This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Accelerating Neural ODEs Using
Model Order Reduction

Mikko Lehtimaki

Abstract— Embedding nonlinear dynamical systems into arti-
ficial neural networks is a powerful new formalism for
machine learning. By parameterizing ordinary differential equa-
tions (ODEs) as neural network layers, these Neural ODEs
are memory-efficient to train, process time series naturally,
and incorporate knowledge of physical systems into deep learn-
ing (DL) models. However, the practical applications of Neural
ODEs are limited due to long inference times because the
outputs of the embedded ODE layers are computed numerically
with differential equation solvers that can be computationally
demanding. Here, we show that mathematical model order
reduction (MOR) methods can be used for compressing and accel-
erating Neural ODEs by accurately simulating the continuous
nonlinear dynamics in low-dimensional subspaces. We implement
our novel compression method by developing Neural ODEs that
integrate the necessary subspace-projection and interpolation
operations as layers of the neural network. We validate our
approach by comparing it to neuron pruning and singular value
decomposition (SVD)-based weight truncation methods from
the literature in image and time-series classification tasks. The
methods are evaluated by acceleration versus accuracy when
adjusting the level of compression. On this spectrum, we achieve
a favorable balance over existing methods by using MOR when
compressing a convolutional Neural ODE. In compressing a
recurrent Neural ODE, SVD-based weight truncation yields good
performance. Based on our results, our integration of MOR with
Neural ODEs can facilitate efficient, dynamical system-driven DL
in resource-constrained applications.

Index Terms— Acceleration, compression, discrete empirical
interpolation method (DEIM), neural ordinary differential equa-
tions (Neural ODEs), proper orthogonal decomposition (POD),
reduced order model (ROM).

I. INTRODUCTION

EEP learning (DL) is reaching and surpassing human
performance in domain-specific applications [1]. Accord-
ingly, there is increased demand for including DL-based

Manuscript received May 28, 2021; revised February 23, 2022; accepted
May 5, 2022. The work of Mikko Lehtiméki was supported in part by the
Tampere University Graduate School and in part by the Finnish Foundation
for Technology Promotion. The work of Lassi Paunonen was supported by
the Academy of Finland under Grant 310489. The work of Marja-Leena
Linne was supported by the Academy of Finland under Grant 297893. This
work was supported by the European Union’s Horizon 2020 Framework
Program for Research and Innovation under the Specific Grant 785907
(Human Brain Project SGA2) and Grant 945539 (Human Brain Project
SGA3). (Corresponding author: Mikko Lehtimdiki.)

Mikko Lehtiméki and Marja-Leena Linne are with the Faculty of Medicine
and Health Technology, Tampere University, 33100 Tampere, Finland (e-mail:
mikko.lehtimaki @tuni.fi).

Lassi Paunonen is with the Faculty of Information Technology and Com-
munication Sciences, Tampere University, 33100 Tampere, Finland.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3175757.

Digital Object Identifier 10.1109/TNNLS.2022.3175757

, Lassi Paunonen™, Senior Member, IEEE, and Marja-Leena Linne™, Member, IEEE

algorithms into consumer devices that may contain only
limited computational capacity and may be battery-powered,
making resource efficiency of DL-based algorithms impor-
tant. An interesting new development in DL research is
artificial neural networks (ANNs) that employ dynami-
cal systems, replacing traditional discrete layers with a
continuous-time layer in the form of ordinary differential
equations (ODEs) [2]-[5]. In these Neural ODEs, the con-
tinuous formalism allows flexible processing of time-series
and irregularly sampled data, such as medical and physio-
logical signals [6]. Moreover, Neural ODEs are useful for
resource-constrained and embedded applications because they
are very memory and parameter efficient [S]. The ODE
layer also facilitates engineering physical details, such as
energy conservation laws or spectral properties, into neural
networks [4]. However, often, a big computational bottleneck
in Neural ODE:s is the dynamical system layer since propagat-
ing data through the system requires many evaluations using
numerical ODE solvers. Reducing the computational cost of
the ODE layer is the main motivation of our work.

In this work, we show that Neural ODEs can be accelerated
by compressing them using model order reduction (MOR)
methods. The MOR approach is based on projecting dynamical
systems onto low-dimensional subspaces. Here, we develop
MOR methods that are integrated into Neural ODEs. In this
manner, we lower the required storage size, memory consump-
tion, multiply—adds, and nonlinear activation count needed to
compute predictions from input data. The resulting compressed
Neural ODEs can be deployed for real-time computing and
devices where energy efficiency is paramount. In order to
validate the performance of our MOR method, we compare
it to two established compression methods from the liter-
ature. Our results demonstrate that MOR is a theoretically
grounded and effective method for accelerating Neural ODEs
because it achieves a favorable, adjustable and extensible
balance between speedup and accuracy of compressed models.
We show this result in two different classification tasks that
use different Neural ODE architectures: a convolutional and a
recurrent neural network (RNN).

Compressing ANNs is one of the principal ways of con-
verting high-performing trained networks into more efficient
networks since good accuracy can often be recovered without
long training times, while the size of the compressed network
can be chosen in a flexible manner. Several neural network
compression methods have been proposed for accelerating
ANNSs [7]-[9]. These include singular value decomposition
(SVD)-based weight truncation [10], [11] and neuron pruning

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6497-4718
https://orcid.org/0000-0003-2577-7329
https://orcid.org/0000-0002-0396-3254

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

with an importance score based on zero activations [9], which
we implement for comparison to our MOR method. Many
prominent existing approaches rely on assigning importance
scores to neurons based on their connection weights or output
values. However, we argue that such methods are nonoptimal
for compressing Neural ODEs, as it is difficult to quantify
the importance of neurons in the ODE layer based on criteria
such as the output of the layer alone. This is because the
final state of the nonlinear ODE system gives no information
about the dynamics of the actual computations. In contrast,
MOR methods are designed precisely for the approximation of
state trajectories and input—output relationships in dynamical
systems, and hence, they can overcome the shortcomings
of existing compression methods when aiming to accelerate
Neural ODE:s.

Our approach to model acceleration is inspired by com-
putational neuroscience. Due to high computational burden,
modeling studies of the brain in realistic scales are limited
to simulating small fractions of the brain using supercom-
puters [12]. To overcome computational resource challenges,
MOR methods have been adapted successfully for reducing
single neuron [13], [14], synapse [15], and neuronal popula-
tion [16], [17] models. Moreover, the similarities in models of
the brain as well as ANNs, which include connectivity patterns
and nonlinear computation units, make us hypothesize that
MOR methods may be a principled approach for accelerating
Neural ODE:s.

Our MOR approach for compressing Neural ODE:s is based
on the proper orthogonal decomposition (POD) [18] with the
discrete empirical interpolation method (DEIM) [19], a vari-
ant of the empirical interpolation method [20]. Using the
POD-DEIM method, we derive reduced order models (ROMs)
that can be simulated efficiently in low-dimensional subspaces,
even in the presence of nonlinear activation functions. In the
context of Neural ODEs, our method compresses the ODE
block by projecting it onto a low-dimensional subspace using
POD, which reduces the number of state variables in the ODE
system. Linear operations are compressed by transformation
into this subspace. When nonlinear activation functions are
present, using DEIM, we determine the most informative
output neurons based on their time dynamics and prune
the other neurons. This reduces the dimensionality of the
nonlinear operation and removes rows from the weight matrix
since connection weights of pruned neurons are discarded.
We interpolate an approximate response for the pruned neurons
directly in the low-dimensional subspace. In convolutional
layers, the reduced model computes convolutions only at the
selected interpolation points so that every kernel has its own
set of evaluation coordinates.

We integrate the subspace-projection and interpolation steps
of POD-DEIM into the Neural ODEs as layers, and this
introduces additional operations into the neural network (see
Fig. 2). In some network architectures, these steps actually
further reduce the overall number of multiply—adds in the
neural network. The POD-DEIM reduction is applied after
training the model and the reduced model can be fine-tuned
for increased accuracy. In summary, Neural ODEs allow us
to bridge a gap between ANN research and control theory

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

research so that a substantial amount of previously unem-
ployed knowledge in model reduction can be utilized in
ANN compression and acceleration. For example, analyti-
cal optimality results and error bounds exist for our MOR
algorithms [18], [21].

In Section II, we review previous work in compressing
and accelerating neural networks in general and Neural ODEs
specifically. In Section III, we present our proposed MOR
approach and show how to formulate it in the context of
continuous neural networks and introduce two established
acceleration methods that we compare our method to in
benchmark problems. In Section IV, we provide theoretical
compression ratios for the chosen methods and show actual
accuracy and wall-time metrics of compressed Neural ODEs in
two different classification tasks: one using a convolutional and
the other using a recurrent ODE architecture. We discuss the
success of the model reduction approach and the significance
of our work in Section V with future suggestions and conclude
in Section VI.

