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Bad and Good Errors: Value-Weighted Skill Scores
in Deep Ensemble Learning

Sabrina Guastavino , Michele Piana , and Federico Benvenuto

Abstract— Forecast verification is a crucial task for assessing
the predictive power of prognostic model forecasts and it is
usually implemented by checking quality-based skill scores.
In this article, we propose a novel approach to realize forecast
verification focusing not just on the forecast quality but rather
on its value. Specifically, we introduce a strategy for assessing the
severity of forecast errors based on the evidence that, on the one
hand, a false alarm just anticipating an occurring event is better
than one in the middle of consecutive nonoccurring events, and
that, on the other hand, a miss of an isolated event has a worse
impact than a miss of a single event, which is part of several
consecutive occurrences. Relying on this idea, we introduce a
notion of value-weighted skill scores giving greater importance
to the value of the prediction rather than to its quality. Then,
we introduce an ensemble strategy to maximize quality-based
and value-weighted skill scores independently of one another.
We test it on the predictions provided by deep learning methods
for binary classification in the case of four applications con-
cerned with pollution, space weather, stock price, and IoT data
stream forecasting. Our experimental studies show that using the
ensemble strategy for maximizing the value-weighted skill scores
generally improves both the value and quality of the forecast.

Index Terms— Deep learning, ensemble learning, forecast ver-
ification.

I. INTRODUCTION

PREDICTING events over time applies to a number of
fields, ranging from weather [1] and space weather fore-

casting [2], through environment [3] to stock market forecast-
ing [4]. In all these frameworks, the goodness of prediction
is usually defined in terms of the correspondence between
forecasts and observations and is known in the literature
as the forecast quality [5]. For binary predictions, forecast
quality is typically measured by using skill scores based
on a confusion matrix whose entries count the number of
false and true negatives (FNs and TNs) and of false and
true positives (FPs and TPs). Specifically, these skill scores
rely on simple arithmetic formulas that compute in different
ways the imbalance of the diagonal entries (representing the
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correct prediction) with respect to the off-diagonal entries
(representing the incorrect prediction) of the confusion matrix.
Typical skill scores for forecast quality are the true skill
statistic (TSS) [6], the Heidke skill score (HSS) [7], and the
critical success index (CSI) [8]. However, there is a different
perspective to evaluate forecast, i.e., in terms of its usefulness
to support the user while making a decision. This type of
goodness is known in the literature as the forecast value [9]
and two examples of scores for the quantitative evaluation
of this prediction goodness are the cost value score and the
relative value score introduced in [10]. Moreover, the field of
cost-sensitive learning is devoted to take the misclassification
costs (and possibly other types of cost) into consideration [11].
In this framework, the evaluation of the forecast value is
commonly carried out on the basis of preassigned cost of FPs
and FNs. However, such a cost depends on problem-related
factors and its quantification usually involves the economic
cost. In particular, it concerns the actions taken to restore the
damage caused by a sudden event or to prevent the damage
caused by a possible future event. There are no papers in the
literature that we are aware of evaluating the forecast value
of the prediction without an additional problem-dependent
cost–benefit analysis.

In this article, we focus on binary predictions performed
over time and we propose two novelties. First, we introduce a
novel approach to evaluate the severity of prediction errors
by considering that a false alarm predicting that an event
will occur just before its actual occurrence, anyway eases
the right decision from the user, while a delayed alarm is
of little use. The idea is to exploit the sequential order,
naturally given by the time, with which the prediction occurs
in order to assign a cost for FPs and FNs. In this way,
we classify errors on the basis of their importance and we get
a novel notion of confusion matrix and related skill scores.
In this new framework, the severity of errors depends on their
impact on the decision making process and therefore we refer
to these novel confusion matrix and skill scores as value-
weighted. Such a strategy allows for evaluating the forecast
value independently of a cost–benefit analysis.

The second novelty is the introduction of an ensemble
strategy to select, among many different predictions, those that
maximize the newly introduced value-weighted skill scores.
It can be applied to any set of probabilistic predictions
regardless of the method used for generating such predictions.
In this work, we test this strategy on the predictions generated
by deep learning methods by varying the training epoch.
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This ensemble strategy generally yields better results (in
terms of both forecast quality and value) when maximiz-
ing the value-weighted skill scores rather than the classical
quality-based skill scores. We showed this better effectiveness
in the case of four applications. We considered the prob-
lem of forecasting the air quality in highly polluted urban
environments, with particular reference to the prediction of
concentration of fine particles with diameters of 2.5 μm
and smaller (PM2.5) [12]–[14]. The second problem was
concerned with solar flare forecasting, i.e., the prediction of
those explosive solar events that trigger most space weather
phenomena [15]–[17]. The third application focuses on stock
price forecasting and, in particular, on the prediction of
“down” movements in the market [18]–[20]. Eventually, the
fourth application concerns with IoT data streams [21].

