
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Synchronization of Tree Parity Machines Using Nonbinary Input Vectors
Miłosz Stypiński and Marcin Niemiec

Abstract— Neural cryptography is the application of artificial neural
networks (ANNs) in the subject of cryptography. The functionality of this
solution is based on a tree parity machine (TPM). It uses ANNs to perform
secure key exchange between network entities. This brief proposes
improvements to the synchronization of two TPMs. The improvement
is based on learning ANN using input vectors that have a wider range of
values than binary ones. As a result, the duration of the synchronization
process is reduced. Therefore, TPMs achieve common weights in a shorter
time due to the reduction of necessary bit exchanges. This approach
improves the security of neural cryptography.

Index Terms— Artificial neural networks (ANNs), key agree-
ment, mutual learning, neural cryptography, security.

I. INTRODUCTION

Secure key agreement is one of the basic steps in secure channel
establishment. The algorithms responsible for the key exchange
must ensure that no eavesdroppers are able to reproduce the secure
key. Applied key agreement protocols are based on mathematical
operations which have no computationally efficient inversion, for
example, factorization of a large number of problems or other derived
problems.

Quantum computing poses a real threat to applied cryptography
systems. Currently used algorithms, based on the public-key cryp-
tography approach, offer conditional security. Efficient derivation of
a secure key from exchanged fragmentary information may break the
security of the key agreement protocol. Currently, there is one known
algorithm—Shor’s algorithm—capable of factorizing large numbers.
Hence, it can extract exchanged keys and break all applied asymmet-
ric cipher cryptography [1]. However, the successful implementation
of this algorithm requires a quantum computer with a sufficient
number of qubits.

Some modern cryptography techniques—such as quantum cryptog-
raphy and neural cryptography—are able to overcome this problem
and provide a variety of quantum-proof algorithms. The tree parity
machine (TPM) is one such solution. It achieves a key agreement
functionality by mutual learning of two artificial neural networks
(ANNs). Mutual learning cannot be reduced to either primes fac-
torization or discrete logarithm problems, hence it is not susceptible
to quantum computing.

This brief proposes an acceleration to the mutual learning process
of TPMs. The following novelties are considered:

1) introduction of nonbinary input vectors used for the synchro-
nization of TPM;

2) proposal of a new parameter M describing input vector;
3) verification of the proposed solution in the insecure environ-

ment (with eavesdropper);

Manuscript received April 22, 2021; revised October 30, 2021 and
February 28, 2022; accepted May 22, 2022. This work was supported by
the European Union’s Horizon 2020 Research and Innovation Programme
through the ECHO Project under Grant 830943. (Corresponding author:
Miłosz Stypiński.)

The authors are with the Institute of Telecommunications, AGH University
of Science and Technology, 30-059 Kraków, Poland (e-mail: stypinski@
agh.edu.pl; niemiec@agh.edu.pl).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3180197.

Digital Object Identifier 10.1109/TNNLS.2022.3180197

4) analysis of observed phenomenon called extrema values effect.

The proposed improvement results in a shorter synchronization,
which at the same time enhances security properties.

This brief is structured as follows. Section II presents related
works relevant to the subject of this brief. Section III outlines the
architecture of TPMs, the process of mutual learning, secure key
agreement protocol, exchanged key length, and security of TPMs.
Section IV describes the nonbinary input TPM architecture, entropy,
and its appliance in terms of quality assessment of exchanged key.
Additionally, Section IV presents observed phenomena called extrema
values effect. Section V describes the methodology of the performed
simulations and an analysis of the gathered results.