II. RELATED WORK

Several studies have reported that ANNs contain structures
and redundancies that can be exploited for reducing memory
and power usage [7]. Here, we focus on structural acceleration
approaches that modify trained networks to achieve a more
efficient architecture and leave efforts, such as low precision
algebra, quantization of weights [22], binarization [23], hash-
ing [24], vectorization [25], frequency space evaluation [26],
and adjusting ODE solver tolerances or step size [S] out of the
present study, since those are complementary to the approaches
presented here. Moreover, several hardware accelerators have
been proposed (e.g., [27]), and those will not be addressed
here. Furthermore, computational bottlenecks in ANNs have
also been addressed by first reducing data dimension and
then training simpler models. These techniques range from
feature engineering to data dimensionality reduction. However,
in this work, our focus is on compressing trained networks,
and hence, data compression is considered complementary to
our approach. Structural compression methods can be further
grouped into several categories.

a) Pruning weights: Prior work has addressed weight
pruning [28], [29] and enforcing weight sparsity [30], [31]
during training to obtain weight matrices that require less
storage space and memory than dense weight matrices. Several
methods to evaluate weight importance have been proposed,
see, for example, a recent review addressing 81 pruning
studies [7] and compares the achieved compression rates and
speedups for several ANN models. It is common to include
pruning in the training loop because altering weights after
training leads to accuracy loss. In order to achieve significant
acceleration with weight-pruning methods, the use of spe-
cial software, masking strategies, sparse algebra, or hardware
accelerators is recommended [32], [33].

b) Decomposition: Decompositions and low-rank matrix
factorizations have been used for compressing network
weights so that linear operations in a layer are computed
efficiently [10], [11], [34]-[36]. Decomposition is based on
the observation that weight matrices, especially as their size

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEHTIMAKI ef al.: ACCELERATING NEURAL ODEs USING MODEL ORDER REDUCTION 3

increases, are seldom full rank. The idea is that a fully con-
nected weight matrix or a tensorized convolutional kernel can
be decomposed into compact low-rank matrices that require
less storage space, memory, and multiply—adds during training
and testing. An approximation of the original operation is
then obtained as a product of the low-rank tensors. In addi-
tion to compressing linear operations, prior work has also
addressed decomposition by taking the nonlinear response into
account [37]. The cost of decomposition approaches is that
a single layer is replaced with multiple smaller ones, which
trades parallelism for forward operations, canceling out some
of the obtained acceleration.

c) Pruning neurons: Weight pruning and decomposition
approaches maintain the structure of the compressed network
in which the number of nonlinear activation functions is not
changed. Eliminating activation functions leads to acceleration
as an entire row of weights from a fully connected layer
can be removed [8], [38]. As neuron pruning changes the
number of neurons in a layer, the next layer must take this
into account, for example, by deleting columns (inputs) from
the weight matrix in the case of fully connected layers. Alter-
natively, interpolation can be used to approximate the orig-
inal response, possibly introducing additional computation.
In fully connected architectures, large compression rates in
storage space and memory are obtained when rows or columns
are deleted from fully connected layers. Importance scores,
such as percent of zero activations, have been developed for
identifying prunable neurons [9]. Pruning and quantization
have been combined with Huffman coding into a compression
framework that delivers memory and energy efficiency [39].
An optimization approach has been used to enforce sparse
columns in a fully connected layer so that the corresponding
input neurons can be pruned [38].

d) Pruning filters: Convolutional neural networks
(CNNs) have attracted a lot of attention in the compression
literature. This is not surprising given their good rate of
success in real-life tasks and their high computational cost.
Convolutional operations make the bulk of modern image
and video processing networks and are used in many other
applications, such as sequence processing. It is possible
to approach CNN compression by analyzing either the
convolutional filters or feature maps obtained by applying the
filters on input data [40]—[42]. The filters can be compressed
with decomposition methods, similar to fully connected
layers. Alternatively, entire kernels can be pruned from
filters. Pruning kernels is very effective as intermediate
feature maps are eliminated. The number of methods and
criteria available for identifying pruning targets in CNNs is
very high [42]. In convolutional networks, neuron pruning
corresponds to skipping a kernel evaluation at a single spatial
location. However, such an operation is rarely supported by
DL frameworks, and pruning in convolutional networks has
focused on eliminating parts of or entire filters or feature
maps.

In the context of Neural ODEs, a few studies have addressed
the acceleration of inference and training times. One approach
focuses on learning simple dynamics that do not burden
ODE solvers as much as stiff systems [43]-[45]. In addition,

.

.Q.A\\
4»;::«.‘,&
//\V//

GD

Plain discrete feedforward network on the left and a residual network

Fig. 1.
on the right. The defining feature of residual networks is that the output from
an earlier layer skips layers and is added directly to a later layer.

training times have been reduced by further improving the
adjoint method, for example, by relaxing error criteria [46],
while inference times have been accelerated by introducing
hypersolvers—neural networks that solve Neural ODEs [47].
These methods are complementary to ours since we aim at
compressing the learned architecture with MOR methods. Our
approach is comparable to pruning neurons based on an impor-
tance score [8], [9] so that a number of rows from the weight
matrix and nonlinear activation functions can be removed
altogether. The POD-DEIM method improves on the existing
methods of determining neuron importance, as it accounts
for the complete dynamics of the ODE block. In addition,
POD-DEIM can be combined with many of the prior methods
such as quantization of weights.

III. METHODS

In this section, we present the theory of the continuous
interpretation of ANNs. We then describe our MOR method
and show how to formulate it in the ANN and Neural ODE
context. Finally, we present two other ANN acceleration
methods from the literature, which we use as benchmarks
to our method, and their implementation in the Neural ODE
setting.

A. Continuous Networks

Since the success of residual neural networks
(ResNets) [48], a continuous interpretation of neural
networks has gained traction. The ResNet architecture utilizes
skip connections to deal with the problem of vanishing
gradients, allowing the training of extremely deep neural
networks. In a ResNet block, the output is the sum of the
usual feedforward operations on the data and the unprocessed
data entering the block. The ResNet architecture is shown
in Fig. 1 (right), with a plain feedforward network on the
left. If the hidden layers of the plain network implement a
nonlinear function x;1; = f(xx), the skip connection of the
ResNet implement x;y; = xx + f(x¢). By introducing a
constant 7 = 1 to obtain x;; = x; + Af (x), the resemblance
of the skip connection to Euler’s formula for solving ODEs is
seen [2]-[4]. This has led to the continuous-time dynamical
system interpretation of ANNS.

In the continuous interpretation of ANNSs, a set of layers is
replaced by one layer that parameterizes a dynamical system
as a group of ODEs with state variable x(z). We assume that
this ODE system has the form

X,(t) = f(x(t)’ u(t),@) (1)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

in general and in our models specifically
x'(t) = f(Ax(t) + b) + Zu(t) (2

where x(¢) € R” is the state of the ODE at time ¢, x’() is the
time derivative of x(z), A € R"*" is a weight matrix, b € R”
is a bias vector, u(t) € R’ is a time-dependent input, Z € R"*
is an input matrix (may include bias), and f : R" > R" is a
vector-valued function f(y) = [fa(x1)s fa(x2)s -5 faCr)1"-
In Neural ODEs, the activation function f,(y;) is commonly
the hyperbolic tangent, although any differentiable activation
function, or a combination of different activation functions,
can be used. Here, 8 = (A, b, Z) are learned parameters of
the ODE. In feedforward Neural ODEs, there are typically
no time-dependent inputs and, hence, Z = 0. On the other
hand, in RNNs where x'(t) is the hidden state, the input
data enter the system through Z # 0. The output of the
layer is x(f.,4), which is the state of the dynamical system
at the user-specified final time ¢,,4. Initial values of the ODE
system can be obtained in two ways, either as the output of the
layer preceding the ODE or set explicitly. The former is more
common in feedforward architectures and the latter in RNNs
that receive time-dependent input data. The output x (z,4) of
the ODE layer is computed using numerical methods, taking
discrete or adaptive steps with an ODE solver to solve an
initial value problem. Neural ODEs can use the adjoint method
of calculating gradients [5] and have enabled parameterizing
ODEs as several different ANN operations or chains of them.
The primary restriction is that the output size of the ODE layer
must match the input size of the layer. Overall, it is possible
to train a variety of ANN architectures for different tasks as
continuous networks [5].

