to Step 3. From Example 3,

Vz = V 1
z ∪ V 2

z = {1, 3, 7, 10}.
The canalization number Ci, j

|�H
and its summation Ci

|�H
of

each element i ∈ Vz are derived in Table I. For instance,
C1,1

|�H
= 0 since y1 /∈ V 1

z , and C1,2
|�H

= 3 as fixing y1 :=
1 canalizes y3 to 1, which in turn canalizes y10 to 1; refer to
(12) and the network graph of G2(�

1
H ) in the right part of

Fig. 1. According to the result shown in Table I, we select
�′

G := {7} or {10} as the additional control input by Step 4 of

TABLE I

Ci, j
|�H

AND Ci|�H
OF EACH ELEMENT i ∈ Vz

TABLE II

RESULTANT ATTRACTORS OF PERTURBED BNs

Algorithm 1. Since m∗ − m = 1 and |�| = 1, Steps 5 and 6
are not activated. The final solution to the robust stabilization
problem is

�H ∪ �′
G = {2, 9, 7} or {2, 9, 10}.

The resultant attractors of perturbed BNs with respect to each
set of control inputs are shown in Table II. As boldfaced 0’s
in the attractors illustrate, the sum of the Hamming distance
between the attractor of a perturbed BN and the desired one
110 is identical for two sets of control inputs. As this leads
to average 85% stabilization of the state variables (17 out of
20), a significant improvement is obtained compared with the
case of applying only �H (65% stabilization as addressed in
Example 2). The actual control inputs to the original BN F
are obtained by the inverse transformation T −1

c (refer to (7)
and (8)). ♦

The network graphs of G1(�
1
H ) and G2(�

1
H ) in Fig. 1

exemplify the efficiency of determining additional control
inputs φm+k . By Step 3 of Algorithm 1, we first extract
Vz , of which convergence to the desired value is distracted
by the mutations (“nodes not fixed to 1” in Fig. 1). By
Step 4, furthermore, we recursively search for the one whose
designation as the additional control input contributes most
significantly to the convergence of the remaining nodes to
the desired values. This two-step stabilization strategy can
greatly reduce the number of control inputs compared with
other methods that do not consider the influence of mutations
in deriving the control inputs.

Though only the summation of the Hamming distance is
utilized in Algorithm 1, one can adjust the proximity measure
in accordance with the detailed purpose of stabilizing con-
trol. For example, if the dispersion degree of the attractors
around the desired one is critical, the associated measure such
as the standard deviation can be included in Algorithm 1.
Also, if the convergence of specific nodes is of great impor-
tance, e.g., apoptosis node in cancer cells, the proximity
measure may be augmented by assigning much weights to
those nodes.
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Fig. 2. Experimental results on robust stabilization of complex random
BNs. (a) Average stabilization score for 4000 random BNs, each ensemble
of 1000 BNs having, respectively, 20, 30, 40, and 50 nodes and two kinds
of perturbed BNs (d = 2). (b) Average number of elements in the derived
control input sets. (c) Average computational time required to derive the
solutions for each ensemble of random BNs. The error bars in (a)–(c) denote
the 95% confidence intervals of the average score, number of elements, and
computation time, respectively; refer to [38] for their values.

IV. NUMERICAL EXPERIMENTS

A. Random Complex BNs

For the purpose of evaluating the performance of the
proposed method, we implement the algorithm and conduct
numerical experiments using 4000 randomly generated BNs
in which each ensemble of 1000 BNs contains 20, 30, 40, and
50 nodes, respectively. The authors’ website [38] provides the
Python codes of Algorithm 1 and random BNs generation. For
all random BNs, we apply 1) the proposed method wherein one
additional control input is derived besides �H for the nominal
BN, and 2) the original FVS control deriving the minimum
FVS of the nominal BN for the sake of comparison.

The experimental results on robust stabilization of random
BNs are shown in Fig. 2. Each ensemble of BNs has two
kinds of perturbed BNs (d = 2) in each of which two
nodes degenerate into adverse values by mutation. “Score”

Fig. 3. Average stabilization score for each ensemble of 1000 BNs having,
respectively, 20, 30, 40, and 50 nodes and two kinds of perturbed BNs
(d = 2). Instead of the original FVS, we apply all the possible subsets of
the original FVS that have the same size as the solution of the proposed
algorithm, and take their average scores.

in Fig. 2(a) denotes the ratio of the number of successfully
stabilized nodes to the total node number except mutated ones.
If, for instance, 15 nodes are stabilized to desired values in a
random BN with 20 nodes, the score is 15/(20 − 2) = 0.833.
Also, if the original FVS method yields multiple solution sets,
the maximum value among their scores is selected.