II. RELATED WORKS

Kanter et al. [2] and Rosen-Zvi et al. [3] in 2002 successfully
performed key agreement via mutual learning. After that, various
efforts took place to enhance the proposed TPMs as a competitive
security solution. Santhanalakshmi et al. [4] proposed the usage of
a genetic algorithm in finding optimal weight vectors for training
TPM. This solution reduces the synchronization time but increases the
computational complexity. Allam et al. [5] proposed improvement
based on a shared secret. As a result, the complexity of known
attacks is increased while maintaining the same synchronization
time. Another usage scenario was described in [6] where TPM was
used as an error correction mechanism for key agreed in quantum
cryptography system. Another approach significantly changing the
TPM architecture is introduced in [7]. By using the original whale
optimization algorithm for synchronization and by adding another
hidden layer into the neural network, authors achieve higher security
compared to standard TPM. Dong and Huang [8] describe enhance-
ment achieved by learning TPM with complex-valued input vectors.
This solution is generalized in [9], where vector-valued inputs are
proposed. A different approach is described by Sarkar [10], where
chaos-generated input vectors are utilized.

III. TREE PARITY MACHINE

ANNs are increasingly popular, finding applications in fields
including security. Kanter et al. [2] and Rosen-Zvi et al. [3] introduce
a novel approach for the key agreement functionality implemented
with neural networks, which are explained in more detail in this
section.

A. Tree Parity Machine Architecture

A TPM is a two-layered perceptron-structured ANN with discrete
weights, binary input, and binary output [11]. The input vector X =
[x11, x12, . . . , x1n, . . . , xk1, . . . , xkn], K , N, k, n ∈ N ∧ k ≤ K ∧
n ≤ N has K N elements, where K denotes the number of inputs for
each neuron in the first layer, and N indicates the number of neurons
in the first layer. Every element xkn of input vector X can have one
of two possible values, either −1 or 1.

The first layer consists of neurons similar to the McCulloch–Pitts
model [12]. Every input xkn is connected to the kth neuron and has
its corresponding weight. The values of the weights are the only
difference from the former model. Every weight wi j can take a value

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-3909-9592
https://orcid.org/0000-0001-7137-3195

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Architecture of the TPM.

between −L and L , where L ∈ Z is the parameter of the TPM and
denotes the minimum/maximum possible weight value of the input
neurons.

The output of the aforementioned neurons is based on the slightly
changed signum function σ . The formula of the function is presented
in (1). It differs from the regular signum function in that it never
returns zero. The value of 0 is mapped either to 1 or −1, based
on whether the side is the sender or the recipient of the communi-
cation [13]. The recipient and sender side is denoted by r and s,
respectively. The parties decide beforehand which side is the sender
and the recipient

σ
(
xr/s

) =
{

1, xr � 0 ∨ xs > 0

−1, xr < 0 ∨ xs � 0.
(1)

The argument for the neuron’s activation function is the sum of the
products of the input vector’s elements with corresponding weight.
The exact formula is presented in the following equation:

yk = σ

(
N∑

n=1

xkn · wkn

)
. (2)

The final result O of the TPM is the product of each of the outputs
from hidden neurons from the first layer (3)

Or/s =
K∏
k

yr/s
k . (3)

The overall architecture of the TPM is shown in Fig. 1.

B. Key Agreement Protocol

The parties performing the key agreement execute the protocol,
which results in the secure shared key known only to the participating
parties. This is usually achieved through the exchange of some
information through an unsecured channel and by performing math-
ematical operations whose results are only known to the authorized
parties [14]. The first and most popular key agreement protocol was
proposed by Diffie and Hellman [15].

TPM offers functionality that can be adopted for key exchange
purposes. The protocol for two parties consists of the following
steps [13].

1) Both participants must agree on all the parameters for the TPM
(K , L , N) and initialize their TPMs with random weights.

2) The key agreement participants publicly exchange a previously
chosen binary random input vector X .

3) Each party computes the output from their TPM and publishes
the results.

4) If the outputs match, both participants apply the appropriate
learning rule that updates the weights of TPM accordingly.

5) Steps 2–4 are repeated until full synchronization of both TPMs
is achieved.

The full synchronization is equivalent to every corresponding weight
of both TPMs being equal to each other, at which point both TPMs
are the same.