Training Neural ODEs with the adjoint method is memory
efficient compared to deep discrete networks [5], as the
backpropagation algorithm does not need to store intermedi-
ate ODE states to calculate gradients on the loss function.
However, the use of the adjoint method is not required for
training ODE networks. Parameterizing an ODE in place of
several discrete layers may also lead to parameter efficiency
and correspondingly require less storage space and memory
since the continuous layer can replace several individually
parameterized discrete layers. Other benefits of Neural ODEs
include using ODE solvers for speed versus accuracy tun-
ing and enabling ANNSs to flexibly process continuous and
irregularly sampled time-series data [5], [6]. Neural ODEs
have also improved on existing ANN-based density estimation
models [5]. However, the dynamics learned by Neural ODEs
may be unnecessarily complex [44], [45] and result in stiff
systems [49]. Often, the ODE block is the most computa-
tionally demanding part of the network since many numerical
evaluations of the state of the ODE are needed to obtain the
output. Hence, Neural ODEs require more time to evaluate
data, both in training and testing, compared to traditional
discrete networks [44].

It is possible to parameterize the ODE block so that the
model in training has favorable properties that facilitate learn-
ing. Antisymmetric networks are a step toward this direction
since they guarantee that the state x(¢#) of the ODE system
does not diverge far from or decay to the origin as t — oo [4].

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

This prevents the gradient of the loss function from vanishing
or exploding and makes training the network well-posed.
Antisymmetric networks use an antisymmetric weight matrix
A = W — WT that by definition has eigenvalues 1; so that
for all i,Re(4;(A)) = 0. Furthermore, a small shift of the
eigenvalues by y may be applied so that Re(4;(A — y 1)) =
—y < 0, which improves the behavior of the ODE system
in the presence of noisy data [4]. Notice that in practical
applications, ¢ is finite, and hence, a small y value will not
make the gradients of the loss function vanish. In [50], it is
demonstrated that the shifted antisymmetric weight matrix
A —y I gives the hidden state of RNNs a favorable property of
long-term dependence on the inputs to the system, which helps
classifying data with temporal relationships. In this work,
we implement an ODE-RNN as

A=W-—-Wl —yI
3)
x'(t) = tanh(Ax(t) + b) + Zu(t)

where the weight matrix A gives the network the desired
properties that facilitate learning, and during training, the
parameters W are learned. Other parameters are similar to (2).
In Section IV, we will demonstrate the compression and accel-
eration of this ODE-RNN. Such networks make an interesting
model compression target since their architecture gives the
system temporal memory capacity that the compressed model
must retain.

B. Model Order Reduction

A key contribution of our work is the formalization of
MOR in the context of Neural ODEs and the realization that
the necessary MOR operations can be expressed as layers of
ANNs. A powerful method for MOR of general nonlinear
systems is POD [18] coupled with the DEIM [19], [20],
developed in the fields of systems and control theory. In order
to compress Neural ODEs, we construct ROMs of the ODE
block in trained Neural ODEs with the POD-DEIM method.

Both POD and DEIM utilize the method of snapshots [51].
In POD, snapshots are values of the state x; of the ODE system
at discrete times . A snapshot matrix X = [xy, x2, ..., x,] is
collected using numerical simulation of the ODE block with
different initial values and time-dependent input data. ANNs
provide a very natural setting for gathering snapshots since we
have access to training data that can be propagated through the
trained network and the ODE block of Neural ODEs. However,
it is important that the snapshots are collected after the model
is trained so that the snapshots reflect true learned dynamics
of the ODE layer. Moreover, the snapshots are not used for
optimization or model training. The following explains the
purpose of the snapshots.

POD approximates the original system of dimension n via
projection using a low-dimensional subspace. A k-dimensional
POD basis with orthonormal column vectors V, € R,
where k < n, is computed using SVD of snapshots VWP’ =
SVD(X) [51]. Vi is then the first k left singular vectors of the
snapshot matrix, equaling the first k¥ columns of V. A reduced
state vector V/x(r) = X(t) € RF is obtained by a linear

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEHTIMAKI ef al.: ACCELERATING NEURAL ODEs USING MODEL ORDER REDUCTION 5

Algorithm 1 Discrete Empirical Interpolation Method
INPUT: {u;};", C R" linearly independent
OUTPUT: p=[p1,..., pul, P € R™"

1. pi = argmax(|u;|)

22U =[ui], P =lep], p=1[pil

3: for 1 =2 to m do

4. solve (PTU)c = PTy, for ¢

5. p; = argmax(lu;—Ucl)
6

7

U<« [Uuwl,P < [Peyl,p < [ppl
: end for

transformation, and at any time ¢, an approximation of the
original, full-dimensional state vector can be computed with
x(t) = ViX(r). Projecting the system in (2) onto Vi by the
Galerkin projection results in a reduced system

(1) = VI F(AVE(t) + b) + V| Zu(r) “4)

where we can precompute the transformation of the weight
and input matrices into matrices A = AV, and Z = viz
that are used in place of the original weight matrices in the
reduced models. The reduced POD model approximates the
original system optimally in the sense that the POD subspace
has minimum snapshot reconstruction error [18]. However, the
nonlinear form of the equation prevents computational savings
as the number of neurons has not been reduced. The size of A
is still n x k and f(-) is computed in the original dimension 7.
This is known as the lifting bottleneck in reducing nonlinear
models.

Efficient evaluation of the nonlinear term can be achieved
with DEIM [19], [20]. DEIM extends the subspace projection
approach with an interpolation step for general nonlinear
functions. To construct an interpolated approximation of the
nonlinear term, we use

Fee,)~ Un(PLUL) " PLf(x, 1) 5)

where the DEIM basis vectors U,, = [ui,uz,...,un] €
R™™ m < n are the first m left singular vectors of the
snapshot matrix of nonlinear vector-valued function outputs
F = [f(x1,1), f(x2,12), ..., f(xs,)] computed via SVD
as U, Zy¥}), = F, and P! f(x,1) := f,(x,1) is a nonlinear
function with m components chosen from f according to
DEIM determined interpolation points p = pi,..., p,, and
P, = lep,,ep,,...,€p,] with e, being the standard basis
vector i of R". Together POD and DEIM form an ROM

() =V UL(PTUW) " fulA%() +b) + Zu(t) (6)
—_
N

where N € R**™ can be precomputed. Now, in the prediction
phase, only m nonlinear functions are evaluated. Due to the
structure of f,, : R” — R”, we can then further compress
A so that only m rows at indices p remain. Correspondingly,
we only select m elements from the bias vector at indices p.
Thus, we have obtained the ROM

X(1) = Nfw (AnX () + b)) + Zu(t) (7)

Fig. 2. Neural ODE on the left with the discretized differential equation
block in orange color. A POD-DEIM reduced network on the right illustrates
that the ODE block is evaluated in a low-dimensional subspace, with linear
transformations around the ODE block. The networks have equal inputs and
approximately equal outputs.

where A,, € R"* and b,, € R™. In (6), the dimension k
of the POD projection subspace does not need to equal the
number m of the DEIM interpolation points, as N can be
computed even if k # m, although in practice, it is common
to choose m = k. This means that m and k can be chosen
either smaller or larger with respect to each other to reflect
the complexity of linear and nonlinear functions of the model.

Algorithm 1 shows the process of determining the DEIM
interpolation points and matrix P. The ordered linearly inde-
pendent basis vector set given as input is the basis U, that is
obtained from snapshots of the nonlinear function. The argmax
function returns the index of the largest value in a given vector
and e; is the ith standard basis vector. For more details, see the
original reference [19], where an error bound for the DEIM
approximation in the Euclidean space is also given. For an
error estimate of the reduced state in POD-DEIM models
specifically, see [21].

An essential part of our work is building the POD-DEIM
subspace-projection operations VkT and Vj, reduced matrices
A,, and Z, and low-dimensional interpolation N of (7) into
the Neural ODE. Consider a Neural ODE with an input layer,
an ODE block, and a readout layer, as on the left of Fig. 2.
We add two new layers: one for projecting the ODE block
into a low-dimensional subspace and one for transforming
the result of the ODE block back to the original space,
as shown in the right of Fig. 2. These layers implement
the computations Vka(O) and VX (t.nq). The cost of these
operations is offset by the cheaper evaluation of the ODE layer,
which typically makes the bulk of the compute time of Neural
ODEs. In the ODE layer, the reduced matrices A,, and Z
replace the corresponding original large weight matrices and
a new linear layer is added to implement the low-dimensional
interpolation N. Furthermore, if the operations around the
ODE block are linear, VkT and Vj can be computed into those
existing layers, resulting in even cheaper online evaluation.
Finally, we emphasize that this POD-DEIM process is widely
applicable to different model architectures, as long as (1)
defines the ODE block.

The DEIM method is known to exhibit lower accuracy in
the presence of noise or perturbations in the snapshots. The
input function Zu(¢) in ODE-RNNs can cause such nonsmooth
behavior and a large number of timesteps taken are sensitive
to instabilities. Hence, for compressing ODE-RNNs, we use
an oversampling strategy that stabilizes the method as shown

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

in [52]. In this oversampled DEIM (ODEIM), the number
of nonlinear sampling points in p becomes m + o and is
decoupled from the number of basis vectors m of the DEIM
subspace. The matrix P then has size n X (m + o) and the
matrix inverse of (6) is replaced with the Moore—Penrose
pseudoinverse (PTU,,)T. In ODEIM, interpolation becomes
approximation via regression. During model evaluation, m + o
activation functions are evaluated. In our results, we evaluate
m+1 nonlinear activation functions, which compared to vanilla
DEIM has a slightly negative effect on model acceleration but
a positive effect on accuracy of the compressed model.