The plan of the article is as follows. In Section II, we define
the classical skill scores and we show that binary predictions of
the same quality can have completely different forecast values.
In Section III, we introduce a value-weighted confusion matrix
and the corresponding value-weighted skill scores to quantify
the forecast value of a binary prediction. In Section IV,
we show how this value-weighted approach works to assess
the performances of standard machine learning. Section V
introduces the ensemble learning process and describes its
application to pollution, space weather, stock price, and
IoT data stream forecasting. Our conclusions are offered in
Section VI.

II. CONFUSION MATRIX AND SKILL SCORES

The results of a binary classifier are usually evaluated by
computing the confusion matrix, also known as contingency
table. Let M2,2(N) be the set of 2-D matrices with integers
elements. Let y ∈ {0, 1}n be a binary vector representing the
true label vector and let p ∈ {0, 1}n be a binary prediction.
Then the confusion matrix C ∈ M2,2(N) is defined as

1) C1,1 = #{i ∈ {1, . . . , n} : yi = 1, pi = 1}.
2) C2,2 = #{i ∈ {1, . . . , n} : yi = 0, pi = 0}.
3) C1,2 = #{i ∈ {1, . . . , n} : yi = 0, pi = 1}.
4) C2,1 = #{i ∈ {1, . . . , n} : yi = 1, pi = 0}.

This definition implies that C1,1 computes the true positives
(TPs), C2,2 computes the true negatives (TNs), C1,2 computes
the false positives (FPs) and C2,1 computes the false nega-
tives (FNs). From this confusion matrix several skill scores
can be computed in order to evaluate the binary classifier
performances. Given a confusion matrix C, we denote with
S : M2,2(N) → R a skill score defined on the matrix C. Four
frequently used skill scores are as follows.

1) Accuracy (ACC) [22]

ACC(C) = C1,1 + C2,2

C1,1 + C1,2 + C2,1 + C2,2
(1)

i.e., the ratio between the number of correct predictions
over the total number of predictions. ACC(C) ∈ [0, 1]
and the optimal value is 1.

2) True skill statistic (TSS) [23]

TSS(C) = C1,1

C1,1 + C2,1
− C1,2

C1,2 + C2,2
(2)

i.e., the balance between the true positive rate (or prob-
ability of detection) and the false alarm rate. TSS(C) ∈
[−1, 1] and it is optimal when it is equal to 1. A negative
value means that forecasting behaves in a wrong way,
i.e., it mixes the role of the positive events with the role
of the negative ones.

3) Heidke skill score (HSS) [24]

HSS(C) = 2(C1,1C2,2 − C2,1C1,2)

T1 + T2
(3)

where T1 := (C1,1+C2,1)(C2,1+C2,2) and T2 := (C1,1+
C1,2)(C1,2 +C2,2), i.e., a measure of the improvement of
forecast over random forecast. HSS(C) ∈ (−∞, 1]. The
optimal value is equal to 1, a negative value meaning that
forecast is worse than random forecast and the 0 value
meaning that the forecast has the same skill of random
forecast.

4) Critical Success Index (CSI) [8]

CSI(C) = C1,1

C1,1 + C1,2 + C2,1
(4)

i.e., the ratio between the number of correct event
forecast and the number of events which occurred plus
the number of false alarms. CSI(C) ∈ [0, 1] and the
optimal value is equal to 1.

Given a binary-vector y ∈ {0, 1}n encoding the binary
outcome of an empirical observation, we can define a function
Fy such as

Fy : {0, 1}n → M2,2(N)

p �→ C (5)

which maps a binary prediction p ∈ {0, 1}n onto the con-
fusion matrix obtained by comparing y and p. The function
Fy is clearly not injective. Fig. 1 illustrates an example in
which, given a binary observation y, four different binary
predictions lead to the same confusion matrix. In the example,
y has 64 components such that 14 components are equal to
1 and 50 components are equal to zero. The four predictions
p(1),p(2),p(3) and p(4) in the four panels of the figure provide
the same confusion matrix with entries TP = 11, FN = 3,
FP = 7 and TN = 43. From a forecasting quality viewpoint,
the four predictions are the same, since they lead to the
same confusion matrix and, accordingly, to the same skill
scores. However, from a forecasting value viewpoint, the four
predictions are different. More specifically, prediction p(4), for
which the corresponding FPs closely anticipate the observed
outcomes equal to 1 should be preferred, in value terms, than
the other predictions that sound alarms after the occurrence of
the events.

