
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Graph Neural Networks for Graph Drawing
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Abstract— Graph drawing techniques have been developed in
the last few years with the purpose of producing esthetically
pleasing node-link layouts. Recently, the employment of differ-
entiable loss functions has paved the road to the massive usage
of gradient descent and related optimization algorithms. In this
article, we propose a novel framework for the development of
Graph Neural Drawers (GNDs), machines that rely on neural
computation for constructing efficient and complex maps. GND
is Graph Neural Networks (GNNs) whose learning process can be
driven by any provided loss function, such as the ones commonly
employed in Graph Drawing. Moreover, we prove that this
mechanism can be guided by loss functions computed by means
of feedforward neural networks, on the basis of supervision
hints that express beauty properties, like the minimization of
crossing edges. In this context, we show that GNNs can nicely
be enriched by positional features to deal also with unlabeled
vertexes. We provide a proof-of-concept by constructing a loss
function for the edge crossing and provide quantitative and
qualitative comparisons among different GNN models working
under the proposed framework.

Index Terms— Graph Drawing, Graph Neural Drawers
(GNDs), Graph Neural Networks (GNNs), graph representation
learning.

I. INTRODUCTION

V ISUALIZING complex relations and interaction patterns
among entities is a crucial task, given the increasing

interest in structured data representations [1]. The Graph
Drawing [2] literature aims at developing algorithmic tech-
niques to construct drawings of graphs—i.e., mathematical
structures capable of efficiently representing the aforemen-
tioned relational concepts with nodes and edges connecting
them—for example via the node-link paradigm [3]–[5]. The
readability of graph layouts can be evaluated following some
esthetic criteria, such as the number of crossing edges, min-
imum crossing angles, community preservation, edge length
variance, and so on [6]. The final goal is to find suitable
coordinates for the node positions, and this often requires
explicitly expressing and combining these criteria through
complicated mathematical formulations [7]. Moreover, effec-
tive approaches, such as energy-based models [8], [9] or
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spring-embedders [10], [11], require hands-on expertise and
trial and error processes to achieve certain desired visual
properties. Additionally, such methods define loss or energy
functions that must be optimized for each new graph to
be drawn, often requiring adapting algorithm-specific para-
meters. Lately, two interesting directions have emerged in
the Graph Drawing community. The former leverages the
power of gradient descent to explore the manifold given by
predefined loss functions or combinations of them. Stochastic
gradient descent (SGD) can be used to move subsamples of
vertices couples in the direction of the gradient of spring-
embedder losses [12] substituting complicated techniques,
such as Majorization [13]. This approach has been extended to
arbitrary optimization goals, or combinations of them, which
can be optimized via gradient descent if the corresponding
criterion can be expressed via smooth functions [6]. The
latter novel direction consists of the exploitation of deep
learning models. Indeed, the flexibility of neural networks and
their approximation capability can come in handy also when
dealing with the Graph Drawing scenario. For instance, neural
networks are capable to learn the layout characteristics from
plots produced by other Graph Drawing techniques [14], [15],
as well as the underlying distribution of data [16]. Very
recently, the node positions produced by Graph Drawing
frameworks [14] have been used as an input to Graph Neural
Networks (GNNs) [17], [18] to produce a pleasing layout that
minimizes combinations of esthetic losses [19].

We propose a framework, Graph Neural Drawers (GNDs),
which embraces both the aforementioned directions. We bor-
row the representational capability and computational effi-
ciency of neural networks to prove that: 1) differentiable
loss functions guiding the common Graph Drawing pipeline
can be provided directly by a neural network, a Neural
Aesthete, even when the required esthetic criteria cannot
be directly optimized. In particular, we propose a proof-of-
concept where we focus on the criteria of edge crossing,
proving that a neural network can learn to identify if two
arcs are crossing or not and provide a differentiable loss
function toward nonintersection. Otherwise, in fact, this simple
esthetic criterion cannot be achieved through direct opti-
mization, because it is nondifferentiable. Instead, the Neural
Aesthete provides a useful and flexible gradient direction that
can be exploited by (stochastic) gradient descent methods. 2)
Moreover, we prove that GNNs, even in the nonattributed
graph scenario if enriched with appropriate node positional
features, can be used to process the topology of the input
graph with the purpose of mapping the obtained node rep-
resentation in a 2-D layout. We compare various commonly
used GNN models [20]–[22], proving that the proposed frame-
work is flexible enough to give these models the ability
to learn a wide variety of solutions. In particular, GND
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is capable to draw graphs: 1) from supervised coordinates,
i.e., emulating Graph Drawing packages; 2) minimizing com-
mon esthetic loss functions and, additionally; 3) by descending
toward the gradient direction provided by the Neural Aesthete.

This article is organized as follows. Section II introduces
some basics on the Graph Drawing scenario as well as refer-
ences on gradient descent approaches. Section III introduces
the Neural Aesthete and provides a proof-of-concept on the
edge crossing task. Section IV describes the requirements of
using GNNs to draw graphs in the nonattributed scenario,
as well as the problem definition and the experimental evalu-
ation. Finally, conclusions are drawn in Section V.

II. RELATED WORK

There exists a large variety of methods in the literature
to improve graph readability. A straightforward approach,
which has been proven to be effective in improving the
human understanding of the graph topology, consists in min-
imizing the number of crossing edges [23]. However, the
computational complexity of the problem is NP-hard, and
several authors proposed complex solutions and algorithms
to address this problem [24]. Shabbeer et al. [25] employ
an expectation–maximization algorithm based on the decision
boundary surface built by a support vector machine. The
underlying idea is that two edges do not cross if there
is a line separating the node coordinates. Further esthetic
metrics have been explored, such as the minimization of node
occlusions [26], neighborhood preservation, the maximization
of crossing edges angular width [27], and many more [6], [28].
Given the Graph Drawing categorization depicted in sur-
veys [28] (i.e., force-directed, dimension reduction, and multi-
level techniques), interesting, and esthetically pleasing layouts
are produced by methods regarding a graph as a physical sys-
tem, with forces acting on nodes with attraction and repulsion
dynamics up to a stable equilibrium state [9]. Force-directed
techniques inspired many subsequent works, from spring-
embedders [29] to energy-based approaches [8]. The main idea
is to obtain the final layout of the graph minimizing the stress
function [see (1)]. The forces characterizing this formulation
can be thought of as springs connecting pairs of nodes. This
very popular formulation, exploited for graph layout in the
seminal work by Kamada and Kawai [9], was optimized with
the localized 2-D Newton–Raphson method. Further studies
employed various complicated optimization techniques, such
as the stress majorization approach which produces graph
layout through an iterative resolution of simpler functions,
as proposed by Gasner et al. [30]. In this particular context,
some recent contributions highlighted the advantages of using
gradient-based methods to solve Graph Drawing tasks. The
SGD method was successfully applied to efficiently minimize
the Stress function in Zheng et al. [12], displacing pairs of
vertices following the direction of the gradient, computed in
closed form. A recent framework, (GD)2, leverages gradient
descent to optimize several readability criteria at once [6],
as long as the criterion can be expressed by smooth func-
tions. Indeed, thanks to the powerful autodifferentiation tools
available in modern machine learning frameworks [31], several
criteria, such as ideal edge lengths, stress majorization, node
occlusion, angular resolution, and many others, can be easily

optimized. We build our first contribution upon these ideas,
proving that neural networks can be used to learn decomposed
single criteria (i.e., edge crossing) approximating smooth func-
tions, with the purpose of providing a useful descent direction
to optimize the graph layout.

