
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Online Spatio-Temporal Learning in
Deep Neural Networks

Thomas Bohnstingl , Member, IEEE, Stanisław Woźniak , Member, IEEE,
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Abstract— Biological neural networks are equipped with an
inherent capability to continuously adapt through online learn-
ing. This aspect remains in stark contrast to learning with
error backpropagation through time (BPTT) that involves offline
computation of the gradients due to the need to unroll the
network through time. Here, we present an alternative online
learning algorithmic framework for deep recurrent neural net-
works (RNNs) and spiking neural networks (SNNs), called online
spatio-temporal learning (OSTL). It is based on insights from
biology and proposes the clear separation of spatial and temporal
gradient components. For shallow SNNs, OSTL is gradient
equivalent to BPTT enabling for the first time online training of
SNNs with BPTT-equivalent gradients. In addition, the proposed
formulation unveils a class of SNN architectures trainable online
at low time complexity. Moreover, we extend OSTL to a generic
form, applicable to a wide range of network architectures,
including networks comprising long short-term memory (LSTM)
and gated recurrent units (GRUs). We demonstrate the operation
of our algorithmic framework on various tasks from language
modeling to speech recognition and obtain results on par with
the BPTT baselines.

Index Terms— Backpropagation, backpropagation through
time (BPTT), online learning, real-time recurrent learning
(RTRL), spiking neurons.

I. INTRODUCTION

THE brain has the unique capability to adapt to changing
environmental conditions with plastic synapses [1] and

is able to perform intelligent tasks unattainable yet by com-
puters while consuming very low power [2]. Brain-inspired
concepts in machine learning applications have so far primarily
focused on incorporating the layered, highly interconnected
topology of biological neural networks into so-called arti-
ficial neural networks (ANNs), including recurrent neural
networks (RNNs). RNNs utilizing more complex long short-
term memory (LSTM) or gated recurrent units (GRUs) have
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demonstrated astounding successes in applications requiring
learning from temporal data such as speech recognition or
language modeling [3]–[5]. Recent works have transferred the
rich dynamics of the biologically-inspired spiking neural net-
works (SNNs) to RNNs and demonstrated on-par performance
in certain applications by utilizing gradient-based learning
methods for training [6]–[10]. Typically, the aforementioned
models are trained with the ubiquitous error backpropagation
through time (BPTT) algorithm [11]. Despite the successes of
BPTT-trained networks, this algorithm has severe limitations,
especially in scenarios involving online learning, i.e., when
the network is required to process and simultaneously learn
from a continuous stream of input data [12], [13]. This is
because BPTT training has to track all past activities by
unrolling the network, which becomes very deep in time as the
input-sequence length increases. For example, a two-second-
long spoken input sequence with 1 ms time steps results in a
2000-layer-deep unrolled network.

To address these issues, online learning algorithms were
developed for calculating the parameters’ updates in real time
as the input data arrives. In this manner, they are conceptually
more similar to the way the brain adapts to changing environ-
mental conditions. Two such online algorithms were initially
introduced in [14]. The first one, real-time recurrent learning
(RTRL), applies updates to the parameters immediately at each
time step, hence sacrificing gradient-equivalence to BPTT,
whereas the second one, which we refer to RTRL with deferred
updates, applies BPTT-equivalent updates at the end of the
input sequence. However, both versions of RTRL have higher
time complexity than BPTT and for this reason, remained
rarely used in practice.

Recently, online learning algorithms regained popularity and
were investigated following two distinct research directions.
The first direction focuses on approximations of RTRL with
reduced computational complexity. It led to the development
of various algorithms; for example, unbiased online recur-
rent optimization (UORO) [15], Kronecker-factored RTRL
(KF-RTRL) [16] or optimal Kronecker-sum approximation
of RTRL (OK-RTRL) [17], which all provide approximate
gradients. In contrast, the second direction takes more inspira-
tion from biological learning systems and is centered around
the debate whether and how they employ error backpropa-
gation [18]. The algorithm, synaptic plasticity dynamics for
deep continuous local learning (DECOLLE), avoids using
error backpropagation and instead relies on temporally and
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spatially local auxiliary error functions computed with layer-
wise local readout connections [19]. Learning algorithms, such
as SuperSpike [20], random feedback local online (RFLO) [21]
and E-prop [13] were proposed to approximate the gradients
under biological constraints, see [22] for a summary. The
development of these algorithms was inspired by the notion
of the so-called eligibility traces that maintain a temporal
trace of past neuronal events and the so-called learning sig-
nals that transport information spatially from the environment
[13], [23]. Note that the above-mentioned approaches require
either custom network architectures, utilize approximate gra-
dients, or were primarily derived for a single-large layer of
recurrent units. In particular, the latter design choice is quite
limiting for modern deep learning architectures, where often
multiple layers of recurrent units are stacked to achieve state-
of-the-art performance [3], [24], [25].

In general, in the gradient-based training of RNNs, one can
distinguish two types of gradient flows. First, gradients that
flow between units within the same time step, and second,
gradients that flow between units across different time steps.
In this work, we revisit the formulation of this gradient-based
training and propose a novel online learning methodology
that clearly separates these gradients into two components:
spatial and temporal. Furthermore, this separation is inspired
by the temporal nature of the eligibility traces and the spatial
characteristics of the learning signals. Because this gradient
separation plays a key role, we refer to our algorithmic
framework as online spatio-temporal learning (OSTL).

Contrary to previous approaches, we derive OSTL for a
deep recurrent network of spiking neurons and prove that for
the special case of a network with a single-recurrent SNN
layer the proposed gradient separation maintains equivalence
to BPTT. We show that the common deep feed-forward SNN
architectures can be trained online with low time complexity
and comparable performance to BPTT. Moreover, we extend
OSTL for training generic RNNs, such as LSTM networks,
with a special focus on deep networks. Our work complements
the approximate RTRL-based approaches and the biologically
plausible learning methods by proposing a unified approach
that introduces biological insights. The key contribution is a
novel algorithmic framework for online learning with a clear
separation of spatial and temporal gradients, that includes the
following.