We now introduce a novel definition of confusion matrix,
which is able to distinguish between these ambiguous con-
figurations and therefore to locally restore the injectivity of
Fy.

III. VALUE-WEIGHTED CONFUSION MATRIX AND SKILL

SCORES

In order to define the value-weighted confusion matrix,
we first introduce the error functions ε1,2 : {0, 1} × {0, 1} →
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Fig. 1. Four different binary predictions with the same confusion matrix: C1,1 = 11 (TPs), C1,2 = 7 (FPs), C2,1 = 3 (FNs) and C2,2 = 43 (TNs).

R+ and ε2,1 : {0, 1} × {0, 1} → R+ such that, given the
component yi of a binary observed outcome y and the com-
ponent pi of a binary prediction p, ε1,2(yi , pi) and ε2,1(yi , pi)
measure the error of the incorrect prediction when either
an FP or an FN occurs. These error functions allow the
generalization of the confusion matrix concept as follows.
We denote with �{a} a number equal to 1 when condition a is
satisfied and 0 otherwise. Then the weighted confusion matrix
C̃ ∈ M2,2(R+) is defined as

C̃1,1 =
n∑

i=1

�{yi=1,pi =1}, C̃2,2 =
n∑

i=1

�{yi=0,pi =0} (6)

C̃1,2 =
n∑

i=1

ε1,2(yi , pi), C̃2,1 =
n∑

i=1

ε2,1(yi , pi). (7)

On the one hand, quality-based forecasting assumes

ε1,2(yi , pi) := �{yi=0,pi =1}, ε2,1(yi , pi) := �{yi=1,pi =0}. (8)

On the other hand, in the case of value-weighted forecasting
we choose

ε1,2(yi , pi) = ψ(yi , pi)�{yi=0,pi =1} (9)

with

ψ(yi , pi) =
⎧⎨
⎩

1 − max
1≤k≤K

(
yi+k

k + 1

)
, if 1 ∈ {yi+t}K

t=−K

2, otherwise
(10)

and

ε2,1(yi , pi) = φ(yi , pi)�{yi=1,pi =0} (11)

with

φ(yi , pi) =
⎧⎨
⎩

1 − max
1≤k≤K

(
pi−k

k + 1

)
, if 1 ∈ {pi+t}K

t=−K

2, otherwise.
(12)

In (10) and (12), K is a fixed positive integer num-
ber. Analogously to the case of the standard confusion
matrix in Section II, we have that C̃1,1, C̃2,2, C̃1,2 and
C̃2,1 compute, respectively, the numbers of value-weighted
true positives (wTPs), value-weighted true negatives (wTNs),
value-weighted false positives (wFPs), and value-weighted
false negatives (wFNs).

We remark that C̃1,1, C̃2,2 ∈ N and that they have the
same definition of the ones in the classical confusion matrix
whereas C̃1,2, C̃2,1 ∈ R+ and can be seen as weighted
version of C1,2 and C2,1 with weighting functions ψ(yi , pi)
and φ(yi , pi), respectively. In order to illustrate how these

weighting functions work while computing the corresponding
prediction error, we introduce the window

Ii,K = {i − K , . . . , i, . . . , i + K } (13)

centered in the index i , with size K . Then, for the i th sample
we have two possible cases as follows.

1) Case of a false positive (yi = 0, pi = 1): ψ(yi , pi)
depends on the sequence {y j} j∈Ii,K . In fact:

a) If no event occurs in the window, i.e., y j = 0 for
each j ∈ Ii,K then

ψ(yi , pi) = 2. (14)

b) If at least one event occurs in the window, i.e.,
1 ∈ {y j} j∈Ii,K , then

ψ(yi , pi) = 1 − max
1≤k≤K

(
1

k + 1
yi+k

)
. (15)

Therefore, from (15) we can distinguish two situ-
ations as follows.

i) If the event occurs before time i and there is no
event in the next times, i.e., y j = 0 for j ∈ Ii,K

and j ≥ i + 1, then

ψ(yi , pi) = 1 (16)

since in (15) max1≤k≤K ((1/(k + 1))yi+k) = 0;
ii) If at least one event occurs after time i then

1

2
≤ ψ(yi , pi) < 1 (17)

and the weighting function decreases according
to the inverse of the distance of the next event
occurrence, e.g., if yi+1 = 1 then ψ(yi , pi) =
(1/2).