The aforementioned learning rules are responsible for updating the
weights of each TPM in such a way that the synchronization process
finishes in finite time [16]. There are three different learning rules
that can be used in the process of updating weights [17].

1) Hebbian Learning Rule:

wkn(t + 1) = wkn(t) + O(t)xkn(t)�(yk(t), O(t)). (4)

2) Anti-Hebbian Learning Rule:

wkn(t + 1) = wkn(t) − O(t)xkn(t)�(yk(t), O(t)). (5)

3) Random Walk Learning Rule:

wkn(t + 1) = wkn(t) + xkn(t)�(yk(t), O(t)) (6)

where �(a, b) denotes the function returning 1 if a = b and
0 otherwise, and parameter t denotes the iteration in the key agree-
ment algorithm.

The synchronization process of two parity machines is not a
deterministic algorithm. The number of iterations is not fixed and
depends on the size and parameters of the TPM. However, it is shown
that the time is finite and can be easily estimated by users [18]. The
process takes longer for larger TPM sizes (K and N) and maximum
weight value (L). Other factors that affect the number of iterations
required for two TPMs to finish mutual learning include distribution
of initial weights and learning rule [19].

C. Security of Tree Parity Machines

Security of key agreement protocol is crucial for communication.
Any eavesdropper being able to reproduce the key based on the
messages exchanged between parties or any other source breaks the
security of the channel. Subsequently, such a situation depreciates
the secure key exchange protocol. Hence, it is crucial to assess the
security of any novel algorithm or protocol.

TPMs has been studied extensively. Javurek and M. Turčaník [18]
and Martínez Padilla et al. [20] identify four distinct types of attacks
that TPM may be vulnerable to as follows.

1) Brute force attack: Research shows that it is impossible to find
the exact key as a result of a brute force attack against TPMs
in polynomial time.

2) Genetic algorithm for weight prediction: It has been shown
that only TPMs with a single neuron in the second layer are
vulnerable to this type of attack.

3) Man-the-middle interception attack: Studies show that on aver-
age 60% of weights were synchronized in the eavesdropper’s
TPM.

4) Sign of weight classification using neural networks: Martínez
Padilla et al. [20] demonstrate that classification using ANNs
has near 100% accuracy in determining the sign of the weight
in the TPM, which reduces the time needed by the brute force
attack by almost half.

The studies show that, by utilizing these attack vectors, it is possible
to gain some information about the key. Hence, cryptosystems should
be aware of this threat and counteract it in order to minimize the
likelihood of key reconstruction.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

D. Man-in-the-Middle Attack

Synchronization of two TPMs without additional layers of security
is a process prone to man-in-the-middle attacks. This attack relies
on the possibility of placing a node C between parties A and B
performing a key agreement. The node eavesdrops on all the messages
shared between A and B. Based on information collected, node C
may be able to gain unauthorized access to information sent between
A and B. Moreover, if the nodes are not mutually authenticated, the
adversarial party may be able to alter the messages accordingly to
attempt an attack with a higher probability of success.

In terms of TPMs, man-in-the-middle attacks come down to cap-
turing all the input vectors X and outputs of parties being intercepted.
An adversarial TPM performs the learning process on acquired data.
There are three scenarios to be considered while intercepting the key
exchange. Let A and B be the parties wishing to exchange the key
and let C be an intruder able to perform a man-in-the-middle attack.
The three scenarios are as follows.

1) If �A �= �B , no TPMs is synchronized during this step.
2) If �A = �B �= �C , only TPMs A and B are synchronized,

while TPM C (attacker) does not update its weights.
3) If �A = �B = �C , all the TPMs update their weights

accordingly.
The last scenario brings the adversarial party closer to obtaining the
exchanged key. Hence, this situation should be avoided at all costs.

IV. NONBINARY INPUT VECTORS

The TPMs use binary vectors X for input [2] during the synchro-
nization process. This brief introduces a new approach: nonbinary
input vectors used to synchronize TPMs for a secure key agreement
protocol. The authors propose that the mutual learning process that
uses the vectors with a greater range of possible values of every
element influence the synchronization time of two TPMs. Simula-
tions performed in Section IV verify this proposition and indicate
that this approach can significantly increase the security of neural
cryptography.

