
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Simulation-Aided Handover Prediction From Video
Using Recurrent Image-to-Motion Networks

Matija Mavsar , Barry Ridge, Rok Pahič , Jun Morimoto, Member, IEEE, and Aleš Ude , Member, IEEE

Abstract— Recent advances in deep neural networks have
opened up new possibilities for visuomotor robot learning. In the
context of human–robot or robot–robot collaboration, such net-
works can be trained to predict future poses and this information
can be used to improve the dynamics of cooperative tasks. This
is important, both in terms of realizing various cooperative
behaviors, and for ensuring safety. In this article, we propose a
recurrent neural architecture, capable of transforming variable-
length input motion videos into a set of parameters describing a
robot trajectory, where predictions can be made after receiving
only a few frames. A simulation environment is utilized to expand
the training database and to improve generalization capability of
the network. The resulting architecture demonstrates good accu-
racy when predicting handover trajectories, with models trained
on synthetic and real data showing better performance than when
trained on real or simulated data only. The computed trajectories
enable the execution of handover tasks with uncalibrated robots,
which was verified in an experiment with two real robots.

Index Terms— Dynamic movement primitives (DMPs), han-
dover, machine vision, recurrent neural networks (RNNs), robot
learning, simulation.

Manuscript received 2 July 2021; revised 29 December 2021; accepted
9 May 2022. This work was supported in part by the Slovenian Research
Agency through the Program Group Automation, Robotics, and Biocybernet-
ics under Grant P2-0076 and Young Researcher Grant PR-09781; in part by
the European Union’s Horizon 2020 Grant CoLLaboratE under Grant 820767;
in part by the Project under Grant JPNP20006; in part by the New Energy
and Industrial Technology Development Organization (NEDO); in part by
the Japan Society for the Promotion of Science (JSPS) KAKENHI under
Grant JP16H06565; in part by the Japan Science and Technology Agency
(JST) Mirai Program under Grant JPMJMI18B8 and Grant JPMJMI21B1; and
in part by the Tateishi Science and Technology Foundation. (Corresponding
author: Matija Mavsar.)

Matija Mavsar is with the Humanoid and Cognitive Robotics Labora-
tory, Department of Automatics, Biocybernetics, and Robotics, Jožef Stefan
Institute, 1000 Ljubljana, Slovenia, and also with the Faculty of Electri-
cal Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia (e-mail:
matija.mavsar@ijs.si).

Barry Ridge is with the Humanoid and Cognitive Robotics Labora-
tory, Department of Automatics, Biocybernetics, and Robotics, Jožef Ste-
fan Institute, 1000 Ljubljana, Slovenia, and also with ATR Computational
Neuroscience Laboratories, Department of Brain-Robot Interface, Advanced
Telecommunications Research Institute International, Kyoto 619-0237, Japan
(e-mail: barry@barr.ai).

Rok Pahič is with the Humanoid and Cognitive Robotics Laboratory, Depart-
ment of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, 1000
Ljubljana, Slovenia (e-mail: rok.pahic@ijs.si).

Jun Morimoto is with ATR Computational Neuroscience Laborato-
ries, Department of Brain-Robot Interface, Advanced Telecommunications
Research Institute International, Kyoto 619-0237, Japan, and also with the
Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan(e-
mail: xmorimo@atr.jp).

Aleš Ude is with the Humanoid and Cognitive Robotics Laboratory, Depart-
ment of Automatics, Biocybernetics, and Robotics, Jožef Stefan Institute, 1000
Ljubljana, Slovenia, also with ATR Computational Neuroscience Laborato-
ries, Department of Brain-Robot Interface, Advanced Telecommunications
Research Institute International, Kyoto 619-0237, Japan, and also with the
Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana,
Slovenia (e-mail: ales.ude@ijs.si).

This article has supplementary material provided by the authors and
color versions of one or more figures available at https://doi.org/10.1109/
TNNLS.2022.3175720.

Digital Object Identifier 10.1109/TNNLS.2022.3175720

I. INTRODUCTION

IN THE past decade, robot workspaces have been mov-
ing from closed areas with known and predictable con-

ditions into increasingly complex environments with limited
amounts of a priori information. Many recent works focus
on human–robot collaboration, where the aim is to enable
robots and humans to work together in close proximity [1]. For
humans and robots to effectively work together in unknown
environments, a system for robust human motion prediction is
required, which guarantees safety and predictability. Machine
vision can provide the necessary information to respond to
changes by extracting the most important data while being
invariant to less important and random phenomena.

Object handover is a collaborative action where an agent,
the giver, gives an object to another agent, the receiver [2]. The
handover task typically consists of a pre-handover phase and a
physical object exchange phase. Aspects such as communica-
tion, grasping, motion planning and control must be considered
to achieve optimal performance. In the pre-handover phase,
the receiver observes the motion of the giver and computes the
appropriate receiving motion trajectory. Accurate prediction of
motion trajectories from the partially observed giver motion
(captured as an red-green-blue and depth (RGB-D) video) is
the focus of this article. Thus, the article focuses on the pre-
handover phase.

Obtaining meaningful information from a stream of dig-
ital images can be facilitated by neural networks due to
their efficiency in modeling different nonlinear processes
[3]–[5]. Because of the dynamic attributes of human–robot
workspaces, neural structures that incorporate time depen-
dency are especially well suited for the task of predicting
the movements of a person or robot, with recurrent neural
networks (RNNs) being a good choice. One of the most widely
used types of RNNs is the long short-term memory (LSTM)
network [6]. LSTM networks can efficiently process tempo-
ral sequences [7], such as RGB-D videos, while exploiting
prior observations to make future predictions. Since gathering
large amounts of training data can be expensive and time-
consuming, especially in robotics [8], simulation is being
increasingly used for data generation. The challenge lies in
transferring models trained with simulated data to the real
world [9], [10].

In this work, we focus on predicting motion trajectories
from RGB-D videos containing the giver motion. Current
state-of-the-art methods either rely on the body postures of
the giver [11]–[13], or can only predict the final pose or
an action description label [12], [14]. Conversely, we pro-
pose a Recurrent Image-to-Motion Encoder–Decoder Neural
Network (RIMEDNet) capable of translating variable-length
RGB-D videos of a giver (human or robot) into a predicted
trajectory during a handover task (see Fig. 1). RIMEDNet

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

https://orcid.org/0000-0002-1617-4908
https://orcid.org/0000-0003-0985-9439
https://orcid.org/0000-0003-3677-3972

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 1. Proposed RNN can predict joint or Cartesian robot trajectories (bottom
row) after processing only a fraction of the complete RGB-D video of robot
motion (upper two rows). Predictions are updated online with each received
frame. Note that the prediction accuracy improves as more data become
available.

trained with the appropriate data can predict either the motion
trajectory of the giver or the motion trajectory of the receiver.
It consists of convolutional layers to extract spatial repre-
sentations, LSTM layers to analyze temporal dependencies,
and fully connected layers to compute the motion parame-
ters. Initial predictions of the entire output trajectory can be
made immediately during the early stages of giver–receiver
interaction based on only a fraction of the entire RGB-D
input video. The accuracy of the predicted trajectory increases
as more images are processed. This way, the receiver can
anticipate the handover action and respond accordingly, e.g.,
by moving toward the predicted pose of the handover while
avoiding the giver’s path. To reduce the amount of real data
required for training, we make use of simulation and domain
randomization to acquire an extensive and highly randomized
synthetic dataset. The proposed approach is compared to
state-of-the-art architectures and evaluated in robot-to-robot
handover experiments, while it may also be extended for use
in human-to-robot handovers. None of the methods described
in a recent survey of object handover tasks [2] utilizes such
an approach.