The POD-DEIM method has adjustable parameters that
affect the performance of the reduced model. The dimension k
of the linear projection matrix and the number of interpolation
points m are typically set according to the decay of the
singular values of the snapshot matrices X and F, but both can
be adjusted independently. The number of snapshots can be
controlled in two ways: the number of samples of training data
to use and the number of snapshots of model dynamics to save
per sample. Computing the SVD of the snapshot matrix is the
most computationally demanding step of the MOR pipeline,
with memory being the typical bottleneck.

C. Benchmark Compression Methods

We compare the performance of the POD-DEIM method
to two other ANN compression methods presented in the
literature. To the best of our knowledge, no other studies using
these methods to compress Neural ODEs have been published
before.

The first method compresses the weight matrix of the ODE
block into two low-rank matrices [10], [11] using SVD-based
truncation. This reduces the overall number of multiply—adds
needed to evaluate the layer but, unlike POD-DEIM, does
not change the number of activation functions. Given a fully
connected layer with activation f(Ax + b) and A € R"™/,
we apply SVD to the weight matrix to obtain @V’ = A.
Then, we only keep the first k < n singular values by trunca-
tion so that X; = diag(oy, ..., 0x) € R¥* and the first k left
and right singular vectors so that ®; = {¢y, ..., ¢} € R"™K
and Wy = {y1, ..., yi} € R, An approximation to A is then
obtained as A = @, Ek‘I—‘kT . In ANNs, we can implement the
approximation in two consequent fully connected layers that
only use activation and bias after the last layer. The connection
weights of the first layer are ;W] € R/ and the second
weights are @, which changes the parameter count from nl
to k(n +1). Notice that in a single-layer ODE block, we have
| = n. This method is theoretically sound for compressing the
ODE block. It retains most parameters out of the compression
methods we test, meaning that it is expected to yield low-
to-moderate acceleration. Since the weight truncation only
uses the learned weights as inputs, the method does not depend
on any other data, unlike POD-DEIM which requires gathering
snapshots of the ODE dynamics.

The second method we used for comparison is based on
computing an importance score for neurons, called average
percent of zeros (APoZ) method, following [9], where it is
suggested to prune neurons that have the largest number of

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

zero activation values over the training or testing dataset. The
corresponding rows of the weight, bias, and input matrices
are then removed altogether. Moreover, with Neural ODEs
specifically, for each removed row of the weight matrix,
we also remove the corresponding column. The importance
score of the cth neuron in a layer is defined as

Y 5 £(0u,) =0) ©
NM

where N is the number of examples used to calculate the score
and M is the dimension of the output feature map O. In Neural
ODEzs, it is common to use hyperbolic tangent activations, and
hence, we adapt the scoring so that neurons with the lowest
absolute activation magnitudes are eliminated. We compute
the score after the last timestep of the ODE block, as this is
the value that gets propagated to the following layers in the
network. We only use training data for computing the score.
This method does not account for the dynamics of the ODE
block, as scoring is computed only at the last timestep of
the ODE block, and hence, we evaluate the performance in
detail here. Overall, this method applies the largest amount of
compression out of the methods we test here.

APoZ, =

IV. RESULTS

We implemented two Neural ODE models and trained them
on different classification tasks: one Neural ODE with a con-
volutional ODE block to classify digits of the MNIST dataset
and one ODE-RNN to classify digits in the pixel-MNIST task,
where the network is given one pixel at a time as input.
We trained both models using data augmentation with random
rotations and affine translations in order to prevent overfitting,
using a decaying learning rate starting from 0.04, stochastic
gradient descent optimizer, and cross-entropy loss function on
image labels. After training, the POD-DEIM snapshots were
collected by feeding each image in the training data to the
network and saving the ODE state and activation function
values at every second timestep. POD and DEIM bases were
computed using a memory-efficient partitioning strategy [53].
Next, we compressed the models using POD-DEIM, APoZ
trimming, and weight truncation and evaluated their per-
formance directly after compression, after three epochs of
fine-tuning and after excessive fine-tuning on training data.
The performance of each compressed model was compared
to the respective original model using Top-1 accuracy, Top-3
accuracy, and wall time as metrics. We restrict fine-tuning
to the layers following the ODE block in order to get a
better view of how well the compressed blocks maintain their
computational capacity. Our results below have been imple-
mented using the PyTorch machine learning framework [54].
To implement Neural ODEs, we additionally used the TorchD-
iffEq [5] and Torchdyn [55] python packages. Execution times
are true wall times realized on Intel Xeon E5-2680 v3 2.5-GHz
processors and measured as the time it takes to classify every
item in the test dataset. For the convolutional network, we use
a single core, and for the recurrent network, we use four
processor cores.

In Table I, we show the number of parameters in a the-
oretical Neural ODE, and then, it has been compressed with

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEHTIMAKI er al.: ACCELERATING NEURAL ODEs USING MODEL ORDER REDUCTION 7
TABLE 1 operator with an equivalent operation implemented as a linear
THEORETICAL LAYER SIZES layer. The conversion yields a sparse Toeplitz matrix. With this
Model ODE ODE ac- Preceding Following operation, 16 convolution channels correspond to 1024 neu-
ngghts tivations _ weights weights rons and activation functions. All reported wall times are
Original model m,on m on obtained with this conversion and compressed models are
POD-DEIM, best case 2k 5 k ki ok compared to these times. The reported wall times are medians

POD-DEIM, worst case 2k k n(i+ k) n(o+ k) . . . S
5) of ten consecutive evaluations of the entire validation dataset.

APoZ, best case k k ki ok h R K achi 1

APOZ, worst case 2 k ki n(o+1) The tral.ned network achieves 97.9% top-1 and 99.7% top-3
SVD o%kn n i on accuracies on held-out test dataset of 10000 MNIST images

n: ODE block dimension, k: compressed ODE dimension, i:
neurons in the layer preceding the ODE block, o: neurons in
the layer following the ODE block.

each compression method. We consider a nonlinear ODE block
of the form x'(r) = f(Ax(¢)) where the weight matrix has
dimensions A € R"", and hence, there are n activation
functions. The ODE block is preceded by a layer with weight
matrix W; € R and followed by a layer with weight matrix
W, € R?*" In Table I, £ denotes the dimension of the
compressed ODE block and n x i and 0 x n are the number
of weights in the layers preceding and following the ODE
block, assuming that those layers exist. With regard to the
model speed, the complexity of the ODE layer is significantly
more important than the sizes of the surrounding layers. This
is because the ODE function is evaluated multiple times,
at least once for each intermediate time point in [f, f,sq]. The
architecture of the original ANN affects the achieved com-
pression. The POD-DEIM and APoZ methods can reduce the
ODE layer to a dimension that is independent of the original
size n, although the interpolation in POD-DEIM requires an
additional k> operations compared to APoZ. Moreover, for
POD-DEIM, the best case is realized when the preceding and
following operations are linear, whereas the APoZ method
reaches the best case even if they are nonlinear. With the APoZ
method, some nonlinear operations, such as max pooling,
require that we maintain a lookup table of pooled indices or
insert the £ compressed values to their respective indices in an
n size vector, which is the worst case result for the method.
SVD truncation is not affected by the surrounding layers.

A. Convolutional Neural ODE

We illustrate the performance of reduced models on the
MNIST dataset of handwritten digits [56]. For our first task,
we train a convolutional Neural ODE that uses 16 convo-
lutional kernels and tanh activation in the ODE block, with
Z = 0 (see (2)). Before the ODE block, we use a convolutional
layer with 3 x 3 kernels and rectified linear unit (ReLU)
activations that outputs 16 channels into 3 x 3 max pooling.
After the ODE block, we use 3 x 3 max pooling into a
linear readout layer with ReLU activations. The ODE block
propagates the data for + = [0, 1] with timestep df = 0.1 using
a fourth-order fixed-step Runge—Kutta solver. The initial value
of the ODE is the output from the prior layer. We use the
adjoint method for training the ODE weights [5]. In order to
implement MOR and model compression of the convolutional
ODE block, the convolution operator is needed in the matrix
form. After training, we replaced the original convolution

and it takes 11.2s to run the model on the test dataset on CPU.