A. Nonbinary Vector Tree Parity Machine Architecture

So far, the exact TPM was defined by parameters K , L , N .
In this brief, the authors introduce a new parameter M , denoting the
minimum/maximum value of each element of input vector X . Hence,
the input vector will have the following form: X = [x11, x12, . . . ,
x1n, . . . , xk1, . . . , xkn], where xkn ∈ {x : x ∈ Z ∧ −M ≤ x ≤
−1 ∨ 1 ≤ x ≤ M}. Thus, during the synchronization process, the
entities can use nonbinary input vectors, instead of binary vectors
which are currently used in practical implementations.

Introducing the M parameter does not affect the architecture of
the TPM. The new learning process slightly differs from the original.
The changes are in the first two steps of the key agreement protocol
presented in Section III-B. The first two steps now read as follows.

1) Both synchronization participants must agree on all the para-
meters for the TPM (K , L , M, N) and initialize their TPMs
with random weights.

2) The key agreement participants publicly exchange a previously
chosen random input vector X , which now consists of values
ranging from −M to M .

Points 3–5 remain unchanged.
Furthermore, formulas shown in Section III are still valid despite

more divergent values of the learning vectors. However, simulations
presented in Section V show that as the input vectors are more
differentiated, the distribution of settled keys is less similar to the
uniform distribution. Therefore, unbiased estimation of key length is
required.

Fig. 2. Entropy of the source generating two different values with the same
probability.

TABLE I

SYNCHRONIZATION TIME OF TPMS WITH
DIFFERENTIATED INPUT VECTORS

B. Synchronized Key Quality

The quality of random numbers generation has a significant impact
on the final security of the cryptosystem. A true random number
generator produces every available output with equal probability.
Unfortunately, computers are incapable of generating fully random
numbers. Frequently, numbers are generated based on a pseudoran-
dom number generator. This requires a seed supplied beforehand,
which is the starting point of the pseudorandom number sequence,
and each further number depends on it. Many contemporary imple-
mentations lack important features like good mathematical founda-
tions, lack of predictability, and cryptographic security [21].

Entropy is one of the measures which assesses the quality of
the generated numbers. Let us assume the random source generates
I different numbers α1, α2, . . . , αi with corresponding probabilities
p1, p2, . . . , pi . Entropy for such a defined source is presented in the
following equation [22]:

H(p1, p2, . . . , pi) = −
I∑

i=1

pi log j pi . (7)

The base of logarithm j denotes the units in which entropy
is measured, for example, for 2 and e units are bits and nats,
respectively [23].

Let us consider a random source that produces two outputs with,
either 0 or 1 with corresponding probabilities P(X = 0) = p and
P(X = 1) = 1− p. The entropy for the described source is presented

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3. Probability distribution of weights in TPMs using nonbinary input vectors.

in the following equation [23]:

H(p) = −plog j p − (1 − p)log j (1 − p). (8)

Fig. 2 shows the plot of the entropy of the aforementioned two-value
random source. The maximum of the function is reached for p = 0.5,
where H(p) = 1, which is the equal probability for values 0 and 1.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Hence, entropy values increase as the probability distribution of X
gets closer to the uniform distribution. This can be generalized to
sources producing more outcomes.

The entropy function can be used later to assess the quality of the
keys generated by different types of TPM. Taking into account (9),
the effective length of a key should depend on the entropy of the
synchronized weights (not just their values).

C. Agreed Key Length

After the synchronization process, both parties share identical keys.
The keys are distilled from weights of the TPM, which are the same
after the mutual learning process. The key length depends on the
size of the TPM as well as the parameter L , which indicates the
minimum/maximum value the weights may reach during synchro-
nization. Assuming the ideal uniform distribution of the weights, the
key length is equal to K · N · log2(2L +1). However, the distribution
of the weights differs from the uniform distribution [17]. Hence, the
entropy should be used to measure the quality of the key exchanged
between the parties. The updated key length is defined as follows:

lengthkey = K · N · E(W) (9)

where E(W) indicates an average entropy of the weights. Entropy
itself is presented in Section IV-B.

