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From Clustering to Cluster Explanations
via Neural Networks
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Abstract— A recent trend in machine learning has been to
enrich learned models with the ability to explain their own
predictions. The emerging field of explainable AI (XAI) has so far
mainly focused on supervised learning, in particular, deep neural
network classifiers. In many practical problems, however, the
label information is not given and the goal is instead to discover
the underlying structure of the data, for example, its clusters.
While powerful methods exist for extracting the cluster structure
in data, they typically do not answer the question why a certain
data point has been assigned to a given cluster. We propose a new
framework that can, for the first time, explain cluster assignments
in terms of input features in an efficient and reliable manner. It is
based on the novel insight that clustering models can be rewritten
as neural networks—or “neuralized.” Cluster predictions of the
obtained networks can then be quickly and accurately attributed
to the input features. Several showcases demonstrate the ability
of our method to assess the quality of learned clusters and to
extract novel insights from the analyzed data and representations.

Index Terms— Explainable machine learning, k-means cluster-
ing, neural networks, “neuralization,” unsupervised learning.
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I. INTRODUCTION

CLUSTERING is an important class of unsupervised
learning models that aims to reflect the intrinsic

heterogeneities of common data generation processes [1]–[4].
Natural cluster structures are observed in a variety of contexts
from gene expression [5] and ecosystems composition [6]
to textual data [7]. Methods that can accurately identify
the cluster structure have thus been the object of sustained
research over the past decades [8]. Basic techniques, such as
k-means [9], have been extended to operate in kernel feature
spaces [10], [11], or on the representations built by a deep
neural network [12]–[15].

Due to the ever-growing complexity of ML models and their
use in increasingly sensitive applications, it has become crucial
to endow these models with the capability to explain their
own predictions in a way that is interpretable for a human.
Explainable AI (XAI) has emerged as an important direction
for machine learning, and excellent results have been reported
in selected tasks, such as explaining the predictions of popular
DNN classifiers [16]–[20].

In this article, we bring these newly developed explana-
tion capabilities to clustering, a highly needed functionality,
considering that in the first place one of the main motivations
for performing a clustering is knowledge discovery. Especially
in high-dimensional feature space, a clustering for knowledge
discovery can only provide a few prototypical data points for
each cluster. Such prototypes, however, do not reveal which
features made them prototypical. Instead, we would like to
let the clustering model explain itself in terms of the very
features that have contributed to the cluster assignments. To the
best of our knowledge, our work is the first-ever attempt to
systematically and comprehensively obtain such explanations.
Specifically, we are able to supply explanations of why each
individual point is clustered in the way it is.

The method we propose, puts forward the novel insight
that a broad range of clustering models can be rewritten,
without retraining, as functionally equivalent neural networks,
which then serve as a backbone to guide the explanation
process. Technically, we suggest applying the following two
steps: 1) the cluster model is “neuralized” by rewriting it
as a functionally equivalent neural network with standard
detection/pooling layers. 2) Cluster assignments formed at
the output of the neural network are then propagated back-
wards using an LRP-type procedure (cf. [17], [21], [22])
until the input variables (e.g., pixels or words) are
reached.
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Fig. 1. From clustering to cluster explanations via neural networks. (a) Standard clustering scenario where data are assigned onto clusters according to
the clustering model. (b) Overview of our contributions. (b1) We enrich the cluster assignment with an explanation highlighting what input features mostly
contribute to the cluster decision. (b2) We achieve this technically by observing that the clustering decision can be rewritten as a neural network (neuralization),
enabling fast and robust explanations via the LRP technique (propagation).

The proposed “neuralization-propagation” procedure (or
short, NEON) is tested on a number of datasets and clustering
models, including recent deep clustering models, such as
SCAN [23]. Each time, NEON accurately explains cluster
assignments and extracts useful insights. Experiments also
demonstrate the practical value of our two-step approach
compared with a potentially simpler one-step approach without
neuralization. Our contributions can be summarized as follows.

1) Introduction of XAI to clustering, specifically, explana-
tion of the assignment of individual data points onto
clusters, in terms of input features.

2) Formulation of the clustering decisions for a broad range
of clustering models as being functionally equivalent
neural networks, thus enabling the application of state-
of-the-art XAI techniques to these models.

3) Theoretical embedding of our neuralization-propagation
approach to explaining clustering, specifically providing
an interpretation of our approach, for special cases,
in terms of Shapley values.

4) Demonstration of the benefit of bringing XAI to cluster-
ing showcased for two real-world examples and exten-
sive quantitative validation of our proposed explanation
method.

Fig. 1 shows a cartoon of our contributions in order to pro-
vide the general underlying intuition to the reader. We stress
that our method applies to many popular clustering algorithms
and is a generic blueprint as it does neither rely on predesigned
interpretability structures nor algorithms, nor any retraining.
This will prove useful in the future for shedding new light on
existing cluster-based typologies used, e.g., in computational
biology [24], [25] or consumer data [26], which researchers
and practitioners have started to use increasingly to support
their scientific reasoning and to take insightful decisions.

A. Related Work

So far, research on explanation methods has been over-
whelmingly focused on the case of supervised learning.
Methods based on the gradient [27]–[29], local perturbations

[16], [30], or surrogate functions [18] do not make specific
assumptions about the structure of the model and are, thus,
applicable to a wide range of classifiers. Other methods require
the classifier to have a neural network structure and apply
a purposely designed backward propagation pass [17], [21],
[22], [31]–[33] to produce accurate explanations at low com-
putational cost. While recent work has extended the principle
to other types of models, such as one-class support vector
machines (SVMs) [34], LSTM networks [35], or graph neural
networks [36], the method we propose here contributes by
offering a solution to the so far unsolved problem of explaining
cluster assignments.

Note that a few cluster interpretability techniques have so
far been based on surrogate decision trees [37]–[41], where the
decision tree is trained to approximate the k-means clustering
as closely as possible, and where the cluster assignment is
then interpreted using XAI techniques specific to decision
trees. With such a surrogate approach, the user typically
has to tradeoff faithfulness to the original model against
explainability.

Related to the connections we establish in this article
between clustering models and neural networks, some works
explore ways of merging the two in order to produce bet-
ter, more flexible ML models. For example deep clustering
approaches typically build a clustering objective on top of deep
representations [12], [14], [15], [42], [43]. Other approaches,
such as TELL [44], design the neural network in a way
that simulates a clustering model, so that the learned neural
networks solution can be interpreted as a clustering solution.
Note that in all these works, the purpose is more to enhance
a basic clustering model by providing the flexibility of neural
network representation and training, whereas our work focuses
on making existing popular clustering algorithms explainable.