In order to determine the suitability of our chosen com-
pression methods, we looked at several metrics of the trained
Neural ODEs, namely, decay of singular values in the
POD-DEIM snapshot matrices X and F and the weight
matrix A. Moreover, we looked at the distribution of APoZ
scores and their relation to DEIM interpolation indices. Fig. 3
shows these metrics for the convolutional Neural ODE. The
left plot shows sorted singular values of the solution snapshot
matrix X (POD) and F (DEIM) of the ODE block, gathered
from training data, in purple and green, respectively. The log-
arithmic y-axis shows the magnitude of a given singular value
divided by the sum of all singular values. Both POD and DEIM
singular values collapse rapidly, indicating that a small number
of singular vectors can span a space where the majority of
dynamics are found. This is an important indicator for the
suitability of the POD-DEIM method. In the same plot, the
yellow plot shows the singular values of the weight matrix A of
the ODE block. These values are useful for determining a rank
for the SVD-based truncation method that we compare against
POD-DEIM. Singular values of A also decay exponentially,
meaning that a good low-rank approximation to A can likely
be found. The right of Fig. 3 shows APoZ scores for each
neuron in the ODE block, with low-scoring neurons being
the least important. In addition, we have indicated the first
100 interpolation points p; chosen by the DEIM method in
green. All neurons seem to contribute to the model, with only
a small number of relatively low-scoring neurons seen, which
could make the APoZ method challenging to apply in the
Neural ODE context. Some consensus between the methods
is seen, as neurons with low APoZ scores are not in the top
DEIM selections either.

We wanted to find out how the POD-DEIM method com-
pares to existing model compression methods when com-
pressing only the ODE block of a convolutional network.
For POD-DEIM dimensions, we have chosen k = m and
use dimension k& compressed models, which corresponds to
the number of activation functions to dimension k APoZ
trimmed models. The results on the MNIST dataset are shown
in Fig. 4, where y-axis, model accuracy, is computed as
reduced model top-1 accuracy divided by the original model
result, and x-axis, achieved speedup, is computed as original
model test time divided by reduced model test time. Each dot
represents a compressed model dimension, which decreases
in the direction of increased speedup. While the dimensions
are not comparable between methods, the graphs indicate
how much accuracy is maintained at a given acceleration
amount. Table II presents the absolute performance values
of compressed models without fine-tuning, with three epochs

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Singular values

10t —— POD
~ — DEIM
100 SVD 800
g 107 600
= o
> o
5 1072 A
S 400
1073
200
1074
0
0 200 400 600 800 1000 0

Index

200 400 600 800
Neuron index

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

APoZ scores

1000

Fig. 3. Metrics for the convolutional Neural ODE. Left: singular values POD (purple) and DEIM (green) snapshot matrices and singular values of the weight
matrix of the ODE block (yellow). Right: histogram of APoZ scores, with the first 100 DEIM indices indicated in green.

No fine-tuning

1.0 CY CY A0S Yy S
Py - ———
L @~ . S | °
N Bl
\,

0.8 o
5 \\
e N\
§ 0.6 S
© \\
- N
2 0.4 —-
= ‘0

Method N
Yo -~ _
02 ~—— POD-DEM 6. PO el T s
~—— APoZ
SVD
0.0
1 2 3 4 5
Speedup

Fig. 4.

Fine-tuned
1.0 LICL ORI S
TSP ———— @ e
hd =Sl ®T——--- o--—"" S
Tre.__
0.8 R Se
~e,
0.6 S
Y
N
N
\\
0.4 ®
Method
02 — POD-DEIM
~—— APoZ
SVD
0.0
1 2 3 4 5
Speedup

Performance of reduced convolutional Neural ODEs on the MNIST dataset, relative to the original model. Left plot shows the results without

fine-tuning, and right plot shows the results with three epochs of tuning. The x-axis shows achieved acceleration, while the y-axis shows reduced model top-1
accuracy divided by full model accuracy. Reduced model dimension decreases in the direction of improving speedup. Absolute performance can be seen in

Table II.

of fine-tuning after model compression, and with retraining
(30 epochs of training after compression).

Fig. 4 shows that the POD-DEIM method retains the highest
accuracy when compared to similar speedups from other meth-
ods. Our POD-DEIM reaches over fourfold speedup in run
time in this task. The SVD method is also accurate but cannot
reach speedups greater than two times the original run time,
explained by the method having to evaluate all the original
nonlinear activation functions. The APoZ method reaches the
fastest run times but loses the most amount of accuracy. After
three epochs of fine-tuning, the APoZ method improves in
accuracy, but not to the level of performance that the other
methods show even without tuning. Overall, the POD-DEIM
method achieves the best profile in terms of accuracy retained
for speedup gained. A big contributor is the interpolation
matrix N, which makes the method slower compared to APoZ,
but the cost is justified by the better accuracy. When looking at
absolute performance values, Table II shows that at dimension
350, the POD-DEIM method is two times faster to run than
the original model while achieving 93.1% top-1 accuracy.
At dimension 50, the POD-DEIM model is over four times

faster than the original model, still reaching 91.1% top-1
accuracy without fine-tuning.

B. Recurrent Neural ODE

For our second study, we designed a task in which Neural
ODEs have an advantage over discrete networks. ODE-
RNNs [6] and antisymmetric RNNs [4], [50] are one such
example. Using a continuous hidden state, ODE-RNNs enable
flexible inference on continuous-time data even with irreg-
ularly sampled or missing values and antisymmetric mod-
els have spectral properties that are favorable for RNNs,
as described in Section III. We implemented a shifted anti-
symmetric ODE-RNN for the pixel MNIST task. In this task,
the network sees a pixel of a handwritten digit at a time and
after iterating over each pixel outputs the class of the image.
The length of the input sequence is 784 steps, corresponding
to a flattened MNIST image, and the network sees each pixel
for dt = 0.1s. Following [50], we initialize the ODE weights
from zero mean, unit variance normal distribution, as well as
train and test the network with the Euler discretization method.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEHTIMAKI ef al.: ACCELERATING NEURAL ODEs USING MODEL ORDER REDUCTION 9

TABLE II

ABSOLUTE PERFORMANCE OF REDUCED CONVOLUTIONAL
NEURAL ODESs

Dim Top-1 (%) Top-3 (%) Runtime (s)
Original Model

1024 979 99.7 11.2

DEIM
50 919 | 925 | 929 98.6 | 989 | 99.0 24 2.4 2.0
150 859 | 90.1 909 972 | 984 | 987 29 2.9 24
250 90.7 | 923 | 928 982 | 988 | 99.0 3.7 3.7 3.1
350 93.1 94.1 944 99.0 | 99.1 99.2 48 4.7 4.0
450 95.0 | 957 | 959 993 | 995 | 995 59 6.2 53
550 969 | 97.0 | 969 99.7 | 99.7 | 996 7.5 7.4 6.3
650 977 | 97.6 | 97.6 997 | 99.7 | 99.6 9.2 9.1 10.1
750 97.8 | 97.8 | 97.8 99.7 | 99.8 | 99.7 114 11.3 13.4
850 97.8 | 97.8 | 979 99.8 | 99.7 | 99.7 13.3 133 16.8
950 979 | 979 | 979 99.7 | 99.7 | 99.7 15.8 16.0 19.9

APoZ
50 179 | 398 | 43.6 312 | 755 | 799 22 22 2.2
150 242 | 653 | 687 488 | 885 | 909 25 2.5 2.5
250 177 | 776 | 813 763 | 950 | 956 3.0 3.0 29
350 220 | 83.0 | 854 834 | 966 | 972 3.7 35 3.1
450 337 | 89.2 | 91.2 842 | 984 | 985 4.0 4.1 3.6
550 55.8 | 934 | 945 97.1 99.2 | 992 49 49 42
650 78.6 | 95.1 957 977 | 995 | 994 58 59 5.8
750 936 | 96.7 | 970 992 | 99.6 | 99.6 7.0 7.0 7.1
850 954 | 973 | 973 994 | 99.6 | 99.6 8.0 8.1 8.8
950 969 | 974 | 975 99.6 | 99.7 | 996 9.3 9.4 104

SVD
50 80.1 932 | 937 979 | 992 | 993 45 4.6 4.6
150 943 | 959 | 96.1 99.2 | 995 | 994 6.1 6.1 53
250 955 | 965 | 965 993 | 99.7 | 996 7.3 7.3 6.5
350 96.6 | 97.0 | 97.1 99.6 | 99.7 | 99.6 10.0 10.1 9.0
450 97.0 | 972 | 973 99.7 | 99.7 | 996 9.8 9.7 8.7
550 977 | 97.6 | 97.7 99.7 | 99.8 | 99.7 12.5 12.6 11.2
650 977 | 97.7 | 977 99.7 | 99.8 | 99.6 14.7 14.7 133
750 97.8 | 97.8 | 979 99.7 | 99.7 | 99.7 17.2 17.1 174
850 979 | 97.8 | 979 997 | 99.8 | 99.7 16.7 16.5 16.9
950 979 | 978 | 97.8 99.7 | 99.8 | 99.7 19.6 193 | 20.1

Each column of Top-1, Top-3 and Runtime shows the results
for the models directly after reduction, after three fine-tuning
epochs and after retraining (30 epochs), in that order, separated
by vertical lines.