1) A derivation for deep feed-forward SNNs with time
complexity of O(K n2), where K is the number of layers
and n is the largest layer size.

2) A derivation for shallow feed-forward SNNs with time
complexity of O(n2) while maintaining the gradient
equivalence with BPTT.

3) A generalized derivation for deep RNNs, with explicit
formulations for LSTMs and GRUs, with time complex-
ity of O(K n4).

4) A novel methodology to incorporate approximations
separately into spatial and temporal gradients allowing
to unify the state-of-the-art online learning algorithms.

The remainder of this article is organized as follows.
In Section II, we give a brief overview of SNNs, focusing on

a concept that allows for simple integration into deep learning
frameworks by representing the SNN with building blocks
of RNNs. In Section III, we present the OSTL algorithmic
framework and its application to deep and single-layer SNNs.
In Section III, we also discuss the generalization of OSTL
to generic RNNs, such as LSTMs and GRUs. In Section IV,
we compare OSTL to related algorithms from the literature.
The detailed performance evaluation of OSTL on various tasks
is shown in Section V. Finally, Section VI concludes this
article.

II. SPIKING NEURAL NETWORKS

Inspired by insights from neuroscience, SNNs are network
architectures with biologically realistic neuronal dynamics
and synaptic learning mechanisms. In a simplified view, they
consist of neurons, which are interconnected via synapses,
receiving input spikes at the dendrites and emitting output
spikes through the axons, as shown in Fig. 1(a). Biological
neurons maintain a temporal trace of past neuronal events in
the eligibility traces that along with presynaptic and postsy-
naptic activities modulate the synaptic plasticity and therefore
provide means for temporal credit assignment [23]. In addi-
tion, there exist several learning signals, e.g., dopamine, that
transport information spatially from the environment or other
brain regions to the individual neurons, as shown in Fig. 1(a).

While the neuronal dynamics have been successfully
abstracted to several neuron models, such as the well-known
leaky integrate-and-fire (LIF) neuron model, the training
was historically performed with variants of the spike-timing-
dependent plasticity (STDP) Hebbian rule [23]. Although
STDP is a simple biologically inspired online learning mech-
anism, the accuracy of STDP-based architectures is inferior
to that of state-of-the-art deep ANNs trained with BPTT.
To address this problem, several research groups have focused
their activities on facilitating gradient-based training for
SNNs [7]–[10]. In particular, in [10], an alternative viewpoint
on the spiking neuron was presented, which incorporates the
neural dynamics into a recurrent ANN unit called a spiking
neural unit (SNU). Although the SNU concept was developed
around the simple LIF neuronal model, the framework is
generic and readily extendable to other more involved neu-
ronal constructs and biologically motivated extensions, such
as lateral inhibition and adaptive spiking threshold (see [10,
Supplementary Note 1]). In essence, the SNU framework
bridges the ANN world with the SNN world by recasting
the SNN dynamics with ANN-based building blocks. A deep
recurrent network composed of SNUs is shown in Fig. 1(b).

The state and output equations for a recurrent SNN layer l
composed of nl SNUs, shown in Fig. 2(a), are

st
l = g

(
Wl yt

l−1 + Hl yt−1
l + d · st−1

l � (
�− yt−1

l

))
(1)

yt
l = h

(
st

l + bl
)

(2)

where st
l ∈ IRnl represents the internal states, i.e., the

membrane potentials, yt−1
l ∈ IRnl denotes the output of the

neurons of the lth layer at time t − 1, yt
l−1 ∈ IRnl−1 denotes

the output of the neurons of the (l − 1)th layer at time t ,
Wl ∈ IRnl × nl−1 denotes the input weights from layer l − 1 to
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Fig. 1. Schematic depiction of neural networks. (a) Illustration of biological neurons connected to each other via synapses. Eligibility traces associated with
each synapse maintain a temporal trace of past neuronal events. Learning signals propagated spatially from different brain regions target selected populations
of neurons. (b) Illustration of a deep RNN composed of SNUs.

Fig. 2. Illustration of the computational flow of BPTT and OSTL. (a) Conceptual illustration of a two-layered RNN. (b) In BPTT, the activities and
states of the network are computed forward in time and the gradients are propagated backward in time. During the update at time step t all states are stored
and evaluated. (c) In OSTL, the spatial and temporal components are clearly separated. Each layer computes eligibility traces, which account for the temporal
gradients. Independently, an individual learning signal per layer passes from the output layer through the network and accounts for the spatial components.
The components involved in the gradient computation at time t are marked in green.

layer l, Hl ∈ IRnl × nl denotes the recurrent weights of layer l,
bl ∈ IRnl represents the firing thresholds, d ∈ IR is a constant
that represents the decay of the membrane potential, � denotes
pointwise vector multiplication, and g(x) and h(x) are the
input and output activation functions, respectively. In order to
accurately represent the dynamics of the LIF neuron model,
we set g(x) = �(x) and h(x) = 0 if x < 0 and h(x) = 1 if
x ≥ 0, i.e., h(x) = �(x), with the identity �(x) and the
heaviside function �(x). Note that the SNU can also be
configured to provide a continuous output, forming a so-called
soft SNU (sSNU), for example, by using the sigmoid function
h(x) = σ (x), and thus operating similar to other RNN units.

The SNU formulation enables training of deep SNNs
through the application of the BPTT approach, as shown
in Fig. 2(b). This type of network architecture takes close
inspiration from the organization of the human brain, where
several recurrently connected brain regions are hierarchically
connected [26], [27].

III. ONLINE SPATIO-TEMPORAL LEARNING

We take inspiration from the existence of the eligibil-
ity traces and the learning signals and introduce OSTL,
a novel algorithmic framework for online learning that is

addressing the limitations of BPTT discussed so far. To that
end, we explicitly separate the gradient computation into
temporal components corresponding to the eligibility traces
and into spatial components corresponding to the learning
signals.

