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Abstract— The aim of this work is to investigate the impact of1

crossmodal self-supervised pre-training for speech reconstruc-2

tion (video-to-audio) by leveraging the natural co-occurrence3

of audio and visual streams in videos. We propose LipSound24

that consists of an encoder–decoder architecture and location-5

aware attention mechanism to map face image sequences to6

mel-scale spectrograms directly without requiring any human7

annotations. The proposed LipSound2 model is first pre-trained8

on ∼2400-h multilingual (e.g., English and German) audio-visual9

data (VoxCeleb2). To verify the generalizability of the proposed10

method, we then fine-tune the pre-trained model on domain-11

specific datasets (GRID and TCD-TIMIT) for English speech12

reconstruction and achieve a significant improvement on speech13

quality and intelligibility compared to previous approaches in14

speaker-dependent and speaker-independent settings. In addition15

to English, we conduct Chinese speech reconstruction on the16

Chinese Mandarin Lip Reading (CMLR) dataset to verify the17

impact on transferability. Finally, we train the cascaded lip18

reading (video-to-text) system by fine-tuning the generated audios19

on a pre-trained speech recognition system and achieve the state-20

of-the-art performance on both English and Chinese benchmark21

datasets.22

Index Terms— Lip reading, self-supervised pre-training, speech23

recognition, speech reconstruction.24

I. INTRODUCTION25

INSPIRED by human bimodal perception [1] in which both26

sight and sound are used to improve the comprehension of27

speech, a lot of effort has been spent on speech processing28

tasks by leveraging visual information, for example, integrat-29

ing simultaneous lip movement sequences into speech recogni-30

tion [2], [3], guiding neural networks in isolating target speech31

signals with a static face image for speech separation [4], [5],32

and grounding speech recognition with visual objects and33

scene information [6], [7]. Multimodal audio-visual methods34

achieve significant improvement over single modality models35

since the visual signals are invariant to acoustic noise and36
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complementary to auditory representations [8]. Moreover, the 37

visual contribution becomes more important as the acoustic 38

signal-to-noise ratio is decreased [9]. 39

In most approaches, the visual information is mainly used 40

as an auxiliary input to complement audio signals. However, 41

in some circumstances, the auditory information may be absent 42

or extremely noisy, which motivates speech reconstruction. 43

Speech reconstruction aims to generate both intelligible and 44

qualified speech by only conditioning on image sequences of 45

talking mouths or faces. Generating intelligible speech from 46

silent videos enables many applications, e.g., a silent visual 47

input method on mobile phones for privacy protection in public 48

areas [10]; communication assistance for patients suffering 49

laryngectomy [11]; surveillance video understanding when 50

only visual signals are available [12]; enhancement of video 51

conferences or far-field human–robot interaction scenarios in 52

a noisy environment [13]; and nondisruptive user intervention 53

for autonomous vehicles [14]. 54

It is challenging to reconstruct qualified and intelligible 55

speech from only mouth or face movements since human 56

speech is produced by not only externally observable organs 57

such as lips and tongue but also internally invisible ones 58

that are difficult to capture in most cases [15], for instance, 59

vocal cords and pharynx. Consequently, it is hard to infer 60

fundamental frequency or voicing information controlled by 61

these organs. Moreover, some phonemes are acoustically dis- 62

criminative but not easy to distinguish visually since the 63

phonemes share the same places of articulation but with 64

different manners of articulation [16], for example, /v/ and 65

/f/ in English are both fricatives and look the same on lip and 66

teeth movements but are different on the vibration of vocal 67

cords (voiced versus unvoiced) and the attribute of aspirate 68

(unaspirated versus aspirated) that are not visible in most video 69

recordings. Hence, predicting human voices from appearance 70

is still a challenging task [17]. 71

In recent years, there has been a growing interest in 72

speech reconstruction and variant methods have been pro- 73

posed. A possible technique is to run lip reading (video-to-text) 74

and text-to-speech (TTS) systems in cascade, but the lip read- 75

ing performance is still unsatisfactory and the error is being 76

propagated to TTS. Alternatively, other researchers directly 77

estimate speech representations, for example, linear predictive 78

coding (LPC) [18], bottleneck features [19], and mel-scale 79

spectrograms [20], from videos, followed by a vocoder used to 80
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transform intermediate representations to audio, for instance,81