The main contributions of the article are: 1) a novel recur-
rent encoder–decoder neural network architecture for online
prediction of entire robot trajectories encoded as third-order
dynamic movement primitives (DMPs) based on variable-
length RGB-D input videos; 2) early prediction based on par-
tial input videos of motion trajectories (DMPs) while ensuring
smooth (up to the second order) transition from one predicted
DMP to another as the DMP parameters are refined once a
larger portion of the RGB-D video has been processed; 3) a
real dataset of video-trajectory pairs supplemented with a large
number of highly randomized synthetic samples; and 4) an
experimental evaluation showing that the proposed approach
exhibits good prediction accuracy of robot trajectories and
achieves higher accuracy when making use of large datasets
that include both synthetic and real data compared to when
smaller sets consisting only of real or simulated data are used.

A. Related Work

For the representation of handover trajectories, DMP [15]
representation has proven as an attractive choice, since it
can provide both a mechanism to plan a feed-forward tra-
jectory as well as the ability to modulate the desired tra-
jectory in a feedback loop. DMPs have shown to be useful
as a representation of likely giver trajectories to estimate
the handover location and timing based on human hand
position measurements and an extended Kalman filter [16].
To encode several handover trajectories in a unified repre-
sentation, Amor et al. [17] developed interaction primitives,
which build on DMPs by maintaining a distribution over the
DMP parameters. Bahl et al. [18] proposed neural dynamic
policies (NDPs) that make predictions in trajectory distribu-
tion space for reinforcement learning. Probabilistic movement
primitives (ProMPs) similarly maintain a distribution of tra-
jectories and can be applied to predict the observed motion
trajectories [19]. As an alternative to compact representations
such as DMPs and ProMPs, Yamane et al. [20], [21] explored
the application of motion graphs to enable motion generation
from a large database of example trajectories and demonstrated
that augmented motion graphs can be used to generate object
handover behaviors. However, the above works do not address
the issue of discontinuities in receiver motion that arise once
the neural network changes the prediction of the giver motion,
e.g., based on information obtained as longer videos of the
giver motion become available, which is an important feature
of our approach based on third-order DMPs.

In recent years, deep neural networks have become a
method of choice when processing raw input images for object
detection [22]. In the context of interaction, Park and Kim [23]
utilized a novel convolutional neural network (CNN) architec-
ture for human identification from images for an improved
human–robot collaboration. CNNs were also employed to
generate robot trajectories in the form of DMPs from input
images [24], [25] and to detect the pick up location of the shaft
for a robot-to-robot handover [26], however, without prediction
capability. Pahič et al. [27], [28] derived differential equations
for an effective gradient calculation during backpropagation
when using DMP representation. However, these approaches
are not suitable for prediction from variable-length (partial)
videos as they arise in object handover tasks.

RNNs are more suitable for the processing of a stream of
incoming data in dynamic settings such as object handover.
LSTM-based RNNs [6] have proven to be especially useful in
such settings. They have been applied for action recognition
from optical flow [29], for choosing optimal actions based on
future predictions of input images [30] and in route planning
of ground-based mobile robots for seed delivery [31]. In the
context of human motion prediction with a potential use
in object handover settings, RNNs have been successful in
anticipating and classifying human actions [14], [32], [33]
and whole body motions [34], while several methods for
forecasting body poses were developed [11]–[13]. The above-
mentioned methods, however, either rely on motion capture
systems for extraction of the observed person’s skeleton,
or can only predict labels and final poses rather than smooth
motion trajectories from RBG-D videos as our proposed
approach.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAVSAR et al.: SIMULATION-AIDED HANDOVER PREDICTION FROM VIDEO 3

Simulation-to-Real Transfer: has been used to reduce the
amount of real-world data needed for neural network training.
One of the methods for optimizing transfer of knowledge
gained through simulation is domain randomization, where
several parameters are randomized for each training sample.
It aims to train a neural network for as many environments as
possible, including the real world. Domain randomization has
been successfully used in robotics to train hierarchical manip-
ulation policies [35], to determine object grasping locations
from red-green-blue (RGB) images [9], to perform grasp plan-
ning on unseen objects by training on randomized shapes in
simulation [36], and for object detection [37]. Some methods
attempt to improve the performance by focusing on the most
troublesome environmental parameters [38]. Others use gener-
ative adversarial networks for domain adaptation [39], to trans-
late randomized simulation images into canonical versions
and then use the trained structure on real-world images [10],
or to map a simulation image to a realistic one while using a
policy trained in simulation [40]. An alternative approach for
efficient database gathering has been presented in [41], where
a small number of task executions is performed with a robot
and statistical generalization is applied to generate more data.
We incorporated synthetic data and domain randomization to
further improve motion prediction in the proposed system.

As explained above and different from our approach, the
current methods for motion observation and prediction dur-
ing object handover either provide the final handover pose
or classify the observed motion from RGB-D images or
require expensive motion capture systems to obtain appropriate
input data, such as pose measurements. Our method, on the
other hand, predicts the entire observed trajectories directly
from (partial) RGB-D videos and therefore provides richer
information about the handover process without requiring the
intermediate step of extracting the giver postures.

II. GENERATION OF OBJECT HANDOVER TRAJECTORIES

Given the object handover scenario, the aim of motion repre-
sentations described in this section is to enable the generation
of smooth receiver motion from the partially observed motion
of the giver, where the motion of the giver is observed by an
RGB-D camera. Thus the input data consist of a sequence
of RGB-D images, which are used either to predict the
motion of the giver or to directly compute the corresponding
motion of the receiver. The idea is that an RNN can start
predicting the handover motion based on the incomplete
motion of the giver, i.e., based on partial RGB-D videos, and
that this prediction is improved once more complete videos
are processed. We selected third-order DMPs to encode the
predicted motion. The motivation for this is that with third-
order DMPs, we can ensure smooth receiver motion transitions
(up to the second derivatives) when the RNN computes the
next predicted DMP, which provides a better estimate for the
desired motion. This cannot be guaranteed by many other
motion representations [15], [17], [19] that were utilized to
implement interaction tasks in the past.

A. Third-Order DMPs
DMPs are especially well-suited to represent handover

trajectories because they can be used to smoothly pull the

robot toward the desired motion even if its current position is
not on the desired trajectory. Let us assume that the trained
network maps the incoming stream of RGB-D images to the
receiver motion represented by a DMP. The receiver agent
would typically start its movement before the giver finishes
its motion. This is possible in our approach because RNNs
compute the best estimate for the receiver motion after every
processed frame. This estimate is improved as more data
become available (see Fig. 1). Third-order DMPs provide a
mechanism to smoothly switch from one movement to another.