We use 512 hidden units with a hyperbolic tangent nonlinearity
and the shifted antisymmetric weight matrix as shown in (3).
The initial value of the ODE is set to x(0) = 0. The ODE
block is followed by a linear readout layer. Compared to the
convolutional network, this model is smaller in neuron count
but needs to incorporate the time-dependent input data. The
trained network achieves 96.2% accuracy on held-out MNIST
test data in 48.1s.

Fig. 5 shows the compression metrics for the ODE-RNN.
The left plot shows the sorted relative singular value magnitude
of the solution snapshot matrices X (POD) and F (DEIM) and
the weight matrix A of the ODE block in purple, green, and
yellow. For this model, the singular values of the snapshot
matrices as well as the weight matrix also decay rapidly.
However, with regard to POD-DEIM, the singular values of the
snapshot matrices do not decay as fast as those obtained from
the convolutional model and there is a considerable amount of
total energy contained in the singular values until rank 500.
This indicates that the dynamics of the ODE block are more
difficult to approximate in low dimensions than those learned
by the convolutional model. Such a result is expected because
the ODE-RNN has a time-dependent input contributing to
the hidden state and the forward propagations are computed
for a longer time span than in our earlier example, allowing
for richer dynamics. On the other hand, singular values of

TABLE III
ABSOLUTE PERFORMANCE OF REDUCED ODE-RNNSs

Dim Top-1 (%) Top-3 (%) Runtime (s)
Original Model

512 96.2 99.6 48.1

DEIM
25 17.8 | 455 | 472 385 | 747 | 76.0 12.3 12.1 124
75 5.4 39.8 | 487 249 | 653 | 69.8 15.6 153 15.8
125 120 | 544 | 615 332 | 81.8 | 864 16.3 16.2 16.3
175 11.7 | 55.1 616 334 | 832 | 875 210 | 21.2 | 21.1
225 102 | 59.2 | 627 324 | 863 | 83.6 249 | 257 | 262
275 389 | 80.2 | 85.1 716 | 96.0 | 97.4 303 | 29.8 | 30.6
325 546 | 843 | 877 839 | 97.0 | 98.0 320 | 325 | 324
375 92.1 945 | 952 992 | 994 | 994 394 | 37.8 | 405
425 946 | 955 | 958 994 | 995 | 995 452 | 453 | 485
475 96.0 | 962 | 962 99.6 | 99.6 | 99.6 524 | 525 | 52.8

APoZ
25 75 36.5 | 402 259 | 69.1 722 9.6 9.6 9.3
75 188 | 62.7 | 694 422 | 879 | 91.0 12.5 124 12.2
125 18.6 | 70.7 | 76.1 44.0 | 925 | 949 12.7 12.8 12.7
175 175 | 742 | 802 46.6 | 939 | 96.1 16.1 16.2 16.0
225 19.1 | 747 | 81.1 437 | 940 | 96.5 18.4 18.2 18.8
275 224 | 774 | 824 584 | 95.1 97.0 209 | 209 | 206
325 365 | 80.8 | 845 745 | 963 | 975 23.1 232 | 23.1
375 444 | 828 | 864 763 | 972 | 98.0 26.6 | 266 | 26.0
425 539 | 84.7 | 882 83.1 97.8 | 983 30.7 | 29.2 | 305
475 767 | 893 | 91.7 96,5 | 98.7 | 989 352 | 353 | 33.1

SVD
25 285 | 804 | 872 542 | 959 | 978 20.6 | 20.8 | 20.7
75 744 | 934 | 944 948 | 99.0 | 993 239 | 243 | 242
125 945 | 956 | 959 995 | 99.6 | 995 266 | 257 | 256
175 95.6 | 96.0 | 962 99.6 | 99.6 | 99.6 33.8 | 329 | 327
225 96.0 | 96.1 962 99.6 | 99.6 | 99.7 353 | 364 | 369
275 96.1 962 | 962 99.6 | 99.7 | 99.7 38.6 | 39.1 39.2
325 96.1 963 | 963 99.6 | 99.7 | 99.6 403 | 425 | 423
375 962 | 963 | 963 99.6 | 99.7 | 99.6 463 | 462 | 46.2
425 96.2 | 963 | 963 99.6 | 99.7 | 99.6 48.1 | 485 | 478
475 962 | 963 | 963 99.6 | 99.7 | 99.6 505 | 503 | 50.4

Each column of Top-1, Top-3 and Runtime shows the results
for the models directly after reduction, after three fine-tuning
epochs and after retraining (30 epochs), in that order, separated
by vertical lines.

the shifted antisymmetric weight matrix decay more rapidly
than in the earlier task, indicating suitability of SVD-based
truncation of weights. The APoZ scores on the right of Fig. 5
show the same pattern as earlier, where it is not straightforward
to detect the most important neurons conclusively. This is
expected, given that in the context of ODE blocks, the output
activity at the last timestep is not a conclusive measure of
neuron importance.

We then evaluated the selected compression methods on the
pixel MNIST task using our ODE-RNN. The results relative
to the performance of the original model are shown in Fig. 6.
Absolute results of compressed models without fine-tuning,
with three epochs of fine-tuning, and with exhaustive tuning
are shown in Table III. This task is more challenging for the
reduction methods than the convolutional network. Possible
factors are the dense structured antisymmetric weight matrix
or the time-dependent input. Here, the SVD truncation method
maintains the most accuracy. As predicted by the singular
values of the snapshot matrices, the overall performance of
the POD-DEIM method on this model is not as satisfying as
with the convolutional model. On this model, the POD-DEIM
method is faster than the original model until dimension
425, at which point the accuracy is 94.6%, while the APoZ
method remains faster at all times. With regard to the tradeoff
between run time and accuracy, the SVD method maintains

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Singular values 1e7
0t —— POD
| — — DEIM
A SVD
100 ﬁ
9
= 107! g
5 B
() [%2]
=
w
1072
1073
0 100 200 300 400 500 0
Index
Fig. 5.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

APoZ scores

100 200 300 400 500
Neuron index

Metrics of the ODE-RNN. Left: singular values of POD (purple) and DEIM (green) snapshot matrices and singular values of the weight matrix of

the ODE block (yellow). Right: histogram of APoZ scores, with the first 50 DEIM indices indicated in green.

the most accuracy for speed gained. POD-DEIM shows good
accuracy at high dimensions, although accuracy drops rapidly
so that the overall performance is level with the APoZ method.
With exhaustive fine-tuning, the APoZ method may be fit for
compressing the ODE-RNN to a low dimension since APoZ
yields the best absolute acceleration. The APoZ compressed
model also seems easier to fine-tune than the POD-DEIM
version since more accuracy is recovered in three fine-tuning
epochs.

V. DISCUSSION

In this work, we have studied the compression of ANNs
that contain ODEs as layers (Neural ODEs). After training
and compressing the networks, we evaluated their accuracies
as well as execution speeds. Although in the literature many
compression methods are applied in the training loop, the
training of Neural ODEs is slower than discrete networks to
begin with, making it attractive to compress the network in a
separate step after training. We also assessed fine-tuning of the
compressed network to see how much accuracy can be recov-
ered. We focused on the run time and classification accuracy
of compressed models since Neural ODEs are already very
memory and parameter efficient by design.

Here, we showed how to formulate the POD-DEIM into
compressing Neural ODEs. This method has been developed
for accurately approximating dynamical systems in low dimen-
sions and the continuous-time network formalism of Neural
ODEs makes it possible to use POD-DEIM in deep learning
applications. In addition, we compared the POD-DEIM and
APoZ methods to SVD-based truncation. The performance
was measured with two different architectures, a convolutional
Neural ODE and a recurrent ODE architecture, which were
trained on the MNIST digit classification task.

We hypothesized that some existing neuron pruning meth-
ods that measure neuron importance based on the final output
of the layer only, such as the APoZ approach, are not optimal
for compressing Neural ODEs. The reason is that these meth-
ods do not account for the dynamics of the ODE block when
identifying pruning targets. Based on our results, the proposed

approach for Neural ODE compression depends on the model
architecture. We found the POD-DEIM method to achieve
the most favorable continuum between accuracy and speedup
on compressing the convolutional architecture, as shown in
Fig. 4. The SVD-based weight truncation is the simplest of
the studied methods and it performed well on both tasks,
although it yielded less absolute acceleration than the other
methods. The ODE-RNN was challenging to accelerate, and
here, the weight truncation method is our favored choice based
on Fig. 6. In this task, the APoZ method performed better or
equally to POD-DEIM. While the POD-DEIM method is based
on approximating the time trajectory in a low-dimensional
subspace, there are also MOR methods, such as the balanced
truncation, which are designed to approximate input—output
behavior of high-dimensional systems. Such a method could be
a good tool for compressing RNN models with time-dependent
input, once the applicability of these methods to nonlinear
systems develops further [57].

