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Abstract—The aim of this work is to investigate the impact of
crossmodal self-supervised pre-training for speech reconstruc-
tion (video-to-audio) by leveraging the natural co-occurrence
of audio and visual streams in videos. We propose LipSound2
that consists of an encoder—decoder architecture and location-
aware attention mechanism to map face image sequences to
mel-scale spectrograms directly without requiring any human
annotations. The proposed LipSound2 model is first pre-trained
on ~2400-h multilingual (e.g., English and German) audio-visual
data (VoxCeleb2). To verify the generalizability of the proposed
method, we then fine-tune the pre-trained model on domain-
specific datasets (GRID and TCD-TIMIT) for English speech
reconstruction and achieve a significant improvement on speech
quality and intelligibility compared to previous approaches in
speaker-dependent and speaker-independent settings. In addition
to English, we conduct Chinese speech reconstruction on the
Chinese Mandarin Lip Reading (CMLR) dataset to verify the
impact on transferability. Finally, we train the cascaded lip
reading (video-to-text) system by fine-tuning the generated audios
on a pre-trained speech recognition system and achieve the state-
of-the-art performance on both English and Chinese benchmark
datasets.

Index Terms— Lip reading, self-supervised pre-training, speech
recognition, speech reconstruction.

I. INTRODUCTION

NSPIRED by human bimodal perception [1] in which both

sight and sound are used to improve the comprehension of
speech, a lot of effort has been spent on speech processing
tasks by leveraging visual information, for example, integrat-
ing simultaneous lip movement sequences into speech recogni-
tion [2], [3], guiding neural networks in isolating target speech
signals with a static face image for speech separation [4], [5],
and grounding speech recognition with visual objects and
scene information [6], [7]. Multimodal audio-visual methods
achieve significant improvement over single modality models
since the visual signals are invariant to acoustic noise and
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complementary to auditory representations [8]. Moreover, the
visual contribution becomes more important as the acoustic
signal-to-noise ratio is decreased [9].

In most approaches, the visual information is mainly used
as an auxiliary input to complement audio signals. However,
in some circumstances, the auditory information may be absent
or extremely noisy, which motivates speech reconstruction.
Speech reconstruction aims to generate both intelligible and
qualified speech by only conditioning on image sequences of
talking mouths or faces. Generating intelligible speech from
silent videos enables many applications, e.g., a silent visual
input method on mobile phones for privacy protection in public
areas [10]; communication assistance for patients suffering
laryngectomy [11]; surveillance video understanding when
only visual signals are available [12]; enhancement of video
conferences or far-field human-robot interaction scenarios in
a noisy environment [13]; and nondisruptive user intervention
for autonomous vehicles [14].

It is challenging to reconstruct qualified and intelligible
speech from only mouth or face movements since human
speech is produced by not only externally observable organs
such as lips and tongue but also internally invisible ones
that are difficult to capture in most cases [15], for instance,
vocal cords and pharynx. Consequently, it is hard to infer
fundamental frequency or voicing information controlled by
these organs. Moreover, some phonemes are acoustically dis-
criminative but not easy to distinguish visually since the
phonemes share the same places of articulation but with
different manners of articulation [16], for example, /v/ and
/f/ in English are both fricatives and look the same on lip and
teeth movements but are different on the vibration of vocal
cords (voiced versus unvoiced) and the attribute of aspirate
(unaspirated versus aspirated) that are not visible in most video
recordings. Hence, predicting human voices from appearance
is still a challenging task [17].

In recent years, there has been a growing interest in
speech reconstruction and variant methods have been pro-
posed. A possible technique is to run lip reading (video-to-text)
and text-to-speech (TTS) systems in cascade, but the lip read-
ing performance is still unsatisfactory and the error is being
propagated to TTS. Alternatively, other researchers directly
estimate speech representations, for example, linear predictive
coding (LPC) [18], bottleneck features [19], and mel-scale
spectrograms [20], from videos, followed by a vocoder used to
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transform intermediate representations to audio, for instance,
STRAIGHT [21] and WORLD vocoder [22]. In contrast, the
information of speaker identity and speaking styles can be
relatively preserved. However, most existing works only focus
on speaker-dependent settings with a small vocabulary or
artificial grammar dataset or even builds one model for each
individual speaker, which does not meet the requirements in
realistic scenarios.

In our previous work, we proposed LipSound [20] to
directly map visual sequences to low-level speech represen-
tation, i.e., mel spectrogram, which is inspired by audio-
visual self-supervised representation learning. By leveraging
the natural co-occurrence of audio and visual streams in
videos without requiring any human annotations or treating
one modality as the supervision of the other, self-supervised
representation learning has received substantial interest, for
example, learning representations by matching the temporal
synchronization [23] or spatial alignment [24] of audio and
video clips for action recognition.