STRAIGHT [21] and WORLD vocoder [22]. In contrast, the82

information of speaker identity and speaking styles can be83

relatively preserved. However, most existing works only focus84

on speaker-dependent settings with a small vocabulary or85

artificial grammar dataset or even builds one model for each86

individual speaker, which does not meet the requirements in87

realistic scenarios.88

In our previous work, we proposed LipSound [20] to89

directly map visual sequences to low-level speech represen-90

tation, i.e., mel spectrogram, which is inspired by audio-91

visual self-supervised representation learning. By leveraging92

the natural co-occurrence of audio and visual streams in93

videos without requiring any human annotations or treating94

one modality as the supervision of the other, self-supervised95

representation learning has received substantial interest, for96

example, learning representations by matching the temporal97

synchronization [23] or spatial alignment [24] of audio and98

video clips for action recognition.99

In comparison to our previous work, LipSound that only100

focuses on speaker-dependent settings for the GRID artifi-101

cial grammar dataset, in this article, we further explore to102

what extent the large-scale crossmodal self-supervised pre-103

training can benefit speech reconstruction in generalizabil-104

ity (speak-independent) and transferability (non-Chinese to105

Chinese) on a large vocabulary continuous speech corpus106

TCD-TIMIT. In addition, we also changed the LipSound107

architecture substantially by replacing the 1-D convolutional108

neural network (CNN) with 3-D CNN blocks (Conv 3D +109

Batch Norm + ReLU + Max Pooling + Dropout). This110

should enable the model to directly learn stable representations111

from raw pixels and using a location-aware attention mecha-112

nism to make the alignments between encoder and decoder113

more robust to nonverbal areas. Moreover, we replace the114

Griffin–Lim algorithm [25] with a neural vocoder to smoothly115

generate waveforms and voices.116

As shown in Fig. 1(a), our approach is first pre-training the117

Lipsound2 model on a large-scale multilingual audio-visual118

corpus (VoxCeleb2) to map silent videos to mel spectrogram119

and then fine-tuning the pre-trained model on specific domain120

datasets [GRID, TCD-TIMIT, and Chinese Mandarin Lip121

Reading (CMLR)], followed by a neural vocoder (Wave-122

Glow [26]) to reconstruct estimated mel spectrogram to wave-123

forms. Lip reading (video-to-text) experiments are performed124

by fine-tuning the generated audios on a pre-trained acoustic125

model (Jasper [27]) in Fig. 1(b).126

The main contributions of this article are given as follows.127

1) We propose an autoregressive encoder–decoder with128

attention architecture, LipSound2, to directly map silent129

facial movement sequences to mel-scale spectrograms130

for speech reconstruction, which does not require any131

human annotations.132

2) We explore the model generalizability on speaker-133

independent and large-scale vocabulary datasets which134

few studies have focused on, and we achieve better135

performance on speech quality and intelligibility in the136

speech reconstruction task.137

Fig. 1. Process of (a) video-to-waveform generation and (b) waveform-to-text
transformation.

3) To the best of our knowledge, no previous research has 138

investigated Chinese speech reconstruction in speaker- 139

dependent and speaker-independent cases. 140

4) By leveraging the large-scale self-supervised pre- 141

training on LipSound2 and the advanced Jasper speech 142

recognition model, our cascaded lip reading system out- 143

performs existing models by a margin on both English 144

and Chinese corpora. 145

This article is organized as follows. Section II reviews 146

related work on lip-to-speech reconstruction, lip reading, 147

and self-supervised learning. Section III provides the model 148

details, followed by the description of datasets and evaluation 149

metrics in Section IV. Experimental results and discussion are 150

presented in Sections V and VI, respectively. We conclude this 151

article in Section VII. 152

II. RELATED WORK 153

A. Lip-to-Speech Reconstruction 154

In recent years, researchers have investigated a variety 155

of approaches to speech reconstruction from silent videos. 156

We only review the neural network methods in this article. 157

Cornu and Milner [28] proposed to use fully connected (FC) 158

neural networks to estimate spectral envelope representations, 159

for instance, LPC coefficients and mel filter bank ampli- 160

tudes, from visual feature inputs, such as 2-D discrete cosine 161

transform, followed by a STRAIGHT vocoder [21], which is 162

used to synthesize time-domain speech signals from the esti- 163

mated representations. Follow-up work [29] predicts speech- 164

related codebook entries with a classification framework to 165

get further improvement on speech intelligibility. Instead of 166

using handcrafted visual features, Ephrat and Peleg [18] 167

utilized CNNs to automatically learn optimal features from 168

raw pixels and show promising results on out-of-vocabulary 169

experiments. Subsequently, improved results are reported by 170
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Ephrat et al. [30] via combining a RestNet backbone and a171