Let us denote the robot control parameters (internal joint
angles or Cartesian space pose) by y ∈ R

d , where d is the
number of robot degrees of freedom. In the DMP formalism,
the control variable y and its derivatives are computed by
integrating a nonlinear dynamic system. To ensure continuity
up to the second order derivatives when switching from one
DMP to another and motivated by the DMP systems developed
in [42] and [43], we propose the following third-order dynamic
system to specify the required handover motion

τ v̇ = K(r − y) − Dv − xK(r − y0) + Kf(x) (1)

τ ẏ = v (2)

τ ṙ = H(g − r) (3)

where r, v ∈ R
d are auxiliary variables, y0, g ∈ R

d are the
start and endpoint of the movement, respectively, K, H ∈
R

d×d are spring matrices, D ∈ R
d×d is a damping matrix, and

τ > 0 is a temporal scaling factor, which is usually set to
the duration of motion. In our experiments we set K = K I,
D = DI, H = H I, D = 2

√
K , H = √

K , K > 0, which
provides for the critical damping of the dynamic system. The
dynamic system (1)–(3) is driven by the phase variable x ,
which evolves according to the following equation:

τ ẋ = −αx x (4)

where αx > 0 is a positive constant.
The nonlinear forcing term f from (1) is defined as a

combination of radial basis functions (RBFs)

f(x) =
∑N

k=1 wk�k(x)∑N
k=1 �k(x)

x (5)

�k(x) = exp(−hk(x − ck)
2). (6)

The parameters ck , hk ∈ R and wk ∈ R
d define the centers,

widths, and weights of individual RBFs, respectively, and N is
the number of RBFs. The weights wk are determined in such a
way that by integrating equation system (1)–(4) we obtain the
desired trajectory y starting at the initial configuration y0 and
ending at the goal configuration g. The integration process is
initialized by setting y = y0, v = 0, r = g, and x = 1.
Note that r remains constant unless g changes. If the goal
position g changes abruptly, r and consequently y converge to
the new goal position without causing any discontinuities in
the acceleration of y. This is important because y is used to
specify the desired robot trajectory.

B. Smooth Switching Between Receiver DMPs

The RNN described in Section III computes a complete
new DMP after every processed video frame, not just the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

final end position g. Thus, to ensure that the integrated motion
remains smooth up to the second order when switching to the
next DMP, we have to make sure that the initial integration
parameters are all set correctly for the next DMP integration.
Third-order DMPs have a sufficient number of free parameters
to guarantee such smoothness. Let us denote the current
DMP integration state as yp, vp, rp and the terms defined by
the previous and next DMP (temporal scaling factor, forcing
term, end, and initial configuration) as τp, fp, gp, y0,p and
τs, fs, gs, y0,s , respectively. We should initialize the next DMP
integration state ys, vs , and rs so that the position, velocity,
and acceleration of the robot motion remain smooth, i.e.,
yp = ys, ẏp = ẏs, ÿp = ÿs. Using (1) and (2), we compute the
following initialization values for the integration of the next
DMP, starting at the current phase x :

ys = yp (7)

vs = τs

τp
vp (8)

rs = τ 2
s

τ 2
p

rp + 1 − τ 2
s /τ 2

p

1 − x
yp + τpτs − τ 2

s

τ 2
p(1 − x)

K−1Dvp

+ 1

1 − x

(
τ 2

s

τ 2
p

(xy0,p + fp(x)) − xy0,s − fs(x)

)
. (9)

By initializing the integration of the newly computed DMP
with (7)–(9) and by continuing the integration process at the
current phase x , we ensure that the generated robot motion is
twice continuously differentiable.

The computed initialization values ys, vs , and rs do not
necessarily lie on the desired trajectory defined by the newly
computed DMP. However, since a DMP defines a control pol-
icy, the integration of the DMP can also be started away from
the desired trajectory. The DMP integration is nevertheless
guaranteed to converge to the desired final configuration where
the object exchange should take place.

C. Smooth Switching Using Quintic Polynomials

If the neural network predicts the giver trajectory, we can
generate the receiver motion by utilizing the predicted final
configuration g of the DMP. If the giver motion is predicted
in joint space, we first convert the predicted goal configuration
into Cartesian space coordinates using forward kinematics.
To enable collision-free object handover, we rotate the goal
orientation by 180◦ so that the robot reaches the desired
final pose from the opposite side of the object. The resulting
pose is then converted into joint coordinates of the receiver
robot using its inverse kinematics, thus providing the desired
final configuration of the receiver robot. Finally, we generate
a smooth motion for the receiver robot from its current
configuration to the computed goal configuration using quintic
polynomials [44].

Let us write down the quintic polynomial describing the
motion of the receiver robot from the current robot configura-
tion y0 to the desired goal configuration g

y(t) =
5∑

j=0

q j t
j (10)

where q j ∈ R
d are the coefficients of the polynomial, t ∈

[0, T], and T represents the time at which the goal position
g should be reached with zero velocity and acceleration from
the current position y0. To prevent excessively fast motions,
the duration T is calculated as follows:

T = 0.5 max
i

{ |gi − y0,i |
vi,max

}
(11)

where vi,max is the maximum velocity for the i th robot degree
of freedom.

To ensure smooth robot motion, the position, velocity, and
acceleration must be continuous when transitioning from one
predicted goal configuration to the next one. Denoting the
current robot position, velocity and acceleration with y0, ẏ0,
and ÿ0, respectively, and resetting time to zero, we obtain

q0 = y0, q1 = ẏ0, q2 = ÿ0/2. (12)

The following formulas provide the rest of the coefficients:

q3 = 20(g − y0) − 12ẏ0T − 3ÿ0T 2

2T 3
(13)

q4 = 30(y0 − g) + 16ẏ0T + 3ÿ0T 2

2T 4
(14)

q5 = 12(g − y0) − 6ẏ0T − ÿ0T 2

2T 5
. (15)

Every time a new goal configuration is predicted by the neural
network, a new receiver trajectory is computed using the above
procedure.

III. LSTM-BASED NEURAL NETWORK

FOR OBJECT HANDOVER

Due to their ability to process temporal sequences of data,
RNNs are well-suited for the task of motion prediction from
a sequence of input images. Their structure, consisting of
memory units, allows them to store information, dependent
on inputs from previous states. However, during the training
of classic RNNs, the gradients of the optimized loss function
can explode or vanish [45]. This was the motivation behind the
development of a special kind of RNN–the LSTM network [6].

Unlike classic RNNs, LSTM units are composed of a cell
and several gates, regulating the flow of information in and
out of the cell. Fig. 2 shows the structure of the LSTM unit,
where each new cell state ct and new hidden state ht are fed
back to the LSTM unit when processing the next input. Thus,
each new network output is affected by the results from the
previous time steps.

The trainable parameters in an LSTM unit are the weights
for the inputs xt , the weights for the combined hidden state ht ,
and the biases for each of the four gates. For an LSTM layer
with m units and an input size of n, the number of trainable
parameters is therefore equal to 4m(n + m + 1).