In comparison to our previous work, LipSound that only
focuses on speaker-dependent settings for the GRID artifi-
cial grammar dataset, in this article, we further explore to
what extent the large-scale crossmodal self-supervised pre-
training can benefit speech reconstruction in generalizabil-
ity (speak-independent) and transferability (non-Chinese to
Chinese) on a large vocabulary continuous speech corpus
TCD-TIMIT. In addition, we also changed the LipSound
architecture substantially by replacing the 1-D convolutional
neural network (CNN) with 3-D CNN blocks (Conv 3D +
Batch Norm + ReLU + Max Pooling + Dropout). This
should enable the model to directly learn stable representations
from raw pixels and using a location-aware attention mecha-
nism to make the alignments between encoder and decoder
more robust to nonverbal areas. Moreover, we replace the
Griffin—Lim algorithm [25] with a neural vocoder to smoothly
generate waveforms and voices.

As shown in Fig. 1(a), our approach is first pre-training the
Lipsound2 model on a large-scale multilingual audio-visual
corpus (VoxCeleb2) to map silent videos to mel spectrogram
and then fine-tuning the pre-trained model on specific domain
datasets [GRID, TCD-TIMIT, and Chinese Mandarin Lip
Reading (CMLR)], followed by a neural vocoder (Wave-
Glow [26]) to reconstruct estimated mel spectrogram to wave-
forms. Lip reading (video-to-text) experiments are performed
by fine-tuning the generated audios on a pre-trained acoustic
model (Jasper [27]) in Fig. 1(b).

The main contributions of this article are given as follows.

1) We propose an autoregressive encoder—decoder with
attention architecture, LipSound?2, to directly map silent
facial movement sequences to mel-scale spectrograms
for speech reconstruction, which does not require any
human annotations.

2) We explore the model generalizability on speaker-
independent and large-scale vocabulary datasets which
few studies have focused on, and we achieve better
performance on speech quality and intelligibility in the
speech reconstruction task.
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3) To the best of our knowledge, no previous research has
investigated Chinese speech reconstruction in speaker-
dependent and speaker-independent cases.

4) By leveraging the large-scale self-supervised pre-
training on LipSound2 and the advanced Jasper speech
recognition model, our cascaded lip reading system out-
performs existing models by a margin on both English
and Chinese corpora.

This article is organized as follows. Section II reviews
related work on lip-to-speech reconstruction, lip reading,
and self-supervised learning. Section III provides the model
details, followed by the description of datasets and evaluation
metrics in Section IV. Experimental results and discussion are
presented in Sections V and VI, respectively. We conclude this
article in Section VII.

II. RELATED WORK
A. Lip-to-Speech Reconstruction

In recent years, researchers have investigated a variety
of approaches to speech reconstruction from silent videos.
We only review the neural network methods in this article.

Cornu and Milner [28] proposed to use fully connected (FC)
neural networks to estimate spectral envelope representations,
for instance, LPC coefficients and mel filter bank ampli-
tudes, from visual feature inputs, such as 2-D discrete cosine
transform, followed by a STRAIGHT vocoder [21], which is
used to synthesize time-domain speech signals from the esti-
mated representations. Follow-up work [29] predicts speech-
related codebook entries with a classification framework to
get further improvement on speech intelligibility. Instead of
using handcrafted visual features, Ephrat and Peleg [18]
utilized CNNs to automatically learn optimal features from
raw pixels and show promising results on out-of-vocabulary
experiments. Subsequently, improved results are reported by



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

QU et al.: LipSound2: SELF-SUPERVISED PRE-TRAINING FOR LIP-TO-SPEECH RECONSTRUCTION AND LIP READING 3

Ephrat ef al. [30] via combining a RestNet backbone and a
postprocessing network on a large-scale vocabulary dataset,
TCD-TIMIT [31]. Akbari et al. [19] treated the intermediate
bottleneck features learned by a speech autoencoder as train-
ing targets by conditioning on lip reading network outputs.
Kumar et al. [32] validated the effectiveness of using multi-
ple views of faces on both speaker-dependent and speaker-
independent speech reconstruction. Vougioukas et al. [33]
utilized generative adversarial networks (GANs) to directly
predict raw waveforms from visual inputs in an end-to-end
fashion without generating an intermediate representa-
tion of audios. Inspired by the speech synthesis model,
Tacotron2 [34], Qu et al [20] proposed to directly
map video inputs to low-level speech representations, mel
spectrogram, with an encoder—decoder architecture and
achieve better results on lip reading experiments. Afterward,
Prajwal et al. [35] improved the model performance with 3-D
CNN and skip connections. Recently, Michelsanti et al. [36]
presented a multitask architecture to learn spectral envelope,
aperiodic parameters, and fundamental frequency separately,
which are then fed into a vocoder for waveform synthe-
sis. They integrate a connectionist temporal classification
(CTC) [37] loss to jointly perform lip reading, which is capa-
ble of further enhancing and constraining the video encoder.