A common objective of gradient-based learning in neural
networks is to train the parameters θ , which represents a
collection of all trainable parameters of the network, so that
the error E is minimized. In deep SNNs, the network error
Et ∈ IR at time t is only a function of the output of the neurons
in the last layer K , i.e., yt

K and the target outputs ŷt , i.e.,
Et = φ(yt

K , ŷt ). A generic layer of spiking neurons produces
outputs yt

l = χ(st
l , θ l) and st

l = ψ(st−1
l , yt−1

l , yt
l−1, θ l),

where all the trainable parameters, Wl, Hl, bl , are collectively
described by the variable θ l . For example, for the SNU high-
lighted in Section II, ψ(st−1

l , yt−1
l , yt

l−1, θ l) = g(Wl yt
l−1 +

Hl yt−1
l + d · st−1

l � (� − yt−1
l )) and χ(st

l , θ l) = h(st
l + bl).

Using this notation, we compute the updates of the parame-
ters �θ l that minimize E based on the principle of gradient
descent as

�θ l = −η
dE

dθ l
(3)
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where η ∈ IR is the learning rate. We employ the chain rule,
i.e., the core ingredient of BPTT, to reformulate the term
(dE/(dθ l) from 3 as

dE

dθ l
=

∑
1≤t≤T

∂ Et

∂ yt
K

(
∂ yt

K

∂ st
K

dst
K

dθ l
+ ∂ yt

K

∂θ l

)
(4)

where the summation ranges from the first time step t = 1 until
the last time step t = T . We further expand (4) in the
following, in particular ((dst

K )/(dθ l)), and isolate the temporal
components involving only layer l. This allows to unravel
a time recursion that can be exploited to form an online
reformulation of BPTT, see Appendix B. In particular, it can
be shown that

dst
l

dθ l
=

∑
1≤t̂≤t

⎛
⎝ ∏

t≥t ′>t̂

dst ′
l

dst ′−1
l

⎞
⎠(

∂ st̂
l

∂θ l
+ ∂ st̂

l

∂ yt̂−1
l

∂ yt̂−1
l

∂θ l

)
. (5)

Equation (5) can be rewritten in a recursive form introducing
a so-called eligibility tensor εt,θ l

l as

ε
t,θ l
l := dst

l

dθ l
= dst

l

dst−1
l

ε
t−1,θ l
l +

(
∂ st

l

∂θ l
+ ∂ st

l

∂ yt−1
l

∂ yt−1
l

∂θ l

)
(6)

see Appendix B for a detailed proof. This leads to an expres-
sion of the gradient as

dE

dθ l
=

∑
t

(
Lt

l e
t,θ l
l + R

)
(7)

where

et,θ l
l = ∂ yt

l

∂ st
l

ε
t,θ l
l +∂ yt

l

∂θ l
(8)

Lt
l = ∂ Et

∂ yt
K

⎛
⎝ ∏

(K−l+1)>m≥1

∂ yt
K−m+1

∂ st
K−m+1

∂ st
K−m+1

∂ yt
K−m

⎞
⎠ (9)

R = dEt

d yt
K

∂ yt
K

∂ st
K

(
K−1∑
0≤k′

(
k′∏

0≤m

∂ st
K−m

∂ yt
K−m−1

∂ yt
K−m−1

∂ st
K−m−1

)

δn′,K−k′δt ′,t
dst ′

n′

dst ′−1
n′

ε
t ′−1,θ l
K−k′,l

)
. (10)

Following the biological inspiration, the eligibility trace et,θ l
l

contains only the temporal component of the gradient compu-
tation. It evolves through the recursion (8) that involves only
information local to a layer of spiking neurons. The learning
signal Lt

l ∈ IRnl is applied locally in time and corresponds to
the spatial gradient component. Note that the learning signal
can also be expressed recursively in space, i.e., from one layer
to another, as

Lt
l = Lt

l+1

(
∂ yt

l+1

∂ st
l+1

∂ st
l+1

∂ yt
l

)
with Lt

K = ∂ Et

∂ yt
K

. (11)

The residual term R defined in (10), represents the combi-
nations of spatial gradients, involving different layers, and
temporal gradients, involving different time steps.

The formulation described by (7) is novel and constitutes
the basis for deriving our online learning scheme. The main
emphasis of OSTL is to maintain the separation between

temporal and spatial gradients. Therefore, we explore an
approach in which we strictly consider only the temporal and
spatial components of (7). This approximation leads to the
following formulation of OSTL for deep SNNs:

dE

dθ l
≈ ∑

t Lt
l e

t,θ l
l . (12)

Thus, (dE/(dθ l)) is in principle calculated as the sum of
individual products of the eligibility traces and the learning
signal, as schematically shown in Fig. 2(c).

A. OSTL for Deep Feed-Forward SNNs

After the main formalism of OSTL has been introduced
in (12), we provide the explicit formulation for the deep
feed-forward SNU network described in Section II. In this
case, the recurrency matrix Hl is absent in (1). Using the diag-
onal function diag(x) that puts the components of the vector x
onto the diagonal of a zero matrix, i.e., diag(x)i, j = xiδi, j , (8)
becomes

et,Wl
l = diag

(
h′t

l

)
ε

t,Wl
l , (13)

et,bl
l = diag

(
h′t

l

)
ε

t,bl
l + diag

(
h′t

l

)
(14)

where

ε
t,Wl
l = dst

l

dst−1
l

ε
t−1,Wl
l +diag

(
g′t

l

)
diag

(
ϒ t

l−1

)
(15)

ε
t,bl
l = dst

l

dst−1
l

ε
t−1,bl
l −d·diag

(
g′t

l

)
diag

(
st−1

l �h′t−1
l

)
(16)

and

dst
l

dst−1
l

=diag
(
g′t

l

)
d·diag

((
�− yt−1

l

)−st−1
l �h′t−1

l

)
. (17)

Note that we have used the short-hand notation of
((dg(ξ t

l ))/(dξ
t
l )) = g′t

l , ((dh(ξ t
l ))/(dξ

t
l )) = h′t

l . Furthermore,
the elements of ϒ t

l are given by (ϒ t
l )opq = δo,p(yt

l )q .
For a mean squared error loss with readout weights

Et = 1

2

nK∑
i=1

((
Wout yt

K

)
i
− (

ŷt
)

i

)2
(18)

where Wout ∈ IRnK × nK are the readout weights, the learning
signal stated in (9) is