Another set of related works focuses on the problem of
learning a good clustering model, by identifying a subset
of relevant features that support the cluster structure. Some
methods identify relevant features by running the same cluster-
ing algorithm multiple times on different feature subsets [45].
Other approaches simultaneously solve feature selection and
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clustering by defining a joint objective function to be min-
imized [46]. While feature selection can identify the set of
features required to represent the overall cluster structure, our
work builds up by identifying among those features which
ones are truly responsible for a given cluster or a given cluster
assignment.

Further related works focus on quantitatively validating
clustering solutions. Examples of validation metrics are com-
pactness/separation of clusters [47], cluster stability under
resampling/perturbations [48], [49], or purity, i.e., the absence
of examples with different labels in the same cluster [50].
Our work enhances the validation of clustering models by
producing human-interpretable feedback, a critical step to
identifying whether cluster assignments are supported by
meaningful features or by what the user would consider to
be artifacts.

Finally, user interfaces have been developed to better
navigate cluster structures, as they occur, e.g., in biology
applications [51], [52]. Also, the use of prototypes has been
proposed to visualize deep image clustering models [15] or
explain kernel methods for property prediction of chemical
compounds [53]. While these works produce useful and infor-
mative visualizations which may help to guide the process of
clustering, our approach contributes by answering the precise
question “why a given data point is assigned to a particular
cluster.”

II. EXPLAINING K -MEANS CLUSTER ASSIGNMENTS

The k-means algorithm [9] is one of the best known
approaches to clustering and is used in many scientific
and industrial applications (e.g., [54]–[56]). This section
presents our neuralization-propagation approach for explaining
a k-means cluster assignment in terms of input features.
Due to the simplicity of the k-means model, this section
also has a tutorial purpose. More complex and powerful
clustering models based on kernels [11], deep neural networks
[12], [14], or more general clustering techniques, are discussed
in Sections III–V.

The k-means algorithm finds a set of centroids that mini-
mizes the total squared distance between each data point and
their nearest centroid. The k-means model assigns points to
clusters based on their distance to each centroid µk ∈ R

d ,
specifically the model assigns a point x ∈ R

d to cluster c if

∀k �=c : �x − µc�2 < �x − µk�2. (1)

In principle, it is conceivable to use XAI techniques, such as
prediction difference analysis (PDA) [16], [57] or LIME [18],
as they apply out-of-the-box to any model or decision function.
However, these approaches require evaluating the function
multiple times to test for the effect of each input dimension.
This can become slow when the data is high dimensional, e.g.,
when clustering images or gene expression data [25]. Also,
the local perturbation may not faithfully depict the overall
contribution of a feature to the clustering decision, especially
if multiple features need to be perturbed in order to affect the
decision.

In the context of supervised learning, more efficient XAI
techniques have been proposed, which rely on a model

Fig. 2. Left: Decision function of a k-means clustering model with centroids
µ1,µ2,µ3. Data points in the region highlighted in red are assigned to the
cluster c = 1. Right: Contour plot of the function fc(x) for the cluster c = 1.

that induces the decision function, and from which mean-
ingful gradient information and intermediate representations
can be extracted. Such methods include, among others, inte-
grated gradients (IGs) [29], or layerwise relevance propagation
(LRP) [17], [22], [58]. The LRP method, in particular, lever-
ages the neural network structure of the prediction to produce
a robust explanation in the order of a single forward/backward
pass. The LRP method was used in a wide range of applica-
tions (e.g., [22], [36], [59]–[64]), and can be embedded in the
framework of deep Taylor decomposition [31].

A. Neuralization of the Cluster Assignment

In order to bring these efficient XAI techniques to clus-
tering, we propose to enrich the clustering decision function
gc(x) with a neural network model. The latter is designed
to exactly replicate the cluster assignments of the original
clustering model and is more amenable to explainability.
Furthermore, we also require that such a neural network model
is obtained readily from the cluster solution (i.e., the centroids)
without incurring any additional training step. We call the
process of obtaining such a neural network “neuralization.”

Proposition 1: The decision function of (1) can be repro-
duced by a two-layer neural network composed of a standard
linear layer and a (min-)pooling layer

(Neuralized k-Means):

hk = w�k x + bk (layer 1)

fc = min
k �=c
{hk} (layer 2)

where wk = 2(µc−µk) and bk = �µk�2−�µc�2, and assigning
to cluster c if fc(x) > 0.

(See Appendix A of the Supplementary Material for the
derivation). The first layer corresponds to a collection of linear
functions aligned with the different cluster centroids. The min
pooling selects which linear function is active at a given
location. These two layers together build a piecewise linear
function. A simple 2-D example with three clusters is shown
in Fig. 2. We observe that the neural network output fc(x)
(right) exactly reproduces the true cluster decision boundary,
specifically, the Voronoi partition associated with the given
k-means model (left).

This neural network can be also interpreted in neuroscien-
tific terms as the alternation of “simple cells” and “complex
cells” [65], or “executive organs” and “restoring organs” in
automata theory [66]. We also note that earlier works have
already linearized elements of the cluster model, such as the
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square distance for the purpose of training [44]. Here, our
contribution differs by extracting a piecewise linear view of the
whole model, and additionally, identifying a neural network
structure for this piecewise linear form. We provide similar
neuralization results for the soft k-means case, as well as a
probabilistic interpretation, in Appendix E of the Supplemen-
tary Material. We will also study more complex neuralization
scenarios in Sections III and IV when considering kernel-based
clustering and deep clustering.

B. Propagation of the Cluster Assignment

So far, we have rewritten the k-means decision function
for each cluster as a neural network. This initial step gives
access to a broader range of explanation techniques, such as
IGs [29] or LRP [17], [67]. The LRP technique, in particular,
leverages the neural network structure to produce a robust
explanation in a single forward/backward pass. Unlike the
standard gradient propagation pass which provides a highly
localized view of the function, LRP applies propagation rules
that redistribute the quantity to explain from layer to layer.
These rules are purposely designed for the task of explanation.
LRP ensures certain desirable properties of an explanation,
such as conservation of predicted evidence and local continuity
of explanations [17], [67].