A. Network Architecture

Our proposed architecture is called RIMEDNet and consists
of convolutional, fully connected, and LSTM layers. It takes
a sequence of images of the observed motion as input and
predicts either the motion trajectory of the giver performing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAVSAR et al.: SIMULATION-AIDED HANDOVER PREDICTION FROM VIDEO 5

Fig. 2. Structure of an LSTM unit. The inputs to the unit are the hidden
state ht−1 and the cell state ct−1 from the previous time step and the current
input data xt . The new cell state ct and the new hidden state ht are defined
by the inputs and the trainable parameters of the LSTM unit, with it , ft , gt ,
and ot representing the outputs of different gates, i.e., the input gate, forget
gate, cell gate, and output gate.

the handover task or the corresponding motion of the receiver,
where the resulting trajectory is represented by a DMP. The
basic network structure is shown in Fig. 3, where the input data
are in the form of RGB-D image sequences and the output data
are the DMP parameters.

Input images are passed into the convolutional part of the
network, which can either be custom-defined CNN layers
(see Fig. 3) or the layers from one of the popular pretrained
CNN architectures, commonly used for image classification
(e.g., ResNet [46], AlexNet [3], GoogLeNet [47], etc.). In all
cases, the convolutional part is followed by two fully con-
nected layers with ReLU functions, two LSTM layers, and
another two fully connected layers that finally produce the
output of the network. At the heart of the network architecture
are two stacked LSTM layers. For each element in the input
sequence, i.e., an RGB-D image, the LSTM network returns an
output based on all the previous input images in the sequence
and the previously computed states of the LSTM units.

The number of input features of the two LSTM layers has
been set to 1000 and 40, respectively, and the number of
units in each LSTM layer is 40, thus resulting in 40 outputs
for each layer and 179 520 trainable parameters. The pro-
posed encoder–decoder structure forces the network to create
low-dimensional representations of input images and thus
extract the essential features of the data, which may improve
the network’s ability to generalize to previously unseen
data.

The network takes sequences of W × H × 4 pixel RGB-D
images as input, where W and H are the width and height of
input images. Let us denote by d the number of robot degrees
of freedom (Cartesian or internal). The network outputs a
parameter vector consisting of DMP parameters that include d
values for start and goal configuration y0 and g, respectively,
d × N values describing the weights (5) of the forcing term,
and one value for the temporal scaling factor τ , thus altogether
(N + 2)d + 1 parameters. The robot degrees of freedom
are given either as Cartesian space positions p(t) ∈ R

3 and

Fig. 3. Example recurrent RIMEDNet architecture with the custom convo-
lutional part, fully connected, and stacked LSTM layers. RIMEDNet takes
RGB-D images as input to predict a motion trajectory in the form of DMP
parameters. Convolution layers have a kernel size of 4 × 4 and a stride of 1,
while all max pooling layers have a kernel size of 3×3 and a stride of 3, except
the first one, which has a stride of 2. In this example, the input image size
was 160 × 120 × 4, the robot had 7 degrees of freedom, there were 25 RBFs
in the forcing term, seven parameters for the initial and end configuration,
and the temporal scaling factor, thus altogether 190 output parameters. The
total number of trainable parameters in this network is 22 416 346.

orientations q(t) ∈ R
4, y(t) = [p(t)T, q(t)T]T, or as robot

joint angles y(t) = [θ1(t), . . . , θd(t)]T.

B. Training Method

The proposed RIMEDNet architecture is trained on data
pairs, defined as

D =
{
{Xi j}L j

i=1, d j

}M

j=1
(16)

where M is the number of example sequences in the training
dataset, Xi j ∈ R

W×H×4 is the i th frame of the j th input
video consisting of L j frames, and d j ∈ R

(N+2)d+1 is the
corresponding ground-truth trajectory (either the trajectory of
the observed giver motion or the corresponding trajectory of
the receiver), encoded with DMP parameters

d j = {{wk, j }N
k=1, g j , y0, j , τ j

}
(17)

where N is the number of weights in the forcing term (5). See
Section IV for details about how these data are gathered.

To train the proposed network, we need to define a suitable
loss function. We use the standard mean squared error (mse)
as the basis for the definition of the loss function. However,
since the input data are image sequences instead of single
images, we employ a weighted variant of MSE. The loss of
the complete j th training sample is computed as

E(j) = 1

L j

L j∑
i=1

γi

(
N∑

k=1

||wk, j − wo
k,i ||2 + αg ||g j − go

i ||2

+αy ||y0, j − yo
0,i ||2 + ατ ||τ j − τ o

i ||2
)

.

(18)

The parameters wk, j , g j , y0, j , and τ j are the ground-truth
DMP parameters from the training set (17), while wo

k,i , go
i , yo

0,i
and τ o

i are the output DMP parameters computed by the
neural network for the i th input image. Additional weights

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 4. Training process flow. Real and synthetic videos are transformed using subsampling, rescaling, and additional randomization techniques. The processed
data are then used to train the RIMEDNet architecture using backpropagation and a temporally weighted mse loss.

αg, αy, ατ > 0 are used to balance the importance and scaling
of parameters with different units. A logistic function with
scaling factor αt is used to compute the weights γi

γi = 1

1 + e
−αt

i−1
L j −1 +0.5

. (19)

This way we decrease the significance of early video frames
and increase the significance of later frames while ensuring
that the values of weights γi are in the range from 0 to 1.

The proposed neural network model and its training were
implemented using PyTorch [48] and an NVIDIA GeForce
GTX 1080 graphics processing unit. The training process was
carried out using the Adam optimizer [49] and a batch size
of 30. To prevent overfitting of the network to training data,
the error on validation dataset was computed after each epoch
and the training was stopped after 60 consecutive epochs of no
validation error decrease. The learning rate was changed in a
cyclical manner using the approach from [50], which increases
training speed and reduces the need for parameter tuning.

To enable batch training, which significantly reduces the
training time, the input videos were padded using the final
frame in each video so that all the videos in the batch were of
the same length. Besides speeding up the training process,
by padding the videos we also increase the robustness of
motion prediction when the images of the robot standing still
are fed into the network after the end of the motion. This
enables more accurate trajectory prediction even after the robot
motion has been finished.

IV. EXPERIMENTS

The goal of our experiments was to determine the accuracy
of the RIMEDNet architecture when predicting the giver
trajectories or the corresponding receiver trajectories during
robot-to-robot handover tasks and whether the accuracy can
be improved by utilizing simulation data. Table I shows
different experimental scenarios, where the combinations of
giver, receiver, Cartesian, and joint trajectories were used for
training, and either only real or mixed (real and synthetic) data
were used. To compare different scenarios we used the custom
CNN structure, depicted in Fig. 3, due to its simple structure
and faster training. Additional architectures are discussed in
Section IV-D. The process flow is depicted in Fig. 4.

TABLE I

RIMEDNET TRAINING SCENARIOS

A. Data Collection

1) Synthetic Data: The generation of synthetic data (31 195
samples) was implemented using the robot simulator Cop-
peliaSim [51] in combination with the PyRep toolkit [52] for
robot learning research. To simulate a robot-to-robot handover
task, a giver robot performed minimum jerk motions [44]
with randomly selected initial position, fixed initial orienta-
tion, and randomly selected end pose, while being recorded
with a simulated camera. The initial and final positions as
well as final orientations were confined to a fixed range of
values. During each simulation episode, a stream of RGB-D
image data were recorded with a simulated camera, and joint
and Cartesian trajectories were generated both for giver and
receiver robots, the duration ranging from 1.5 to 5 s. The
corresponding motion of the receiver robot was generated as
a minimum jerk trajectory, starting from the fixed initial pose
to the end position of the giver, while the orientation was
rotated by 180◦ to enable collision-free object handover. Note
that the receiver motion is only generated for data collection
and does not need to be executed.