However, the exact distribution of weights is not known before-
hand. Taking this fact into consideration, (9) should be updated.
The estimated effective key length shown in (10) uses the estimated
entropy based on the simulation results. Additionally, we propose
using the floor function in the equation since the unit of effective
key are bits

ˆlengthkey = �K · N · Ê(W)�. (10)

It should be noted that (9) indicates the theoretical maximum
key length that can be extracted from mutual weights. However,
a dedicated algorithm that equalizes the probability can be used to
obtain a cryptography key from an unevenly distributed numerical
sequence. This algorithm must be deterministic since both parties
retrieve the cryptographic key from weights simultaneously.

V. VERIFICATION

This section presents the impact of the new parameter M , indi-
cating the maximum/minimum value of the input vectors during the
synchronization process and how it affects the required iterations in
the learning process and the quality of the output key.

A. Methodology

To validate the proposed improvement, a dedicated TPM simula-
tion framework has been created. The proposed framework allows
mimicking a real network scenario where two parties willing to
synchronize their TPMs exchange all the intermediate information via
a public channel (parties perform actions from Section IV-A). Hence,
the agreed TPM parameters and all the input vectors are available to
eavesdroppers. The simulation framework is available in the public
domain.1

The quality of the output key is measured in its effective length.
The effective length is calculated on the basis of (10). Furthermore,
simulation scenarios cover multiple sets of TPMs sizes. For each
scenario, statistical analysis was prepared based on 1000 simula-
tions. The presented confidence intervals are calculated with a 95%

1The framework source code is available at https://github.com/
mstypinski/tpm

probability. These scenarios include all possible combinations of
parameters N ∈ {40, 50, 60} and M ∈ {1, 2, 3, 4, 5}. For all
simulation scenarios, parameters K and L are equal to 3 and 5,
respectively. Additionally, all the simulations are performed using
the Hebbian learning rule (4). Synchronization time, entropy, and
effective key length are measured in order to compare the chosen
scenarios. Furthermore, we performed man-in-the-middle attack sce-
narios during which we measured the average synchronization score
of the malicious TPM.

B. Results

The synchronization process becomes longer as the size of the
TPM increases; it also generates a longer key for cryptographic
purposes. However, simulations presented in Table I reveal that the
TPM size and parameters are not the only elements that have an
impact on the duration of the synchronization process. Multiple
simulations were performed with different values of parameter M .
An increase in the parameter M value, which limits the maximum
and minimum possible values xi of the input vector X , reduces
the synchronization time significantly. The synchronization time in
Table I is expressed as a number of output bits exchanged between
the parties to achieve full synchronization between the two TPMs
(learning iterations). Thus, the volume of data exchanged between the
parties performing key agreement decreases as the value of parameter
M increases.

It should be noted that faster synchronization increases security.
This is because as the value of parameter M increases, the key
agreement process takes less time, hence a longer and more secure
key is obtained in a shorter period of time. This makes this solution
more competitive among other key exchange protocols.

Salguero Dorokhin et al. [24] conducted research regarding the
optimal TPM structure for establishing a 512-bit cryptographic key.
Based on their research, TPM parameters (K , L , N) providing the
most security are (8, 16, 8). On average, the full synchronization
of such a TPM took 218.37 iterations. Comparing the above to the
conducted research in this brief, TPMs having parameters (M, N) set
to one of the following pairs (3, 50), (4, 50), (4, 60) perform better in
terms of synchronization time while allowing to obtain cryptographic
keys longer than 512 bits.