Let us start with the output of the neural network fc,
which we wish to attribute as a first step to neurons in
the intermediate layer (hk)k , by propagating through the min
function. Similar to [34], we follow a min-take-most (MTM)
strategy, where smallest inputs to that function receive the
largest share of the quantity to redistribute; in particular,
we apply the propagation rule

Rk = exp(−βhk)∑
k �=c exp(−βhk)

fc (2)

where Rk is the “relevance” of neuron hk to the cluster
assignment fc, and where β ∈ R

+ is a stiffness hyperpara-
meter. The stiffness parameter interpolates between a uniform
redistribution strategy (β = 0) and a min-take-all strategy
(β → ∞). Note that compared with these two extreme
cases, our approach allows us to contextualize the explanation
(i.e., not redistributing on clusters of competitors that are too
far, and therefore, irrelevant), and at the same time, ensures
continuity of the explanation as we transition from one nearest
cluster competitor to another. We propose to set this parameter
according to the simple heuristic

β = E[ fc]−1 (3)

where the expectation is computed over the whole dataset.
In other words, considering fc to be a “typical” score in
the pool, we want the stiffness parameter to be inversely
proportional to it.

We now consider how to further redistribute the intermediate
relevance scores Rk to the input layer, where the dimensions
correspond to observed quantities that are assumed to be
interpretable by the user. To achieve this, we propose the LRP
propagation rule

Ri =
∑
k �=c

(xi − mik) ·wik∑
i (xi − mik) ·wik

Rk (4)

where mk = (µc+µk)/2 is the midpoint between the centroids
of the cluster of interest and the competitor. In other words,
we attribute on dimensions where the input activation relative
to the midpoint, x − mk , matches the model response wk .

It can be noted that the proposed propagation rules ensure
a certain number of desirable properties of an explanation,
in particular, it satisfies the conservation property

∑
i Ri =

fc(x), it preserves the continuity of fc(x), and it is invariant
to any translation of the clustering in input space.

C. Theoretical Embedding

We provide further theoretical support for the rules in (2)
and (4) by showing that their application produces, for special
cases, explanations that coincide with the Shapley value. The
Shapley value [30], [68], [69], originally proposed in the
context of game theory, is an axiomatic solution to the problem
of attributing the value of a coalition of players to individual
players in the coalition. For our comparison, we interpret the
set of players as the individual input features (or activations)
and the withdrawal of a player from the coalition as replacing
the corresponding feature value xi by some reference value x̃i .

Proposition 2: Redistribution performed by (2) with para-
meter β = 0, corresponds to the Shapley value of the function
fc(h) with the reference point h̃ = 0.

(The proof is given in Appendix B of the Supplementary
Material). The parameter β = 0 corresponds to a uniform
redistribution of fc to the cluster competitors. The corre-
sponding reference point h̃ = 0 can be interpreted as the
image of a point x̃ in input space that is equidistant from
all cluster centroids. (Note that this point may not exist in
low-dimensional spaces).

Proposition 3: When the number of clusters is equal to 2,
the model reduces to fc(x) = w�k x+bk, and redistribution by
(2) and (4) corresponds to the Shapley value of the function
fc(x) with the reference point x̃ = mk .

(See Appendix B of the Supplementary Material for the
proof). In other words, the explanation coincides with Shapley
values with the reference point x̃ chosen at the midpoint
between the clusters centroids µk and µc. Such a reference
point is a natural choice for explaining why a point is a
member of cluster c and not of cluster k.

III. EXTENSION TO KERNEL K -MEANS

The standard k-means clustering algorithm has strong lim-
itations in terms of representation power, as it only allows
to represent clusters that are pairwise linearly separable. The
kernel k-means model [11] is a straightforward extension of
k-means where the data is first mapped to a feature space
via some map x 	→ �(x) induced by some kernel func-
tion K(x, u). The decision function implemented by kernel
k-means is given by

∀k �=c : ��(x)− µc�2 < ��(x)− µk�2 (5)

where the centroids are also defined in feature space.
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Fig. 3. Distance between some data point x and a cluster c depicted as
a collection of black dots. The distance is either computed in feature space,
or using the soft min pooling of (6).

If we were to apply the same explanation framework as
in Section II, we would obtain an explanation in terms of
dimensions of the feature space, and we would then need
to further backpropagate through the feature map (FM) �.
While this is technically possible [e.g., for a Gaussian kernel
K(x, u) = exp(−γ �x − u�2), one can use random approx-
imations of the FM], we consider instead a more intuitive
formulation, specific to the Gaussian kernel case, where the
distance to a particular cluster is modeled by a soft minimum
over distance to the cluster members. Specifically, we consider
in place of (5) the decision function

∀k �=c : LME
i∈Cc

−γ
{�x − ui�2

}
< LME

j∈Ck

−γ
{�x − u j�2

}
(6)

where (ui)i and (u j ) j are sets of data points (or support
vectors) representing the two clusters, Cc, Ck ⊂ N are the
nonoverlapping sets of indices of support vectors that represent
these clusters, where LME−γ denotes a generalized F-mean
with F(t) = e−γ t , that is,

LME
i∈C

−γ {si } = − 1

γ
log

(
1

|C|
∑
i∈C

exp(−γ si )

)
. (7)

The latter can be interpreted as a soft min pooling and it
converges to a hard min pooling when γ →∞.

The two distance measures on which the decision functions
of (5) and (6) are based are illustrated for some toy 1-D cluster
c composed of six data points in Fig. 3.

While the two functions clearly differ, one can also observe
that they build comparable level sets. In fact, we show in
Proposition 4 that these two measures of distance are essen-
tially the same up to some monotonous nonlinear transforma-
tion, thereby leading to the same decision function.

Proposition 4: Let µc = (1/Zc)
∑

i∈Cc
�(ui ), where � is

some FM associated with the Gaussian kernel K(x, u) =
exp(−γ �x − u�2) and Zc is a normalization factor. The two
distance functions appearing in (5) and (6) can be related as

LME
i∈Cc

−γ
{�x − ui�2} = gc(��(x)− µc�2) (8)

where gc is a monotonically increasing function defined as

gc(ξ) = γ−1Li1(ξ/2+�c)+ γ−1 Hc (9)

with Li1 is the polylogarithm of order 1, �c = (1−�µc�2)/2,
and Hc = log(|Cc|/Zc).

A proof is given in Appendix C of the Supplementary Mate-
rial. Formally, equivalence between the two decision functions
[(5) and (6)] is ensured when the function gc does not depend
on the choice of cluster c. When choosing the normalization
factor Zc = |Cc| (standard kernel k-means), the term Hc

Fig. 4. Left: Partition implemented by a kernel k-means clustering with
three clusters supported by seven support vectors each. Right: Neural network
output fc(x) associated with the first cluster.

vanishes but the term �c remains, and the converse happens
if setting �µc� = 1, i.e., Zc = �∑i∈Cc

�(ui )� (spherical
kernel k-means). In practice, both terms remain near zero if
we observe that each cluster is equally heterogeneous and has
consequently the same norm in feature space. In that case, the
two decision boundaries become equivalent. An advantage of
the latter decision function is that it can be exactly reproduced
by a neural network.