In addition to sequences of lip or face images, further
signals can be used for temporal self-supervision. For instance,
Gonzalez et al. [38] generated speech from articulatory sensor
data and Akbari et al. [39] reconstructed speech from invasive
electrocorticography. However, most existing works only focus
on a speaker-dependent setting and small vocabulary or artifi-
cial grammar datasets. In this article, we evaluate our method
not only on speaker-dependent experiments but also pay atten-
tion to speaker-independent and large-scale vocabulary setups.

B. Lip Reading

Lip reading, also known as visual speech recognition, is the
task to predict text transcriptions from silent videos, such as
mouth or face movement sequences. Research on lip reading
has a long tradition. Approaches to lip reading generally fall
into two categories on feature level: 1) handcrafted visual
feature extraction, such as discrete cosine transform [40],
discrete wavelet transform [41], or active appearance mod-
els [42] and 2) representations learned by neural networks,
which has become the dominant technique for this task, for
example, using convolutional autoencoders [43], spatiotem-
poral CNNs [44], long short-term memory [45], or residual
networks [46].

Alternatively, methods on modeling units for lip reading can
be divided into word and character levels.

1) In the case of word-level units, lip reading is simplified
as a classification task. Word-level lip reading datasets
and benchmarks are built, for instance, LRW [47] for
English and LRW-1000 [48] for Chinese. Stafylakis
and Tzimiropoulos [46] adopted spatiotemporal con-
volutional networks and 2-D ResNet as front end to
extract visual features and bidirectional long short-term
memory networks as the backend to capture temporal

information and attain significant improvement. Weng
and Kitani [49] presented two separated deep 3-D
CNN front ends to learn features from grayscale video
and optical flow inputs. Martinez et al. [50] replaced
recurrent neural networks widely used in past work
with temporal convolutional networks to simplify the
training procedure. The word-level methods are usually
able to achieve high accuracy, and however, the models
disregard the interaction or co-articulation phenomenon
between phonemes or words. A predefined lexicon with
closed-set vocabulary is used and words are usually
treated as isolated units in speech. Thereby, long-term
context information and assimilation or dissimilation
effects are completely neglected. Moreover, it is hard
to recognize out-of-vocabulary words.

2) Lip reading models with character or phoneme levels
mainly use methods proposed in speech recogni-
tion. Assael et al. [44] conducted end-to-end lip read-
ing experiments on sentence level with CTC loss.
Subsequently, sequence discriminative training [51]
and domain-adversarial training [52] are introduced
to lip reading. Chung et al. [2] collected the dataset,
“lip reading sentence” (LRS), which consists of hun-
dreds of thousands of videos from BBC television,
and significantly promoted the research on sentence-
level lip reading. Shillingford ef al. [53] verified the
effectiveness of large-scale data (3886 h of video)
for training continuous visual speech recognition.
Afouras et al. [54] compared the performance of recur-
rent neural networks, fully CNNs, and transformer on
lip reading character recognition.

Different from the mainstream methods which directly
transform videos to text, we perform lip reading experiments
in a cascaded manner, in which the silent videos are first
mapped to audios with our LipSound2 model and, then, text
transcriptions are predicted by fine-tuning on a pretrained
speech recognition system.

C. Self-Supervised Learning

As a form of unsupervised learning, self-supervised learning
leverages massive unlabeled data and aims to learn effec-
tive intermediate representations with the supervision of self-
generated labels. Training unlabeled data in a supervised
manner rely on the pretext tasks that determine what labels
and loss functions to be used. In computer vision, the pretext
tasks can be predicting angles of rotated images [55], learning
the relative position of segmented regions in an image [56],
placing shuffled patches back [57], or colorizing grayscale
input images [58]. The video-based pretext tasks can be
tracking moving objects in videos [59], validating temporal
frame orders [60], video colorization [61], and so on.

Self-supervised learning is also widely used in natural lan-
guage processing. Substantial progress has been made recently,
where diverse pretext tasks are proposed, for instance, predict-
ing center words using surrounding ones or vice versa [62],
generating the next word by conditioning on previous words
in an autoregressive fashion [63], completing masked tokens
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is used as the model input. The acoustic spectrogram features extracted from the counterpart audio stream are used as the training target. During training, the
ground-truth spectrogram frames are utilized to accelerate convergence, while, during inference, the outputs from previous steps are used.

or consecutive utterances [64], recovering the order of shuffled
words [65], or the permutation of rotated sentence [66].