postprocessing network on a large-scale vocabulary dataset,172

TCD-TIMIT [31]. Akbari et al. [19] treated the intermediate173

bottleneck features learned by a speech autoencoder as train-174

ing targets by conditioning on lip reading network outputs.175

Kumar et al. [32] validated the effectiveness of using multi-176

ple views of faces on both speaker-dependent and speaker-177

independent speech reconstruction. Vougioukas et al. [33]178

utilized generative adversarial networks (GANs) to directly179

predict raw waveforms from visual inputs in an end-to-end180

fashion without generating an intermediate representa-181

tion of audios. Inspired by the speech synthesis model,182

Tacotron2 [34], Qu et al. [20] proposed to directly183

map video inputs to low-level speech representations, mel184

spectrogram, with an encoder–decoder architecture and185

achieve better results on lip reading experiments. Afterward,186

Prajwal et al. [35] improved the model performance with 3-D187

CNN and skip connections. Recently, Michelsanti et al. [36]188

presented a multitask architecture to learn spectral envelope,189

aperiodic parameters, and fundamental frequency separately,190

which are then fed into a vocoder for waveform synthe-191

sis. They integrate a connectionist temporal classification192

(CTC) [37] loss to jointly perform lip reading, which is capa-193

ble of further enhancing and constraining the video encoder.194

In addition to sequences of lip or face images, further195

signals can be used for temporal self-supervision. For instance,196

Gonzalez et al. [38] generated speech from articulatory sensor197

data and Akbari et al. [39] reconstructed speech from invasive198

electrocorticography. However, most existing works only focus199

on a speaker-dependent setting and small vocabulary or artifi-200

cial grammar datasets. In this article, we evaluate our method201

not only on speaker-dependent experiments but also pay atten-202

tion to speaker-independent and large-scale vocabulary setups.203

B. Lip Reading204

Lip reading, also known as visual speech recognition, is the205

task to predict text transcriptions from silent videos, such as206

mouth or face movement sequences. Research on lip reading207

has a long tradition. Approaches to lip reading generally fall208

into two categories on feature level: 1) handcrafted visual209

feature extraction, such as discrete cosine transform [40],210

discrete wavelet transform [41], or active appearance mod-211

els [42] and 2) representations learned by neural networks,212

which has become the dominant technique for this task, for213

example, using convolutional autoencoders [43], spatiotem-214

poral CNNs [44], long short-term memory [45], or residual215

networks [46].216

Alternatively, methods on modeling units for lip reading can217

be divided into word and character levels.218

1) In the case of word-level units, lip reading is simplified219

as a classification task. Word-level lip reading datasets220

and benchmarks are built, for instance, LRW [47] for221

English and LRW-1000 [48] for Chinese. Stafylakis222

and Tzimiropoulos [46] adopted spatiotemporal con-223

volutional networks and 2-D ResNet as front end to224

extract visual features and bidirectional long short-term225

memory networks as the backend to capture temporal226

information and attain significant improvement. Weng 227

and Kitani [49] presented two separated deep 3-D 228

CNN front ends to learn features from grayscale video 229

and optical flow inputs. Martinez et al. [50] replaced 230

recurrent neural networks widely used in past work 231

with temporal convolutional networks to simplify the 232

training procedure. The word-level methods are usually 233

able to achieve high accuracy, and however, the models 234

disregard the interaction or co-articulation phenomenon 235

between phonemes or words. A predefined lexicon with 236

closed-set vocabulary is used and words are usually 237

treated as isolated units in speech. Thereby, long-term 238

context information and assimilation or dissimilation 239

effects are completely neglected. Moreover, it is hard 240

to recognize out-of-vocabulary words. 241

2) Lip reading models with character or phoneme levels 242

mainly use methods proposed in speech recogni- 243

tion. Assael et al. [44] conducted end-to-end lip read- 244

ing experiments on sentence level with CTC loss. 245

Subsequently, sequence discriminative training [51] 246

and domain-adversarial training [52] are introduced 247

to lip reading. Chung et al. [2] collected the dataset, 248

“lip reading sentence” (LRS), which consists of hun- 249

dreds of thousands of videos from BBC television, 250

and significantly promoted the research on sentence- 251

level lip reading. Shillingford et al. [53] verified the 252

effectiveness of large-scale data (3886 h of video) 253

for training continuous visual speech recognition. 254

Afouras et al. [54] compared the performance of recur- 255

rent neural networks, fully CNNs, and transformer on 256