Lt
l = Lt

l+1

(
diag

(
h′t

l+1 � g′t
l+1

)
Wl+1

)
(19)

with

Lt
K = (

Wout
)�

yt
K − ŷt . (20)

Algorithm 1 shows the steps necessary to compute the
parameter updates for a feed-forward SNN architecture. The
updates may be applied immediately or deferred, similar
to RTRL. Note that in the sequel we focus on the latter
case. Clearly, a feed-forward configuration of SNNs does not
prevent solving temporal tasks. In such architectures, including
also quasi-RNNs [28], the network relies on the internal states
of the units rather than on layerwise recurrency matrices Hl .
The derivation of an SNN that involves recurrency matrices
Hl can be found in Appendix B.
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Algorithm 1 OSTL for Deep Feed-Forward SNNs (K Layers)
With Mean Squared Error Loss

for 1 ≤ t ≤ T do
for 1 ≤ l ≤ K do

Compute st
l using (1) with yt

l−1, st−1
l , yt−1

l , θ l

Compute yt
l using (2) with st

l , θ l

Compute εt,θ
l using (15), (16) with εt−1,θ

l , st
l , yt

l , θ l

Compute et,θ
l using (13), (14) with εt,θ

l , st
l , yt

l , θ l

end for
Compute Et using (18) with yt

K , ŷK
t

for 1 ≤ l ≤ k do
Compute Lt

l using (9)

Compute dEt = −η
(

Lt
l e

t,θ
l

)
Update θ l with dEt

[
Online updates

]
Accumulate �θ l = �θ l + dEt

[
Deferred updates

]
end for

end for
for 1 ≤ l ≤ K do

Update θ l with accumulated �θ l
[
Deferred updates

]
end for

B. OSTL for Single-Layer SNNs

In case of a single-recurrent layer, there is no residual term
R emerging in (7), that is R = 0, see Appendix B. For this
architecture, the additional equations needed besides (13)–(15)
are

et,H = diag
(
h′t)εt,H, (21)

εt,H = dst

dst−1
εt−1,H + diag

(
g′t)diag

(
ϒ t−1) (22)

εt,b = dst

dst−1
εt−1,b + Hdiag

(
h′t−1

)
−d · diag

(
g′t)diag

(
st−1 � h′t−1

)
(23)

and

dst

dst−1
= diag

(
g′t)(Hdiag

(
h′t−1

)
+d · diag

((
� − yt−1) − st−1 � h′t−1

))
.

(24)

Using the loss from (18), the learning signal is

Lt = ∂ Et

∂ yt
= (

Wout
)�(

yt − ŷt
)
. (25)

Note that in this special case of a single-layer network the
subscript l, signifying the layer has been removed. Because
R = 0, there are no approximations involved and OSTL is
gradient-equivalent to BPTT. See also the formal proof in
Appendix B. Moreover, the gradient equivalence is maintained
even if this recurrent layer is embedded in a deep network
architecture comprising an arbitrary number of stateless layers,
e.g., a series of convolutions followed by the recurrent layer
and a softmax output layer, see Appendix D. This important
property has also been demonstrated via simulations.

C. Biologically Inspired Approximations of OSTL

Although the eligibility traces are biologically inspired and
involve only information local to a layer, the learning signal
relies on the mathematical concept of error backpropagation
applied locally in time. It is possible to further study and
introduce approximations into both components independently.
Here, we outline a few examples of such approaches, which
also highlight the benefits of the clear separation of the
gradient components.

For example, approximate eligibility traces may be intro-
duced. Their exact formulation for recurrent network architec-
tures has been given in (21)–(24) and involves computations
with the recurrent matrix H, which requires information that
is local to one layer, but nonlocal to an individual neuron.
In addition, these computations dominate to a large extent
the time complexity of OSTL, as discussed in detail in
Appendix C. To remove the need to transmit this information,
one could neglect the influence of the recurrent matrix H in
the eligibility traces, leading to an approximation of OSTL,
denoted OSTL w/o H , similar to [21]. Although this scheme
may lead to performance degradation in certain tasks, it sub-
stantially reduces the time complexity of OSTL from O(K n4)
down to O(K n2), see Appendix C.

Further biological constraints may be introduced into the
spatial gradient components, i.e., the learning signals. Specif-
ically, the learning signal Lt

l of OSTL uses the same weight
matrix Wl+1, see (19), to transport information, as in the
forward pass. A common concern in computational neuro-
science is that signals in biological substrates should not use
the same synaptic connection in both directions. To address
this concern, OSTL can utilize schemes, such as feedback
alignment [29], direct feedback alignment, or indirect feedback
alignment [30]. In feedback alignment, the learning signals
are delivered via separate connections from each layer to the
previous one, using random matrices. Considering the mean
squared error loss with readout weights given in (18), the
learning signals become

Lt
l = Lt

l+1

(
diag

(
h′t

l+1 � g′t
l+1

)
Bl+1

)
(26)

with

Lt
K = (

Wout)�
yt

K − ŷt (27)

where Bl+1 is a random matrix connecting the layer l + 1 to
layer l. Because of the random nature of this approximation,
we refer to this algorithm as OSTL rnd.

The aforementioned examples highlight that OSTL allows
to easily incorporate more biological constraints, and thereby,
even bridge different approaches described in the literature.

D. Generalization of OSTL to Generic RNNs

The derivation of OSTL for SNUs implicitly demonstrates
the applicability of OSTL to generic RNNs, as SNUs incorpo-
rate the LIF dynamics of SNNs into RNNs. However, in the
sequel, we explicitly extend the OSTL framework to a wider
variety of deep RNNs, for example, networks consisting of
LSTM units. We note that such units obey more complex state
and output equations compared with SNNs. In particular, the
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output yt
l is a recursive function and depends on the outputs

of the previous layer and the trainable parameters, that is,

yt
l = χ

(
st

l , yt−1
l , yt

l−1, θ l
)

(28)

st
l = ψ

(
st−1

l , yt−1
l , yt

l−1, θ l
)
. (29)

To the best of our knowledge, this generalized form covers all
standard RNN units currently used in the literature, including
sophisticated SNU variants [31].