2) Case of a false negative (yi = 1, pi = 0): φ(yi , pi)
depends on the sequence {p j} j∈Ii,K . In fact:

a) If no predicted alarm is in the window, i.e., p j =
0 for each j ∈ Ii,K then

φ(yi , pi) = 2. (18)

b) If there is at least one predicted alarm in the
window, i.e., 1 ∈ {p j} j∈Ii,K , then

φ(yi , pi) = 1 − max
1≤k≤K

(
1

k + 1
pi−k

)
. (19)

In particular from (19) we can distinguish two
situations as follows.
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TABLE I

COMPARISON BETWEEN THE VALUE-WEIGHTED AND QUALITY-BASED
CONFUSION MATRIX AND CORRESPONDING TSS FOR THE

MOTIVATING EXAMPLES IN FIG. 1

i) If the predicted alarm is after time i and there
are no predicted alarms in the previous times,
i.e., p j = 0 for j ∈ Ii,K and j ≤ i − 1, then

φ(yi , pi) = 1 (20)

since max1≤k≤K ((1/k + 1)pi−k) = 0.
ii) If there is at least one predicted alarm before

time i , then

1

2
≤ φ(yi , pi) < 1 (21)

and the weighting function decreases according
to the inverse of the distance of the previ-
ous predicted alarm, e.g., if pi−1 = 1 then
φ(yi , pi) = (1/2).

We applied the value-weighted confusion matrix C̃ relying
on this error function on the motivating example in Fig. 1.
The results in Table I inspires the following comments. First,
different from what happens with the classical quality-based
confusion matrix C, the off-diagonal terms of C̃ depend
on the prediction vector. Second, the new confusion matrix
gives a clearer idea on how the incorrect predictions are
distributed while rolling them along the sample index. On the
one hand, in the value-weighted approach, wFPs associated
with p(1) notably increase with respect to the quality-based
FPs, coherently to the fact that this prediction sounds alarms
far from the actual event occurrence. On the other hand, wFPs
associated with prediction p(4) significantly decrease, coher-
ently to the fact that, in this case, many incorrectly predicted
alarms anticipate the event occurrence. Similar considerations
can be repeated for what concerns the three original samples
incorrectly predicted as 0: we notice that, in prediction p(4), the
number of wFNs is small, which means that the three missed
events have been predicted in advance.

IV. VALUE-WEIGHTED SKILL SCORES IN ACTION

The aim of this section is to show that the example in
Section II (see Fig. 1), in which forecasts with the same
quality level (i.e., TSS) have completely different value (i.e.,
wTSS), is not only theoretical, but it occurs in practice when
real datasets and conventional methods are used. Toward this
aim we considered a dataset from the University of California
at Irvine (UCI), released by the U.S. embassy in Beijing [25].
In detail, this archive includes the following.

TABLE II

RESULTS PROVIDED BY LR, SVM, AND NN IN THE CASE OF THE
POLLUTION FORECASTING EXPERIMENT, WHEN THE TEST SET IS THE

UCI DATABASE IN THE TIME RANGE FROM 1/7/2013 AT 00:00
THROUGH 1/15/2013 AT 07:00

1) Hourly weather information (dew point, temperature,
pressure, wind direction and speed, cumulative number
of snowing and raining hours).

2) Hourly concentration of PM2.5.

The forecasting problem we considered is the one to predict
whether PM2.5 concentration at time T +1 will exceed a fixed
threshold associated with a condition of severely polluted air,
given weather conditions and PM2.5 concentration at time T .
The machine learning methods used to address this forecasting
problem were three standard supervised algorithms: logistic
regression (LR) [26], support vector machine (SVM) [27],
and a standard neural network (NN) [28]. We trained and
validated the three algorithms using the dataset in the time
range between 01/01/2010 and 12/28/2011 so that the training
and validation sets had 17 424 samples with just 122 samples
labeled with 1 (corresponding to over-threshold pollution).
Fig. 2 shows the forecasting provided by the three algo-
rithms in the case of a test set in the archive correspond-
ing to the time range between 1/7/2013 at 00:00 UT and
1/15/2013 at 07:00 UT. Table II allows a quantitative assess-
ment of these performances by means of both the standard
quality-based confusion matrix and corresponding TSS, and
the value-weighted confusion matrix and corresponding wTSS.
We focused on TSS because we considered a significantly
imbalanced training set and in this case this score is more
appropriate [29]. A comparison between Fig. 2 and Table II
shows how our value-weighted skill score works. Indeed,
looking at the table for the following methods.