Deep Learning has been successfully applied to data belong-
ing to the non-Euclidean domain, e.g., graphs, in partic-
ular, thanks to GNNs [18], [32]. The seminal work by
Scarselli et al. [17] proposes a model based on an information
diffusion process involving the whole graph, fostered by the
iterative application of an aggregation function among neigh-
boring nodes up to an equilibrium point. The simplification
of this computationally expensive mechanism was the goal
of several works which leverage alternative recurrent neural
models [33] or constrained fixed-point formulations. This
problem was solved via reinforcement learning algorithms
as done in stochastic steady-state embedding (SSE) [34] or
cast to the Lagrangian framework and optimized by a gradi-
ent descent-ascent approach, like in Lagrangian-Propagation
GNNs (LP-GNNs) [35], even with the advantage of multiple
layers of feature extraction [36]. The iterative nature of the
aforementioned models inspired their classification under the
umbrella of RecGNNs in recent surveys [18], [37].

In addition to RecGNNs, several other flavors of GNN
models have been proposed, such as the ConvGNNs [38] or
Attentional GNNs [21], [39], [40]. All such models fit into
the powerful concept of message exchange, the foundation on
which is built the very general framework of message passing
neural networks (MPNNs) [41], [42].

Recent works analyze the expressive capabilities of GNNs
and their aggregation functions, following the seminal work on
graph isomorphism by Xu et al. [22]. The model proposed by
the authors, Graph Isomorphism Network (GIN), leverages an
injective aggregation function with the same representational
power of the Weisfeiler–Leman (WL) test [43]. Subsequent
works (sometimes denoted with the term WL-GNNs) try to
capture higher order graph properties [44]–[47]. Bearing in
mind that we deal with the nonattributed graph scenario, i.e.,
graphs lacking node features, we point out the importance of
the nodal feature choice. Several recent works investigated
this problem [48]–[50]. We borrow the highly expressive
Laplacian eigenvector-based positional features described by
Dwivedi et al. [51].

There have been some early attempts in applying deep
learning models and GNNs to the Graph Drawing scenario.
Wang et al. [15] proposed a graph-based LSTM model able to
learn and generalize the coordinates patterns produced by other
Graph Drawing techniques. However, this approach is limited
by the fact that the model drawing ability is highly dependent
on the training data, such that processing different graph
classes or layout styles requires recollecting and retraining
procedures. We prove that our approach is more general,
given that we are able to learn both drawing styles from
Graph Drawing techniques and to draw by minimizing esthetic
losses. Another very recent work, DeepGD [19], consists of
a message-passing GNN, which process starting positions
produced by Graph Drawing frameworks [14], to construct
pleasing layouts that minimize combinations of esthetic losses
(stress loss combined with others). Both DeepDraw and
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DeepGD share the common need of transforming the graph
topology into a more complicated one: DeepDrawing [15]
introduces skip connections (fake edges) among nodes in
order to process the graph via a bidirectional-LSTM; DeepGD
converts the input graph to a complete one, so that each
node couples is directly connected, and requires to explicitly
provide the shortest path between each node couple as an
edge feature. The introduction of additional edges into the
learning problem increases the computational complexity of
the problem, hindering the model’s ability to scale to bigger
graphs. More precisely, in the DeepGD framework, the com-
putational complexity grows quadratically in the number of
nodes O(N2). Conversely, we show that the GNN is capable
of producing esthetically pleasing layouts without inserting
additional edges, by simply leveraging powerful positional-
structural features. Additionally, we introduce a novel neural-
based mechanism, the Neural Aesthete, capable to express
differentiable esthetic losses delivering flexible gradient direc-
tion also for nondifferentiable goals. We show that this
mechanism can be exploited by gradient-descent-based Graph
Drawing techniques and by the proposed GND framework.
Finally, GNN-based encoder–decoder architectures can learn
a generative model of the underlying distribution of data from
a collection of graph layout examples [16].

III. LOSS FUNCTIONS AND NEURAL ESTHETES

A. Graph Drawing Algorithms

Graph drawing algorithms typically optimize functions that
somehow express a sort of beauty index, leveraging informa-
tion visualization techniques, graph theory concepts, topology,
and geometry to derive a graphical visualization of the graph at
hand in a bidimensional or tridimensional space [2], [52], [53].
Amongst others, typical beauty indexes are those of measuring
the degree of edge crossings [23], the measurements to avoid
small angles between adjacent or crossing edges and mea-
surements to express a degree of uniform allocation of the
vertexes [6], [28]. All these requirements inherently assume
that the Graph Drawing only consists of the allocation of the
vertexes in the layout space, since the adjacent matrix of the
graph can drive the drawing of the arcs as segments. However,
we can also choose to link pairs of vertexes through a spline
by involving some associated variables in the optimization
process [54].

Without loss of generality, in this work, we restrict our
objective to the vertex coordinates optimization, but the basic
ideas can be extended also to the case of appropriate arc
drawing.

As usual, we denote a graph by G = (V, E), where V =
{v1, . . . , vN } is a finite set of N nodes and E ⊆ V × V
collects the arcs connecting them. The neighborhood of node
vi is denoted by Ni . We denote the coordinates of each vertex
with pi : V �→ IR2, for a node i mapped to a bidimensional
space. We denote with P ∈ IRN×2 the matrix of the node
coordinates.

One of the techniques that empirically proved to be very
effective for an esthetically pleasing node coordinates selection

is the stress function [9]

STRESS(P) =
∑
i< j

wi j
(||pi − p j || − di j

)2
(1)

where pi , p j are the coordinates of vertices i and j , respec-
tively, di j is the graph theoretic distance (or shortest path)
between node i and j , and wi j is a weighting factor leveraged
to balance the influence of certain pairs given their theo-
retical distance. Usually, it is defined as wi j = d−α

i j with
α ∈ [0, 1, 2]. The optimization of this function is gener-
ally carried out leveraging complicated resolution methods
(i.e., 2-D Newton–Raphson method, Stress Majorization, and
so on) that hinder its efficiency.