lip reading character recognition. 257

Different from the mainstream methods which directly 258

transform videos to text, we perform lip reading experiments 259

in a cascaded manner, in which the silent videos are first 260

mapped to audios with our LipSound2 model and, then, text 261

transcriptions are predicted by fine-tuning on a pretrained 262

speech recognition system. 263

C. Self-Supervised Learning 264

As a form of unsupervised learning, self-supervised learning 265

leverages massive unlabeled data and aims to learn effec- 266

tive intermediate representations with the supervision of self- 267

generated labels. Training unlabeled data in a supervised 268

manner rely on the pretext tasks that determine what labels 269

and loss functions to be used. In computer vision, the pretext 270

tasks can be predicting angles of rotated images [55], learning 271

the relative position of segmented regions in an image [56], 272

placing shuffled patches back [57], or colorizing grayscale 273

input images [58]. The video-based pretext tasks can be 274

tracking moving objects in videos [59], validating temporal 275

frame orders [60], video colorization [61], and so on. 276

Self-supervised learning is also widely used in natural lan- 277

guage processing. Substantial progress has been made recently, 278

where diverse pretext tasks are proposed, for instance, predict- 279

ing center words using surrounding ones or vice versa [62], 280

generating the next word by conditioning on previous words 281

in an autoregressive fashion [63], completing masked tokens 282
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Fig. 2. Architecture of LipSound2. The video is split into visual and acoustic streams. The face region, which is cropped from the silent visual stream,
is used as the model input. The acoustic spectrogram features extracted from the counterpart audio stream are used as the training target. During training, the
ground-truth spectrogram frames are utilized to accelerate convergence, while, during inference, the outputs from previous steps are used.

or consecutive utterances [64], recovering the order of shuffled283

words [65], or the permutation of rotated sentence [66].284

Inspired by the strong correlation between different modal-285

ities where, for example, the audio and visual modalities are286

semantically consistent or temporally synchronous, more and287

more researchers work on multimodal or cross-modal self-288

supervised learning. Multimodal self-supervised learning aims289

at learning joint or shared latent spaces or representations,290

while cross-modal self-supervised learning lets one modality291

supervise another. Here, we only review the audio-visual292

modalities since this is the main focus of this article. Different293

pretext tasks are designed according to the correspondence and294

synchronization of audio and visual modalities, for instance,295

predicting whether image and audio clips correspond, to enable296

neural networks to classify sounds [67], learn cross-modal297

retrieval [68], or locate the sound source in an image [69].298

Besides, multimodal self-supervised representation learning299

can also be performed by matching the temporal synchro-300

nization [23] or spatial alignment [24] of audio and video301

clips in the context of action recognition, where a contrastive302

loss and a clustering loss are combined to learn high-level303

semantic representations for visual event and concept under-304

standing [70]. In this article, we focus on cross-modal self-305

supervised learning where the corresponding audio signals306

provide the supervision for face sequence inputs.307

III. MODEL ARCHITECTURE308

Fig. 2 shows the LipSound2 model architecture. We split309

the video clips into an audio stream used as training tar-310

get and a visual stream used as model input. The system311

consumes the visual part to predict the audio counterpart312

in a self-supervised fashion. The proposed architecture is313

composed of an encoder–decoder and an attention model to314

map the soundless visual sequences to the low-level acoustic315

representation, mel-scale spectrograms. Advantages are that,316

in contrast to directly predicting raw waveform, working with317

mel spectrogram not only reduces computational complexity318

TABLE I

CONFIGURATION OF LIPSOUND2 ENCODER, DECODER,
ATTENTION, AND POSTNET

but also easily learns long-distance dependence. Model details 319

are listed in Table I. Then, a pre-trained neural vocoder, 320

WaveGlow, follows to reconstruct the raw waveform from the 321

generated mel spectrogram. 322

A. Encoder 323

The multitask CNN (MTCNN) [71] is used to detect face 324

landmarks from raw videos. We crop only the face region 325

(112 × 112 pixels) and smooth all frame landmarks since 326

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



QU et al.: LipSound2: SELF-SUPERVISED PRE-TRAINING FOR LIP-TO-SPEECH RECONSTRUCTION AND LIP READING 5

Fig. 3. Computational flow of location-aware attention at time step t .