1) NN has significantly more FPs than the other two
methods and slightly less FNs. As a consequence, its
TSS is smaller than the one associated with LR (which
produces a smaller number of FPs).

2) NN has the highest wTSS, as a consequence of the
smallest number of wFNs among the three methods.

Coherently with these values, Fig. 2 shows that NN sounds
either timely alarms or alarms in advance with respect to the
actual event occurrence (this is particularly true in the case
of the window highlighted by the gray box). Furthermore,
it provides more FPs, but these are either sounded in a close
neighborhood of the actual event occurrence or corresponds
to a high PM2.5 concentration level.
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Fig. 2. Top panel: PM2.5 concentration distributed on the period from 1/7/2013 at 00:00 through 1/15/2013 at 07:00. Middle panels (from left to right):
with reference to the gray box in the top panel, predictions enrolled along time from 1/10/2013 at 08:00 through 1/12/2013 at 09:00 provided by LR, SVM,
and NN, respectively. Bottom panels (from left to right): with reference to the yellow box in the top panel, predictions enrolled along time from 1/12/2013 at
10:00 through 1/14/2013 at 22:00 provided by LR, SVM, and NN, respectively. (a) PM2.5 concentration on period from 1/7/2013 00:00 to 1/15/2013 07:00.
(b) LR: prediction in gray box. (c) SVM: prediction in gray box. (d) NN: prediction in gray box. (e) LR: prediction in yellow box. (f) SVM: prediction in
yellow box. (f) NN: prediction in yellow box.

V. DEEP ENSEMBLE CLASSIFIERS AND APPLICATIONS

In deep learning, automatic classifiers can be constructed
by applying thresholding procedures to NNs with probability
outcomes. In this approach, a NN can be formally interpreted
as the map

θ(V, ·) : R
p → [0, 1] (22)

where V represents the space of weights and the ensemble
learning process implements the following steps.

1) Train θ(V, ·) on the training set {(xi, yi )}n
i=1 using an

iterative optimization scheme that stops after N epochs.
2) For each epoch j and given X = (x1, . . . , xn), choose

the classification threshold as the real number that max-
imizes a specific skill score S. Therefore, if

ŷ
w j

X := (θ(w j , x1), . . . , θ(w j , xn))
T (23)

then the optimum threshold is the solution of the opti-
mization problem

τ ∗
j = arg max

τ∈[a,b] S
(
Fy

(
Iτ

(
ŷ

w j

X

)))
(24)

where [a, b] is a suitable interval with 0 ≤ a < b ≤ 1,
Iτ : R

n → {0, 1}n is the indicator function Iτ (ŷ) =
(�{ ŷi>τ }, . . . ,�{ ŷn>τ })T , Fy, defined as in (5), maps the
binary prediction to the associated confusion matrix
computed with respect to the true label vector y, and
S is the skill score computed on the confusion matrix,
as defined in Section II.

3) Consider a validation set {(x̃i , ỹi)}m
i=1, and the matrix X̃

such that X̃ = (x̃1, . . . , x̃m). For each epoch j , compute

ŷ
w j

X̃
:= (θ(w j , x̃1), . . . , θ(w j , x̃m))

T . (25)

4) Given a level α, select just the epochs for which the skill
score S computed on the validation set is bigger than α.
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This allows the selection of the set of epochs

J ∗ := {
j ∈ {1, . . . , N} : S

(
Fỹ

(
Iτ ∗

j

(
ŷ

w j

X̃

)))
> α

}
. (26)

5) Define the result of the ensemble learning process as
the binary value corresponding to the median value m
among all binary predictions associated with J ∗, i.e.,
given a new sample x the output is defined as

p̂ = m({Iτ ∗
j
(θ(w j , x)) : j ∈ J ∗}). (27)

In the case where the number of zeros is equal to the
number of ones, we assume p̂ = 1.

We now show how this process works in the case of four
applications concerning pollution, space weather, stock mar-
ket, and IoT datastream forecasting. In these four applications,
we considered θ to be a NN trained over N = 100 epochs
using the Adam optimizer [30] with default values of the
learning rate (0.001) and mini-batch size equal to 72. For each
application, we estimated the values of the NN parameters by
an empirical trial-and-error optimization process on several
experiments. Our focus will be on the assessment of results
when a value-weighted skill score is used in (24) and (26).
To reflect the practical application of the proposed ensemble
strategy, we show that it generally promotes predictions with
higher values of the wTSS with respect to the early stopping
strategy which is commonly used in conventional forecasting
methods based on NNs. The source code of the experiments
is available at https://github.com/SabrinaGuastavino/Value-
weighted-skill-scores-in-deep-learning.