A customized fork of PyRep1 was developed featuring
domain randomization functionality that was employed in
the simulation environment in an attempt to minimize the
discrepancy between the source domain (simulation) and the
target domain (real world). The purpose of randomization is
to capture the variability of real images in simulated images.
To achieve appropriate variability, the colors and texture

1https://github.com/abr-ijs/PyRep/tree/feature/domain_randomization

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAVSAR et al.: SIMULATION-AIDED HANDOVER PREDICTION FROM VIDEO 7

Fig. 5. Comparison of test errors for RIMEDNet models with the custom CNN structure, trained on different trajectory and data types, where an increase
in accuracy can be observed with more processed frames for all models. Additionally, in nearly all cases accuracy is better when mixed data are used
instead of only real data. Errors in (a) and (b) are defined as mses between the actual and predicted robot trajectories, while only goal errors are shown
in (d) and (e). In (c), the mean trajectory errors after processing 100% of input video are shown, mean duration errors in regard to percentage of processed
input videos are displayed in (f).

patterns of all surfaces (including those of the robot) were
randomized, along with the locations of the table and the back
wall as well as camera and light source poses. In addition,
brightness, contrast, and saturation were randomly adjusted
and Gaussian noise was added to the acquired frames.

2) Real Data: The real environment closely resembled the
simulated setting. The acquisition of real data was carried out
by performing a portion (7 198) of the generated simulation
trajectories with a real giver robot and recording its movements
with an Intel RealSense D435 depth camera. The Robot Oper-
ating System (ROS) was used to synchronize robot commands
and the camera recording program by sending the appropriate
start and stop signals through a ROS topic. We applied small
random rotations to the captured RGB-D images to account
for possible small changes of the camera view directions.
Just like in simulation, brightness, contrast, and saturation
were randomly adjusted and Gaussian noise was added to the
acquired frames. However, the standard deviation of changes
and noise was smaller in this case.

B. Datasets

All RGB-D frames (simulated and real) were resized to
160×120 pixels and the video streams were sampled at 5 Hz.
Values of input videos and output DMP parameters were
normalized to be in the range from 0 to 1. The datasets used
in the experiments were as follows.

1) SimVTTrain: This set consists of 31 195 simulated
video-trajectory pairs and was used for network training.

2) RealVTTrain: This set consists of 5879 video-trajectory
pairs, obtained with a real robot, and was also used for
training.

3) RealVTVal: For validation of the training performance,
we used 654 video-trajectory pairs, obtained with a real
robot and with the same processing as the RealVTTrain.

4) RealVTTest: For evaluation of the final neural network
models, we used 665 video-trajectory pairs, obtained
with a real robot and with no additional randomization.

All videos were sampled at 5 Hz. The frame rate of 5 Hz is
sufficient for accurate motion prediction because we only need
to recover specific robot receiver or giver motions for which
the networks were trained, not any arbitrary motion.

C. Performance of RIMEDNet in Different Scenarios

The RIMEDNet architecture with the custom CNN structure
was trained using different scenarios from Table I. The datasets
described in Section IV-B were employed for this purpose.
The resulting training, validation, and test errors are shown in
Table II, where the mse between ground-truth and predicted
normalized DMP parameters from (17) are depicted. The
training and test errors for each network are relatively similar,
with the training errors being lower by a factor of 1.31–2.42.
This indicates negligible overfitting of the networks to training
data, which is due to the fact that the analysis of the validation
dataset results stopped the training process before significant
overfitting could occur.

The trained networks were evaluated using the RealVTTest
dataset, which was excluded from the training and validation
process. The test videos were passed through the models in
order to obtain trajectory predictions for each frame, as shown
in Fig. 1. The prediction accuracy of the obtained trajectories
was analyzed in Cartesian space, both in terms of the spatial
course of motion and the duration of the trajectories.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE II

RIMEDNET TRAINING/VALIDATION/TEST DMP ERRORS

Fig. 6. Mean goal pose errors after processing 40%/70%/100% of the
motion video. The position and orientation errors are decreasing as more of
the motion video is processed, reaching as low as 2.16 cm and 2.86◦ .

The comparison of trajectory test errors for RIMEDNet
architectures is shown in Fig. 5. The position, orientation, and
duration prediction errors for each model are represented in
relation to the percentage of the motion video that has been
processed by the network, starting at 30%, where the errors
are shown for the entire trajectories as well as for only the
goal poses. The mean trajectory errors after processing the
entire input video are also compared, while the average goal
pose errors after processing 40%, 70%, and 100% of motion
video are shown in Fig. 6.

The results show gradual decrease of the prediction errors
when more frames of the recorded motion are processed.
The models trained on both synthetic and real data exhibit
higher prediction accuracy than when trained only on real
data. Models trained in simulation and real - giver Cartesian
(SR-GC), simulation and real - giver joint (SR-GJ), simulation
and real - receiver Cartesian (SR-RC), and real - receiver
Cartesian (R-RC) scenarios all performed comparably well.

Fig. 7. Box-and-whiskers plot of position and orientation errors for the
SR-GC model. The black middle lines are the medians. The boxes show
the range of data between the first quartile Q1 (25%) and the third quartile
Q3 (75%). The whiskers extend from the fifth to the 95th percentile.

While the models computed in the SR-RC and R-RC scenarios
achieved especially low mean position trajectory errors toward
the end of motion, their goal pose errors were similar or higher.
The low average trajectory errors arising in the SR-RC and
R-RC scenarios are probably due to the fact that the receiver
motions all begin from the same starting position and are
thus less variable, whereas the giver trajectories can start from
different initial positions. The higher errors of the predicted
joint trajectories, on the other hand, probably arise from the
conversion of joint space trajectories into Cartesian space,
which may increase the scale of error due to the nonlinear
mapping. The trajectory duration error for all models is below
0.2 s after approximately 50% of motion.

A detailed box-and-whiskers graph of goal and trajectory
errors for SR-GC scenario is displayed in Fig. 7, showing that
the median errors decrease with the number of frames. The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAVSAR et al.: SIMULATION-AIDED HANDOVER PREDICTION FROM VIDEO 9

Fig. 8. Examples of trajectory predictions for the motion of the giver. Each group of four rows belongs to the same motion example, where rows 2 and 3
display position predictions as paths in 3-D space and orientation predictions as quaternion values through time (obtained using the SR-GC scenario).
Row 4 shows the motion trajectory of the receiver robot, generated by switching between the predicted receiver trajectories as described in Section II-C. Here
the dashed lines show the ground truth receiver trajectories, while the actual robot receiver joint trajectories are shown with thick lines.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 9. Mean trajectory position and orientation errors for RIMEDNet
variants with custom-designed convolutional layers (Custom-RIMEDNet),
convolutional layers from GoogLeNet (GoogLe-RIMEDNet), convolutional
layers from ResNet-34 (ResNet-RIMEDNet), and convolutional layers from
AlexNet (Alex-RIMEDNet). The modified RNN architecture from [14]
(Mod-RCNN) was also evaluated. Finally, the performance of RIMEDNet
with custom-designed convolutional layers trained on simulation data only
(Sim-RIMEDNet) is shown.

goal errors reach 2.11 cm and 2.35◦ after processing an entire
motion video. Fig. 8 similarly demonstrates the improvement
of accuracy as more frames are processed and also shows
examples of giver trajectory predictions and the associated
robot receiver trajectories generated by the approach described
in Section II-C.