Proposition 5: The decision function in (6) can be repro-
duced by a four-layer neural network composed of a linear
layer followed by three pooling layers

(Neuralized Kernel k-Means):

hi jk = w�i j x + bi j (layer 1)

h jk = LME
i∈Cc

γ {hi jk} (layer 2)

hk = LME
j∈Ck

−γ {h jk} (layer 3)

fc = min
k �=c
{hk} (layer 4)

where wi j = 2 · (ui − u j ) and bi j = �u j�2 − �ui�2, where
LMEγ and LME−γ can be interpreted as soft max pooling
and soft min pooling, respectively, and assigning to cluster c
if fc(x) > 0.

The proof is given in Appendix D of the Supplementary
Material. An example showing the equivalence between the
neural network output and (6) is given in Fig. 4.

This neural network we have proposed is depicted in
Fig. 5 (middle) and can now be used to support the process
of explanation. Because the network is again composed of
linear and pooling layers, propagation rules proposed for the
k-means case remain applicable. In particular, redistribution
in pooling layers can be achieved using (2) (and switching
the sign for the soft max-pooling case).1 The directional
redistribution in the first layer can be achieved using (4).
However, we must handle the case where some relevance lands
on a deactivated (or weakly activated) neuron hi jk , as the
latter does not provide directionality in input space. Such a
special case can be handled by only propagating part of the
relevance (and dissipating the rest), specifically, by performing
the reassignment

Ri jk ← Ri jk · (hi jk/hk). (10)

1The relevance attributed to neuron hi jk is, thus, given as

Rijk = exp(γ hi jk )∑
i∈Cc

exp(γ hi jk )
· exp(−γ h jk)∑

j∈Ck
exp(−γ h jk)

· Rk .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

The latter ensures that the relevance continuously converges
to zero as the neuron hi jk becomes deactivated.

In terms of computational cost, we note that the number of
neurons in our neuralized k-means model grows quadratically
with the number of support vectors per cluster, whereas the
complexity of a simple evaluation of the decision function
is linear with the number of support vectors. For NEON
to remain computationally favorable, the number of support
vectors must be kept small, typically, in the order of ten
support vectors per cluster. Practical approaches to produce
a limited number of support vectors include, e.g., reduced
sets [70]–[72], vector quantization [73], or representing each
cluster as a mixture model with finitely many mixture elements
(we use this approach in Section VI-A). Alternatively, when
for modeling purposes it is necessary to maintain a large
number of support vectors per cluster, one can adopt a pruning
strategy, where we only evaluate in the forward and backward
pass the most relevant part of the network, i.e., neurons to
which the min- and max-pooling functions in the network are
effectively sensitive.

IV. EXTENSION TO DEEP CLUSTERING

Unlike kernel k-means, deep k-means makes use of an
FM given explicitly as a sequence of layer-wise mappings
�(x) = �L ◦ · · · ◦ �1(x), and the FM is typically learned
via backpropagation to produce the desired cluster structure.

Various formulations of deep k-means have been proposed
in the literature [12], [14], [15], [23], [74], [75], often
achieving vastly superior performance compared with shallow
clustering approaches. Clustering solutions produced by [14],
[15] optimize a hard k-means objective based on distances
in feature space. Using the same assignment model as for
k-means, but this time in feature space, we decide for cluster
c if

∀k �=c : ��(x)− µc�2 < ��(x)− µk�2. (11)

This lets us rewrite the full model as a the stacking of the L
layers of the neural network � with the neuralized k-means
model defined in Proposition 1:

(Neuralized Deep k-Means):

a = �L ◦ · · · ◦�1(x) (layers 1, . . . , L)

hk = w�k a + bk (layer L + 1)

fc = min
k �=c
{hk} (layer L + 2)

where wk = 2 · (µc − µk) and bk = �µk�2 − �µc�2. The
neural network is depicted in Fig. 5 (right). Note that beyond
a simple application of standard k-means on top of a given
layer, there have been many proposals for deep clustering.

Other quite popular formulations make use of a soft cluster
assignment model, specifically, a softargmax model [23], [42],
or a t-Student similarity model [12], [43]. These soft cluster-
ing approaches bring a probabilistic interpretation of cluster
assignments and enable entropy-based optimization criteria.
In the soft k-means models of [23] and [42], the data are first

projected on some direction µc associated with the cluster and
mapped to a probability score using a softmax. Here, we first
consider the explanation of the clustering outcome, in other
words, we place the decision boundary at the location where
there is as much evidence for the given cluster assignment as
for the assignment onto the nearest competitor

∀k �=c : pc(x) > pk(x)

with pc(x) = exp(µ�c a)∑
k exp(µ�k a)

and a = �(x). (12)

Proposition 6: The decision function of (12) can be
expressed by the neural network

Neuralized Deep Soft Clustering (Relative):

a = �L ◦ · · · ◦�1(x) (layers 1, . . . , L)

hk = w�k a (layer L + 1)

fc = min
k �=c
{hk} (layer L + 2)

where wk = µc − µk and testing for fc ≥ 0. Furthermore,
fc has a probabilistic interpretation as the log-likelihood ratio
log(pc(x)/ maxk �=c{pk(x)}).

A proof is given in Appendix E of the Supplementary
Material. The solutions in [12] and [43] are also based on
a soft-assignment model, where the exponential terms are
replaced by t-Student distributions. The latter does not allow
for a similar neural network reformulation as earlier; however,
they still converge to hard k-means when the clusters become
increasingly distant.

Alternatively, one can be interested in why an assignment
onto a cluster exceeds a particular probability threshold.
Specifically, we would like to explain the decision function

pc(x) > θ (13)

where the probability scores are defined in the same way as
in (12), and where θ is some value between 0 and 1.

Proposition 7: The decision function of (13) can be
expressed by the neural network

Neuralized Deep Soft Clustering (Absolute):

a = �L ◦ · · · ◦�1(x) (layers 1, . . . , L)

hk = w�k a + bk (layer L + 1)

fc = LME
k �=c

−1{hk} (layer L + 2)

where wk = µc−µk and bk = − log(N −1)+ log((1− θ)/θ),
and testing for fc ≥ 0. Furthermore fc = log(pc(x)/(1 −
pc(x))) + log((1 − θ)/θ), i.e., a log-likelihood ratio plus an
offset.