Inspired by the strong correlation between different modal-
ities where, for example, the audio and visual modalities are
semantically consistent or temporally synchronous, more and
more researchers work on multimodal or cross-modal self-
supervised learning. Multimodal self-supervised learning aims
at learning joint or shared latent spaces or representations,
while cross-modal self-supervised learning lets one modality
supervise another. Here, we only review the audio-visual
modalities since this is the main focus of this article. Different
pretext tasks are designed according to the correspondence and
synchronization of audio and visual modalities, for instance,
predicting whether image and audio clips correspond, to enable
neural networks to classify sounds [67], learn cross-modal
retrieval [68], or locate the sound source in an image [69].
Besides, multimodal self-supervised representation learning
can also be performed by matching the temporal synchro-
nization [23] or spatial alignment [24] of audio and video
clips in the context of action recognition, where a contrastive
loss and a clustering loss are combined to learn high-level
semantic representations for visual event and concept under-
standing [70]. In this article, we focus on cross-modal self-
supervised learning where the corresponding audio signals
provide the supervision for face sequence inputs.

III. MODEL ARCHITECTURE

Fig. 2 shows the LipSound2 model architecture. We split
the video clips into an audio stream used as training tar-
get and a visual stream used as model input. The system
consumes the visual part to predict the audio counterpart
in a self-supervised fashion. The proposed architecture is
composed of an encoder—decoder and an attention model to
map the soundless visual sequences to the low-level acoustic
representation, mel-scale spectrograms. Advantages are that,
in contrast to directly predicting raw waveform, working with
mel spectrogram not only reduces computational complexity

TABLE I

CONFIGURATION OF LIPSOUND2 ENCODER, DECODER,
ATTENTION, AND POSTNET

Layer Kernel Stride Padding Channels/Nodes
Encoder
Conv3D 1 5x3x3[1,2,2] [2,0,0] 32
MaxPool3D 1x2x2][1,2,2] [0,0,0] -
Conv3D 2 5x3x3[1,2,2] [2,0,0] 64
MaxPool3D 1x2x2[1,2,2] [0,0,0] -
Conv3D 3 5x3x3(1,1,1] [2,0,0] 128
MaxPool3D 1x2x2[1,2,2] [0,0,0] -
BIiLSTM1 - - - 128
BiLSTM2 - - - 128
Attention
Attention LSTM - - - 1024
Query FC - - - 128
Memory FC - - - 128
Location ConvlD 31 1 15 32
Location FC - - - 128
Weight FC - - - 1
Decoder
PreNet FC 1 - - - 512
PreNet FC 2 - - - 256
Decoder LSTM - - - 1024
Linear Projection FC - - - 80
PostNet
Convl1D 1 5 1 2 512
ConvlD 2 5 1 2 512
ConvlD 3 5 1 2 512
ConvlD 4 5 1 2 512
ConvlD 5 5 1 2 80

but also easily learns long-distance dependence. Model details
are listed in Table 1. Then, a pre-trained neural vocoder,
WaveGlow, follows to reconstruct the raw waveform from the
generated mel spectrogram.

A. Encoder

The multitask CNN (MTCNN) [71] is used to detect face
landmarks from raw videos. We crop only the face region
(112 x 112 pixels) and smooth all frame landmarks since
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Fig. 3. Computational flow of location-aware attention at time step 7.
low-resolution videos or profile faces lead to detection failures
sometimes and landmark smoothing can eliminate frame skip
in adjacent images. The cropped face sequences are then fed
into 3-D CNN blocks and each block is based on a 3-D
CNN, batch normalization, ReLU activation, max pooling, and
dropout, as shown in Fig. 2. Then, two bidirectional LSTM
layers follow which capture the long-distance dependence
from the left and right context.

B. Location-Sensitive Attention

We use location-aware attention [72] to bridge the encoder
and the decoder. The image sequence input i = (i, ..., i)
is first embedded into the latent space representation vector
h = (hy,...,h,) by the encoder with the same dimension
n in time, and then, the intermediate vector 4 is decoded
into the mel spectrogram o = (oo, ..., 0,). At time step t
(0 <t < m), the attention weight a, can be obtained by the
following equations:

a; = Softmax(W -tanh(M -h+ Q-x+L-y)) (1)
x = LSTM(h - a,_y, Pprenet) @)

y= COHV(am, z ai) (3)
0<i<t—1

where W, M, Q, and L are the matrices learned by weight
FC, memory FC, query FC, and location FC, respectively.
In (3), the sum of attention weights of all previous steps is
integrated, which enables the current step attention to be aware
of the global location and move forward monotonically. Fig. 3
visualizes the computational flow of the attention mechanism.
The attention content vector v, can be obtained by multiplying
the encoder output by the normalized attention weights (see the
following equation):

Uy = a; ‘h. (4)

C. Decoder

The decoder module consists of one unidirectional LSTM
layer and one linear projection layer. The decoder LSTM

consumes the attention content vector and the output from
attention LSTM to generate one frame at a time. Subsequently,
the linear projection layer maps the decoder LSTM outputs
to the dimension of the mel-scale filter bank. During training,
we use ground-truth mel-spectrogram frames as PreNet inputs,
and during inference, the predicted frames from previous
time steps are used. Since the decoder only receives past
information at every time step, after decoding, five ConvlD
layers (postnet) are used to further improve the model per-
formance by smoothing the transition of adjacent frames
and using future information, which is not available when
decoding.