Performing similar steps as in Sections III-A–III-C,
we derive the eligibility trace for layer l as

et,θ l
l = ∂ yt

l

∂ st
l

ε
t,θ l
l + ∂ yt

l

∂θ l
+ ∂ yt

l

∂ yt−1
l

et−1,θ l
l . (30)

Note that compared with the case of SNNs, the eligibility trace
contains an additional recurrent term, which is the eligibility
trace of the previous time step t − 1, i.e., et−1,θ l

l . Hence, these
formulations expand the concept of the eligibility traces of
a particular neuron to depend also on the activities of other
neurons within the same layer. Nevertheless, the core function
of the eligibility traces, in capturing the temporal gradient
contributions, is maintained.

The generalized learning signal is

Lt
l = Lt

l+1

(
∂ yt

l+1

∂ st
l+1

∂ st
l+1

∂ yt
l

+ ∂ yt
l+1

∂ yt
l

)
with Lt

K = ∂ Et

∂ yt
K

. (31)

Finally, similar to the case of deep SNNs, the parameter
update (dE/(dθ l)) is computed using (12). Therefore, the
OSTL extension described in (30) and (31) enables online
training for a broad variety of RNN units, including LSTMs
and GRUs, for which the explicit formulas can be found in
Appendixes E and F, respectively.

IV. COMPARISON WITH RELATED ALGORITHMS

Table I summarizes the properties of various online learning
algorithms, including OSTL. The horizontal lines delimit three
groups: the first group includes the fundamental algorithms,
i.e., BPTT and RTRL, the second one the recently introduced
approximate algorithms, and the third one the various OSTL
versions. OSTL and BPTT provide a clear way to be applied
to deep networks, whereas RFLO or E-prop require additional
workarounds, such as layerwise direct connections to the
output layer. For algorithms extendable to training K -layered
networks, the memory and time complexity typically scale
linearly with the number of layers K .

Two algorithms from the prior art, namely, RTRL and
E-prop, share important concepts with OSTL, and therefore,
deserve further discussion. OSTL and RTRL are derived by
optimizing the same objective function using the gradient
descent principles, but the explicit treatment of the gradient
separation in OSTL leads to a different factorization of the
operations that rely on layer local, rather than global informa-
tion. In other words, the eligibility traces and learning signals
of OSTL are defined on a per-layer basis, rather than on a
complete network basis. Thus, for deep networks, OSTL scales
with the size of the largest layer, whereas RTRL with the total
number of neurons of a global pool of neurons.

Although the generic form of (12) appears to be similar to
E-prop, there are several critical differences. First, the eligibil-
ity traces and learning signals of OSTL described in (8) and (9)
have been derived without approximations and are different
than the corresponding ones in E-prop ([13, eqs. (4) and (13)]).
Specifically, OSTL uses the total derivative ((dst

l )/(dst−1
l )),

while E-prop uses the partial derivative ((∂ st
l )/(∂ st−1

l )).
This subtle, yet crucial difference leads to different learning

results. For example, in a recurrently connected layer of SNUs
described by (1) and (2), the differences between the total
derivative in (24) and the partial derivative given below (taken
from [13])

∂ st
l

∂ st−1
l

= diag
(
g′t

l

)(
d · diag

(
�− yt−1

l

))
(32)

become apparent, as the terms involving ((d yt
l (st

l ))/(dst
l )) are

missing.
Moreover, the definition of the learning signal in OSTL

is also different from the one in E-prop. OSTL builds on a
clear separation of spatial and temporal gradients without any
approximations. Therefore, the learning signal Lt

l of OSTL,
stated in (25), is defined as the exact gradient signal from
the output layer w.r.t. all layers of the network. In contrast,
E-prop mostly focuses on single-layer networks and defines
the learning signal following the general form given
in [13, eq. (4)]

Lt
E-prop = B

(
yt − y∗,t

)
(33)

where B, depending on the variant of E-prop, is either the
matrix of output weights or a random weight matrix. The
difference of the learning signal is especially predominant in
the case of a deep network, where in E-prop every neuron
in each layer is required to have a direct connection to the
output layer, while the learning signal of OSTL is defined for
every neuron, even in layers without a direct connection to the
output layer.

V. RESULTS

We evaluated the performance of OSTL on four tasks:
music prediction, handwritten digit classification, language
modeling, and speech recognition. For each task, we compared
the accuracy of OSTL with that of BPTT-based training
and to E-prop, where possible. To ensure repeatability of all
results, we performed simulations with five random network
initializations and report their mean and standard deviation.
In all our runs, the fixed random feedback matrix in OSTL
rnd and in E-prop was initialized with random numbers
according to an univariate Gaussian distribution with mean
μ = 0 and variance var = 1. We also evaluated a symmetric
variant of E-prop (E-prop symm), which uses the same output
matrices for the forward and the backward pass [13]. In all
our experiments involving SNUs, i.e., h(x) = �(x), we use
the pseudoderivative d�(x)/dx = 1 − tanh2(x).

A. Music Prediction

For the music prediction task, we used the JSB dataset [32]
with the standard training/testing data split, i.e., 229 music
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TABLE I

COMPARISON OF OSTL WITH ALGORITHMS FROM THE LITERATURE. THE COMPLEXITIES CORRESPOND TO A SINGLE PARAMETER
UPDATE IN SINGLE-LAYER NEURAL NETWORKS. FOR ALGORITHMS EXTENDABLE TO K -LAYERED NETWORKS,

THE MEMORY AND TIME COMPLEXITY SCALE LINEARLY WITH K

pieces for training and 77 for testing. As shown in Fig. 3(a),
we employed a network architecture comprising a single
layer with 150 units and a stateless output layer of 88 sig-
moid units. In particular, we analyzed a feed-forward SNU
layer configured to h(x) = �(x), g(x) = �(x) and d = 0.4,
a feed-forward sSNU layer configured to h(x) = σ (x), g(x) =
max(0, x) = ReL(x) and d = 0.8, and a standard LSTM
layer. The assessment was performed based on the common
approach for JSB to report the negative log-likelihood, whose
lower values correspond to a higher quality of predictions.
We used the standard stochastic gradient descent optimizer
and trained with BPTT, OSTL, OSTL w/o H , E-prop symm,
OSTL rnd, and E-prop for at least 100 epochs, or until the test
performance did not improve for more than 15 epochs. For
OSTL and its variants, we investigated learning rates between
10−5 and 10−2. Our final results were obtained using learning
rates of 0.0005, 0.0001, and 0.0003 for the SNU, sSNU, and
LSTM network, respectively.