As Fig. 2 illustrates, the proposed control scheme exhibits
greater performance than the original FVS method in terms
of both score and computational time, even though the
FVS method expends more control inputs than the pro-
posed scheme. The performance enhancement becomes evi-
dent as the node number increases. In the case of BNs with
40 nodes, the proposed algorithm has a slightly better score
(0.956) than the FVS method (0.921), but the number of its
control inputs is less than that of the FVS method by more
than one—3.252 versus 4.558 as marked in Fig. 2(b). The
superiority of the proposed algorithm over the FVS method is
obvious when comparing their computational load. Referring
to Fig. 2(c), it takes mere average 1.07 s to run the proposed
algorithm, while the FVS method needs 12.316 s to complete
its execution.

This tendency of performance improvement is even more
striking when the node number increases to 50. While
the stabilization score is comparable with each other
(0.963 versus 0.931), the proposed algorithm shows much
better performance in terms of the control input size and
computational time: it needs only 3.392/4.893 = 69.32% the
number of control inputs employed by the FVS method and
1.547/100.269 = 1.54% computational time.

For a comparative study, we investigate the stabilization
outcome of the original FVS method under the constraint
that its control input size is trimmed to that of the proposed
algorithm. To this end, we derive average stabilization scores
of all the subsets of the original FVS, which have the same
cardinality as the solution of the proposed algorithm. Referring
to Fig. 3, the proposed scheme shows greater stabilization
scores than the trimmed original FVS method by about 19%
over all types of random BNs. This result elicits that the
proposed algorithm can serve as a proper robust stabilization
strategy for accommodating practical constraint on the number
of control inputs.
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Fig. 4. Metastasis influence network modeled by a BN [39], where red edges with arrows represent activation and blue ones with bars inhibition.

TABLE III

INFORMATION OF PERTURBED BNs OF THE METASTASIS

INFLUENCE NETWORK

Figs. 2 and 3 affirm that the proposed algorithm derives
efficient constant controls for solving the robust stabilization
problem of large-scale BNs. We expect from these results that
in comparison with the FVS method, the proposed algorithm
will retain its performance and scalability as the complexity
of BNs escalates further. The latter attests to the capability
of the proposed scheme that depending on the practical con-
straint on the considered biological network, it can present
various control input sets with incremental cardinalities and
performance.

B. Biological Networks

To validate the applicability of the proposed scheme,
we consider the robust stabilization problem of two real
biological systems—an influence network representing the
metastatic process of cells [39] and the mitogen-activated
protein kinase (MAPK) signaling network on cancer cell fate
decision [40].

1) Metastasis Influence Network: Fig. 4 is the connectivity
graph of the metastasis influence network adapted from [39].
Rectangles in Fig. 4 symbolize ingredient nodes correspond-
ing to biochemical species (proteins, microRNAs (miRNAs),

processes, and so on), and edges indicate activating (red) or
inhibitory (blue) influences of one node onto others; Table VII
in Appendix A shows Boolean logical rules of ingredient
nodes in the metastasis influence network. This BN has total
32 state variables (n = 32) among which there exist two input
nodes ECMicroenv and DNAdamage, and three output nodes
Metastasis, CellCycleArrest, and Apoptosis. Input and output
nodes are positioned in the upper- and downstream of the BN
in Fig. 4, respectively. Here, ECMicroenv represents whether
the effect of the extracellular microenvironment turns on or
off. Furthermore, DNAdamage indicates whether or not a DNA
damage occurs to the cell.

Out of nine attractors of this BN [39], we designate Apop-
totic Attractor 3 as the desired attractor c, as it corresponds
to the state that the metastasis influence network converges
to programed cell death (Apoptosis = 1), while metastasis is
prevented (Metastasis = 0). The first row entitled “Nominal
BN” in Fig. 5 shows the binary values of Apoptotic Attractor 3,
wherein the external inputs are set to be DNAdamage = 1 and
ECMicroenv = 1 (“ECM” in Fig. 5).

Among various mutants of the metastasis influence network
identified in [39], we designate MCF7 and T47D as perturbed
BNs (d = 2), respectively, of which information is summarized
in Table III. TWIST1 is excited by mutation in MCF7, and
AKT2 in T47D. Both mutants lead to breast cancer with the
Carcinoma histological type. Detailed biological implications
of TWIST1 and AKT2 genes are addressed in the Supplemen-
tary Material.