D. Training Objective

The loss function is the sum of two mean square errors
(MSEs), as shown in (5), i.e., the MSE between the decoder
output Ogec and the target mel spectrogram My, and the
MSE between the postnet output Opos and the target mel
spectrogram

Loss = MSE(Oqec, M) + MSE(Oposta Miar). (5

E. WaveGlow

We use WaveGlow [26], which combines the approach of
the glow-based generative model [73] and the architecture
insight of WaveNet [74] to transform the estimated mel
spectrogram back to audio. WaveGlow abandons autoregres-
sion [74] and speeds up the procedure of waveform synthesis
in high quality and resolution. We train WaveGlow from
scratch using the same settings as original work [26] but in
16k sampling rate on the LJSpeech dataset [75] to meet the
requirement of following up ASR models. To our surprise, the
WaveGlow model that is trained with only one female voice
can effectively generalize to any unseen voices and stably
perform waveform reconstruction.

F. Acoustic Model and Language Model

The Jasper [27] speech recognition system, which is a fully
convolutional architecture trained with skip connections and
CTC loss, is adopted to directly predict characters from speech
signals. We pretrain the Jasper DR 10 x 5 model' on 960 h
LibriSpeech and 1000 h AISHELL-2 corpora, which achieves
3.61% word error rate (WER) and 10.05% character error
rate (CER) on the development set for English and Chinese,
respectively.

Beam search is utilized to decode the output character
possibilities from Jasper and a 6-g KenLM [76] language
model® into grammatically and semantically correct words on
sentence level [77].

IV. EXPERIMENTAL SETUP
A. Dataset
All datasets used in this article are summarized in Table II
and random frames from audio-visual ones are presented

Uhttps://nvidia.github.io/OpenSeq2Seq/html/speech-recognition.html
Zhttps://github.com/PaddlePaddle/DeepSpeech
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TABLE 11
OVERVIEW OF ALL CORPORA USED IN THIS ARTICLE. SPK: SPEAKERS. UTT: UTTERANCES. VOCAB: VOCABULARY
Language Dataset #Spk. #Utt. #Vocab.  #hours Usage Modality
Multi-Language ~ VoxCeleb2 [78] 6112 LIM - 2442 Llpfo‘,m,dz
pre-framng Audio-Visual
GRID [79] 51 33k 51 27.5 LipSound2
Enclish TCD-TIMIT [31] 59 5.4k 5.9k 7 fine-tuning
& LJSpeech [75] 1 13.1k - 24 WaveGlow training Audio
Al i 1
LibriSpeech [81] 2484 2923k - 960 coustic mode
pre-training
. CMLR [80] 11 102k 3.5k 87.7 LipSound2 Audio-Visual
Chinese fine-tuning
A i 1
AISHELL-2 [82] 1991 - - 1000 coustic mode Audio
pre-training
LibriSpeech is derived from audiobooks, containing 460 h
VoxCeleb2 of clean speech and 500 h of noisy speech. AISHELL-2
consists of 1000-h different domain speech, for instance, voice
command and smart home scenario, and includes various
GRID accents from different areas of China. We use LibriSpeech
and AISHELL-2 to pretrain the Jasper acoustic model to boost
the performance of waveform-to-text transformation. The gen-
TCD-TIMIT erated speech on GRID, TCD-TIMIT, and CMLR is used
for further fine-tuning to perform lip reading (video-to-text)
experiments.
CMLR The LJ Speech dataset with only one female voice is
especially designed for speech synthesis tasks, which is used
Fig. 4. Random face samples from audio-visual corpora. Only the face for WaveGlow training, 1n this article, to transform mel

region is cropped during training and test. Samples from audio-visual cor-
pora [31], [78], [79], [80].

in Fig. 4. VoxCeleb2 is a large-scale audio-visual corpus,
extracted from YouTube videos, containing over one mil-
lion utterances and more than 6k different speakers from
around 145 nationalities and languages. It includes noisy and
unconstrained conditions; specifically, the audio stream may
be recorded with background noise, such as laughter and
room reverberation, and the vision part may contain variable
head poses (e.g., frontal faces and profile), variable lighting
conditions, and low image quality, while the GRID and TCD-
TIMIT datasets are in controlled experimental environments
with fixed frontal face angle and clean background in audio
and vision. It is worth mentioning that the GRID dataset
is designed to contain only a fixed six-word structure and
all sentences are generated by a restricted artificial gram-
mar: command + color + preposition + letter + digit +
adverb, for example, set blue in Z three now. CMLR is
collected from videos by 11 hosts of the Chinese national news
program News Broadcast, which contains frontal faces and
covers a large amount of Chinese vocabulary. We first pretrain
LipSound2 on VoxCeleb2 and then fine-tune the model on
GRID, TCD-TIMIT, and CMLR for video to mel-spectrogram
reconstruction.