The accuracy of the generated robot trajectories, especially
in the SR-GC and SR-RC scenarios, is acceptable for object
handover in many real environments, particularly when using
compliant robots, where the error of a few centimeters does
not prevent a successful handover.

D. Comparative Study of Variants of RIMEDNet

To the best of our knowledge, there exists no previ-
ous recurrent deep neural network for direct prediction of
DMP-encoded trajectories from RGB-D videos. However, the
RNN architecture from [14] similarly uses RGB-D videos
to classify the observed human actions. We modified this

network by adapting the output layer to allow for DMP
parameter prediction and enable comparison to our proposed
model. In addition to this network and the network with
custom-designed CNN layers shown in Fig. 3, we also tested
the variants of RIMEDNet where the convolutional layers were
provided by pretrained state-of-the-art CNN architectures:
ResNet-34 [46], GoogLeNet [47] and AlexNet [3]. The aim
was to identify the best convolutional layers for RIMEDNet.
In addition, we also evaluated the RIMEDNet with custom
CNN layers trained with synthetic data only.

Since the network in [14] has an input size of 227×227 and
common state-of-the-art CNN networks usually have an input
size of above 224×224, we set the input size of all compared
architectures to 227×227. The frames of RGB-D videos were
appropriately transformed to match the input size. Layers of
our custom CNN structure from Fig. 3 were slightly modified
to preserve the roughly same number of parameters, i.e., the
kernel sizes of the three convolution layers were changed
to 6–4, while the stride of the first max pooling layer was
changed to 3. An additional 1894 training video-trajectory
sample pairs, randomized in the same way as RealVTTrain
dataset, were obtained using a real robot to improve the accu-
racy for use in a real handover experiment (see Section IV-E).
All networks were trained using the SR-GC scenario due to
the high accuracy shown in Section IV-C, i.e., using both real
and synthetic data and predicting giver Cartesian trajectories.
For the network trained with simulated data only, we used the
SimVTTrain dataset. All the networks were validated using
the RealVTVal dataset and tested on the RealVTTest dataset.
The batch size was reduced to 10 due to the larger resolution
of input images.

The comparison of mean trajectory position and orientation
errors in relation to the percentage of processed motion video
is shown in Fig. 9. RIMEDNet with AlexNet convolutional
layers has shown the highest pose prediction accuracy, with
mean position and orientation errors reaching 1.33 cm and
1.72◦ at the end of motion, respectively. The RIMEDNet
architecture with custom CNN layers performed better than
RIMEDNet with GoogLeNet and ResNet-34 convolutional
layers, especially when predicting position trajectories. The
modified network from [14] also performed well, but not as
well as RIMEDNet with convolutional layers from AlexNet.
The RIMEDNet with custom convolutional layers trained on
synthetic data only performed considerably worse than the
same architecture trained on the mixed simulated and real
data. This shows that adding real data to simulated data greatly
improves the overall accuracy.

RIMEDNet with convolutional layers from AlexNet has
thus proven to be the best choice and significantly better than
RIMEDNet with convolutional layers taken from ResNet-34
and GoogLeNet. The additional improvement of the accuracy
compared to the results from Section IV-C was presumably
achieved with the increase of image resolution to 227 × 227.

E. Robot-to-Robot Object Handover Experiment

The proposed approach was used to implement the handover
task with two Franka Emika Panda robots (see Fig. 10), where

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAVSAR et al.: SIMULATION-AIDED HANDOVER PREDICTION FROM VIDEO 11

Fig. 10. Application of RIMEDNet to implement the object handover task.
The giver robot (right) passes an object to the receiver robot (left). Trajectory
predictions are computed online and used to control the receiver robot. With
each processed camera frame, a new receiver motion trajectory is generated.

TABLE III

HANDOVER SUCCESS RATE

the best performing RIMEDNet architecture with convolu-
tional layers from AlexNet was used. The designed handover
control system was implemented in ROS. Intel RealSense
camera was used to record the motion of the giver robot, with
the recording starting at the beginning of motion. Frames were
sent in real-time with a rate of 5 Hz to a computer running the
RNN model, while the giver robot was following a trajectory
from the test dataset at 120 Hz. The duration of test trajectories
varied from 1.5 to 5 s, where the average end-effector speed
of the giver robot was 0.32 m/s. The system predicted the
DMP parameters of the giver robot in Cartesian space, i.e., the
SR-GC scenario from Section IV was used. The predicted goal
pose of the giver robot was thus used to generate the receiver
trajectory toward the object using the approach described in
Section II-C. The receiver started its motion 1 s after the giver
and its speed was determined by (11).

A subset of 168 randomly selected test motions from the
RealVTTest dataset were carried out by the giver robot for
two different objects. The pre-handover phase trajectories were
designed to approach the predicted goal pose at the distance of
10 cm. In the object exchange phase, the receiver robot moved
along a straight line toward the goal pose and attempted to
grasp the object.

Table III shows the success rate of the handover process
for both objects. Two examples showing one successful and
one unsuccessful object handover for Object 1 are shown in
Fig. 11. The handover success rate was 74.4% for the narrower
Object 1 (D = 2.5 cm) and 66.3% for the wider Object 2
(D = 3 cm). The main reason for the unsuccessful handovers
becomes evident if we analyze the accuracy of the applied
RIMEDNet with convolutional layers from AlexNet (1.35 cm
with standard deviation of 0.73 cm for position and 2.59◦

Fig. 11. Example of a successful and an unsuccessful attempt of a robot-
to-robot object handover, implemented using RIMEDNet with convolutional
layers from AlexNet. The images were taken before the final approach of
the receiver robot to grasp the object. The left example shows an accurate
prediction of the goal pose, while the grasp attempt on the right image would
fail after the approach of the receiver.

with standard deviation of 1.87◦ for orientation), the distance
between the fingers of the fully opened gripper (6.8 cm), and
the width of the two objects (2.5 and 3 cm). Thus there is only
a small clearance between the object and the gripper fingers,
which can be exceeded when the error reaches its mean plus
standard deviation. A more reliable object handover could be
achieved by utilizing a gripper with wider distance between the
fingers or by applying a visual servoing system to fine-tune the
final position of the receiver motion. This is similar to human-
to-robot object handover, where the human can appropriately
adapt the object pose so that the robot can successfully grasp
it. In all cases, the proposed system is effective at generating
the pre-handover phase motion for the receiver robot.