A proof is given in Appendix E of the Supplementary
Material. As for the k-means and kernel k-means cases, the
MTM propagation rule can be applied to the top layer. For
the last neuralized variant featuring the LME computation,
one also needs to handle the case, where nonzero relevance
scores Rk land on deactivated neurons (hk = 0). To avoid
this, we perform the reassignment Rk ← Rk · (hk/ fc). For
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Fig. 5. Examples of clustering models whose cluster assignments can be explained with our NEON approach. The neuralized models, each of which can be
expressed as combinations of detection layers and pooling layers, are depicted along with the propagation rules applied at each layer.

further propagation of relevance scores into the neural net-
work, we notice that all layers up to layer L + 1 form a
standard neural network. Hence, propagation rules designed in
the context of neural networks are applicable. For propagation
rules specific to deep neural networks, we refer to the papers
[58], [76], which cover in particular convolutional layers and
LSTM blocks.

V. EXTENSION TO ANY CLUSTERING

Not all clusterings can be readily obtained by standard /
kernel / deep k-means or combinations of them. Algorithms,
such as DBSCAN [77], hierarchical agglomerative cluster-
ing [78], or spectral clustering [79], [80], are based on
a different principle, and typically lead to different cluster
solutions. For these clusterings, we observe, however, that
the decision function they implement is typically based on
evaluating distances between individual data points. Hence,
the kernel k-means model we have proposed provides a natural
surrogate for modeling the cluster assignment of these models.
In particular, the identified four-layer architecture can be kept
fixed, and the parameters (e.g., data point weightings) can
be fine-tuned to fit the decision boundary. Once the model
boundaries coincide, the model can be used in a second step
to extract explanations. The same fine-tuning strategy can be
used to handle cluster solutions that are not the sole result of
a clustering algorithm but that have instead been curated by
humans to match their expert knowledge.

Compared with a standard surrogate approach that would
use a generic classifier to fit the cluster assignments, using
a standard/kernel/deep k-means surrogate ensures that the
needed adjustment is minimal, thereby preventing the decision
strategy of the two models to become substantially different.
In particular, one minimizes the risk of introducing a Clever
Hans effect into the surrogate model (cf. [81]), or removing
such Clever Hans effect. The risk would indeed be that the
surrogate model yields a false interpretation (too optimistic or
too pessimistic) of the original model’s decision strategy.

VI. APPLICATIONS

We have proposed to extend XAI to clustering and have
contributed the neuralization-propagation technique (NEON)
to efficiently extract these explanations. In the following,
we demonstrate on three showcase examples how one benefits
in multiple ways from enriching cluster assignments with
explanations.

A. Better Validation of a Clustering Model

The following showcase demonstrates how an explanation
of cluster assignments can serve to produce a rich and nuanced

assessment of cluster quality that goes beyond conventional
metrics, such as cluster purity.

We consider for this experiment the 20 newsgroups
dataset [82] that contains messages from 20 public mail-
ing lists, recorded around the year 1996. Headers, footers,
and quotes are removed from the messages. Each document
D is represented as a collection of words defined as any
sequence of letters of length at least three. Stop words are
removed. Document vectors are then produced by mapping
each word t it contains to its tok2vec2 representation ϕ(t)
(similar to word2vec [83]), and computing the average x =
(1/|D|) ∑

t∈D ϕ(t). We cluster the data using a kernel k-
means model with ten support vectors per cluster. Initializing
the kernel clustering with ground truth labels and training
the kernel k-means model with an EM-style procedure (see
Appendix F of the Supplementary Material for details), the
cluster assignment converges to a local optimum with the final
assignment visualized in Fig. 6 (middle).

We now focus on assessing the quality of the learned
clusters. The adjusted rand index (ARI) metric gives a score of
32%, whereas the same model trained with fixed assignments
to the true labels reaches 45%. From this score, one could
conclude that the algorithm has learned “bad” clusters. Instead,
cluster explanations, which expose to the user what in a given
document is relevant for its membership to a certain cluster,
will give a quite different picture. We first note that a direct
application of the NEON method we have proposed to obtain
such an explanation would result in an explanation in terms of
the dimensions of the input vector x, which is not interpretable
by a human as word and document embeddings are usually
abstract. A more interpretable word-level explanation can
be achieved, by observing that the mapping from words to
document (an averaging of word vectors) and the first layer of
the neuralized kernel k-means, are both linear. Thus, they can
be combined into a single “big” linear layer that takes as input
each word distinctly. These scores can then be pooled over
word dimensions [84], leading to a single-relevance score Rt

for each individual word t . These explanations can be rendered
as highlighted text.

We select a few messages that we show in Fig. 6. The
two messages on the left are assigned to the same cluster
but were posted to different newsgroups (i.e., have different
labels, and thus, hurt the ARI). Here, NEON highlights in
both documents the term “version.” Closely related terms like
“DOS,” “windows,” and “Ghostscript” are highlighted as well.
The fact that “version” was found in both messages and that
other related words were present constitutes an explanation

2We use spaCy md word embeddings: https://spacy.io
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Fig. 6. Application of NEON to the clustering of newsgroup data. Newsgroup texts, where words relevant for cluster membership, are highlighted. Gray
words are out of vocabulary.

and justification for these two messages being assigned to the
same cluster.

As a second example, consider messages on the right in
Fig. 6, posted on two different groups, but that are assigned to
the same cluster. The top message is discussing the specifics of
Mercury’s motion, while the bottom message draws an analogy
between physical objects and morals. The most relevant terms
are related to physics, such as “Einstein” or “atoms.” Also,
more broadly used terms (that may appear in other clusters
too) like “motion” or “smallest” provide evidence for cluster
membership. Here again, the words that have been selected
hint at the meaningful similarity between these two messages,
thus justifying the assignment of these messages to the same
cluster.

Overall, in this showcase experiment, minimizing the clus-
tering objective has led to a rather low ARI. According to
common validation procedures, this would constitute a reason
for rejection. Instead, the cluster membership explanations
produced by NEON could pinpoint to the user meaningful
cluster membership decisions that speak in favor of the learned
cluster structure.

B. Getting Insights Into Neural Network Representations

Our second showcase example demonstrates how clus-
ter explanations can be applied beyond clusters assessment,
in particular, how it can be used as a way of getting insights
into some given data representation � , e.g., some layer of a
neural network. A direct inspection of the multiple neurons
composing the neural network layer is generally unfeasible
as there are many such neurons, and their relation to the
input is highly nonlinear. The problem of understanding deep
representations has received significant attention in recent
years [81], [85], [86].