In this study, we only fine-tuned the layers following the
ODE block, keeping results more indicative of raw perfor-
mance of the methods. If the entire model were tuned, POD-
DEIM and SVD truncation have more parameters available
for fine-tuning than the APoZ method, allowing for greater
accuracy. On the other hand, the small number of parameters
is what makes APoZ compressed models the fastest out of the
three methods, and hence, it should be favored if there are
no restrictions on fine-tuning and retraining time. Moreover,
compared to POD-DEIM, the APoZ method is more data
and memory efficient since it does not need snapshots of
trajectories of ODE dynamics nor does it compute large
matrix decompositions. Overall, we found that POD-DEIM
can achieve good acceleration and accuracy of compressed
models, it has a solid theoretical foundation and several exten-
sions while also being the most adjustable and optimizable
approach of the methods used in this study.

We expect that our results with the POD-DEIM method
motivate machine learning researchers to look into the possible
applications of other MOR methods developed in control the-
ory and related fields. For example, we assessed here only the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEHTIMAKI ef al.: ACCELERATING NEURAL ODEs USING MODEL ORDER REDUCTION 11

No fine-tuning

Method
—— POD-DEIM
APoZ
SVD

1.0

< <
o ©

Top-1 accuracy
o
H

0.2

0.0

Speedup

Fig. 6.

Fine-tuned
10 Method
—— POD-DEIM
) APoZ
0.8 = SVD
0.6 R
0.4
0.2
0.0
1 2 3 4 5
Speedup

Relative performance of reduced ODE-RNNs on the pixel MNIST task. Left plot shows results without fine-tuning, and right plot shows results

with three epochs of tuning. The x-axis shows achieved acceleration, while the y-axis shows reduced model top-1 accuracy divided by full model accuracy.
Reduced model dimension decreases in the direction of improving speedup. Absolute values can be seen in Table III.

original DEIM [19] and the ODEIM [52] methods, although
in recent years, many advanced versions have been developed.
These include novel interpolation point selection methods [58]
and methods with adaptive basis and interpolation point selec-
tion capabilities [59]-[61] that allow the model to change its
dimension or projection subspace online. It is worth noting that
the POD-DEIM method aims at approximating the dynamics
of the original system and is not aware of classification or other
performance indicators of the Neural ODE. A potential future
development could explore connecting the low-dimensional
dynamics to downstream the network performance.

A limitation of the present work is that we could only
study relatively small models, due to known challenges with
training very large Neural ODEs [45]. In small models, the
expected gains from compression methods are lesser than in
large models. Moreover, we only discussed computation times
on CPUs, as on GPUs the differences between original and
compressed models were minor due to the small size of the
models. While the computational speedup from POD-DEIM
needs to be verified on GPUs and extremely large models,
theoretical reductions in parameter, and activation function
count, comparable results from existing literature as well as
our results on the CPU indicate that the method should perform
equally well.

Our results were obtained with fixed-step ODE solvers.
We found that compressing Neural ODEs sometimes induces
stiffness to the low-rank models (data not shown). This could
cause adaptive ODE solvers to be slower, mitigating some of
the speedup from compression. However, a systematic study of
this behavior was not sought here and fixed-step ODE solvers
were chosen to quantitatively compare the methods across
dimensions. A future study is needed to quantify the effects
of stiffness that may rise when compressing Neural ODE:s.

VI. CONCLUSION

In this study, we addressed speeding up and compressing
ANNSs with continuous layers. Our POD-DEIM method, which
has not previously been used to compress Neural ODEs, pro-
vides attractive results for accelerating convolutional Neural
ODE:s and equal results to neural pruning methods for acceler-
ating recurrent Neural ODEs. POD-DEIM properly considers

the trajectory of the ODE layer in an efficient manner. In addi-
tion, POD-DEIM has adjustable parameters and advanced
variations that can be used to optimize the speed versus
accuracy tradeoff for each model.

We expect our acceleration method to be useful when
Neural ODEs are deployed on low-power hardware or battery-
powered devices, for example, wearable devices, medical mon-
itoring instruments, or smartphones. The dynamical system
formalism for neural networks also allows other MOR methods
to be applied in DL, which will provide for interesting future
studies.

ACKNOWLEDGMENT

Neural network illustrations generated partly with http://
alexlenail. me/NN-SVG/index.html.

REFERENCES
[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, p. 436, May 2015.
E. Weinan, “A proposal on machine learning via dynamical systems,”
Commun. Math. Statist., vol. 5, no. 1, pp. 1-11, 2017.
Y. Lu, A. Zhong, Q. Li, and B. Dong, “Beyond finite layer neural net-
works: Bridging deep architectures and numerical differential equations,”
in Proc. 35th Int. Conf. Mach. Learn., 2018, pp. 3276-3285.
E. Haber and L. Ruthotto, “Stable architectures for deep neural net-
works,” Inverse Problems, vol. 34, no. 1, Jan. 2018, Art. no. 014004.
R. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” in Proc. Adv. Neural Inf. Process. Syst.,
2018, pp. 6571-6583.
Y. Rubanova, R. T. Chen, and D. K. Duvenaud, “Latent ordinary
differential equations for irregularly-sampled time series,” in Proc. Adv.
Neural Inf. Process. Syst., 2019, pp. 5320-5330.
D. Blalock, J. J. Gonzalez Ortiz, J. Frankle, and J. Guttag, “What is
the state of neural network pruning?” in Proc. 2nd Int. Conf. Mach.
Learn. Syst., vol. 2, 1. Dhillon, D. Papailiopoulos, and V. Sze, Eds.
2020, pp. 129-146. [Online]. Available: https://proceedings.mlsys.org/
S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and
connections for efficient neural network,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 28, 2015, pp. 1135-1143.
H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
2016, arXiv:1607.03250.
E. L. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploit-
ing linear structure within convolutional networks for efficient evalua-
tion,” in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1269-1277.
R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Dec. 2015, pp. 1440-1448.

[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

H. Markram et al.,, “Reconstruction and simulation of neocortical
microcircuitry,” Cell, vol. 163, no. 2, pp. 456492, 2015.

A. R. Kellems, S. Chaturantabut, D. C. Sorensen, and S. J. Cox,
“Morphologically accurate reduced order modeling of spiking neurons,”
J. Comput. Neurosci., vol. 28, no. 3, pp. 477-494, Jun. 2010.

B. Du, D. Sorensen, and S. J. Cox, “Model reduction of strong-weak
neurons,” Frontiers Comput. Neurosci., vol. 8, p. 164, Dec. 2014.

M. Lehtimiki, L. Paunonen, S. Pohjolainen, and M.-L. Linne, “Order
reduction for a signaling pathway model of neuronal synaptic plasticity,”
IFAC-PapersOnLine, vol. 50, no. 1, pp. 7687-7692, Jul. 2017.

M. Lehtimaki, L. Paunonen, and M.-L. Linne, “Projection-based order
reduction of a nonlinear biophysical neuronal network model,” in Proc.
IEEE 58th Conf. Decis. Control (CDC), Dec. 2019, pp. 1-6.

M. Lehtimaki, I. Seppala, L. Paunonen, and M.-L. Linne, “Accelerated
simulation of a neuronal population via mathematical model order
reduction,” in Proc. 2nd IEEE Int. Conf. Artif. Intell. Circuits Syst.
(AICAS), Aug. 2020, pp. 118-122.

G. Berkooz, P. Holmes, and J. L. Lumley, “The proper orthogonal
decomposition in the analysis of turbulent flows,” Annu. Rev. Fluid
Mech., vol. 25, no. 1, pp. 539-575, 1993.

S. Chaturantabut and D. C. Sorensen, “Nonlinear model reduction via
discrete empirical interpolation,” SIAM J. Sci. Comput., vol. 32, no. 5,
pp. 2737-2764, 2010.

M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, “An ‘empirical
interpolation’ method: Application to efficient reduced-basis discretiza-
tion of partial differential equations,” Comp. Rendus Mathematique,
vol. 339, no. 9, pp. 667-672, 2004.

S. Chaturantabut and D. C. Sorensen, “A state space error estimate for
POD-DEIM nonlinear model reduction,” SIAM J. Numer. Anal., vol. 50,
no. 1, pp. 46-63, 2012.

V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on CPUS,” in Proc. Deep Learn. Unsupervised Feature Learn.
Workshop, NIPS, 2011.

M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in Proc.
Adv. Neural Inf. Process. Syst., 2015, pp. 3123-3131.

W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compress-
ing neural networks with the hashing trick,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 2285-2294.