Recently, gradient descent methods were employed to pro-
duce graph layouts [12] by minimizing the stress function,
and noticeably, Ahmed et al. [6] proposed a similar approach
employing autodifferentiation tools. The advantage of this
solution is that as long as esthetic criteria are characterized
by smooth differentiable functions, it is possible to undergo
an iterative optimization process1 following, at each variable
update step, the gradient of the criteria.

Clearly, the definition of esthetic criteria as smooth func-
tions could be hard to express. For instance, while we can
easily count the number of arc intersections, devising a smooth
function that may drive a continuous optimization of this
problem is not trivial [6], [25]. Indeed, finding the intersection
of two lines,2 is as simple as solving the following equation
system: {

a1x + b1y + c1 = 0

a2x + b2 y + c2 = 0.
(2)

By employing the classic Cramer’s rule we can see that there
is an intersection only in the case of a nonnegative determinant
of the coefficient matrix A, Det (A) = a1b2 − a2b1 �= 0.
Clearly, the previous formula cannot be employed as a loss
function in an optimization problem since it does not provide
gradients. To tackle this issue and provide a scoring function
optimizable via gradient descent, we propose the Neural
Aesthete.

B. Neural Esthete

A major contribution of this article is that of introducing the
notion of Neural Aesthete, which is in fact a neural network
that learns beauty from examples with the perspective of gen-
eralizing to unseen data. The obtained modeled function that is
expressed by the Neural Aesthete is smooth and differentiable
by definition and offers a fundamental heuristic for Graph
Drawing. As a proof-of-concept, we focus on edge crossing.
In this case, we define the Neural Aesthete as a machine, which
processes two arcs as inputs and returns the information on
whether or not they intersect each other. Each arc is identified
by the coordinates of the corresponding pair of vertices,
eu = (pi , p j) for eu ∈ E . Hence, the Neural Aesthete
ν(·, ·, ·) : E2 × R

m → R operates on the concatenation
of two arcs,

1The variables of the optimization process are the node coordinates P .
2Obviously, in the case of arcs, one should also check whether the

intersection point, if exists, lies on one of the two segments.
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eu and ev and returns

yeu,ev
= ν

(
θ, eu, ev ) (3)

where θ ∈ R
m is the vector which represents the weights

of the neural network. The Neural Aesthete is learned by
optimizing a cross-entropy loss function L(yeu ,ev

, ŷeu ,ev
) over

the arcs (eu, ev ) ∈ E , which is defined as

L(yeu ,ev
, ŷeu ,ev

) = −(
ŷeu,ev

· log(yeu,ev
)

+ (1− ŷeu,ev
) · log(1− yeu ,ev

)
)

(4)

where ŷeu,ev
is the target

ŷeu,ev
=

{
0, if (eu, ev ) do not intersect

1, otherwise
(5)

and the intersection of eu and ev is automatically computed,
e.g., by solving (2).

Notice that the learning process from a finite set of super-
vised examples yields weights that allow us to estimate the
probability of the intersection of any two arcs. Basically, the
learned output of the neural network can be regarded as a
degree of intersection between any arc couple. Once learned,
this characteristic of the Neural Aesthete comes in handy for
the computation of the gradient of a loss function for Graph
Drawing. In general, we want to move the extreme nodes
defining the two arcs toward the direction of nonintersection.

Hence, for the Graph Drawing task, the Neural Aesthete
is able to process an unseen edge couple (eu, ev ) randomly
picked from the edge list E , and to predict their degree
of intersection yeu ,ev

. We define the loss function L(·, ·) on
this edge pair as the cross-entropy with respect to the target
no-intersection, ŷeu//ev

= 0

Hu,v = L(yeu ,ev
, ŷeu//ev

) = − log(1− yeu ,ev
). (6)

This smooth and differential loss function fosters the uti-
lization of gradient descent methods to optimize the problem
variables, i.e., the arc node coordinates (eu, ev ).

This same procedure can be replicated to all the graph edges

H (P) =
∑

(eu,ev )∈E
L(yeu ,ev

, ŷeu//ev
). (7)

Overall, a possible Graph Drawing scheme is the one which
returns

P� = arg min
P

H (P). (8)

This can be carried out by classic optimization methods. For
instance, a viable solution is by gradient descent as follows:

P ← P − η∇P H (P)

where η specifies the learning rate.
It is worth mentioning that overall, this approach leverages

the computational efficiency and parallelization capabilities of
neural networks. Hence, the prediction of the edge-crossing
degree can be carried out for many edge couples in parallel.

Moreover, this same approach can be conveniently com-
bined with other esthetic criteria, for instance, coming from

Fig. 1. NEURAL ESTHETE FOR EDGE CROSSING. Left-to right, graph layouts
with starting random node coordinates (START), optimized by minimizing
stress function with gradient descent (STRESS), optimized by gradient descent
applied on the Neural Aesthete for edge-crossing loss (NA-CROSS), optimized
by alternating stress loss and Neural Aesthete loss in subsequent iterations
(COMBINED). We report the graph layouts generated in three random sparse
graphs, one for each row.

other Neural Aesthetes or from classical loss function (e.g.,
stress). For example, we could consider

E = H (P)+ λA A(·)+ λB B(·) (9)

where A(·) and B(·) denotes other esthetic criteria character-
ized by smooth differentiable functions.

C. Example: Neural Esthete on Small-Sized Random Graphs

We provide a qualitative proof-of-concept example for the
aforementioned Neural Aesthete for edge crossing in Fig. 1.

We built an artificial dataset composed of 100K entries
to train the Neural Aesthete. Each entry of the dataset is
formed by an input-target couple (x, ŷ). The input pattern x
corresponds to the Neural Aesthete arcs input positions3 as
defined in Section III, whose node coordinates are randomly
picked inside the interval [0, 1]. The corresponding target ŷ is
defined as in (5).

We balanced the dataset composition in order to have
a comparable number of samples between the two classes
(cross/no-cross). We trained a Neural Aesthete implemented
as a multilayer perceptron (MLP) with two hidden layers of
100 nodes each and ReLu activation functions, minimizing
the cross-entropy loss function with respect to the targets and
leveraging the Adam optimizer [55]. We tested the gener-
alization capabilities of the learned model on a test dataset
composed of 50K entries, achieving a test accuracy of 97%.4

Hence, the learned model constitutes the Neural Aesthete for
the task of edge crossing. Given an unseen input composed

3Which are defined as x := [eu , ev ] = [pi , p j , ph , pk ], given two arcs
eu = (pi , p j ) and ev = (ph, pk).