We consider the data representations built by the well-
known VGG-16 convolutional network [87]. The VGG-16
network consists of a classifier built on a feature extractor. The

feature extractor is composed of five blocks alternating multi-
ple convolutions and ReLU activations. Each block terminates
with a 2 × 2 spatial pooling, thereby creating increasingly
more abstract and spatially invariant representations.

To analyze representations produced by VGG-16, we feed
some images of interest into the network, leading to spatial
activation maps at the output of each block. Collecting the
activations at the output of a given block, we build a dataset,
where each spatial location in the block corresponds to one
data point. After this, we apply k-means with K = 8 on
these data points (rescaled to the unit norm) and neuralize the
model. For each cluster, we consider the model outputs fc, and
propagate these outputs backward through the network using
LRP in the neuralized model and further down into the VGG-
16 layers to form a collection of pixelwise heatmaps associated
with each cluster. When computing the explanations, we set β
according to our heuristic in (3), and in convolution layers,
we use LRP-γ [58] with γ = 0.25 in blocks 1–3 and
γ = 0.1 in blocks 4 and 5.

Cluster explanations are shown in Fig. 7 for an artificial
spiral image, and one of the well-known “dogs playing poker”
images, titled “Poker Game” by Cassius Marcellus Coolidge,
1894. Images were fed to the network at resolution 448 × 448.
In the artificial spiral image, clusters at the output of block
3 map to edges with certain angle orientations as well as colors
(black and white) or edge types (black-to-white, or white-
to-black). Interestingly, strictly vertical and strictly horizon-
tal edges fall in clusters with very high angle specificity,
whereas edges with other angles fall into broader clusters.
When building clusters at block 4, color and edge information
become less prominent. Clusters are now very selective for
the angle of the curvature, something needed to represent
higher-level concepts. Hence, this analysis reveals to the user
a specific property of the VGG-16 neural network which is
the progressive building of curvature in deep representations.
In the Poker Game image, we observe at block 3 a cluster
that spans the green texture in the background, one that spans
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Fig. 7. NEON analysis of images represented at different layers of a deep neural network (pretrained VGG-16). K -means clustering with K = 8 is performed
at the output of these two blocks. Each column shows the pixelwise contributions for one of these clusters.

the fur texture associated with the dogs, and further clusters
that react to edges of various orientations. After block 5, the
clusters once again form higher-level concepts. There is a
cluster for the big lamp at the top of the image, a cluster for
the painting in the upper right, and a cluster that represents
the dogs. Note that it only represents the most discriminative
part of the dog, and builds invariance w.r.t. other parts of the
dog, in particular, the fur texture. This reveals to the user
how VGG-16 progressively builds high-level abstractions and
becomes invariant to certain visual features.

To summarize, our cluster explanations could extract useful
insight into the way VGG-16 represents its input from a small
selection of images. In particular, our analysis does away
with the high dimensionality of neural network representation
by providing an explanation that fits in only eight heatmaps;
hence, easily interpretable by the user.

C. Getting Insights Into the Data

While XAI techniques have shown helpful to shed light on
the decision strategy associated with specific models and data
representations, it also provides a useful tool to extract insight
into the data distribution itself (exploratory data analysis).
This is often desirable in scientific applications [25], [61],
where the model serves to discover interesting correlations
in the data, rather than being of interest on its own. Our
last showcase demonstrates that NEON, in conjunction with
a well-functioning clustering model, can extract such insight
into the data. In particular, we find that clusters of the data
can be linked to contiguous patterns in pixel space, often
corresponding to the image segments provided by the user.

To demonstrate this property of the data, we consider the
PASCAL VOC 2007 dataset [88], which comes with segmen-
tation masks separating the different objects. We consider a
similar setting to Section VI-B, where we build a collection
of K -cluster models based on activation vectors at different
spatial locations and at a given layer of the pretrained VGG-16

Fig. 8. Quantitative evaluation of NEON’s ability to extract meaningful
summaries. Top: The cluster explanation is matched with ground truth object
segmentation masks by means of cosine similarity. Bottom: Comparison of
NEON to other methods. For each method, we show the average cosine score
over the whole dataset. Results are shown for different blocks on the x-axis.

network. The assignment of these activation vectors onto the
learned clusters is then attributed to the input pixels using our
NEON explanation framework to form a collection of K heat
maps. Fig. 8 (top) shows an example of heatmaps we get for
an image of a kid with a small motorbike. We observe that
the attribution of cluster membership onto pixels highlights
that each cluster represents distinct objects in the image, here,
the kid, the motorbike, and the background. We perform an
experiment, where we measure to what degree explained clus-
ters match the different segmentation masks. The similarity
between heatmaps and segmentation masks is measured by
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a maximum weight matching (Hungarian algorithm) between
masks and clusters, where the weight is given by their cosine
similarity. The procedure is depicted in Fig. 8 (middle). The
matching is reduced to a single score S ∈ [−1,+1] by
averaging the cosine similarity of all matchings. A perfect
score of S = 1 can only be achieved if the clusters are strictly
equivalent to the matched segmentation masks.

For comparison, we construct two simple baselines that do
not make use of clustering: The first baseline takes the top-k
most activated (in the L∞ sense) FMs. The second baseline
takes the top-k most activated locations (LO). In addition,
we consider a recently proposed method, NetDissect [86],
which identifies meaningful segments of an image by thresh-
olding spatial activation maps. Thresholds applied by NetDis-
sect are learned in a supervised manner to match a rich set of
concepts (e.g., wood, red, or carpet) from the Broden dataset.
The NetDissect1 baseline takes the top-K segmentation maps.
NetDissect2 takes K centroids from all segmentation maps.
For every method in our benchmark, we fix K = 4 (the
average number of objects in the dataset) and apply the same
LRP propagation rules for NEON, FM, and LO. Examples of
heatmaps produced by each method are given in Appendix J
in the Supplementary Material.

Average cosine similarities for each method applied at the
output of each block3 are given in Fig. 8 (bottom). The
NEON approach clearly and consistently delivers the best
results except for block 5, where NetDissect2 shows a better
performance. Interestingly, the highest correlation is found in
lower layers, confirming that low-level features such as color
or textures are good descriptors of the spatial occupancy of
an object, whereas higher-level features may build too much
invariance to comprehensively highlight segments (see also
Section VI-B). The higher performance of NetDissect in a
higher layer can be attributed to the smoother way it renders
explanation in pixel-space (cf. Appendix J in the Supplemen-
tary Material), thereby “undoing” some of the invariances the
neural network might have built.