J. Ren and L. Xu, “On vectorization of deep convolutional neural
networks for vision tasks,” in Proc. AAAI Conf. Artif. Intell., 2015,
vol. 29, no. 1, pp. 1840-1846.

M. Mathieu, M. Henaff, and Y. LeCun, “Fast training of convolu-
tional networks through FFTSs,” in Proc. 2nd Int. Conf. Learn. Rep-
resent. (ICLR), Banff, AB, Canada, 2014.

T. Chen et al., “Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” ACM SIGARCH Comput. Archit.
News, vol. 42, no. 1, pp. 269-284, Feb. 2014.

Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Proc. Adv. Neural Inf. Process. Syst., 1990, pp. 598-605.

B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Proc. Adv. Neural Inf. Process. Syst.,
1993, pp. 164-171.

D. Yu, E Seide, G. Li, and L. Deng, “Exploiting sparseness in deep
neural networks for large vocabulary speech recognition,” in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2012,
pp. 4409-4412.

J. Xue, J. Li, and Y. Gong, “Restructuring of deep neural network
acoustic models with singular value decomposition,” in Proc. Inter-
speech, Aug. 2013, pp. 2365-2369.

S. Han et al., “EIE: Efficient inference engine on compressed deep
neural network,” ACM SIGARCH Comput. Archit. News, vol. 44, no. 3,
pp. 243-254, 2016.

A. Parashar et al., “SCNN: An accelerator for compressed-sparse
convolutional neural networks,” ACM SIGARCH Comput. Archit. News,
vol. 45, no. 2, pp. 2740, Jun. 2017.

R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua, “Learning separable
filters,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013,
pp. 2754-2761.

M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” in Proc. Brit. Mach. Vis.
Conf., 2014.

Y. Gong, L. Liu,
deep convolutional
arXiv:1412.6115.

M. Yang,
networks

and L. Bourdev,
using vector quantization,”

“Compressing
2014,

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]
[56]
[57]

[58]

[59]

X. Zhang, J. Zou, K. He, and J. Sun, “Accelerating very deep convo-
lutional networks for classification and detection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 38, no. 10, pp. 1943-1955, Oct. 2015.

H. Van Nguyen, K. Zhou, and R. Vemulapalli, “Cross-domain syn-
thesis of medical images using efficient location-sensitive deep net-
work,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist.
Intervent., Munich, Germany. Switzerland: Springer, Oct. 2015,
pp. 677-684.

S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and Huffman
coding,” in Proc. 4th Int. Conf. Learn. Represent. (ICLR), Y. Bengio
and Y. LeCun, Eds. 2016.

Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1389-1397.

P. Molchanov, S. Tyree, T. Karras, T. Aila, and J. Kautz, “Prun-
ing convolutional neural networks for resource efficient inference,”
in Proc. 5th Int. Conf. Learn. Represent. (ICLR), Toulon, France,
2017.

V. Lebedev and V. Lempitsky, “Speeding-up convolutional neural net-
works: A survey,” Bull. Polish Acad. Sci. Tech. Sci., vol. 66, no. 6,
pp. 799-810, 2018.

E. Dupont, A. Doucet, and Y. W. Teh, “Augmented neural ODEs,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. dAlché Buc, E. Fox, and R. Garnett, Eds. Red Hook,
NY, USA: Curran Associates, 2019.

J. Kelly, J. Bettencourt, M. J. Johnson, and D. K. Duvenaud, “Learning
differential equations that are easy to solve,” in Proc. Adv. Neural
Inf. Process. Syst., vol. 33, H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, Eds. Red Hook, NY, USA: Curran Associates,
2020, pp. 4370-4380.

C. Finlay, J.-H. Jacobsen, L. Nurbekyan, and A. Oberman, “How to train
your neural ODE: The world of Jacobian and kinetic regularization,” in
Proc. Int. Conf. Mach. Learn., 2020, pp. 3154-3164.

P. Kidger, R. T. Q. Chen, and T. Lyons, “Hey, that’s not an ODE’: Faster
ODE adjoints via seminorms,” in Proc. 38th Int. Conf. Mach. Learn.,
2021, pp. 5443-5452.

M. Poli, S. Massaroli, A. Yamashita, H. Asama, and J. Park, “Hyper-
solvers: Toward fast continuous-depth models,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 33, 2020, pp. 21105-21117.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

S. Massaroli, M. Poli, M. Bin, J. Park, A. Yamashita, and H. Asama,
“Stable neural flows,” 2020, arXiv:2003.08063.

B. Chang, M. Chen, E. Haber, and E. H. Chi, “AntisymmetricRNN: A
dynamical system view on recurrent neural networks,” in Proc. 9th Int.
Conf. Learn. Represent. (ICLR), New Orleans, LA, USA, 2019.

L. Sirovich, “Turbulence and the dynamics of coherent structures. I-I11,”
Quart. Appl. Math., vol. 45, no. 3, pp. 561-590, 1987.

B. Peherstorfer, Z. Drmaé, and S. Gugercin, “Stability of discrete
empirical interpolation and gappy proper orthogonal decomposition with
randomized and deterministic sampling points,” SIAM J. Sci. Comput.,
vol. 42, no. 5, pp. A2837-A2864, Jan. 2020.

F. Liang, R. Shi, and Q. Mo, “A split-and-merge approach for singular
value decomposition of large-scale matrices,” Statist. Interface, vol. 9,
no. 4, p. 453, 2016.

A. Paszke et al., “Pytorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst.,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2019,
pp- 8024-8035.

M. Poli, S. Massaroli, A. Yamashita, H. Asama, and J. Park, “TorchDyn:
A neural differential equations library,” 2020, arXiv:2009.09346.

Y. LeCun. (1998). The MNIST Database of Handwritten Digits. [Online].
Available: http://yann.lecun.com/exdb/mnist/

P. Benner and P. Goyal, “Balanced truncation model order reduction for
quadratic-bilinear control systems,” 2017, arXiv:1705.00160.

Z. Drma¢ and S. Gugercin, “A new selection operator for the discrete
empirical interpolation method—improved a priori error bound and
extensions,” SIAM J. Sci. Comput., vol. 38, no. 2, pp. A631-A648,
Jan. 2016.

B. Peherstorfer, D. Butnaru, K. Willcox, and H.-J. Bungartz, “Localized
discrete empirical interpolation method,” STIAM J. Sci. Comput., vol. 36,
no. 1, pp. A168-A192, Jan. 2014.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LEHTIMAKI er al.: ACCELERATING NEURAL ODEs USING MODEL ORDER REDUCTION 13

[60] B. Peherstorfer and K. Willcox, “Online adaptive model reduction for
nonlinear systems via low-rank updates,” SIAM J. Sci. Comput., vol. 37,
no. 4, pp. A2123-A2150, Jan. 2015.

[61] S. Chaturantabut, “Temporal localized nonlinear model reduction with
a priori error estimate,” Appl. Numer. Math., vol. 119, pp. 225-238,
Sep. 2017.

Mikko Lehtimiki received the M.Sc. degree in
computational biology from Tampere University
of Technology, Tampere, Finland, in 2016. He is
currently pursuing the Ph.D. (Tech) degree with
Tampere University, Tampere, with a focus on com-
putational neuroscience.

In addition to biology, his studies focused on signal
processing and computer science. His research is
centered on accelerating the simulation of nonlinear
neuron and neural network models, and his topics of
interest range from cell biology to artificial intelli-

gence. He has extensive engineering and design experience from the software
and robotics industries.

Lassi Paunonen (Senior Member, IEEE) received
the M.Sc. and Ph.D. degrees in mathematics
from Tampere University of Technology, Tampere,
Finland, in 2007 and 2011, respectively.

From 2016 to 2019, he held the position of an
Academy of Finland Post-Doctoral Researcher. He is
currently an Associate Professor and the leader of
the Systems Theory Research Group at Tampere
University, Tampere. His main research interests
include mathematical control theory, analysis of par-
tial differential equations, and the theory of strongly
continuous operator semigroups.

Marja-Leena Linne (Member, IEEE) received the
M.Sc. degree in electrical engineering and the Ph.D.
degree in computer science and theoretical neuro-
science from Tampere University of Technology,
Tampere, Finland, in 1993 and 2001, respectively.

She is currently a Principal Investigator at Tam-
pere University, Tampere, where she leads the
Computational Neuroscience Group at the Faculty
of Medicine and Health Technology. She devel-
ops computational and mathematical methods for
brain modeling and analysis of signals and images
obtained in vitro and in vivo. She is a core member of the EU FET Flagship
Human Brain Project. She has authored over 80 refereed interdisciplinary
publications, as the first and last author both in engineering and biological
topics. The focus of her research in neuroscience is on understanding the roles
of neuronal and glial cells in neuronal circuits as well as in brain signals
recorded from humans in health and disease.