4For comparison, a decision tree model, trained on the same dataset, only
reaches a test accuracy of 78.7%.
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of a couple of arcs, the learned model outputs a probability
distribution representing a degree of intersection. Following
the common pipeline of Graph Drawing methods with gradient
descent, the Neural Aesthete output represents a differentiable
function that provides an admissible descent direction for the
problem parameters P .

To test the capability of the proposed solution, we leverage
an artificial dataset of random graphs with a limited number
of nodes (N ∈ [20, 40]). We generated Erdős-Rényi graphs
with the method presented in [56] for efficiently creating
sparse5 random networks, implemented in NetworkX [57].
We selected the connected component of the generated graph
having the biggest size (max node number).

Fig. 1 reports a qualitative example of the proposed method
in three graphs from the aforementioned dataset. To generate
the graph layout, we carried out an optimization process on
mini-batches of ten arc couples for an amount of 2K iterations
(gradient steps). The first column depicts the starting random
positions of the nodes; the second column reports the graph
layout obtained with an in-house implementation of the stress
function [see (1)], optimized via gradient descent as done
in [6]; the third column contains the results obtained by
optimizing the loss provided by the proposed Neural Aesthete
for edge crossing; the fourth column reports the layouts
obtained alternating the optimization of the stress function and
edge crossing in subsequent update steps. It is noticeable to see
how the solution provided by our approach is capable to avoid
any arc intersection in these simple graphs. Moreover, the fact
that the Neural Aesthete output represents a form of degree-
of-intersection seems to provide a good gradient direction
that easily moves the arcs into a recognizable angle pattern,
even when combined with other criteria (fourth column).
The proposed proof-of-concept proves that Neural Aesthetes
represent a feasible, general and efficient solution for Graph
Drawing. In the following, we prove that this same approach
can be used to guide the training process of different kinds of
deep neural models.

IV. GNNS FOR GRAPH DRAWING

The increasing adoption of GNNs in several research fields
and practical tasks [58], [59] opens the road to an even
wider spectrum of problems. Clearly, Graph Drawing and
GNNs seem inherently linked, even if the formalization of
this learning process under the GNN framework is not trivial.
As pointed out in Section II, some recent works leveraged
GNNs-inspired models for Graph Drawing. DeepDrawing [15]
employs a graph-based LSTM model to learn node layout
styles from Graph Drawing frameworks. DeepGD [19] is a
concurrent work in which MPNN processes starting node
positions to develop pleasing layouts that minimize combi-
nations of esthetic losses (stress loss combined with others).
Starting node positions, however, needs to be initialized by
standard Graph Drawing frameworks [14]; in case a random
initialization is employed, network performances deteriorate.

One of the drawbacks of both these approaches is the fact
that they modify the graph topology, introducing additional
connections that were not present in the original graph.

5The probability of edge creation has been set to p = 0.01.

This fact entails an increased computational burden for the
model. Indeed, a complete graph requires many more message
exchanges than a sparse one, is the computational complexity
of the GNN propagation linear in the number of edges [18].
Moreover, the complete graph processed by DeepGD is
enriched with edge features being the shortest path between
the nodes connected to the edge. This solution gives big
advantages in tasks closely connected with stress minimization
but could prevent the network from generalizing to other tasks.

We propose an approach to Graph Drawing, GNDs, that
leverages the computational efficiency of GNNs and, thanks
to informative nodal features (Laplacian eigenvectors, see
Section IV-B), is general enough to be applied to several
learning tasks.

A. Graph Neural Networks

First and foremost, let us introduce some notation.
We denote with li all the input information (initial set of
features) eventually attached to each node i in a graph G. The
same holds for an arc connecting two nodes i and j , whose
feature, if available, is denoted with l(i, j). Each node i has an
associated hidden representation (or state) xi ∈ R

s , which in
recent models is initialized with the initial features, xi = li

(but it is not necessarily the case in RecGNN models [36]).
Many GNN models can be efficiently described under the
powerful umbrella of MPNNs [41], where the node state xi is
iteratively updated at each iteration t , through an aggregation
of the exchanged information among neighboring nodes Ni ,
undergoing a message passing process. Formally

x (t−1)
(i, j) = MSG(t)

(
x (t−1)

i , x (t−1)
j , l(i, j)

)
(10)

x (t)
i = AGG(t)

⎛
⎝x (t−1)

i ,
∑
j∈Ni

x (t−1)
(i, j) , li

⎞
⎠ (11)

where x (t)
(i, j) represent explicitly the message exchanged by two

nodes, computed by a learnable map MSGt (·).6 Afterward,
AGGt (·) aggregates the incoming messages from the neigh-
borhood, eventually processing also local node information,
such as the node hidden state xi and its features li . The
messaging and aggregation functions MSG(t)(·), AGG(t)(·) are
typically implemented via MLPs learned from data. Apart
from RecGNN, other GNN models leverage a different set
of learnable parameters for each iteration step. Hence, the
propagation process of such models can be described as the
outcome of a multilayer model, in which, for example,
the node hidden representation at layer t , x (t)

i , is provided
as input to the next layer, t + 1. Therefore an �-step message
passing scheme can be seen as an �-layered model.

This convenient framework is capable to describe several
GNN models [18]. In this work, we focus our analysis on three
commonly used GNN model from the literature (i.e., Graph
Convolutional Network (GCN) [20], Graph Attention Network
(GAT) [21], and GIN [22]) whose implementation is given
in Table I, characterized by different kinds of aggregation

6Notice that in the case in which arc features l(i, j) are not available they
are removed from the problem formulation.
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TABLE I

COMMON IMPLEMENTATIONS OF GNN AGGREGATION MECHANISMS.
SEE THE MAIN TEXT AND THE REFERENCED PAPERS FOR

FURTHER DETAILS ON THE FORMULATIONS

mechanisms (degree-norm, attention-based, and injective/sum,
respectively). Following the notations in Table I, in GCN
cu,v denotes a normalization constant depending on node
degrees; in GAT, α(t−1)

u,v is a learned attention coefficient
which introduces anisotropy in the neighbor aggregation,
σ denotes a nonlinearity, and W, W0, W1 are learnable weight
matrices; and in GIN, ε is a learnable parameter (which is
usually set to zero).