low-resolution videos or profile faces lead to detection failures327

sometimes and landmark smoothing can eliminate frame skip328

in adjacent images. The cropped face sequences are then fed329

into 3-D CNN blocks and each block is based on a 3-D330

CNN, batch normalization, ReLU activation, max pooling, and331

dropout, as shown in Fig. 2. Then, two bidirectional LSTM332

layers follow which capture the long-distance dependence333

from the left and right context.334

B. Location-Sensitive Attention335

We use location-aware attention [72] to bridge the encoder336

and the decoder. The image sequence input i = (i0, . . . , in)337

is first embedded into the latent space representation vector338

h = (h1, . . . , hn) by the encoder with the same dimension339

n in time, and then, the intermediate vector h is decoded340

into the mel spectrogram o = (o0, . . . , om). At time step t341

(0 ≤ t ≤ m), the attention weight at can be obtained by the342

following equations:343

at = Softmax(W · tanh(M · h + Q · x + L · y)) (1)344

x = LSTM(h · at−1, pprenet) (2)345

y = Conv

(
at−1,

∑
0≤i≤t−1

ai

)
(3)346

where W, M, Q, and L are the matrices learned by weight347

FC, memory FC, query FC, and location FC, respectively.348

In (3), the sum of attention weights of all previous steps is349

integrated, which enables the current step attention to be aware350

of the global location and move forward monotonically. Fig. 3351

visualizes the computational flow of the attention mechanism.352

The attention content vector vt can be obtained by multiplying353

the encoder output by the normalized attention weights (see the354

following equation):355

vt = at · h. (4)356

C. Decoder357

The decoder module consists of one unidirectional LSTM358

layer and one linear projection layer. The decoder LSTM359

consumes the attention content vector and the output from 360

attention LSTM to generate one frame at a time. Subsequently, 361

the linear projection layer maps the decoder LSTM outputs 362

to the dimension of the mel-scale filter bank. During training, 363

we use ground-truth mel-spectrogram frames as PreNet inputs, 364

and during inference, the predicted frames from previous 365

time steps are used. Since the decoder only receives past 366

information at every time step, after decoding, five Conv1D 367

layers (postnet) are used to further improve the model per- 368

formance by smoothing the transition of adjacent frames 369

and using future information, which is not available when 370

decoding. 371

D. Training Objective 372

The loss function is the sum of two mean square errors 373

(MSEs), as shown in (5), i.e., the MSE between the decoder 374

output Odec and the target mel spectrogram Mtar and the 375

MSE between the postnet output Opost and the target mel 376

spectrogram 377

Loss = MSE(Odec, Mtar) + MSE(Opost, Mtar). (5) 378

E. WaveGlow 379

We use WaveGlow [26], which combines the approach of 380

the glow-based generative model [73] and the architecture 381

insight of WaveNet [74] to transform the estimated mel 382

spectrogram back to audio. WaveGlow abandons autoregres- 383

sion [74] and speeds up the procedure of waveform synthesis 384

in high quality and resolution. We train WaveGlow from 385

scratch using the same settings as original work [26] but in 386

16k sampling rate on the LJSpeech dataset [75] to meet the 387

requirement of following up ASR models. To our surprise, the 388

WaveGlow model that is trained with only one female voice 389

can effectively generalize to any unseen voices and stably 390

perform waveform reconstruction. 391

F. Acoustic Model and Language Model 392

The Jasper [27] speech recognition system, which is a fully 393

convolutional architecture trained with skip connections and 394

CTC loss, is adopted to directly predict characters from speech 395

signals. We pretrain the Jasper DR 10 × 5 model1 on 960 h 396

LibriSpeech and 1000 h AISHELL-2 corpora, which achieves 397

3.61% word error rate (WER) and 10.05% character error 398

rate (CER) on the development set for English and Chinese, 399

respectively. 400

Beam search is utilized to decode the output character 401

possibilities from Jasper and a 6-g KenLM [76] language 402

model2 into grammatically and semantically correct words on 403

sentence level [77]. 404

IV. EXPERIMENTAL SETUP 405

A. Dataset 406

All datasets used in this article are summarized in Table II 407

and random frames from audio-visual ones are presented 408

1https://nvidia.github.io/OpenSeq2Seq/html/speech-recognition.html
2https://github.com/PaddlePaddle/DeepSpeech
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TABLE II

OVERVIEW OF ALL CORPORA USED IN THIS ARTICLE. SPK: SPEAKERS. UTT: UTTERANCES. VOCAB: VOCABULARY

Fig. 4. Random face samples from audio-visual corpora. Only the face
region is cropped during training and test. Samples from audio-visual cor-
pora [31], [78], [79], [80].