LibriSpeech and AISHELL-2 are the current largest open-
source speech corpora and widely used speech recogni-
tion benchmarks for English and Chinese, respectively.

spectrogram back to waveforms.

B. Evaluation Metrics

We evaluate the generated speech quality and intelligibility
with perceptual evaluation of speech quality (PESQ) [83]
and extended short-time objective intelligibility (ESTOI) [84],
respectively. The speech-to-text results are measured with
WER and CER, the ratio of error terms, i.e., substitutions,
deletions, and insertions, to the total number of words/
characters in the ground-truth sequences.

C. Training

We only describe the training settings of LipSound2 pre-
training, LipSound2 fine-tuning, and Jasper acoustic model
fine-tuning. More details about Japser! pre-training acoustic
model, KenLM? language model, and WaveGlow® can be
found on the open-source websites.

1) Vision Stream: Face landmarks are detected using
MTCNN [71] from all video frames and only the face area is
cropped and reshaped to size of 112 x 112 as inputs. We also
add one “visual period”—an empty frame with all values of
255—at the end of every visual stream to help the decoder
stop decoding at the right time. A max decoder step threshold
of 1000 is activated to terminate decoding when the decoder
fails to capture the “visual period.”

3https://github.com/NVIDIA/waveglow
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TABLE III

SPEAKER-DEPENDENT SPEECH RECONSTRUCTION RESULTS
ON GRID AND TCD-TIMIT DATASETS

GRID TCD-TIMIT
Model ESTOI PESQ ESTOI PESQ Parameters
Vid2Speech [18] 0.335 1.734 0.298 1.136 0.9M
Lip2AudSpec [19] 0.352 1.673 0.316 1.254 13.0M
Vougioukas et al. [33] 0.361 1.684 0.321 1.218 not available
Ephrat et al. [30] 0.376 1.825 0.310 1.231 9.2M
Lip2Wav [35] 0.535 1.772 0.365 1.350 not available
vid2voc-M-VSR [36] 0.455 1.900 - - 5.1IM
LipSound2 0.592 2.328 0.372 1.490 8.5M

2) Audio Stream: We first divide the raw waveforms by the
max value to normalize all audios to [0, 1] and then extract
the magnitude using the short-time Fourier transform (STFT)
with 1024 frequency bins and a 64-ms window size with 16-ms
stride. The mel-scale spectrograms are obtained by applying
an 80-channel mel filter bank to the magnitude, followed by
dynamic range clipping with a minimum value of le™> and
log dynamic range compression.

3) LipSound?2 Pre-Training: Horizontal image flipping, gra-
dient clipping with a threshold of 1.0, early stopping, and
scheduled sampling [85] are adopted to avoid overfitting.
Linear and convolutional layers are initialized with Xavier [86]
and tanh functions, respectively. We use the cosine learn-
ing rate decay strategy with an initial value of 0.001. Our
LipSound2 model has around 100M parameters. The audio
and visual sequences are both high-dimensional data, so we
conduct all experiments on four NVIDIA Quadro RTX 6000
GPUs with 24-GB memory in parallel to enable a big batch
size. The entire pre-training procedure took around 25 days.

4) Fine-Tuning: Pre-trained LipSound2 is fine-tuned on
GRID, TCD-TIMIT, and CMLR videos to conduct speech
reconstruction experiments. Afterward, the produced speech
for English (GRID and TCD-TIMIT) and Chinese (CMLR)
is fine-tuned on the pre-trained English (LibriSpeech) and
Chinese (AISHELL-2) acoustic models to perform lip reading
tasks with a ten times smaller learning rate.

V. EXPERIMENTAL RESULTS

A. Lip-to-Speech Reconstruction

1) Speaker-Dependent Result: We report the generated
speech results in two perspectives, i.e., speech quality (PESQ)
and speech intelligibility (ESTOI). For a fair comparison,
we keep the same settings as previous works. For speaker-
dependent tasks, all datasets are randomly split into 90:5:5
for training, validation, and test sets on GRID, respectively
(Speaker S1 — S4) and TCD-TIMIT (Lipspeaker 1 — 3).
Different from previous works that build one model for each
individual speaker, we train only one model on all speakers.