B. Problem Formulation

Through the GNDs framework, we propose to employ the
representational and generalization capability of GNNs to
learn to generate graph layouts. We formulate the problem
as a node-focused regression task, in which for each vertex
belonging to the input graph we want to infer its coordinates in
a bidimensional plane, conditioned on the graph topology and
the target layout/loss function (see Section IV-C). Furthermore,
in the GND framework, we propose to employ GNNs to learn
to draw by themselves following the guidelines prescribed by
Neural Aesthetes (see Section IV-F). In order to be able to
properly solve the Graph Drawing task via GNDs, a crucial
role is played by the expressive power of the GNN model
and the nodal features which are used. In fact, in line with
the aforementioned regression task, each node state must be
uniquely identified to be afterward mapped to a different 2-D
position in the graph layout. This problem is inherently con-
nected with recent studies on the representational capabilities
of GNNs (see Section II and [61]). Standard MP-GNNs have
been proved to be less powerful than the 1-WL test [44], both
due to the lack of expressive power of the used aggregation
mechanisms and to the existence of symmetries inside the
graph. For instance, local isomorphic neighborhoods create
indiscernible unfolding of the GNN computational structure.
Hence, the GNN embeds isomorphic nodes to the same point
in the high-dimensional space of the states, hindering the
Graph Drawing task. Some approaches address this problem
by proposing novel and more powerful architectures (WL-
GNNs) that, however, tend to penalize the computational
efficiency of the GNNs [44]. Moreover, given the fact that we
focus on the task of drawing nonattributed graphs, it is even
more important to enrich the nodes with powerful features
able to identify both the position of nodes inside the graph
(often referred to as positional encodings (PEs) [51]) and able
to describe the neighboring structure.

Recently, it has been shown that the usage of random nodal
features theoretically strengthens the representational capabil-
ity of GNNs [62], [63]. Indeed, setting random initial node

embedding (i.e., different random values when processing the
same input graph) enables GNNs to better distinguish local
substructures, learn distributed randomized algorithms, and
solve matching problems with nearly optimal approximation
ratios. Formally, the node features can be considered as
random variables sampled from a probability distribution μ
with support D ⊆ R

s

li ∼ μ ∀i ∈ V (12)

where μ can be instantiated as the uniform distribution. The
main intuition is that the underlying message passing process
combines such high-dimensional and discriminative nodal
features, fostering the detection of fixed substructures inside
the graph [62]. These approaches, which hereinafter we refer
to as rGNNs, proved that classification tasks can be tackled
in a novel way, with a paradigm shift from the importance
of task-relevant information (the values of the features) to the
relevance of the relationship among node values. However,
the peculiar regression task addressed in this work requires
both positional and structural knowledge, which is essential
to identify and distinguish neighboring nodes.

To address this issue, we keep standard GNN architectures
and leverage positional features defined as the Laplacian
eigenvectors [64] of the input graph, as introduced recently in
GNNs [51]. Laplacian eigenvectors embed the graphs into the
Euclidean space through a spectral technique, and are unique
and distance preserving (far away nodes on the graph have
large PE distance). Indeed, they can be considered hybrid
positional-structural encodings, as they both define a local
coordinate system and preserve the global graph structure.

Formally, they are defined via the factorization of the graph
Laplacian matrix:

L = I− D−1/2 AD−1/2 = U T �U (13)

where I is the N × N identity matrix, D is the node degree
matrix, A is the adjacency matrix and � and U correspond,
respectively, to eigenvalues and eigenvectors. As proposed
in [51], we use the k smallest nontrivial eigenvectors to
generate a k-dimensional feature vector for each node, where
k is chosen by grid search. Noticeably, given that the smallest
eigenvectors provide smooth encoding coordinates of neigh-
boring nodes, during the message exchange each node receives
and implicit feedback on its own positional-structural charac-
teristics from all the nodes with which it is communicating.
This process fosters the regression task on the node coordi-
nates, which receives useful information from their respective
neighborhood. We believe that this is a crucial component of
the model pipeline.

C. Experimental Setup

We test the capabilities of the proposed framework by com-
paring the performances of three commonly used GNN models
(see Table I). In the following, we describe the learning tasks
and the datasets employed for testing the different models.
In Sections IV-D–IV-F, instead, we will give qualitative and
quantitative evaluations for each learning problem, showing
the generality of our approach.
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Fig. 2. Datasets composition statistics. On the left-hand side, the histogram
of the graph order (number of nodes for each graph |V |) for both the analyzed
datasets. On the right-hand side, the histogram of the graphs sizes (number
of edges |E |). The SPARSE dataset is characterized by a sparse connection
pattern.

Given the fact that the outputs of GND are node coordi-
nates, we can impose on such predictions heterogeneous loss
functions that can be optimized via BackPropagation. In the
proposed experiments, we test the GND performances on the
loss functions defined as the following.

1) Distance with respect to ground-truth (GT) node coor-
dinates belonging to certain layouts, produced by Graph
Drawing packages (Section IV-D).

2) Esthetic loss functions (e.g., Stress) (Section IV-E).
3) Loss functions provided by Neural Aesthetes

(Section IV-F).

We assume to work with solely the graph topology; hence, the
node is not characterized by additional features.

We employed two different Graph Drawing datasets with
different peculiarities. We chose to address small-size graphs
(≤100 nodes) to assure the graph layout readability, since
prior works highlighted node-link layouts are more suitable
for small-size graphs [15], [65]. The former one is the ROME

dataset,7 a Graph Drawing benchmarking dataset containing
11 534 undirected graphs with heterogeneous structures and
connection patterns. We preprocessed the dataset by removing
three disconnected graphs8. Each graph contains a number of
nodes between 10 and 100.

We built a second dataset, which we refer to as SPARSE,
with the same technique described in Section III-C. We gener-
ated 10K Erdős–Rényi graphs following the method presented
in [56] for efficient sparse random networks and implemented
in NetworkX [57]. We randomly picked the probability of
edge creation in the interval (0.01, 0.05) and the number of
nodes from 20 to 100. To improve the sparsity and readability,
we discarded all the created graphs having both more than
60 nodes and more than 120 edges. Afterward, we selected
the connected component of the generated graph having the
biggest size (max node number). We report in Fig. 2 a visual
description of the datasets composition.

In order to carry out the training process and afterward
evaluate the obtained performances, we split each of the
datasets into three sets, (i.e., training, validation, and test) with
a ratio of (75%, 10%, and 15%).

7http://www.graphdrawing.org/data.html
8Stress-based Graph Drawing techniques cannot take into account discon-

nected graphs. However, one can easily draw each connected component
separately and then plot them side by side.