It is worth mentioning the synchronization time grows insignifi-
cantly with the increase of N . This allows extending distilled cryp-
tographic keys without significantly extending synchronization time.
The parameter having the highest impact on synchronization time is
L as synchronization time grows proportionally to L2. However, the
same parameter is responsible for improving the security features of
TPM [25]. The introduction of parameter M enables preserving com-
parable security features but results in a decrease in synchronization
time.

C. Extrema Values Effect

Numerous simulations of the TPM learning process using nonbi-
nary input vectors led to the discovery of an effect named by the
authors the extrema value effect. A similar effect is shown in [10],
however, only binary input vectors are considered in this brief.

Faster synchronization times and lower numbers of messages
exchanged between users have an impact on the distribution of
weights. As the minimum/maximum xi increases, the probability
P(wkn = M) and P(wkn = −M) also increases. As a result, the
probability distribution of weights becomes less similar to the uniform
distribution. Hence, every weight of the TPM carries less random
information. The exact distribution of weights is presented in Fig. 3.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II

ENTROPY AND EFFECTIVE KEY LENGTH FOR
DIFFERENT TPM PARAMETERS

Assuming that in t th iteration, the update of all weights for all the
neurons is successful and the distribution of all the weights wkn(t)
and elements of input vector xkn(t) is uniform, let us estimate the
probability of the weight wkn(t+1) being equal to L or −L in the next
iteration. We can only consider one of these values since the situation
is analogous to the other. The probability P(wkn(t +1) = L) is equal
to P(wkn(t + 1) = L |xkn = 0) + P(wkn(t + 1) = L |xkn = 1) + · · · +
P(wkn(t + 1) = L |xkn = M − 1) + P(wkn(t + 1) = L |xkn = M).
Let us consider P(wkn(t + 1) = L |xkn = 0). This event only occurs
providing wkn = L , and therefore the probability is equal to (1/(2M+
1)(2L + 1)), as there is only one satisfactory event for all combina-
tions of input and weight values. For P(wkn(t + 1) = L |xkn = 1),
there are two satisfactory events wkn = L and wkn = L − 1.
In conclusion, the probability of the event A where wkn(t + 1) = L
or wkn(t + 1) = −L is presented in the following equation:

P(A)=2 × (P(A|xkn = 0) + · · · + P(A|xkn = M))

=2 ×
(

1 + · · · + (M + 1)

(2M + 1)(2L + 1)

)

= (M + 1)(M + 2)

(2M + 1)(2L + 1)
. (11)

As the parameter M increases the probability of the weights being
equal to either L or −L raises in the next iteration, resulting in
diminished TPM robustness. This fact makes parameter selection a
key element of TPM security.

The unequal distribution of weights in the TPM results in a
reduction of the effective key length since as the entropy value
becomes lower, the less secure bits might be retrieved from the key.
Entropy values and effective key lengths are presented in Table II.
To visualize the proportion between effective key length, the results
for the considered M and N parameters are presented in Fig. 4.

D. Susceptibility to a Man-in-the-Middle Attack

Many research considerations address TPM vulnerability to man-
in-the-middle attacks. Therefore, simulations with adversarial TPMs
have been conducted while utilizing learning by nonbinary input
vectors.

We assumed the worst-case scenario in which the adversarial neural
network was able to eavesdrop on all of the data exchanged between
the parties performing the key exchange. During the simulations, the
final synchronization score Sscore was gathered for the adversarial
neural network. The synchronization score measures the similarity

TABLE III

SYNCHRONIZATION TIME OF TPMS WITH
DIFFERENTIATED INPUT VECTORS

Fig. 4. Effective key length of TPMs with different parameters.

between two TPMs. The more common weights there are, the higher
the score value is assigned. Hence, the formula needs to return
higher values with the progress of the learning process. For equal
TPMs, the synchronization score is equal to 1. The formula for
calculating the end score is presented in (12). In the following
equation, wA denotes weights of adversarial TPMs and function
�(a, b) is defined in Section III:

Sscore =
∑K

k=1

∑N
n=1 �

(
wkn, w

A
kn

)
K × N

. (12)

In terms of security, the attacker’s TPM should have the lowest
synchronization score possible.