Fig. 3(b) summarizes the results obtained with the vari-
ous training algorithms applied to the three considered net-
work architectures. OSTL achieved results on par with those
obtained with BPTT, thereby empirically validating the BPTT-
gradient equivalence. Importantly, for the JSB task, OSTL
provides a low-complexity O(n2) formulation for the SNU
architecture.

Although the formulations of OSTL and E-prop symm differ,
and the latter does not yield equivalent gradients, as explained
in Section IV, the performance on this task was comparable.
However, for approaches using a random feedback matrix,
i.e., OSTL rnd and E-prop, the negative log-likelihood metric
deteriorated consistently across LSTMs, sSNUs, and SNUs.

B. Handwritten Digit Classification

The handwritten digit classification task involved the
MNIST dataset [33] with the standard training/testing split,
i.e., 60 000 digits for training and 10 000 digits for testing. The
gray values of the digits’ pixels were transformed into spike
rates using the same procedure as presented in [10] with Ns =
20. Fig. 4(a) shows the employed deep feed-forward network

Fig. 3. Music prediction based on the JSB dataset. (a) Network architecture
comprising a single layer of LSTMs, sSNUs, or SNUs with 150 units and a
stateless output layer with 88 sigmoid units. (b) Negative log-likelihood, the
lower the better, of the different network configurations trained with BPTT,
OSTL, OSTL w/o H , E-prop symm, and E-prop. Note that the O(·) time
complexity is given at the base of the bars.

architecture comprising three layers with 256, 256, and ten
units, respectively. In particular, we used SNUs configured to
h(x) = �(x), g(x) = αx if x < 0 and g(x) = x if x ≥ 0,
i.e., LReLα(x) with α = 0.01 and d = 0.9 and sSNUs config-
ured to h(x) = σ (x), g(x) = LReLα(x) (leaky rectified linear
function) with α = 0.01, and d = 0.9. During training, the
correct digit label was provided at the last time step only. Thus,
this setup is particularly challenging for training algorithms,
because the loss function is zero in all time steps, except for
the last one. We used the standard stochastic gradient descent
optimizer and trained for 100 epochs with BPTT, OSTL,
E-prop symm, and E-prop. For OSTL, we investigated learning
rates between 10−3 and 0.5. Our final results were obtained
using learning rates of 0.15 and 0.2 for the sSNU and the SNU
configuration, respectively. The test classification accuracy,
whose higher values correspond to a better classification, was
calculated based on a commonly used approach, in which the
average spiking rate for all time steps is considered, and the
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Fig. 4. Handwritten digit classification based on the MNIST dataset.
(a) Network architecture comprising three layers of sSNUs or SNUs with
256, 256, and Ten units, respectively. (b) Classification accuracy, the higher
the better, of the networks trained with BPTT, OSTL, E-prop symm, and
E-prop. Note that the O(·) time complexity is given at the base of the bars.

digits from the test set are transformed into spike rates for an
extended testing period of Ns = 300 in our case.

The results in Fig. 4(b) show that OSTL is able to cope
with the time delay of the nonzero learning signal. Moreover,
this task illustrates the low-complexity formulation of OSTL
for deep feed-forward SNNs, i.e., O(K n2). Although this
OSTL formulation omits the residual term R, OSTL achieved
competitive classification accuracy to the BPTT baseline.

Despite extensive hyperparameter search, in many cases,
E-prop had stability issues when applied to the SNUs, leading
to increased variance or deteriorated accuracy.

C. Language Modeling

As the third task, we investigated language modeling based
on the Penn Tree Bank (PTB) dataset [34]. This dataset
comprises sequences of words corresponding to English sen-
tences from the Wall Street Journal, restricted to the most
frequent 10k tokens and split into training, validation, and
test subsequences with around 930k, 74k, and 82k tokens,
respectively. As shown in Fig. 5(a), the employed architecture
comprises a fully connected layer of 10 000 units for embed-
ding, three layers of 1300 sSNUs, configured to h(x) = σ (x),
g(x) = �(x) and d = 0.4, and a softmax output layer of
10 000 units. The weights of the softmax were tied to the
input embeddings. We trained a feed-forward architecture of
sSNUs and recurrently connected sSNUs. In order to avoid
overfitting, we used gradient clipping with a ratio of 3.5.
We used the standard stochastic gradient descent optimizer,
where the initial learning rates were multiplied by a factor
of 0.5 at each epoch after the fourth epoch. For OSTL,
we investigated learning rates in the range of 10−2 and 1.0.
Our final results were obtained with an initial learning rate
of 1.0 for BPTT and 0.08 for OSTL. For BPTT, we used
a truncation horizon of T = 20 words. The assessment was
performed based on the perplexity metric, whose lower values
correspond to a higher quality of predictions.

In addition, in this difficult task, OSTL achieved competitive
performance compared with BPTT, see Fig. 5(b). Extending
the architecture with recurrent connections led to an overall

Fig. 5. Language modeling based on the Penn Tree Bank dataset.
(a) Network architecture comprising a fully connected layer of 10 000 units for
embedding, three layers with 1300 each of sSNUs and SNUs, and a softmax
output layer of 10 000 units. (b) Test perplexities, the lower the better, for the
two network architectures trained with BPTT and OSTL. Note that the O(·)
time complexity is given at the base of the bars.