D. GNNs Learn to Draw From Ground-Truth Examples

The first experimental goal is focused on the task of learning
to draw graph layouts given GT node positions produced
by Graph Drawing frameworks. Among several packages,
we chose NetworkX [57] for its completeness and ease of inte-
gration with other development tools. This framework provides
several utilities to plot graph appearances. We choose two
different classical layouts. The first is the KAMADA–KAWAI

node layout [9] computed by optimizing the stress function.
In a few words, this force-directed method models the layout
dynamic as springs between all pairs of vertices, with an
ideal length equal to their graph-theoretic distance. The latter
is the SPECTRAL layout, which leverages the unnormalized
Laplacian L̂ and its eigenvalues to build Cartesian coordinates
for the nodes [66], formally

L̂ = D−A = Û T �̂Û (14)

where �̂ and Û correspond to the eigenvalues and eigenvec-
tors, respectively, and using the first two nontrivial eigenvec-
tors (k = 2) as the actual node coordinates.9 We remark
that (13) and (14) produce different outputs. This layout tends
to highlight clusters of nodes in the graph.10

Each training graph is enriched by PEs defined as
k-dimensional Laplacian eigenvectors (see Section IV-B) and
is processed by each of the tested GNN models to predict the
node coordinates. Hence, we need a loss function capable to
discern if the generated layout is similar to the correspond-
ing GT. Furthermore, trained models should generalize the
notion of graph layout beyond a simple one-to-one mapping.
For these reasons, we leverage the Procrustes statistic [15]
as a loss function since it measures the shape difference
among graph layouts independently of affine transformations
such as translations, rotations, and scaling. Given a graph
composed of N nodes, the predicted node coordinates P =
(p1, . . . , pN ) and the GT positions P̂ = ( p̂1, . . . , p̂N ), the
Procrustes statistic similarity is defined as the squared sum of
the distances between P and P̂ after a series of possible affine
transformations [15]. Formally

R2 = 1−
(
Tr (PT P̂ P̂T P)

1
2
)2

Tr (PT P)Tr (P̂T P̂)
(15)

where Tr(·) denotes the trace operator and the obtained
metric R2 assumes values in the interval [0, 1], the lower the
better. We will use the Procrustes statistic-based similarity both
as the loss function to guide the model training and to evaluate
its generalization capability on the test set.

We tested the proposed framework by comparing the test
performances obtained by the three different GNN models
described in Table I, GCN, GAT, and GIN. All models are
characterized by the ReLU nonlinearity. The GAT model is
composed of four attention heads. The ε variable in the GIN
aggregation process is set to 0, as suggested in [22]. We lever-
age the PyTorch implementation of the models provided by the
deep graph library (DGL).11

9The NetworkX Spectral layout adds a rescaling of the node coordinates
into the range (−1, 1) as a standard step.

10See the referenced papers for further details on the layout properties.
11https://www.dgl.ai/
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Fig. 3. KAMADA–KAWAI layout. Qualitative example of the predicted node coordinates for both the ROME dataset (first four column) and the SPARSE

dataset (subsequent four columns). Each row depicts the Ground-Truth positions (GT), the graph layout produced by GCN, GAT, and GIN model, left-to-right.
We report the predictions on three different test graphs (rows).

We searched for the best hyperparameters selecting the mod-
els with the lowest validation error obtained during training,
in the following grid of values: size of node hidden states xi in
{10, 25, 50}; learning rate η in {10−4, 10−3, 10−2}; the number
of GNN layers in {2, 3, 5}; PE dimension k in {5, 8} (20 is
added to the grid in the case of the SPARSE dataset, given
its greater node number lower bound); and dropout rate in
{0.0, 0.1}. We considered 100 epochs of training with an early
stopping strategy given by patience on the validation loss
of 20 epochs. For each epoch, we sampled nonoverlapping
mini-batches composed of β graphs, until all the training data
were considered. We searched for the best mini-batch size β
in {32, 64, 128}. We devised several competitors in order
to assess the performance of the proposed approach. Given
that Laplacian PEs available at the node level are powerful
descriptors of the neighboring graph structure, we leverage
an MLP as a baseline. This neural predictor learns a map-
ping to the node coordinates, solely exploiting the available
local information. We compare the performances obtained
by GNNs with Laplacian PEs against those achieved by the
three corresponding variants of rGNNs, which we denote with
rGCN, rGAT, and rGIN. For a fair comparison, we searched
in the same hyperparameter space for all the baseline and
competitors.

In Figs. 3 and 4, we report a qualitative evaluation obtained
by the best performing models for each different GNN archi-
tecture on three randomly picked graphs from the test set of
each dataset. Fig. 3 shows the aforementioned evaluation in
the case of the KAMADA–KAWAI layout supervision, both
for the ROME dataset [first four columns, where the first one
depicts the GT] and for the SPARSE dataset. Fig. 4 shows

TABLE II

PROCRUSTES STATISTIC SIMILARITY [DEFINED IN (15)] ON THE TEST

SPLIT OF THE ROME AND SPARSE DATASET. WE COMPARE THREE
GND MODELS WITH TWO GRAPH LAYOUTS GENERATION,

KAMADA–KAWAI, AND SPECTRAL. WE REPORT THE AVERAGE

VALUES AND STANDARD DEVIATIONS OVER THREE RUNS

WITH DIFFERENT WEIGHTS INITIALIZATION

the same analysis in the case of the SPECTRAL layouts. The
results show the good performances of the GND framework in
generating two heterogeneous styles of graph layouts, learning
from different GT node coordinates. In order to give a more
comprehensive analysis, we report in Table II a quantitative
comparison among the global Procrustes statistic similarity
values obtained on the test set by the best models, for both
datasets. We report the average score and its standard deviation
over three runs with different seeds for the weights random
number generator.

The strength of the Laplacian PE is validated by the decent
performances yielded by the MLP baseline. Conversely, the
random features characterizing the rGNNs are not sufficient
to solve this node regression task. Some additional struc-
tural information is required in order to jointly represent the
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Fig. 4. SPECTRAL LAYOUT. Predicted node coordinates for the ROME dataset (first four column) and the SPARSE dataset (subsequent four columns). Each
row depicts the Ground-Truth positions (GT), the graph layout produced by GCN, GAT, and GIN model, left-to-right. We report the predictions on three
different test graphs (rows).

node position and its surroundings. Indeed, all the models
exploiting the proposed solution outperform the competitors.
The improved performances with respect to MLP are due to
the fact that node states receive implicit feedback on their
own position during the message passing steps. The proposed
GAT model with Laplacian PE achieves the best performances
in all the settings. We believe that the attention mechanism
plays a crucial role in the task of distinguishing the right
propagation patterns, alongside the fact that the multihead
attention mechanism provides a bigger number of learnable
parameters with respect to the competitors.