V. CONCLUSION

In this article, we propose a new approach for motion
prediction and generation from RBG-D videos in the context
of robot-to-robot object handover tasks. At the core of the
approach is the new RNN architecture RIMEDNet, which
has been designed for motion prediction from incomplete
videos. It consists of stacked convolutional, LSTM, and fully
connected layers. RIMEDNet can start making predictions
based on the partially observed motion of the giver agent
and can process variable-length RGB-D videos. To exploit
RIMEDNet’s predictions for the generation of robot receiver
trajectories, we designed an appropriate motion generation
system based on third-order DMPs and quintic polynomials.
This system enables smooth switching (up to the second-order
derivatives) between the predicted trajectories. Additionally,
we have shown that the amount of real-world training exam-
ples can be significantly reduced by supplementing the training
data with synthetic data, which are usually much easier to
gather. The developed system allows for the implementation
of an efficient and dynamic object handover procedure, where
the receiver robot can start moving toward the object handover
location before the giver robot completes its motion.

We plan to extend our approach to a human-to-robot
handover task, where the ground-truth data can be obtained

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

using motion trackers. One of the challenges that remain for
future research is the generalization power of the proposed
network; ideally, the network should generalize to entirely new
environments that were not included in the training dataset,
especially in the real world. One option is to record the
sample videos in front of a green screen and digitally change
the background with real images to obtain environments as
diverse as possible. This way we can avoid performing too
many movements with a real robot while still gathering a
large amount of examples based on real robot motion and real
images. Another promising method is the domain adaptation
approach, where the network can utilize the target domain
data without ground truth data, making it easier to transfer
knowledge from one domain to another. This approach is
especially suitable for the case of human-to-robot handover,
where gathering ground-truth data is difficult.

Another possible extension is to include a general-purpose
pose tracker network for motion estimation from RGB-D
videos. Such a network can provide a separate estimation of
the current robot or human pose. The results can be used
to improve the accuracy of the predicted trajectories and for
segmentation, i.e., to determine the start and end of the giver
motion. This way all parts of the proposed system could be
fully automated.

REFERENCES

[1] V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–
robot collaboration in industrial settings: Safety, intuitive interfaces and
applications,” Mechatronics, vol. 55, pp. 248–266, Nov. 2018.

[2] V. Ortenzi, A. Cosgun, T. Pardi, W. P. Chan, E. Croft, and D. Kulić,
“Object handovers: A review for robotics,” IEEE Trans. Robot., vol. 37,
no. 6, pp. 1855–1873, Dec. 2021.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[4] D. Zissis, E. K. Xidias, and D. Lekkas, “A cloud based architecture
capable of perceiving and predicting multiple vessel behaviour,” Appl.
Soft Comput., vol. 35, pp. 652–661, Oct. 2015.

[5] N. Sengupta, M. Sahidullah, and G. Saha, “Lung sound classification
using cepstral-based statistical features,” Comput. Biol. Med., vol. 75,
pp. 118–129, Aug. 2016.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[7] K. Greff, R. K. Srivastava, J. Koutnìk, B. R. Steunebrink, and
J. Schmidhuber, “LSTM: A search space Odyssey,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 28, no. 10, pp. 2222–2232, Oct. 2017.

[8] D. Kalashnikov et al., “Scalable deep reinforcement learning for vision-
based robotic manipulation,” in Proc. Conf. Robot Learn. (CoRL), 2018,
pp. 651–673.

[9] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), Sep. 2017, pp. 23–30.

[10] S. James et al., “Sim-to-real via sim-to-sim: Data-efficient robotic
grasping via randomized-to-canonical adaptation networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 12627–12637.

[11] K. Fragkiadaki, S. Levine, P. Felsen, and J. Malik, “Recurrent network
models for human dynamics,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 4346–4354.

[12] J. Zhang, H. Liu, Q. Chang, L. Wang, and R. X. Gao, “Recurrent neural
network for motion trajectory prediction in human–robot collaborative
assembly,” CIRP Ann., vol. 69, no. 1, pp. 9–12, 2020.

[13] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena, “Structural-RNN:
Deep learning on spatio-temporal graphs,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 5308–5317.

[14] R. Wang, S. M. Pizer, and J.-M. Frahm, “Recurrent neural network
for (un-)supervised learning of monocular video visual odometry and
depth,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2019, pp. 5555–5564.

[15] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: Learning attractor models for motor
behaviors,” Neural Comput., vol. 25, no. 2, pp. 328–373, Feb. 2013.

[16] D. Widmann and Y. Karayiannidis, “Human motion prediction in
human–robot handovers based on dynamic movement primitives,” in
Proc. Eur. Control Conf. (ECC), Jun. 2018, pp. 2781–2787.

[17] H. Ben Amor, G. Neumann, S. Kamthe, O. Kroemer, and J. Peters,
“Interaction primitives for human–robot cooperation tasks,” in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2014, pp. 2831–2837.

[18] S. Bahl, M. Mukadam, A. Gupta, and D. Pathak, “Neural dynamic
policies for end-to-end sensorimotor learning,” in Proc. Adv. Neural Inf.
Process. Syst., 2020, pp. 5058–5069.

[19] G. J. Maeda, G. Neumann, M. Ewerton, R. Lioutikov, O. Kroemer,
and J. Peters, “Probabilistic movement primitives for coordination of
multiple human–robot collaborative tasks,” Auto. Robots, vol. 41, no. 3,
pp. 593–612, Mar. 2017.

[20] K. Yamane, Y. Yamaguchi, and Y. Nakamura, “Human motion database
with a binary tree and node transition graphs,” Auto. Robots, vol. 30,
no. 1, pp. 87–98, Jan. 2011.

[21] K. Yamane, M. Revfi, and T. Asfour, “Synthesizing object receiv-
ing motions of humanoid robots with human motion database,” in
Proc. IEEE Int. Conf. Robot. Autom., Karlsruhe, Germany, May 2013,
pp. 1621–1628.

[22] Z.-Q. Zhao, P. Zheng, S.-T. Xu, and X. Wu, “Object detection with deep
learning: A review,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30,
no. 11, pp. 3212–3232, Nov. 2019.

[23] J.-Y. Park and J.-H. Kim, “Online incremental classification reso-
nance network and its application to human–robot interaction,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 31, no. 5, pp. 1426–1436,
May 2020.

[24] A. Pervez, Y. Mao, and D. Lee, “Learning deep movement primitives
using convolutional neural networks,” in Proc. IEEE-RAS 17th Int. Conf.
Hum. Robot. (Humanoids), Nov. 2017, pp. 191–197.

[25] M. Theofanidis, A. Bozcuoglu, and M. Kyrarini, “Learning visuomotor
policies with deep movement primitives,” in Proc. 14th Pervasive
Technol. Rel. Assistive Environ. Conf., Jun. 2021, pp. 140–146.

[26] M. Sileo, M. Nigro, D. D. Bloisi, and F. Pierri, “Vision based robot-
to-robot object handover,” in Proc. 20th Int. Conf. Adv. Robot. (ICAR),
Dec. 2021, pp. 664–669.

[27] R. Pahič, A. Gams, A. Ude, and J. Morimoto, “Deep encoder-decoder
networks for mapping raw images to dynamic movement primitives,” in
Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2018, pp. 5863–5868.

[28] R. Pahič, B. Ridge, A. Gams, J. Morimoto, and A. Ude, “Training
of deep neural networks for the generation of dynamic movement
primitives,” Neural Netw., vol. 127, pp. 121–131, Jul. 2020.