Overall, our NEON approach allows us to shed light on
the statistics of complex data distributions, for example,
by finding that clusters in image data, especially those coding
for low-level information content, such as texture or color,
substantially correlate with image segments.

VII. EVALUATION

While Section VI has demonstrated the multiple practi-
cal benefits one can get from bringing XAI to clustering,
we would like to study here more specifically the technical
ability of NEON as an explanation method for clustering.
We consider a broad spectrum of desiderata of an explanation
method and evaluate NEON against a number of simply
contributed baselines. We stress that the baselines we use were
originally proposed for explaining classification, however, with
some adaptations that we propose, they can be extended to
the clustering case, and therefore, serve as baselines in our
evaluation.

3NetDissect only has results for blocks 3–5 due to its high computational
cost in the lower layers.

Algorithm 1 AUC Computation for a Data Point z ∈ R
d and

the Explanation (Ri)i ∈ R
d of Its Prediction

I = ∅

curve = [ ]
for ι ∈ argsort((−Ri)i) do
I = I ∪ {ι}
x ∼ pKDE(x | zI)
curve.append(gc(x))

end for

return area_under(curve)· 100 / d

In particular, we consider IGs [29], where the explanation
scores are computed by integrating the model output between
the origin and the data point x following some linear path.
We then apply PDA [57], [89], where we score the different
dimensions based on the effect on the decision function of
removing the corresponding feature. The missing feature is
either set to zero (PDA0) or imputed using a KDE condi-
tional sampler (PDAcs), which we describe in Appendix G of
the Supplementary Material. Finally, we include four simple
baselines: random attribution, squared features x2, sensitivity
analysis (∇ f )2, which computes the square of the derivative
along each input dimension, and a method specific to standard
k-means, “nearest centroid analysis” (NCA) that computes
(x−µk)

2−(x−µc)
2, where µc and µk are the centroids of the

assigned cluster and nearest competing cluster, respectively,
and where the squaring operation applies elementwise.

A. Desiderata and Evaluation Metrics

In the context of explaining image classifiers, [90] proposed
the “pixel-flipping” technique for evaluating explanations. The
technique consists of constructing a plot that keeps track of
the decision function (in our case, this will be the cluster
indicator function gc(x) = 1{x→cluster c}) as we add or remove
features by order of relevance according to the explanation,
and measuring the area under the curve (AUC). We start from
this algorithm and adapt it to our setting. In particular, instead
of flipping pixels, we consider general features, and similar
to [36] start from an “empty” data point, and add the features
from most to least relevant. Missing features are inpainted
using a conditional sampler built on the simple kernel density
estimation (KDE) model, the details of which we provide in
Appendix G in the Supplementary Material, or replaced by
zero when the input features are activations of a deep neural
network. The procedure for computing the AUC is detailed
in Algorithm 1, where the AUC output is a number between
0 and 100. The higher the AUC, the better the explanation. The
analysis can be extended to a whole dataset by averaging the
AUC obtained for each individual data point and repeating
the whole procedure multiple times to reduce the variance
produced by the KDE sampling.

Consider now the five desiderata of an explanation listed
in [91], namely, fidelity, understandability, sufficiency, low
construction overhead, and runtime efficiency. We argue
that Algorithm 1 captures to a reasonable extent the first
three of them: fidelity (D1): Algorithm 1 keeps track of the
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model output as we add features. This favors techniques that
explain the model output, rather than some other function.
Understandability (D2): It is desirable that the explanation
is understandable by its user, e.g., expressible in terms of
input features, and simple enough (e.g., a few relevant fea-
tures). Algorithm 1 implements such desiderata by verifying
whether a few most relevant features returned by the expla-
nation produce a substantial increase in the model output.
Sufficiency (D3): The explanation should be sufficient for its
user, i.e., provide sufficient information about the model’s
decision strategy. Algorithm 1 requests a score for each
individual feature (or at least a full ranking of those features).
This favors explanations with this level of resolution compared
with more coarse-grained explanations.

To assess the fulfillment of the last two desiderata,
we proceed as follows: low construction overhead (D4): The
explanation technique should not be too complex or costly
to implement. Our evaluation will rank explanation methods
depending on whether they only need access to the decision
function, access to some differentiable function reproducing
the decision function, or access to the neural network internals
of that function. Runtime efficiency (D5): The explanation
should be computable quickly. In our evaluation, we will pro-
vide the algorithmic complexity of each explanation method
and perform additional runtime comparisons.

B. AUC Evaluation Results

To test desiderata D1–D3, we first perform the AUC evalu-
ation presented in Algorithm 1 on a set of models trained on
different datasets of various dimensionality and complexity.
We consider first a set of standard k-means models trained on
a number of datasets from the UCI repository (details and links
to the datasets are provided in Appendix H of the Supplemen-
tary Material), and where the number of clusters K is deter-
mined using the elbow method [92]. Then, we consider more
complex kernel k-means models which we train on further
datasets from the UCI repository. We also consider the kernel
k-means model trained on the 20 newsgroup dataset [82]
(news in Table I) which we have showcased in Section VI-A.
The training algorithm we have used for kernel k-means
is detailed in Appendix F in the Supplementary Material.
Finally, we consider deep k-means models built on the popular
STL-10 [93] image recognition dataset. We consider either a
standard k-means model built on the features at the output
of block 5 of the VGG-16 deep neural network pretrained
on ImageNet (VGG-s), or the same VGG-16 network without
supervised pretraining (VGG-u) and coupled with the recently
proposed SCAN [23] clustering model4 for deep clustering.
For each dataset and model, we set the NEON hyperparameter
according to the heuristic in (3). For deep models, we choose
β in the same way and furthermore choose the LRP rule
LRP-γ [58], with the parameter γ set heuristically to 0.1.
For these two deep clustering models, we consider as a unit

4We train exactly the same model as in [23], but replace the resnet-18 feature
extractor by a VGG-16 feature extractor, which comes with extensively tested
LRP rules [58], [63]. Our trained model reaches a clustering accuracy of 72.6
(compared with 76.7 for the original model [23], but well above earlier deep
clustering proposals).

Fig. 9. Effect of the number of retained dimensions d and the number
of clusters K on the AUC performance of each explanation method on the
winer dataset.

of interpretability the 256 FMs at the output of block 3 of
the VGG-16 network, and thus, produce explanations in R

256.
Results are shown in Table I.

We observe that the proposed NEON explanation method
is superior to all baselines for the vast majority of considered
clustering models and datasets. We note the relatively poor
performance of PDA, where the removal of individual features
seems insufficient to capture the more global structure of the
cluster assignment. To get further insights into the performance
of NEON, we perform an experiment where we take an
existing dataset, the winer dataset, and generate scenarios of
varying complexity by training the clustering model between
K = 2 and K = 64, and also removing input features to
generate dataset dimensions from d = 2 to d = 13. The results
are shown in Fig. 9.