When the aforementioned mutations are applied to the nom-
inal metastasis influence network, the resultant BNs, G1 for
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Fig. 5. Binary values of the desired attractor, Apoptotic Attractor 3, of the metastasis influence network, the degraded attractors of perturbed
BN 1 (TWIST1 = 1) and perturbed BN 2 (AKT2 = 1) [39, Table S4], and stabilized attractors of perturbed BNs.

TABLE IV

RESULTS OF ROBUST STABILIZATION FOR THE METASTASIS INFLUENCE NETWORK (n = 32 AND AVERAGE IN-DEGREE = 5.2)

MCF7 and G2 for T47D, yield long-term behaviors as shown
in “Perturbed BN 1” and “Perturbed BN 2” rows of Fig. 5.
Fractions in the entries are average activation ratios of the
corresponding genes. For instance, Dkk1 = 0.53 in perturbed
BN 1 implies that Dkk1 gene converges to 1 (including 1’s
in cycles) from 53% of all the possible initial states of
perturbed BN 1. Referring to Fig. 5, perturbed BNs 1 and
2 have stabilization score 7/31 = 0.226 and 8/31 = 0.258,
respectively, in regard to the desired attractor c. Clearly, both
mutations inflict serious degradation to long-term behaviors of
the networks. In particular, both perturbed BNs are not able
to ensure programed cell death as Apoptosis node is upset
to 1, and perturbed BN 2 even fails to suppress metastasis,
as Metastasis node is forced to turn on.

Table IV shows the result of robust stabilization for the
population of the metastasis influence network with two
perturbed BNs. Like the previous numerical experiments on
random BNs, one additional control input is allowed to be
used besides those ones for the nominal BN. For a comparative
study, we apply to the same problem the original FVS control,
the stable motif method [41], and the target control based on
the logical domain of influence (LDOI) [34]. The proposed
method results in one minimum FVS �H = {miR200, p53}
for the nominal BN and the additional control input �′

G =
{CDH1}. The original FVS control produces a single control
input set with eight elements, and the target control based
on LDOI results in eight control input sets with one to four
elements. Though the original FVS control indeed yields two

control input sets, one of them turns out infeasible as it
contains the mutated node TWIST1. Similarly, we discard all
the solution sets of the LDOI method containing at least one
mutated node. On the other hand, the stable motif method fails
to derive any solution set even after exhaustive runs.

The superiority of the proposed method over the original
FVS control and the other methods is obvious. Compared
with the FVS control, the proposed method yields only 3/8 =
37.5% control inputs and takes almost the same computational
time, while achieving 3.6% higher performance in terms of the
maximum stabilization score. As Jaccard similarity between
two solution sets is merely 0.22, it can be said that the
proposed scheme succeeds in deriving different combinations
of control inputs that are suitable for tackling the robust
stabilization problem at hand. The performance improvement
is more striking when evaluated in terms of the normalized
stabilization score, which is obtained by applying the same
number of control inputs as the proposed method (three)
among the derived solution set of the FVS control (eight) and
by averaging the results. While the normalized score of the
FVS control is 0.661, that of the proposed method is 0.919
(identical to the maximum score), meaning that the proposed
method produces the stabilization score 39.0% higher than
the FVS control under the same condition on the number of
control inputs.

In comparison with the LDOI method, the proposed
scheme also shows greater performance in terms of both
robustness and computation time—16.3% and 26.1% higher
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Fig. 6. MAPK signaling network modeled by a BN [40], where red edges with arrows represent activation and blue ones with bars inhibition.

performances in terms of the maximum and normalized score,
respectively, while taking only 63.3% computation time. Fur-
thermore, it is analyzed that the failure of the stable motif
method stems from the high density of the metastasis influence
network which impedes the derivation of feasible sets of stable
motifs in the application of the method.

Binary values of the attractor in each stabilized perturbed
BN are shown in the last two rows of Fig. 5. One can see
that perturbed BN 1 successfully inhibits metastasis, while
perturbed BN 2 not only inhibits metastasis but also regains
programed cell death. The performance of robust stabilization
may be enhanced further at the cost of increasing the number
of additional control inputs. It turns out that when three
additional control inputs are allowed, the proposed scheme
accomplishes 100% robust stabilization, namely, all the state
variables except mutated ones converge to the desired values
in both perturbed BNs. The corresponding additional control
inputs are derived as {CDH1, CDH2, miR34}.