In general, the SPECTRAL layout is easier to be learned by
the models. This can be due to the fact that the Laplacian
PE represents an optimal feature for this task, given the
common spectral approach. Even from a qualitative perspec-
tive generated layouts are almost identical to the GT. Vice
versa, the KAMADA–KAWAI layout represents a harder task
to be learned from GT positions, especially in the case of the
SPARSE dataset. As pointed out in [51], Laplacian-based PE
have still some limitations given by natural symmetries, such
as the arbitrary sign of eigenvectors, that several recent works
are trying to solve [48].

E. GNNs Learn to Draw Minimizing Esthetic Loss Functions

In Section IV-D, GNDs explicitly minimize the distances
with respect to certain GT node positions, hence learning
to draw directly from data according to certain layouts.
In this second experimental setting, instead, we want to build
GNNs capable to draw at inference time respecting certain
esthetic criteria which are implicitly learned during training.
We defined our framework in such a way that powerful

PE features are mapped to 2-D coordinates. Given a smooth
and differentiable loss function defined on such output, we can
leverage the BP algorithm in order to learn to minimize
heterogeneous criteria. We investigate the case in which the
GNN models minimize the Stress function [see (1)] on the
predicted node coordinates. Only during the training phase,
for each graph, we compute the shortest path di j among every
node couple (i, j). At inference time, the GND framework
process the graph topology (the adjacency matrix) and the
node features, directly predicting the node coordinates, without
the need for any further information.

We use the same experimental setup, competitors and
hyperparameters selection grids of Section IV-D. However,
according to a preliminary run of the models which achieved
poor performances, we varied the hidden state dimension grid
to {100, 200, 300}. This means that this task needs a bigger
representational capability with respect to the previous one,
which is coherent with the complex implicit nature of the
learning problem. We set the stress normalization factor to
wi j = (1/di j) (hence, α = 1) and compute the averaged
stress function.12 For this experiment, we use the stress value
obtained on the validation split as the metric to select the
best performing model. For comparison, we report the stress
loss values obtained by three state-of-the-art Graph Drawing
methods. Neato13 leverage the stress majorization [30] algo-
rithm to effectively minimize the stress. PivotMDS [14] is
a deterministic dimension reduction-based approach. Finally,

12We used the following average Stress definition to avoid potential numer-
ical issues: STRESS(P) = (1/D)

∑
i< j wi j (||pi − p j || − di j )

2, where D is
the number of considered node couples.

13Implementation available through Graphviz, https://graphviz.com
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Fig. 5. STRESS MINIMIZATION ON ROME. Qualitative example of the graph
layout produced by three GNN models on the test graphs of the ROME dataset.
Each row contains one of the same three graphs depicted in the first column
of Fig. 3 for comparison with the layout produced by Kamada–Kawai [9].

Fig. 6. STRESS MINIMIZATION ON SPARSE. The same setting of Fig. 5.

ForceAtlas2 [8] generates graph layouts through a force-
directed method.

We report in Figs. 5 and 6 some qualitative examples
of the graph layouts produced by the best selected GNN
models on test samples (the same graphs selected for Fig. 3)
of the two datasets, following the aforementioned setting.
Noticeably, all three models succeed in producing a layout
that adheres to the typical characteristics of graphs obtained
via stress minimization. In particular, for reference to the
drawing style, the layouts of these same graphs generated via
the Kamada–Kawai algorithm (that also minimizes stress) are

TABLE III

AVERAGE STRESS LOSS VALUE OBTAINED ON THE TRAINING SET AND
TEST SET BY THE BEST SELECTED MODELS, FOR EACH DATASET.

WE REPORT THE MEAN AND STANDARD DEVIATION OBTAINED

OVER THREE RUNS INITIALIZED WITH DIFFERENT FIXED

SEEDS. WE DO NOT REPORT STANDARD DEVIATIONS
FOR NEATO AND PIVOTMDS, BEING

DETERMINISTIC ALGORITHMS

depicted in the first and fifth columns of Fig. 3, for ROME and
SPARSE datasets, respectively. Comparing the graph layout
produced by the various GNN models and the aforementioned
ones from Kamada–Kawai, also, in this case, it is easy to see
from a qualitative analysis that the GAT model is the best
performing one. The peculiar characteristics of the SPARSE

dataset (sparse connection patterns, causing many symmetries
and isomorphic nodes) entail a hardship in minimizing the
stress loss function in some of the reported examples.

A quantitative comparison is reported in Table III, with the
stress values obtained by the best models for each competitor
and dataset, both at training time and test time, averaged over
three runs initialized with different seeds. Once again, GAT
performs the best. The metrics obtained by the GIN model
highlight an overfit of the training data, given the selected
grid parameters. GND models obtain better stress than all the
SOTA Graph Drawing packages, with Neato being the best
performing one in terms of stress minimization, as expected.
A similar conclusion with respect to the previous experiment
can be drawn regarding the results obtained by rGNNs and
MLP. Indeed, these results show how learning to minimize
stress requires both positional and structural knowledge and
that the message passing process fosters the discriminative
capability of the learned node states, with respect to solely
exploiting local information.

Summing up, the experimental campaign showed the gen-
eralization capabilities of the proposed framework even in
the task of minimizing common esthetic criteria imposed on
the GNNs nodewise predictions, such as the stress function,
on unseen graphs. The GND framework is capable to predict
node positions on unseen graphs respecting typical stress
minimization layouts, without providing at inference time any
explicit graph-theoretic/shortest path information.

F. GNNs Learn to Draw From Neural Esthetes

In Section IV-E, we showed that GNDs are capable to learn
to minimize a differentiable smooth function that implicitly
guides the node coordinates positioning. In a similar way, the
Neural Aesthetes presented in Section III provide a smooth
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differentiable function that can be leveraged to find a good
gradient descent direction for the learning parameters. In this
section, we mix the two proposals in order to build a GND that
learns to generate graph layouts thanks to the gradients pro-
vided by the edge-crossing Neural Aesthete, and, eventually,
to optimize the combination of several esthetic losses.

At each learning epoch, GND minimizes the loss function
H (P) defined in (7), over the whole edge list E . The loss
function can be computed as follows: the GNN model process
the graph and predicts nodewise coordinates. Given such pre-
dicted node positions and the input graph adjacency matrix, the
Neural Aesthete (which was trained beforehand as explained
in Section III-C) processes couples of arcs and outputs their
degree-of-intersection. The overall loss function can then be
composed of the contribution given by each of the considered
arc-couples, as in (6).