Fig. 6. Speech recognition based on the TIMIT dataset. (a) Network
architecture comprising one, two or three layers with 200 units each of
LSTMs, sSNUs, or feed-forward SNUs, and a softmax output layer of 39 units.
(b) Error rate, the lower the better, of OSTL, BPTT, and truncated BPTT with
truncation horizons T . (c) Error rate of the various network architectures and
training algorithms. Each three consecutive bars in a group represent one-,
two-, and three-hidden-layer architectures, respectively. Note that the O(·)
time complexity is given at the base of the bars.

improvement of the test perplexity for BPTT and OSTL.
However, the improvement was larger for BPTT than for
OSTL w/o H which uses approximate recurrent gradients.
This suggests that this task involves a complex temporal
structure that benefits from using accurate gradients for the
recurrent connections.

It is important to note that this deep architecture cannot be
trained with E-prop because weight tying cannot be used when
every hidden layer is connected to the output layer.

D. Speech Recognition

Finally, we considered an application to speech recognition
based on the TIMIT dataset [35]. To this end, we used the
same data preprocessing, as described in [36], but instead of
61 output classes, we used the reduced set of 39 output classes.
We employed network architectures with 39 input neurons, and
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either one, two, or three hidden layers of 200 sSNUs, feed-
forward SNUs or LSTM units, and a softmax output layer of
39 units, as shown in Fig. 6(a). The sSNUs were configured to
h(x) = σ (x), g(x) = �(x), and d = 0.4 and the feed-forward
SNUs configured to h(x) = �(x), g(x) = �(x), and d = 0.4.
The assessment was done based on the phoneme error rate,
whose lower values correspond to a higher quality of speech
recognition. For OSTL, we investigated learning rates between
10−5 and 10−2. Our final results were obtained using learning
rates of 0.00057 for LSTMs, 0.00083 for sSNUs and 0.008 for
the SNUs, respectively. We used the RMSProp optimizer with
a decay of 0.95, an epsilon of 10−8 and trained for 24 epochs
with BPTT, truncated BPTT (TBPTT), OSTL, and E-prop.

We first note that this task requires capturing long temporal
dependencies between the inputs and the outputs, which is
especially challenging for TBPTT. TBPTT reduces the amount
of information that needs to be stored by splitting the input
stream into shorter segments and by updating the parameters
of the network after each segment [37]. Therefore, TBPTT
encounters learning deficiencies in tasks, where there are long
time lags between the network activity and the feedback from
the environment. We analyzed this by varying the truncation
horizon T = {10, 30, 50, 90}. The performance of TBPTT was
then compared with OSTL and BPTT with complete unrolling,
see Fig. 6(b). The decreasing performance of TBPTT with
shorter truncation horizons T indicates that the substantial
overhead of unrolling the network far into the past cannot
be avoided for this temporal dataset. OSTL, in contrast,
despite the lack of full BPTT-equivalence for this network
architecture, demonstrates competitive performance without
unrolling.

We extensively investigated BPTT, OSTL, E-prop, and their
variants. In particular, we investigated whether the training
algorithms could cope with an increasing number of hidden
layers, whether OSTL can provide competitive performance
while omitting the recurrent matrix H, thus significantly
reducing the complexity and what effects are caused by the
nonexact nature of E-prop. The detailed results of these studies
are presented in Fig. 6(c). First, we found that the gradient
equivalence of OSTL and BPTT is again empirically validated
by comparing the results of the 1L network architectures.
Second, OSTL is capable of dealing with multiple layers and
the performance improves similar to the BPTT baseline. Third,
despite omitting the recurrent matrix H for the eligibility
traces, OSTL w/o H does not suffer significant performance
degradation, while the time complexity is reduced substantially
to O(K n2). These results demonstrate the importance of an
explicit derivation of online learning algorithms for deep
network architectures, as provided by OSTL.

VI. CONCLUSION

OSTL is a novel online learning algorithmic framework,
whose basic form provides gradients equivalent to those of
BPTT and RTRL with deferred updates. However, in contrast
to these algorithms, it specifically focuses on the biologically
inspired separation of spatial and temporal gradient compo-
nents, which facilitates studies of credit assignment schemes

and further development of approximate online learning algo-
rithms. In particular, OSTL lends itself to efficient online
training of K -layer feed-forward SNU-based networks with
time complexity of O(K n2), where the update of the synaptic
weights is decomposed into a learning signal and an eligibility
trace. Even more so, it enables online training of shallow
feed-forward SNNs with BPTT-equivalent gradients and time
complexity of O(n2). Moreover, in the case of recurrent
single-layer SNNs by omitting the influence of the H matrix
in the eligibility traces the complexity remains at O(n2),
without substantial loss in performance. Finally, OSTL has
been further generalized to deep RNNs comprising spiking
neurons or more complex units, such as LSTMs and GRUs,
demonstrating competitive accuracy in comparison with BPTT.
The proposed algorithmic framework allows efficient online
training for temporal data and opens a new avenue for the
adoption of trainable recurrent networks in the low-power IoT
and edge AI devices.

APPENDIX A

Table II contains a glossary of symbols and notations.

APPENDIX B
DETAILED DERIVATIONS OF OSTL FOR SNNS

A. BPTT Gradient Equivalence for Single-Layer Networks

The state and the output equations (1) and (2) of a
single-layer spiking neural network (SNN) can be generalized
to

st = ψ
(

yt
0, st−1, yt−1, θ

)
yt = χ t

(
st , θ

)
.