Remark 2: Unlike the case of random BNs, it takes slightly
more time than the FVS control to run the proposed scheme
for the metastasis influence network (12.6 versus 12.1 [s]).
This protraction is caused by exceptionally high density of
the metastasis influence network as mentioned before, since
its average in-degree is 5.2, and among 32 state variables,
seven nodes have the maximum in-degree 8, whereas random
BNs employed in the previous experiment have average in-
degree 1.64. In particular, high in-degree of a BN gives
rise to much computational burden on transforming the state

TABLE V

INFORMATION OF PERTURBED BNs OF THE MAPK SIGNALING NETWORK

transition equation of G into the minimum SOP form. We find
that among total computation time of 12.6 s, about 12 s is used
for deriving the minimum SOP form. While we utilize SymPy
Python package [42] in implementing the transformation (refer
to the authors’ website [38] for source codes), it is expected
that the computation time may be curtailed by applying more
efficient algorithms.

2) MAPK Signaling Network: Fig. 6 is the connectivity
graph of the MAPK signaling network taken from [39]. The
corresponding Boolean logical rules of ingredient nodes are
provided in Table VIII of Appendix A. This BN has total
53 state variables (n = 53) among which there exist four
inputs nodes and three output nodes that are positioned in the
upper- and downstream of the BN in Fig. 6, respectively.

In this experiment, we take as the desired attractor a fixed
point of the MAPK signaling network whose binary values
are shown in the first row of Fig. 7. Note that the phenotype
of this attractor is set in favor of inducing proper cancer
cell fate decision as Proliferation = 0, Apoptosis = 1, and
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Fig. 7. Binary values of the desired attractor of the MAPK signaling network, the degraded attractors of perturbed BN 1 (AKT = 1, ERK = 1) and perturbed
BN 2 (FRS2 = 1, p53 = 0) [40], and stabilized attractors of perturbed BNs.

TABLE VI

RESULTS OF ROBUST STABILIZATION FOR THE MAPK SIGNALING NETWORK (n = 53 AND AVERAGE IN-DEGREE = 2.1)

TABLE VII

BOOLEAN LOGICAL RULES OF THE METASTASIS INFLUENCE NETWORK

Growth_Arrest = 1. Referring to Table V, we designate
5637 and 639-V as two perturbed BNs (d = 2), each of
which contains two mutations and causes bladder cancer.
For detailed biological implications of each mutant, refer to
the Supplementary Material. The stable state behavior of the
perturbed BNs is summarized in the second and third rows of
Fig. 7.

Table VI shows the result of the numerical experiment for
the MAPK signaling networks. Similar to the first experiment,
the proposed scheme produces a better maximum stabilization

score than the other methods with less or compatible compu-
tational time. In terms of the normalized score (i.e., having the
same number of control inputs), the superiority of the proposed
scheme is more remarkable—14.7%, 16.3%, and 5.9% higher
than, respectively, the FVS control, stable motif method, and
target control based on LDOI. Especially, the computation time
of the proposed scheme is only 24.3/812.1 = 3.0% that of the
FVS control. It is observed that the MAPK signaling network
has more nodes than the previous metastasis influence network
(53 versus 32), while its average in-degree is much lower
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TABLE VIII

BOOLEAN LOGICAL RULES OF THE MAPK SIGNALING NETWORK

(2.1 versus 5.2). Hence, it can be said that the execution speed
of the proposed scheme is dominated mainly by the average
in-degree of the considered BN.

V. CONCLUSION

This article addresses a novel robust stabilizing control
strategy aiming at complex biological systems based on logical
models with uncertainties. Throughout the attractor-specific
network reduction and FVS control, we search for additional
control inputs which, along with those ones for the nominal
BN, take all the perturbed BNs to their own attractors as
near as possible to the desired fixed point measured in terms
of the Hamming distance. The practicality of the proposed
scheme is remarkable since it requires neither algebraic nor
structural constraint on the considered BN. The algorithm for
deriving complete control inputs needs exponential complexity
in theory with respect to the number of nodes of BNs.
But, we ascertain that it can still be applied to complex
BNs, since the actual computational load is manageable as
verified in the presented numerical experiments on com-
plex random BNs and a real biological system with high
in-degrees.

Though the Hamming distance as the proximity measure
embodies primary biological similarity of the stabilized per-
turbed BN to the desired long-term behavior, it can be replaced
by other criteria according to characteristics of the underlying
biological system as mentioned before. For instance, one
can assign unbalanced high scores on output nodes, which
determine key phenotypes of the cell, thus pursuing output
stabilization or target control [27], [34] subject to mutations.
The latter problem will serve as an interesting topic for a future
study.

APPENDIX

BOOLEAN LOGICAL RULES OF BIOLOGICAL NETWORKS

We tabulate, in Tables VII and VIII, Boolean logical rules
of the activity level of each node in the metastasis influence
network and MAPK signaling network, respectively.
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