in Fig. 4. VoxCeleb2 is a large-scale audio-visual corpus,409

extracted from YouTube videos, containing over one mil-410

lion utterances and more than 6k different speakers from411

around 145 nationalities and languages. It includes noisy and412

unconstrained conditions; specifically, the audio stream may413

be recorded with background noise, such as laughter and414

room reverberation, and the vision part may contain variable415

head poses (e.g., frontal faces and profile), variable lighting416

conditions, and low image quality, while the GRID and TCD-417

TIMIT datasets are in controlled experimental environments418

with fixed frontal face angle and clean background in audio419

and vision. It is worth mentioning that the GRID dataset420

is designed to contain only a fixed six-word structure and421

all sentences are generated by a restricted artificial gram-422

mar: command + color + preposition + letter + digit +423

adverb, for example, set blue in Z three now. CMLR is424

collected from videos by 11 hosts of the Chinese national news425

program News Broadcast, which contains frontal faces and426

covers a large amount of Chinese vocabulary. We first pretrain427

LipSound2 on VoxCeleb2 and then fine-tune the model on428

GRID, TCD-TIMIT, and CMLR for video to mel-spectrogram429

reconstruction.430

LibriSpeech and AISHELL-2 are the current largest open-431

source speech corpora and widely used speech recogni-432

tion benchmarks for English and Chinese, respectively.433

LibriSpeech is derived from audiobooks, containing 460 h 434

of clean speech and 500 h of noisy speech. AISHELL-2 435

consists of 1000-h different domain speech, for instance, voice 436

command and smart home scenario, and includes various 437

accents from different areas of China. We use LibriSpeech 438

and AISHELL-2 to pretrain the Jasper acoustic model to boost 439

the performance of waveform-to-text transformation. The gen- 440

erated speech on GRID, TCD-TIMIT, and CMLR is used 441

for further fine-tuning to perform lip reading (video-to-text) 442

experiments. 443

The LJ Speech dataset with only one female voice is 444

especially designed for speech synthesis tasks, which is used 445

for WaveGlow training, in this article, to transform mel 446

spectrogram back to waveforms. 447

B. Evaluation Metrics 448

We evaluate the generated speech quality and intelligibility 449

with perceptual evaluation of speech quality (PESQ) [83] 450

and extended short-time objective intelligibility (ESTOI) [84], 451

respectively. The speech-to-text results are measured with 452

WER and CER, the ratio of error terms, i.e., substitutions, 453

deletions, and insertions, to the total number of words/ 454

characters in the ground-truth sequences. 455

C. Training 456

We only describe the training settings of LipSound2 pre- 457

training, LipSound2 fine-tuning, and Jasper acoustic model 458

fine-tuning. More details about Japser1 pre-training acoustic 459

model, KenLM2 language model, and WaveGlow3 can be 460

found on the open-source websites. 461

1) Vision Stream: Face landmarks are detected using 462

MTCNN [71] from all video frames and only the face area is 463

cropped and reshaped to size of 112 × 112 as inputs. We also 464

add one “visual period”—an empty frame with all values of 465

255—at the end of every visual stream to help the decoder 466

stop decoding at the right time. A max decoder step threshold 467

of 1000 is activated to terminate decoding when the decoder 468

fails to capture the “visual period.” 469

3https://github.com/NVIDIA/waveglow
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TABLE III