We restrict our analysis to the Rome dataset, exploiting a
GAT model with two hidden layers, a hidden size of node state
of 25, PE dimension k = 10, and learning rate η = 10−2.
We compare the graph layout generated by this model in
three randomly picked test graphs, comparing three different
loss function definitions: 1) stress loss; 2) neural-esthete edge-
crossing-based loss H (P); and 3) a combination of the two
losses with a weighing factor λ = 0.5 acting on the Neural
Aesthete loss, in particular

LOSS(P) = STRESS(P)+ λH (P). (16)

We report in Fig. 7 some qualitative results on three test
graphs (one for each row). We compare the layout obtained
by optimizing the stress function (the first column, see
Section IV-E), the edge-crossing Neural Aesthete (second
column), and the combination of the two losses.

The styles of the generated layout are recognizable with
respect to the plain optimization of the Neural Aesthete
with gradient descent (see Fig. 1), meaning that the GND
framework is able to fit the loss provided by the Neural
Aesthete and to generalize it to unseen graphs. Noticeably,
the introduction of the combined loss functions (third column
in Fig. 7) helps in better differentiating the nodes in the
graph with respect to the case of solely optimizing stress. The
neural esthete-guided layouts (second and third column) tend
to avoid edge intersections, as expected. This opens the road to
further studies in this direction, leveraging the generality of the
Neural Aesthetes’ approach and the representation capability
of GNNs.

G. Computational Complexity

The proposed framework leverages the same computational
structure of the underlying GNN model, which we can gener-
ally describe, for each parameter update, as linear with respect
to the edge number O(T (|V|+|E |)), where T is the number of
iterations/layers, |V| the number of nodes and |E | the number
of edges. Through our approach, there is not any increase in
the computation related to the graph topology or the edge
connection patterns. At inference time, the only additional
requirement is the computation of the Laplacian PEs, requiring
O(E3/2), with E being the number of edges, that, however, can
be improved with the Nystrom method [51], [67].

Fig. 7. LEARNING FROM THE NEURAL AESTHETE. We report the layouts
obtained on three randomly picked test graphs from the Rome dataset, one for
each row. Left-to-right: graph layout generated by optimizing the stress loss
function, the edge-crossing Neural Aesthete-based loss (denoted with NA-
crossing), the combination of the two losses with a weighing factor λ = 0.5.

H. Scaling to Bigger Graphs

Common Graph Drawing techniques based on multidi-
mensional scaling [7] or SGD [12] require ad hoc iterative
optimization processes for each graph to be drawn. Addition-
ally, dealing with large-scale graphs—both in terms of the
number of nodes and the number of involved edges—decreases
the time efficiency of these approaches. Conversely, once a
GND has been learned, the graph layout generation consists
solely of the extraction of the Laplacian PE followed by a
forward pass on the chosen GNN backbone. In this section,
we prove the ability of GND to scale to real-world graphs,
providing quantitative results in terms of computational times
and qualitative analysis of the obtained graph layouts, with
respect to SOTA Graph Drawing techniques. We employed
the best-performing GAT model trained to minimize the
stress loss on the Rome dataset (Section IV-E). We test the
model inference performances on bigger scale graphs from
the SuiteSparse Matrix Collection.14 We report in Fig. 8 the
computational times required by the different techniques to
generate graph layouts of different scale, from the dwt_n
graph family. We analyze both the correlation on graph order
(left—the varying number of nodes) and size (right—the vary-
ing number of edges). We compare the GND execution times
against those of the NetworkX-GraphViz implementation of
neato and sfdp, the latter being a multilevel force-directed
algorithm that efficiently layouts large graphs. We also tested
the Fruchterman–Reingold force-directed algorithm imple-
mented in NetworkX (denoted with FR) and the PivotMDS
implementation from the NetworKit C++ framework [68]. The
tests were performed in a Linux environment equipped with

14https://sparse.tamu.edu
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Fig. 8. Computational time comparison on dwt_n graphs. Left: correlation
between the number of nodes in the graph and the layout generation timings of
the analyzed Graph Drawing methods. Right: correlation between number of
edges available in the graphs and the corresponding layout generation timings.

Fig. 9. Large-scale graphs from the SuiteSparse Matrix collection. Left to
right: layouts produced by a GAT-based GND (trained to minimize stress on
the Rome dataset), layout produced by the sfdp algorithm for large-scale
graphs and outcome of the PivotMDS method. We report for each row the
name of the graph from the dataset collection, its order (|V |) and size (|E |).

an Intel Core i9-10900X CPU @ 3.70 GHz, 128 GB of RAM,
and an NVIDIA GeForce RTX 3090 GPU (24 GB).

We report the average execution times over three runs
(we omit the variances due to their negligible values). These
results confirm the advantages of the proposed approach.
While all the competitors require an expensive optimization
process that increases their impact with a bigger graph scale,

the fast inference step carried on by GNDs assures small
timings even with big graphs. Computing Laplacian PE is
scalable and does not hinder the time efficiency of the pro-
posed method. To assess the quality of the generated layouts,
we report in Fig. 9 a comparison among the ones yielded
by GND the framework, sfdp and PivotMDS on several
graphs from the SuiteSparse collection (we report the graph
name, its order |V| and size |E |). While we remark that in
this experiment we exploited a GND model trained on a
smaller scale dataset (i.e., Rome), the performances show a
significant ability of the model to generalize the learned laws
(e.g., the stress minimization in this case) to unseen graphs,
even when dealing with diverging characteristics. However,
we also remark that graphs having very diverse structures
from the training distribution may be not correctly plotted.
The causes of such performance drop are twofold. First, the
intrinsic dependence of neural models on the inductive biases
learned during the training process leads to an inability to
generalize to unseen graph topologies. On the other hand,
the limitations of Laplacian PE to discriminate certain graph
symmetries or structures [51] may be further compounded with
larger scale datasets, which is an active area of research [48].

V. CONCLUSION

Starting from some very interesting and promising results
on the adoption of GNNs for Graph Drawing, which is mostly
based on supervised learning, in this article, we proposed
a general framework to emphasize the role of unsupervised
learning schemes based on loss functions that enforce clas-
sic esthetic measures. When working in such a framework,
referred to as GNDs, we open the doors toward the con-
struction of a novel machine learning-based drawing scheme
where the Neural Aesthete drives the learning of a GNN
toward the optimization of beauty indexes. While we have
adopted the Neural Aesthetes only from learning to minimize
arc intersections, the same idea can be used for nearly any
beauty index. We show that our framework is effective also for
drawing unlabeled graphs. In particular, we rely on the adop-
tion of Laplacian eigenvector-based positional features [51]
for attaching information to the vertexes, which leads to very
promising results.
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