As shown in Table III, our LipSound?2 system, which is first
pre-trained on the VoxCeleb2 dataset and then fine-tuned on
the specific dataset, achieves the highest scores on both PESQ
and ESTOI, which reveals the effectiveness of our proposed
method. The last column in Table III compares the number
of LipSound2 model parameters against those of baseline
systems, showing that its best performance is obtained while
staying well in the existing range of numbers of parameters.

TABLE IV

SPEAKER-INDEPENDENT SPEECH RECONSTRUCTION RESULTS
ON GRID AND TCD-TIMIT DATASETS

GRID TCD-TIMIT
Model ESTOI PESQ ESTOI PESQ Parameters
Vougioukas et al. [33] 0.198 1.24 - - not available
vid2voc-M-VSR [36] 0.227 1.23 - - 5.1IM
vid2voc-F-VSR [36] 0.210 1.25 - - 5.2M
LipSound2 0.363 1.72 030 1.31 8.5M
TABLE V
SPEECH RECONSTRUCTION RESULTS FOR
CHINESE ON THE CMLR DATASET
Speaker-dependent ~ Speaker-independent
Model ESTOI PESQ ESTOI PESQ
LipSound2 0.36 1.43 0.28 1.21

2) Speaker-Independent Result: For speaker-independent
cases, we follow the same setups for GRID [33] and TCD-
TIMIT [31].

LipSound2 achieves the best results on both metrics on
the GRID dataset. Moreover, by listening to the reconstructed
audios, we find that our model is capable of producing similar
voices as ground-truth speakers, instead of generating a weird
voice or one of the voices in the training set as occurring in
previous works. The model has implicitly learned the mapping
between voices and faces. We highly recommend readers to
listen to the produced samples on our demo website.*

Furthermore, we find substitution errors occurring on seg-
ment level (vowels and consonants) because the context infor-
mation is still not sufficient to disambiguate the phonemes that
share the same visible organs, such as lips and tongue, but are
different in the invisible ones.

To the best of our knowledge, we are the first to tackle
the speaker-independent case on the TCD-TIMIT dataset since
TCD-TIMIT consists of limited samples (~370) for each
speaker but with large-scale vocabulary (~5.9K), which makes
the tasks on TCD-TIMIT quite challenging. The speaker-
independent results reported in Table IV show considerable
performance, for example, the PESQ result is even better
than some results reported on speaker-dependent settings (as
shown in Table III), which suggests that the large-scale self-
supervised pre-training enables the model to successfully
generalize to unseen speakers.

3) Speech Reconstruction for Chinese: To explore the effec-
tiveness of our proposed architecture, we further perform
speech reconstruction in Chinese. For the speaker-dependent
case, we keep the same training and test splits used in
CSSMCM [80] for lip reading; for the speaker-independent
case, S1 (male) and S6 (female) are used for testing and the
remaining speakers are used for training and validation.

In Table V, only LipSound2 results are reported since
we make a first attempt at tackling speech reconstruction in
Chinese. After checking the generated audio samples, we find
that, besides the confusion on segments, there are some tone
errors. One of the reasons is that Chinese is a tonal language

“https://leyuanqu.github.io/LipSound2/
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Fig. 6. Attention alignment comparison on the GRID dataset.

in which lexical tones play an important role for semantic
discrimination. The fundamental frequency (F0), which is
produced by the vibration of vocal cords, is not visible in
the input videos (face area), and it is reported that the visual
features have a weak correlation to FO [28]. Another reason
is that the VoxCeleb2 dataset mainly consists of nontonal lan-
guages, e.g., British English, American English, and German,
which makes the pre-training pay little attention to tone
production.

4) Attention Alignment: We compare the attention align-
ments learned by LipSound [20], which is only trained on the
GRID dataset and LipSound? (this article). As shown in Fig. 6,
the LipSound attention weights are fuzzy at nonverbal areas
and at short pauses between words, which may mislead the
decoder into focusing on irrelevant encoder timesteps, whereas
the attention weights learned by LipSound?2 are intensive and
more robust to silence or short pauses.

Comparison between generated mel spectrogram and ground truth in speaker-dependent and speaker-independent settings for English and Chinese

B. Lip Reading Results

Different from conventional methods which directly trans-
form videos into text, we perform lip reading experiments in
two steps, i.e., video-to-wav and wav-to-text.

1) Lip Reading Results for English: We follow the same
splits as previous works for training and test on the GRID [44]
and TCD-TIMIT [87] datasets. The comparison with related
results is listed in Table VI. We report the WER of GRID
and TCD-TIMIT audio test sets on pre-trained acoustic models
(audio gold standard) and the results fine-tuned on the training
audio samples (+Fine-Tuning), which is treated as the upper
boundary of lip reading.

Our LipSound2 model achieves the state-of-the-art perfor-
mance on both GRID and TCD-TIMIT datasets. Fine-tuning
the acoustic model pretrained on 960-h LibriSpeech with
generated audios can not only significantly boost the model
performance but also accelerate training time.