The synchronization score of adversarial TPMs are presented
in Table III. Additionally, simulation results are shown in
Fig. 5 to visualize the relationship between scenarios with dif-
ferent TPMs. Increased values of parameter M result in higher
median synchronization scores, hence the TPM is more prone to
man-in-the-middle attacks. When parameter M was equal to L ,
we observed situations where the synchronization score was equal
to 1. This means that the relationship between parameters M < L
should be preserved to ensure security. Additionally, the median is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

Fig. 5. Synchronization score of adversarial TPMs.

inversely proportional to the number of inputs N , and therefore the
impact of nonbinary input vectors on the synchronization score is
less clear for larger TPMs. Furthermore, the confidence intervals
are considerable. This variability makes it difficult to predict the
attacker’s malicious TPM weights.

VI. SUMMARY

Correct selection of TPM parameters is a key issue in implementing
secure key agreement protocols for neural cryptography. It is crucial
to find a tradeoff between effective key length, synchronization time,
and security of the final key which is used by users to protect
data in the network environment. This comes down to selecting the
appropriate network size, extreme values of the weights, and learning
vectors.

This brief proposes an improved way of learning TPMs.
A significant acceleration of the key agreement process was achieved
by utilizing a nonbinary input vector. This reduces the volume of data
exchanged between the parties performing key agreements. Faster
synchronization increases security levels; in particular, it mitigates
the risk of the key being obtained by an intruder using a man-in-the-
middle attack. However, speeding up the process results in an unequal
distribution of weights in the TPM. This was measured by calculating
the effective key length based on the entropy of each weight. The
proposed solution was also verified in an insecure environment in
which two TPMs are subject to a man-in-the-middle attack.

We envisage that future work will explore the development of a
secure key exchange protocol using nonbinary input vectors in TPMs
during mutual learning. This work will be focused on studying the
extrema values effect thoroughly and minimizing the reduction of
effective key length.

REFERENCES

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” SIAM Rev., vol. 41, no. 2,
pp. 303–332, Jan. 1999.

[2] I. Kanter, W. Kinzel, and E. Kanter, “Secure exchange of information
by synchronization of neural networks,” Europhys. Lett., vol. 57, no. 1,
pp. 141–147, Jan. 2002.

[3] M. Rosen-Zvi, I. Kanter, and W. Kinzel, “Cryptography based on neural
networks analytical results,” J. Phys. A, Math. Gen., vol. 35, no. 47,
pp. L707–L713, Nov. 2002, doi: 10.1088/0305-4470/35/47/104.

[4] S. Santhanalakshmi, T. S. B. Sudarshan, and G. K. Patra, “Neural
synchronization by mutual learning using genetic approach for secure
key generation,” in Recent Trends in Computer Networks and Dis-
tributed Systems Security, S. M. Thampi, A. Y. Zomaya, T. Strufe,
J. M. A. Calero, and T. Thomas, Eds. Berlin, Germany: Springer, 2012,
pp. 422–431.

[5] A. M. Allam, H. M. Abbas, and M. W. El-Kharashi, “Authenticated key
exchange protocol using neural cryptography with secret boundaries,” in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), Aug. 2013, pp. 1–8.

[6] M. Niemiec, “Error correction in quantum cryptography based on
artificial neural networks,” Quantum Inf. Process., vol. 18, no. 6, p. 174,
Jun. 2019, doi: 10.1007/s11128-019-2296-4.

[7] A. Sarkar, M. Z. Khan, M. M. Singh, A. Noorwali, C. Chakraborty,
and S. K. Pani, “Artificial neural synchronization using nature inspired
whale optimization,” IEEE Access, vol. 9, pp. 16435–16447, 2021.

[8] T. Dong and T. Huang, “Neural cryptography based on complex-valued
neural network,” IEEE Trans. Neural Netw. Learn. Syst., vol. 31, no. 11,
pp. 4999–5004, Nov. 2020.