[29] B. Singh, T. K. Marks, M. Jones, O. Tuzel, and M. Shao, “A multi-
stream bi-directional recurrent neural network for fine-grained action
detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 1961–1970.

[30] C. Finn and S. Levine, “Deep visual foresight for planning robot
motion,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), May 2017,
pp. 2786–2793.

[31] S. Das, S. M. Welch, and D. Flippo, “Recurrent neural network based
multi-robot route planning for steep-land harvesting systems,” in Proc.
8th Int. Congr. Adv. Appl. Informat. (IIAI-AAI), Jul. 2019, pp. 542–545.

[32] P. Schydlo, M. Rakovic, L. Jamone, and J. Santos-Victor, “Anticipation
in human–robot cooperation: A recurrent neural network approach for
multiple action sequences prediction,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), May 2018, pp. 5909–5914.

[33] F. Formica, S. Vaghi, N. Lucci, and A. M. Zanchettin, “Neural networks
based human intent prediction for collaborative robotics applications,”
in Proc. 20th Int. Conf. Adv. Robot. (ICAR), Dec. 2021, pp. 1018–1023.

[34] J. Martinez, M. J. Black, and J. Romero, “On human motion prediction
using recurrent neural networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 4674–4683.

[35] O. Nachum, M. Ahn, H. Ponte, S. S. Gu, and V. Kumar, “Multi-agent
manipulation via locomotion using hierarchical sim2real,” in Proc. Conf.
Robot Learn. (CoRL), 2020, pp. 110–121.

[36] J. Tobin et al., “Domain randomization and generative models for robotic
grasping,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2018, pp. 3482–3489.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MAVSAR et al.: SIMULATION-AIDED HANDOVER PREDICTION FROM VIDEO 13

[37] J. Tremblay et al., “Training deep networks with synthetic data: Bridg-
ing the reality gap by domain randomization,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2018,
pp. 969–977.

[38] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull, “Active
domain randomization,” in Proc. Conf. Robot Learn. (CoRL), 2020,
pp. 1162–1176.

[39] K. Bousmalis et al., “Using simulation and domain adaptation to
improve efficiency of deep robotic grasping,” in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2018, pp. 4243–4250.

[40] K. Rao, C. Harris, A. Irpan, S. Levine, J. Ibarz, and M. Khansari, “RL-
CycleGAN: Reinforcement learning aware simulation-to-real,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 11157–11166.

[41] Z. Lončarević, R. Pahič, A. Ude, and A. Gams, “Generalization-based
acquisition of training data for motor primitive learning by neural
networks,” Appl. Sci., vol. 11, no. 3, p. 1013, Jan. 2021.

[42] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: Automatic real-
time goal adaptation and obstacle avoidance,” in Proc. IEEE Int. Conf.
Robot. Autom., May 2009, pp. 2587–2592.

[43] B. Nemec and A. Ude, “Action sequencing using dynamic movement
primitives,” Robotica, vol. 30, no. 5, pp. 837–846, Sep. 2012.

[44] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control. New York, NY, USA: Wiley, 2006.

[45] S. Hochreiter, “The vanishing gradient problem during learning recur-
rent neural nets and problem solutions,” Int. J. Uncertainty, Fuzziness
Knowl.-Based Syst., vol. 6, no. 2, pp. 107–116, 1998.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[47] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015, pp. 1–9.

[48] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Adv. Neural Inf. Process. Syst., vol. 32, 2019,
pp. 8024–8035.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Represent., 2015, pp. 1–15.

[50] L. N. Smith, “Cyclical learning rates for training neural networks,”
in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV), Mar. 2017,
pp. 464–472.

[51] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A versatile and
scalable robot simulation framework,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), Tokyo, Japan, Nov. 2013, pp. 1321–1326.

[52] S. James, M. Freese, and A. J. Davison, “PyRep: Bringing V-REP to
deep robot learning,” 2019, arXiv:1906.11176.

Matija Mavsar received the M.Sc. degree in
electrical engineering from the Faculty of Electri-
cal Engineering, University of Ljubljana, Ljubljana,
Slovenia, in 2018, where he is currently pursuing the
Ph.D. degree.

He is employed at the Department of Automatics,
Biocybernetics, and Robotics, Jožef Stefan Institute,
Ljubljana, Slovenia. His research focuses mainly on
the use of deep learning and motion prediction in
robotics.

Barry Ridge received the B.Sc. degree in com-
puter applications from Dublin City University,
Dublin, Ireland, in 2002, the M.Phil. degree in pure
mathematics from the University of St Andrews,
St Andrews, Scotland, in 2006, and the Ph.D. degree
from the University of Ljubljana, Ljubljana, Slove-
nia, in 2014, with a focus on robotic learning of
object affordances.

He is currently a Robotics Technologist with the
NASA Jet Propulsion Laboratory (JPL), California
Institute of Technology, Pasadena, CA, USA. He has

previously held post-doctoral positions at the Advanced Telecommunications
Research Institute International, Kyoto, Japan, and the Jožef Stefan Institute,
Ljubljana, Slovenia. Since joining JPL in 2020, he has been working on
robot vision and simulation capabilities for a variety of missions, including
Mars Sample Return, the DARPA Subterranean Challenge, Europa Lander,
and others. His research interests include cognitive robotics, computer vision,
and machine learning.

Dr. Ridge was awarded the Marie Curie Fellowship.

Rok Pahič received the M.Sc. degree in mechan-
ical engineering from the University of Maribor,
Maribor, Slovenia, in 2016, and the Ph.D. degree
from the Jožef Stefan International Postgraduate
School, Ljubljana, Slovenia, in 2021.

His research focuses mainly on modularization of
robotic software and deep learning in robotics.

Jun Morimoto (Member, IEEE) received the Ph.D.
degree in information science from the Nara Institute
of Science and Technology, Nara, Japan, in 2001.

From 2001 to 2002, he was a Post-Doctoral Fel-
low with The Robotics Institute, Carnegie Mellon
University, Pittsburgh, PA, USA. He joined the
Advanced Telecommunications Research Institute
International (ATR), Kyoto, Japan, in 2002. He was
also a Researcher and a Group Leader of Japan
Science and Technology Agency - The International
Cooperative Research Project (JST-ICORP) Com-

putational Brain Project from 2004 to 2009. He is currently a Professor
with the Graduate School of Informatics, Kyoto University, Kyoto. He is
also the Head of the Department of Brain Robot Interface (BRI), ATR
Computational Neuroscience Laboratories, and a Senior Visiting Scientist
of the Man-Machine Collaboration Research Team, Guardian Robot Project,
RIKEN, Kyoto.

Aleš Ude (Member, IEEE) received the Diploma
degree in applied mathematics from the University
of Ljubljana, Ljubljana, Slovenia, in 1990, and the
Dr.Eng. degree in sciences from the University of
Karlsruhe, Karlsruhe, Germany, in 1995.

He is currently the Head of the Department of
Automatics, Biocybernetics, and Robotics, Jožef
Stefan Institute, Ljubljana. He is also a Visiting
Researcher with the ATR Computational Neuro-
science Laboratory, Kyoto, Japan. He has been a
coordinator and/or a principal investigator of numer-

ous national and international projects in these areas. His research interests
include robot learning, imitation learning, reconfigurable robotic systems, and
humanoid robotics.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