Further improvement can be achieved when an external
language model is integrated. The benefit from the language
model on the GRID dataset is not as much as on TCD-
TIMIT since the sentence structure in GRID is designed by
an artificial grammar. The language model can only help to
correct misspelled words but cannot contribute grammatically
or semantically.

2) Lip Reading Results for Chinese: We also explore lip
reading performance in Chinese, as shown in Table VII. Audio
gold standard is directly evaluating the CMLR test set on a pre-
trained acoustic model trained on a 1000-h AISHELL?2 dataset.
After fine-tuning with CMLR training audios, we get 3.88%
CER and 4.89% CER for speaker-dependent and speaker-
independent cases, respectively.

In comparison to other work, our LipSound2 model achieves
better results. CER further drops when decoding with an
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TABLE VI

LiPp READING RESULTS ON THE GRID AND TCD-TIMIT DATASETS
ON WER. SPK-DEP: SPEAKER-DEPENDENT. SPK-INDEP:
SPEAKER-INDEPENDENT. LM: LANGUAGE MODEL

GRID TCD-TIMIT
Model Spk-Dep  Spk-Indep  Spk-Dep  Spk-Indep
Audio Gold Standard 22.36 21.88 15.86 15.21
+Fine-tuning 0.15 0.35 542 6.73
LipNet [44] 5.6 13.6 - -
LipNet+LM [44] 4.8 11.4 - -
PCPG+LM [88] - 11.2 - -
TVSR-Net [89] - 9.1 - -
WAS [2] 3.0 - - -
LCANet[90] 2.9 - - -
DualLip [91] 2.7 - - -
LipSound [20] 2.5 - - -
CD-DNN [87] - - 51.26 57.03
MobiLipNetV2 [92] - - - 53.01
LipSound2 1.9 73 41.37 46.29
LipSound2 + LM 1.5 6.4 39.77 43.53
TABLE VII

L1P READING RESULTS FOR CHINESE ON THE CMLR
DATASET. CER: CHARACTER ERROR RATE

Model Spk-dep  Spk-indep
Audio Gold Standard 19.25 16.2
+Fine-tuning 3.88 4.89
WAS [2] 38.93 -
CSSMCM [80] 32.48 -
LIBS [93] 31.27 -
LipSound2 25.03 36.56
LipSound2 + LM 22.93 33.44

external language model. Besides, we build a new baseline
for CMLR in speaker-independent settings.

VI. DISCUSSION

Although the proposed LipSound2 model pre-trained on a
large-scale dataset achieves considerable performance on both
speech reconstruction and lip reading tasks, it still generates
error speech due to the visual similarity on pronunciation, for
example, “pill” is easy to be misrecognized as “bill” in English
and “ji zhi” is mistaken as “qi zhi” in Chinese. In addition, our
model can generate quite similar voices as the ground truth in
speaker-dependent settings, while the model is inclined to pre-
dict a voice existing in the training set sometimes in speaker-
independent cases. For details and demonstrations, we refer
also to the demo video on the project website.> How to stop
the fine-tuning procedure at the appropriate time and avoid the
model overfitting on downstream tasks is an important direc-
tion for future research since the MSE loss always declines
when using teacher forcing during training, which hardly
indicates whether the model is overfitting or not. Besides,
a possible solution could be using voice embeddings as
additional inputs that can efficiently help models learn speaker
identity information, as we found in our previous work [4].

VII. CONCLUSION

In this article, we have proposed LipSound?2 that directly
predicts speech representations from raw pixels. We inves-
tigated the effectiveness of self-supervised pre-training for

Shttps://leyuanqu.github.io/LipSound2/

speech reconstruction on large-scale vocabulary datasets, par-
ticularly for speaker-independent settings. Moreover, state-of-
the-art results are achieved by fine-tuning the produced audios
on a well-pretrained speech recognition model for both Eng-
lish and Chinese lip reading experiments since our two-step
method benefits not only from the large-scale crossmodal
supervision which enables the model to learn more robust
representations and more different content information but also
from the advanced speech recognition architecture (acoustic
and language models), which is pre-trained on abundant
labeled data.

Although we have made great progress on speech recon-
struction in controlled environments, there is still a signifi-
cant gap to the requirements of real-world scenarios. Future
work will focus on more realistic configuration, such as the
variety of light conditions, moving head poses, and different
background environments. Moreover, the current lip reading
experiments are separately conducted in two steps in which the
error generated in the first step (video-to-wav) will be propa-
gated to the second step (wav-to-text). How to jointly train the
two tasks in an end-to-end fashion could be another direction.
Besides, we are also interested in integrating our LipSound2
model into active speaker detection, speech enhancement, and
speech separation tasks to boost the performance of speech
recognition systems in human-robot interaction.
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