[9] S. Jeong, C. Park, D. Hong, C. Seo, and N. Jho, “Neural cryptography
based on generalized tree parity machine for real-life systems,” Secur.
Commun. Netw., vol. 2021, Feb. 2021, Art. no. 6680782.

[10] A. Sarkar, “Secure exchange of information using artificial intelli-
gence and chaotic system guided neural synchronization,” Multime-
dia Tools Appl., vol. 80, no. 12, pp. 18211–18241, Feb. 2021, doi:
10.1007/s11042-021-10554-3.

[11] S. Marsland, Machine Learning: An Algorithmic Perspective, 2nd ed.
Boca Raton, FL, USA: CRC Press, 2014.

[12] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133,
Dec. 1943, doi: 10.1007/BF02478259.

[13] M. Volkmer and S. Wallner, “Tree parity machine rekeying architec-
tures,” IEEE Trans. Comput., vol. 54, no. 4, pp. 421–427, Apr. 2005.

[14] M. Just, Key Agreement. Boston, MA, USA: Springer, 2005, p. 325, doi:
10.1007/0-387-23483-7_218.

[15] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theory, vol. IT-22, no. 6, pp. 644–654, Nov. 1976.

[16] W. Kinzel, Theory of Interacting Neural Networks. Hoboken, NJ, USA:
Wiley, 2002, ch. 9, pp. 199–217, doi: 10.1002/3527602755.

[17] A. Ruttor, “Neural synchronization and cryptography,”
Ph.D. dissertation, Dept. Phys. Astron., Univ. Würzburg, Würzburg,
Germany, 2007.

[18] M. Javurek and M. Turcanik, “Synchronization of two tree parity
machines,” in Proc. New Trends Signal Process. (NTSP), Oct. 2016,
pp. 1–4.

[19] M. Dolecki and R. Kozera, “Distance of the initial weights of tree parity
machine drawn from different distributions,” Adv. Sci. Technol. Res. J.,
vol. 9, no 26, pp. 137–142, 2015, doi: 10.12913/22998624/2380.

[20] J. Martínez Padilla, U. Meyer-Baese, and S. Foo, “Security evalua-
tion of tree parity re-keying machine implementations utilizing side-
channel emissions,” EURASIP J. Inf. Secur., vol. 2018, no. 1, pp. 1–16,
Apr. 2018, doi: 10.1186/s13635-018-0073-z.

[21] M. E. O’Neill, “PCG: A family of simple fast space-efficient statistically
good algorithms for random number generation,” Harvey Mudd College,
Claremont, CA, USA, Tech. Rep., HMC-CS-2014-0905, Sep. 2014.

[22] E. Simion, “Entropy and randomness: From analogic to quantum world,”
IEEE Access, vol. 8, pp. 74553–74561, 2020.

[23] T. M. Cover and J. A. Thomas, Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). Hoboken, NJ,
USA: Wiley, 2006.

[24] E. S. Dorokhin, W. Fuertes, and E. Lascano, “On the development of
an optimal structure of tree parity machine for the establishment of
a cryptographic key,” Secur. Commun. Netw., vol. 2019, Mar. 2019,
Art. no. 8214681, doi: 10.1155/2019/8214681.

[25] R. Mislovaty, Y. Perchenok, I. Kanter, and W. Kinzel, “Secure key-
exchange protocol with an absence of injective functions,” Phys. Rev. E,
Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 66, no. 6,
Dec. 2002, Art. no. 066102.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

http://dx.doi.org/10.1088/0305-4470/35/47/104
http://dx.doi.org/10.1007/s11128-019-2296-4
http://dx.doi.org/10.1007/s11042-021-10554-3
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1007/0-387-23483-7_218
http://dx.doi.org/10.1002/3527602755
http://dx.doi.org/10.12913/22998624/2380
http://dx.doi.org/10.1186/s13635-018-0073-z
http://dx.doi.org/10.1155/2019/8214681

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