SPEAKER-DEPENDENT SPEECH RECONSTRUCTION RESULTS
ON GRID AND TCD-TIMIT DATASETS

2) Audio Stream: We first divide the raw waveforms by the470

max value to normalize all audios to [0, 1] and then extract471

the magnitude using the short-time Fourier transform (STFT)472

with 1024 frequency bins and a 64-ms window size with 16-ms473

stride. The mel-scale spectrograms are obtained by applying474

an 80-channel mel filter bank to the magnitude, followed by475

dynamic range clipping with a minimum value of 1e−5 and476

log dynamic range compression.477

3) LipSound2 Pre-Training: Horizontal image flipping, gra-478

dient clipping with a threshold of 1.0, early stopping, and479

scheduled sampling [85] are adopted to avoid overfitting.480

Linear and convolutional layers are initialized with Xavier [86]481

and tanh functions, respectively. We use the cosine learn-482

ing rate decay strategy with an initial value of 0.001. Our483

LipSound2 model has around 100M parameters. The audio484

and visual sequences are both high-dimensional data, so we485

conduct all experiments on four NVIDIA Quadro RTX 6000486

GPUs with 24-GB memory in parallel to enable a big batch487

size. The entire pre-training procedure took around 25 days.488

4) Fine-Tuning: Pre-trained LipSound2 is fine-tuned on489

GRID, TCD-TIMIT, and CMLR videos to conduct speech490

reconstruction experiments. Afterward, the produced speech491

for English (GRID and TCD-TIMIT) and Chinese (CMLR)492

is fine-tuned on the pre-trained English (LibriSpeech) and493

Chinese (AISHELL-2) acoustic models to perform lip reading494

tasks with a ten times smaller learning rate.495

V. EXPERIMENTAL RESULTS496

A. Lip-to-Speech Reconstruction497

1) Speaker-Dependent Result: We report the generated498

speech results in two perspectives, i.e., speech quality (PESQ)499

and speech intelligibility (ESTOI). For a fair comparison,500

we keep the same settings as previous works. For speaker-501

dependent tasks, all datasets are randomly split into 90:5:5502

for training, validation, and test sets on GRID, respectively503

(Speaker S1 − S4) and TCD-TIMIT (Lipspeaker 1 − 3).504

Different from previous works that build one model for each505

individual speaker, we train only one model on all speakers.506

As shown in Table III, our LipSound2 system, which is first507

pre-trained on the VoxCeleb2 dataset and then fine-tuned on508

the specific dataset, achieves the highest scores on both PESQ509

and ESTOI, which reveals the effectiveness of our proposed510

method. The last column in Table III compares the number511

of LipSound2 model parameters against those of baseline512

systems, showing that its best performance is obtained while513

staying well in the existing range of numbers of parameters.514

TABLE IV

SPEAKER-INDEPENDENT SPEECH RECONSTRUCTION RESULTS
ON GRID AND TCD-TIMIT DATASETS

TABLE V

SPEECH RECONSTRUCTION RESULTS FOR

CHINESE ON THE CMLR DATASET

2) Speaker-Independent Result: For speaker-independent 515

cases, we follow the same setups for GRID [33] and TCD- 516

TIMIT [31]. 517

LipSound2 achieves the best results on both metrics on 518

the GRID dataset. Moreover, by listening to the reconstructed 519

audios, we find that our model is capable of producing similar 520

voices as ground-truth speakers, instead of generating a weird 521

voice or one of the voices in the training set as occurring in 522

previous works. The model has implicitly learned the mapping 523

between voices and faces. We highly recommend readers to 524

listen to the produced samples on our demo website.4 525

Furthermore, we find substitution errors occurring on seg- 526

ment level (vowels and consonants) because the context infor- 527

mation is still not sufficient to disambiguate the phonemes that 528

share the same visible organs, such as lips and tongue, but are 529

different in the invisible ones. 530

To the best of our knowledge, we are the first to tackle 531

the speaker-independent case on the TCD-TIMIT dataset since 532

TCD-TIMIT consists of limited samples (∼370) for each 533

speaker but with large-scale vocabulary (∼5.9K), which makes 534

the tasks on TCD-TIMIT quite challenging. The speaker- 535

independent results reported in Table IV show considerable 536

performance, for example, the PESQ result is even better 537

than some results reported on speaker-dependent settings (as 538

shown in Table III), which suggests that the large-scale self- 539

supervised pre-training enables the model to successfully 540

generalize to unseen speakers. 541

3) Speech Reconstruction for Chinese: To explore the effec- 542

tiveness of our proposed architecture, we further perform 543

speech reconstruction in Chinese. For the speaker-dependent 544

case, we keep the same training and test splits used in 545

CSSMCM [80] for lip reading; for the speaker-independent 546

case, S1 (male) and S6 (female) are used for testing and the 547

remaining speakers are used for training and validation. 548

In Table V, only LipSound2 results are reported since 549

we make a first attempt at tackling speech reconstruction in 550

Chinese. After checking the generated audio samples, we find 551

that, besides the confusion on segments, there are some tone 552

errors. One of the reasons is that Chinese is a tonal language 553

4https://leyuanqu.github.io/LipSound2/
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Fig. 5. Comparison between generated mel spectrogram and ground truth in speaker-dependent and speaker-independent settings for English and Chinese
[79], [31], [80].

Fig. 6. Attention alignment comparison on the GRID dataset.