A. Pollution Forecasting

We consider the same data and the same forecasting
problem discussed in Section IV, i.e., the prediction of
over-threshold occurrences of PM2.5 concentration at time
T + 1, having at disposal measures of this concentration and
of eight features associated with weather conditions at time
samples from 0 through T . The ensemble learning procedure
is applied on the same training and validation sets as in
Section IV. The NN θ is now a long short term mem-
ory (LSTM) NN available in the Keras library [31], in which
the sigmoid function and the binary cross-entropy are used as
activation function and loss function, respectively.

Table III shows the performances on the test set of the
ensemble and early stopping strategies both optimized with
respect to TSS and wTSS, respectively.

The prediction of the ensemble strategy is based on a
shortlist of valuable predictions over the epochs depending on
the parameter α [see (26)]. In this experiment, α is fixed equal
to 0.9. We note that using the ensemble strategy optimized
with respect to the TSS and the wTSS, respectively realizes
different predictions. Fig. 3 offers a visualization enrolled
over time of these predictions on the test period considered
in Section IV. The strategy based on the wTSS optimization
systematically leads to (sometimes even significantly) higher
quality and value-weighted scores. For what concern the early
stopping strategy, we trained the NN over 200 epochs and we
stop when the validation loss does not improve for at least
10, 20, 30, 40, and 50 epochs. Then we select the stopping

TABLE III

PM2.5 POLLUTION FORECASTING. RESULTS ON THE TEST PERIOD FROM
12/29/2011 00:00 TO 12/31/2014 23:00. WE REPORT THE RESULT OF

THE ENSEMBLE AND THE EARLY STOPPING STRATEGIES

Fig. 3. PM2.5 pollution forecasting. Predictions provided by the ensemble
method with the TSS optimization strategy (left panel) and the wTSS
optimization strategy (right panel) on the period test from 1/10/2013 08:00
to 1/14/2013 21:00. (a) TSS optimization strategy. (b) wTSS optimization
strategy.

epoch which provides the best TSS (or wTSS) validation score.
We note that it provides the same prediction regardless the
optimized skill score. Moreover, this is the only application in
which the early stopping strategy performs slightly better than
the ensemble strategy based on the wTSS optimization.

B. Solar Flare Forecasting

Solar flares are the main trigger of space weather events,
including coronal mass ejections and solar wind [32]. Their
prediction may rely on features extracted from magnetogram
images of active regions (ARs) like the ones recorded by the
Helioseismic and Magnetic Imager (HMI) on-board the Solar
Dynamics Observatory (SDO) [33]. We considered images
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from the HMI archives in order to set up an experiment in
conditions analogous to the ones considered in [34] and [35].

1) We first grouped the images according to their issuing
times and selected, in particular, just the images recorded
at issuing time 00:00 UT.

2) 23 features were extracted by means of the algorithms
illustrated in [36].

3) The labeling process utilized the flare occurrence alarm
sounded by the Geostationary Operational Environment
Satellites (GOES) cluster and associated label 1 to each
feature vector where a flare was recorded within 24 h
after the issuing time. GOES also computes the flare
energetic class and, in particular, in the experiment we
considered events of GOES class C1 and above (C1+
flares), M1 and above (M1+ flares) and X1 and above
(X1+ flares).

The training process exploited the HMI archive in the time
range from 09/15/2012 through 10/02/2015 and the validation
process from 09/29/2015 through 01/11/2015 for the predic-
tion of C1+ and M1+ solar flares. For the prediction of
X1+ solar flares, we considered a different splitting in order
to have a reasonable number of positive samples in training
and validation: we trained on the period from 09/15/2012
through 10/09/2014 and we validated on the period from
10/10/2014 through 06/14/2015. For all three cases, the test
phase focused on the time range from 01/13/2017 through
09/07/2017. We point out that, in this way, the validation
set contains just two X1+ events, both associated with AR
12 673 [34], [37]. In order to implement the ensemble learning
approach, we used a deep multilayer perceptron with 7 hidden
layers. The rectified linear unit (ReLU) function was used to
activate the hidden layers, the sigmoid activation function was
applied to activate the output and the binary cross-entropy was
used as loss function. The model was trained over 100 epochs
using the Adam optimizer with learning rate equal to 0.001,
with a mini-batch size of 72. In order to prevent overfitting,
an L2 regularization constraint was set as 0.01 in the first
two layers. The quality level α in (26) was fixed equal to a
percentage of the maximum value of the skill score in the
validation step: this rate was set equal to 90% for prediction
of C1+ flares, 95% for prediction of M1+ flares and 80% for
prediction of X1+ flares. We compared results provided by
the ensemble strategy with the early stopping strategy as in
Section V-A.