We observe that in every regime, NEON has equal or
superior performance to all baselines. Anecdotally, NEON
performs equivalently to NCA for K = 2, but it starts to
outperform it as soon as the number of clusters grows.

C. Sensitivity of NEON to Hyperparameters

Unlike other baseline methods used in our benchmark,
NEON comes with a “stiffness” hyperparameter β, which we
have proposed to choose heuristically following (3). For deep
clustering, one also needs to choose the parameter γ associated
with the propagation in convolution layers. We would like
to test the sensitivity of NEON to these parameters, first to
verify the soundness of our heuristic, but also to check whether
other choices of parameters lead to further improvements or
conversely a degradation of NEON performance. Results are
given in Fig. 10, where we superpose on the same plot the
performance at the heuristically set value for the hyperpara-
meter (orange dot), the performance for other values of the
hyperparameter (solid gray line), and the performance of best
performing baseline (dotted blue line).

We observe that the simple heuristic proposed in (3) nicely
correlates with the peak of AUC performance, thereby provid-
ing empirical justification for the proposed heuristic. We note
that even if the hyperparameter β is chosen inadequately, AUC
performance degrades in most cases only to a minor extent.
Conversely, an optimization of the NEON hyperparameters
brings slight additional gains to the AUC score. Notably, the
seemingly limited performance of NEON on deep clustering
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TABLE I

AUC SCORE COMPUTED WITH ALGORITHM 1 AND SERVING AS A PROXY FOR THE FULFILLMENT OF DESIDERATA D1–D3. THE HIGHER THE AUC
SCORE THE BETTER THE EXPLANATIONS. WE FIND THAT THE PROPOSED NEON METHOD SCORES THE HIGHEST FOR THE VAST MAJORITY OF

CLUSTERING MODELS. ENTRIES WHERE METHODS ARE INAPPLICABLE OR COMPUTATIONALLY PROHIBITIVE ARE DENOTED BY “—”

Fig. 10. Evaluating of NEON hyperparameters on a selection of clustering
models. First row: k-means models, second row: kernel k-means models, third
row: deep models (VGG-u/SCAN). The y-axis shows the pixel flipping AUC.
The first two rows show the effect of the MTM parameter β, with the orange
marker indicating the proposed heuristic β = E[ fc]−1, the dotted line is the
best performing baseline (cf. Table I). The last row shows the effect of the
LRP convolution parameter γ , with the orange marker indicating our heuristic
γ = 0.1, where we set β = E[ fc]−1.

with K = 1000 can be overcome by choosing a larger value
for the parameter γ , in turn, making NEON again the best
performing method. In addition to maximizing the AUC score,
the hyperparameters of NEON and the possibility to optimize
them can be especially useful when bringing explainability to
new tasks with specific performance metrics.

D. Construction Overhead and Runtime

Finally, we would like to study the fulfillment by NEON of
desiderata D4 (low construction overhead) and D5 (runtime
efficiency), compared with other methods in our benchmark.
We resort to qualitative analysis for D4, where we categorize

TABLE II

FULFILLMENT OF LOW CONSTRUCTION OVERHEAD AND RUNTIME

EFFICIENCY DESIDERATA FOR THE METHODS IN OUR BENCHMARK

methods according to what needs to be constructed in addi-
tionally to the clustering decision function. Results are shown
in Table II (second column). The symbol “–” indicates that we
do not even need the decision function, “gc” indicates that we
need the decision function only, “∇ fc” indicates that we need
a differentiable surrogate function fc and its gradient, “(µc)c”
indicates that we need the cluster centroids, and finally, “NN”
indicates that we need the neural-network equivalent of the
surrogate function fc. The proposed NEON method has the
highest overhead in our benchmark as it requires a neural
network equivalent. However, since we have already derived
these neural network equivalents in the technical sections,
there is no significant obstacle to applying NEON to the
studied models (k-means, kernel k-means, deep clustering, and
related).

Regarding the runtime efficiency (D5), we perform a com-
plexity analysis of the different explanation methods, where d
is the number of input dimensions, K is the number of clusters,
and p is the number of support vectors per cluster in the kernel
k-means case. Results are shown in Table II (last column).
We observe that for k-means, the NEON computational cost
is lower or equal to most explanation methods, by only
requiring a single forward and backward pass, whereas several
explanation methods need to evaluate the model multiple
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times. (An empirical runtime comparison to all baselines for
various k-means models can be found in Appendix I of the
Supplementary Material). For kernel k-means, results are more
balanced, with NEON being slower than simple sensitivity
analysis, but running faster than the more advanced PDA and
IG competitors if the number of support vectors is smaller than
the number of input dimensions or the number of integration
steps, respectively. Hence, while for standard k-means, we can
generally claim that NEON has high efficiency, for kernel
k-means, one needs to additionally ensure that the number
of support vectors remains small, typically less than 10.

Overall, we have demonstrated in our evaluation that NEON
fares on average the highest, comparing favorably to all com-
petitors when considering the multiple aspects that enter into
the assessment of an explanation method. Therefore, NEON
constitutes so far the most appropriate and powerful method
for tackling the problem of explaining cluster assignments.

VIII. CONCLUSION

We have contributed by for the first time bringing XAI
to clustering and have proposed a general framework, called
neuralization-propagation, for explaining cluster assignments
of a broad range of clustering models. The proposed method
converts, without retraining, the clustering model into a func-
tionally equivalent neural network composed of detection and
pooling layers. This conversion step which we have called
“neuralization” enables cluster assignments to be efficiently
attributed to input variables by means of a reverse propagation
procedure.

The quantitative evaluation shows that our explanation
method is capable of identifying cluster-relevant input features
in a precise and systematic manner, from the simplest k-means
model to some of the most recent proposals, such as the SCAN
deep clustering model [23]. The performance remains high
across all considered data types, in particular, abstract vector
data, text, natural images, or neuron activations.

The method we have proposed complements standard clus-
ter validation techniques by providing rich interpretable feed-
back on the nature of the clusters that are built. Furthermore,
when paired with a well-functioning clustering algorithm,
it provides a useful tool for exploratory data analysis and
knowledge discovery where complex data distributions are first
summarized into finitely many clusters that are then exposed
to the human in an interpretable manner.
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