in which lexical tones play an important role for semantic554

discrimination. The fundamental frequency (F0), which is555

produced by the vibration of vocal cords, is not visible in556

the input videos (face area), and it is reported that the visual557

features have a weak correlation to F0 [28]. Another reason558

is that the VoxCeleb2 dataset mainly consists of nontonal lan-559

guages, e.g., British English, American English, and German,560

which makes the pre-training pay little attention to tone561

production.562

4) Attention Alignment: We compare the attention align-563

ments learned by LipSound [20], which is only trained on the564

GRID dataset and LipSound2 (this article). As shown in Fig. 6,565

the LipSound attention weights are fuzzy at nonverbal areas566

and at short pauses between words, which may mislead the567

decoder into focusing on irrelevant encoder timesteps, whereas568

the attention weights learned by LipSound2 are intensive and569

more robust to silence or short pauses.570

B. Lip Reading Results 571

Different from conventional methods which directly trans- 572

form videos into text, we perform lip reading experiments in 573

two steps, i.e., video-to-wav and wav-to-text. 574

1) Lip Reading Results for English: We follow the same 575

splits as previous works for training and test on the GRID [44] 576

and TCD-TIMIT [87] datasets. The comparison with related 577

results is listed in Table VI. We report the WER of GRID 578

and TCD-TIMIT audio test sets on pre-trained acoustic models 579

(audio gold standard) and the results fine-tuned on the training 580

audio samples (+Fine-Tuning), which is treated as the upper 581

boundary of lip reading. 582

Our LipSound2 model achieves the state-of-the-art perfor- 583

mance on both GRID and TCD-TIMIT datasets. Fine-tuning 584

the acoustic model pretrained on 960-h LibriSpeech with 585

generated audios can not only significantly boost the model 586

performance but also accelerate training time. 587

Further improvement can be achieved when an external 588

language model is integrated. The benefit from the language 589

model on the GRID dataset is not as much as on TCD- 590

TIMIT since the sentence structure in GRID is designed by 591

an artificial grammar. The language model can only help to 592

correct misspelled words but cannot contribute grammatically 593

or semantically. 594

2) Lip Reading Results for Chinese: We also explore lip 595

reading performance in Chinese, as shown in Table VII. Audio 596

gold standard is directly evaluating the CMLR test set on a pre- 597

trained acoustic model trained on a 1000-h AISHELL2 dataset. 598

After fine-tuning with CMLR training audios, we get 3.88% 599

CER and 4.89% CER for speaker-dependent and speaker- 600

independent cases, respectively. 601

In comparison to other work, our LipSound2 model achieves 602

better results. CER further drops when decoding with an 603
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TABLE VI

LIP READING RESULTS ON THE GRID AND TCD-TIMIT DATASETS
ON WER. SPK-DEP: SPEAKER-DEPENDENT. SPK-INDEP:

SPEAKER-INDEPENDENT. LM: LANGUAGE MODEL

TABLE VII

LIP READING RESULTS FOR CHINESE ON THE CMLR
DATASET. CER: CHARACTER ERROR RATE

external language model. Besides, we build a new baseline604

for CMLR in speaker-independent settings.605

VI. DISCUSSION606

Although the proposed LipSound2 model pre-trained on a607

large-scale dataset achieves considerable performance on both608

speech reconstruction and lip reading tasks, it still generates609

error speech due to the visual similarity on pronunciation, for610

example, “pill” is easy to be misrecognized as “bill” in English611

and “ji zhi” is mistaken as “qi zhi” in Chinese. In addition, our612

model can generate quite similar voices as the ground truth in613

speaker-dependent settings, while the model is inclined to pre-614

dict a voice existing in the training set sometimes in speaker-615

independent cases. For details and demonstrations, we refer616

also to the demo video on the project website.5 How to stop617

the fine-tuning procedure at the appropriate time and avoid the618

model overfitting on downstream tasks is an important direc-619

tion for future research since the MSE loss always declines620

when using teacher forcing during training, which hardly621

indicates whether the model is overfitting or not. Besides,622

a possible solution could be using voice embeddings as623

additional inputs that can efficiently help models learn speaker624

identity information, as we found in our previous work [4].625

VII. CONCLUSION626

In this article, we have proposed LipSound2 that directly627

predicts speech representations from raw pixels. We inves-628

tigated the effectiveness of self-supervised pre-training for629

5https://leyuanqu.github.io/LipSound2/

speech reconstruction on large-scale vocabulary datasets, par- 630

ticularly for speaker-independent settings. Moreover, state-of- 631

the-art results are achieved by fine-tuning the produced audios 632

on a well-pretrained speech recognition model for both Eng- 633

lish and Chinese lip reading experiments since our two-step 634

method benefits not only from the large-scale crossmodal 635

supervision which enables the model to learn more robust 636

representations and more different content information but also 637

from the advanced speech recognition architecture (acoustic 638

and language models), which is pre-trained on abundant 639

labeled data. 640

Although we have made great progress on speech recon- 641

struction in controlled environments, there is still a signifi- 642

cant gap to the requirements of real-world scenarios. Future 643

work will focus on more realistic configuration, such as the 644

variety of light conditions, moving head poses, and different 645

background environments. Moreover, the current lip reading 646

experiments are separately conducted in two steps in which the 647

error generated in the first step (video-to-wav) will be propa- 648

gated to the second step (wav-to-text). How to jointly train the 649

two tasks in an end-to-end fashion could be another direction. 650

Besides, we are also interested in integrating our LipSound2 651

model into active speaker detection, speech enhancement, and 652

speech separation tasks to boost the performance of speech 653

recognition systems in human–robot interaction. 654
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