The results of this analysis are shown in Table IV and imply
once again that the ensemble strategy based on the maxi-
mization of wTSS leads to higher scores (and more diagonal
confusion matrices) with respect to the results provided by
the maximization of TSS. This is particularly significant in
the case of the prediction of M1+ and X1+ flares, i.e., in the
case when the training set is significantly more imbalanced.
Furthermore, we note that maximizing the wTSS provides
better predictions even when the early stopping strategy is
used (only in the case of X1+ flare prediction the results
are the same). However, the scores provided by the early
stopping strategy are lower than the ones provided by the
ensemble strategy (particularly lower in the case of M1+ flares

prediction). Fig. 4 enrolls over time the prediction associated
with AR 12 671 [38], [39], which originated many C1+ flares
but no M1+ and no X1+ events. The figure clearly shows that
the use of the ensemble strategy based on wTSS leads to a
significantly smaller number of FPs in the prediction of both
M1+ and X1+ events.

C. Stock Prize Forecasting

We considered the problem of predicting “down” move-
ments in stock prizes relying on information concerned with
the daily closure prizes. More specifically, the feature utilized
as input of the forecasting algorithm is a time series of five
days of daily percentage change defined as [40]

η = PN − PN−1

PN−1
· 100 (28)

where PN−1 is the closure prize at day N − 1 and PN is the
closure prize at day N . We used as label for this feature the
condition

η < L (29)

where L = −1 corresponds to the “down” movement.
We trained an LSTM NN on the training set in the time range
from 10/01/2001 through 11/26/2007 in the database put at
disposal by Yahoo Finance; the validation set is made of the
same data, but in the time range from 11/27/2007 through
11/24/2009; the test set includes data from 11/25/2009 through
12/31/2010. Again we compared results provided by the
ensemble strategy with the early stopping as in Section V-A.
We report in Table V confusion matrices and skill scores corre-
sponding to ensemble and early stopping strategies using both
the quality- and value-weighted approaches. These numbers
show that, when we choose the wTSS optimization strategy,
the ensemble learning method leads to predictions with lower
TSS but higher wTSS. Furthermore, the ensemble strategy
leads to better scores than those obtained by applying the
early stopping strategy. We further point out that, in stock
index forecasting applications, the accuracy is often used for
performance evaluation. Therefore, in Table V we also report
both the quality- and value-weighted accuracy, although in our
experiments the datasets are imbalanced, so that accuracy-type
scores are less reliable than other skill scores like, for example,
the TSS-type ones. Both accuracy and weighted value accuracy
are slightly better for the strategy based on wTSS optimization.

In order to assess the value-weighted approach in an oper-
ational framework, we simulated the following investment
strategy, starting from an initial asset of ten stocks.

1) If at day N −1 a “down” movement is predicted for day
N , then we sell two stocks.

2) If either at day N , or day N + 1, or day N + 2 the
“down” movement occurs, we use all the money earned
at step 1 to buy stocks. At day N + 3 we buy in any
case.

This strategy is applied on the test set and the results of
this analysis, illustrated in Fig. 5, show that, in a long-term
perspective, the asset value provided by the value-weighted
strategy overtakes the one provided by a standard quality-
based strategy.
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TABLE IV

SOLAR FLARE FORECASTING. RESULTS ON THE TEST SET PROVIDED BY THE ENSEMBLE STRATEGY OBTAINED BY REALIZING CLASSIFICATION VIA TSS
OPTIMIZATION (SECOND, SIXTH, AND TENTH COLUMNS) AND VIA WTSS OPTIMIZATION (THIRD, SEVENTH, AND ELEVENTH COLUMNS) AND BY

THE EARLY STOPPING STRATEGY BY REALIZING CLASSIFICATION VIA TSS OPTIMIZATION (FOURTH, EIGHTH, AND TWELFTH COLUMNS)
AND VIA WTSS OPTIMIZATION (FIFTH, NINTH, AND TWELFTH COLUMNS). THE BEST TSS AND WTSS VALUES OBTAINED IN

EACH CLASS FLARE PREDICTION ARE IN BOLD FACE

Fig. 4. Predictions enrolled along time by the ensemble method when the TSS and wTSS optimization strategies are adopted (top and bottom panels,
respectively). Green alarms correspond to C1+ flares, yellow alarms to M1+ flares, and red alarms to X1+ flares. The blue bar plots correspond to the actual
flaring events recorded by GOES, the y-label representing the corresponding GOES flare classes. Note that the gray boxes correspond to time period where
the input data are missing.

D. IoT Data Stream Forecasting

We considered the problem of predicting the usage of light
from IoT data stream. We analyze a public dataset available
at https://www.kaggle.com/garystafford/environmentalsensor-
data132k containing measurements of carbon monoxide,
humidity, gas, smoke, temperature, taken by an environmental
sensor collected in one-minute time series to predict the light

in the next 30 seconds. The dataset ranges in the time period
from 2020-07-12 00:01:34 to 2020-07-20 00:03:37 with a
cadence of about 1.33 s. We split the dataset in such a
way training, validation and test sets contain 1.78%, 1.71%
and 1.73% of positive labeled samples, respectively. The
forecast algorithm we implemented is a 1-D convolutional
NN (1D CNN) followed by two stacked LSTM networks:
the 1D CNN is designed with 32 kernels and a max-pooling
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Fig. 5. Asset profile versus time, associated with the quality-based and value-weighted optimization strategies, starting from an initial asset made of ten
stocks. Dashed black line: the impact of the TSS optimization strategy. Green solid line: the impact of the wTSS optimization strategy.

TABLE V

STOCK PRIZE FORECASTING. RESULTS ON THE TEST SET EXTRACTED
FROM THE YAHOO FINANCE DATABASE, OBTAINED BY USING THE

ENSEMBLE STRATEGY BASED ON THE OPTIMIZATION OF TSS AND

WTSS (SECOND AND THIRD COLUMNS, RESPECTIVELY) AND

THE EARLY STOPPING STRATEGY BASED ON THE OPTI-
MIZATION OF TSS AND WTSS (THIRD AND FOURTH

COLUMNS, RESPECTIVELY)

TABLE VI

IOT DATA STREAM FORECASTING. RESULTS ON THE TEST SET OBTAINED
BY USING THE ENSEMBLE STRATEGY BASED ON THE OPTIMIZATION

OF TSS AND WTSS (SECOND AND THIRD COLUMNS, RESPEC-
TIVELY) AND THE EARLY STOPPING STRATEGY BASED ON THE

OPTIMIZATION OF TSS AND WTSS (THIRD AND FOURTH

COLUMNS, RESPECTIVELY)

layer to extract features from the 1D time series sequence
data and the extracted features are then processed by the
two LSTM layers with 32 and 16 hidden neurons. Finally,
a dense layer of 16 neurons is applied. In LSTM layers a
fraction of 0.5 neurons is randomly dropped during training
to prevent overfitting [41]. We compared predictions provided
by the ensemble strategy with the early stopping. In Table VI,
we report the obtained results. As in the case of the prediction
of X1+ flares, the learning method furnishes pretty good TSS

(and wTSS) values and very low HSS values. This is due to
the fact that the dataset is strongly unbalanced. Also, in this
case, the ensemble strategy based on the wTSS optimization
provides higher scores than all the other strategies.

VI. COMMENTS AND CONCLUSION

This study introduces two novelties for binary predic-
tion problems over time. The first one is the definition of
value-weighted skill scores that evaluate the forecasting per-
formances in a way which is more appropriate for decision-
making processes. According to this definition false positives
anticipating the actual event occurrence are weighed less than
the ones associated with alarms sounded behind schedule.
Value-weighted skill score can be applied whenever we deal
with a binary prediction over time and the decision-making
process critically depends on the time a decision is taken.
The second novelty is an ensemble strategy to provide a
forecast optimized in terms of quality-based or value-weighted
skill scores starting from the probabilistic predictions pro-
vided at each epoch by a deep learning algorithm. The
ensemble strategy furnishes different predictions when opti-
mized with respect to quality-based and value-weighted skill
scores, respectively. Moreover, it generally yields forecasts
with higher quality and value, when optimized with respect
to the value-weighted skill score. The next step in this inves-
tigation will be the encoding of these value-weighted newly
introduced skill scores in the loss functions utilized as part of
the ensemble learning algorithm, in such a way to implement
a forecasting approach in which the value-weighted strategy
is a priori introduced in the optimization process.
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