The starting point for the derivation is the calculation of the
derivative of the loss function E with respect to the parameters
θ . Based on the chain rule, we express dE/dθ as

dE

dθ
=

∑
1≤t≤T

∂ Et

∂ yt

(
∂ yt

∂ st

dst

dθ
+ ∂ yt

∂θ

)
. (34)

We will prove that

dst

dθ
=

∑
1≤t̂≤t

⎛
⎝ ∏

t≥t ′>t̂

dst ′

dst ′−1

⎞
⎠(

∂ s t̂

∂θ
+ ∂ st̂

∂ yt̂−1

∂ yt̂−1

∂θ

)
. (35)

To validate the equality in (35), we resort to a proof by
induction. The induction basis for the first step of t = 1 for
the left-hand side becomes

dst

dθ

∣∣∣∣
t=1

= ds1

dθ
= ∂ s1

∂θ
(36)

and for the right-hand side

∑
1≤t̂≤t

⎛
⎝ ∏

t≥t ′>t̂

dst ′

dst ′−1

⎞
⎠(

∂ st̂

∂θ
+ ∂ st̂

∂ yt̂−1

∂ yt̂−1

∂θ

)∣∣∣∣∣∣
t=1

=
∑

1≤t̂≤1

(
∂ st̂

∂θ
+ ∂ st̂

∂ yt̂−1

∂ yt̂−1

∂θ

)
= ∂ s1

∂θ
. (37)
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TABLE II

GLOSSARY OF COMMONLY USED SYMBOLS AND NOTATIONS

Having verified the induction basis, the induction step needs
to be investigated

dst+1

dθ

= dst+1

dst

dst

dθ
+ ∂ st+1

∂ yt

∂ yt

∂θ
+ ∂ st+1

∂θ
(38)

= dst+1

dst

⎛
⎝ ∑

1≤t̂≤t

⎛
⎝ ∏

t≥t ′>t̂

dst ′

dst ′−1

⎞
⎠(

∂ st̂

∂θ
+ ∂ s t̂

∂ yt̂−1

∂ yt̂−1

∂θ

)⎞
⎠

+∂ st+1

∂ yt

∂ yt

∂θ
+ ∂ st+1

∂θ

=
⎛
⎝ ∑

1≤t̂≤t

⎛
⎝ ∏

(t+1)≥t ′>t̂

dst ′

dst ′−1

⎞
⎠(

∂ st̂

∂θ
+ ∂ st̂

∂ yt̂−1

∂ yt̂−1

∂θ

)⎞
⎠

+∂ st+1

∂ yt

∂ yt

∂θ
+ ∂ st+1

∂θ

=
∑

1≤t̂≤(t+1)

⎛
⎝ ∏

(t+1)≥t ′>t̂

dst ′

dst ′−1

⎞
⎠(

∂ st̂

∂θ
+ ∂ st̂

∂ yt̂−1

∂ yt̂−1

∂θ

)
.

(39)

By comparing (39) with the hypothesis in (35) for t + 1,
it is evident that this induction step is also fulfilled, which
completes the proof.

Therefore, we can expand (4) to

dE

dθ
=

∑
1≤t≤T

∂ Et

∂ yt

⎛
⎝∂ yt

∂ st

∑
1≤t̂≤t

⎛
⎝ ∏

t≥t ′>t̂

dst ′

dst ′−1

⎞
⎠

(
∂ st̂

∂θ
+ ∂ st̂

∂ yt̂−1

∂ yt̂−1

∂θ

)
+ ∂ yt

∂θ

)
. (40)

We now analyze the term ((dst )/(dθ)) in (35). At time t + 1,
the term ((dst+1)/(dθ)) can be obtained by multiplying
((dst)/(dθ)) by ((dst+1)/(dst )) and adding the term
(((∂ st+1)/(∂ yt ))((∂ yt)/(∂θ)) + ((∂ st+1)/(∂θ))), and thus,
we obtain (38). This leads to the following recursive

reformulation of (35)

dst

dθ
=

(
dst

dst−1

dst−1

dθ
+

(
∂ st

∂θ
+ ∂ st

∂ yt−1

∂ yt−1

∂θ

))
. (41)

We define the eligibility tensor εt,θ to be

εt,θ := dst

dθ
(42)

which can also be recursively expressed as

εt,θ =
(

dst

dst−1
εt−1,θ +

(
∂ st

∂θ
+ ∂ st

∂ yt−1

∂ yt−1

∂θ

))
. (43)

Note that this equation corresponds to (6) of the main text for
a single layer. In the case of t = 1, the eligibility tensor has
the special form

ε1,θ = ds1

dθ
= ∂ s1

∂θ
. (44)

Next, we rewrite (40) using (43) as

dE

dθ
=

∑
1≤t≤T

∂ Et

∂ yt

(
∂ yt

∂ st

(
dst

dst−1
εt−1,θ

+
(

∂ st

∂θ
+ ∂ st

∂ yt−1

∂ yt−1

∂θ

))
+ ∂ yt

∂θ

)

=
∑

1≤t≤T

Lt

(
∂ yt

∂ st

(
dst

dst−1
εt−1,θ

+
(

∂ st

∂θ
+ ∂ st

∂ yt−1

∂ yt−1

∂θ

))
+ ∂ yt

∂θ

)

=
∑

1≤t≤T

Lt

(
∂ yt

∂ st
εt,θ + ∂ yt

∂θ

)

=
∑

1≤t≤T

Lt et,θ (45)

where we define the eligibility trace et,θ and the learning signal
Lt as

et,θ := d yt

dθ
= ∂ yt

∂ st
εt,θ + ∂ yt

∂θ
(46)

Lt := ∂ Et

∂ yt
. (47)
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We have shown that dE/dθ can be calculated as the sum of
products of a learning signal (47), and an eligibility trace (46)
without loss of generality. Thus, this proves that for a single
layer of recurrently connected SNNs, online spatio-temporal
learning (OSTL) provides gradient equivalence to backprop-
agation through time (BPTT). Furthermore, this equivalence
is preserved even if this recurrent layer is embedded in a
deep network architecture comprising an arbitrary number of
stateless layers, see Appendix D.

B. Derivation of OSTL for Deep Recurrent Networks

We now turn to the more general case of a deep network,
where the state and output equations are as follows:

st
l = ψ

(
st−1

l , yt−1
l , yt

l−1, θ l
)

(48)

yt
l = χ

(
st

l , θ l
)

(49)

see Section III of the main text.
Using this reformulation, (4) is generalized as follows:

dE

dθ l
=

∑
1≤t≤T

dEt

dθ l
=

∑
1≤t≤T

∂ Et

∂ yt
K

(
∂ yt

K

∂ st
K

dst
K

dθ l
+∂ yt

K

∂θ l

)
. (50)

For the last layer of a deep network, where l = k, (50) corre-
sponds to (4) for a single layer. However, for the hidden layers,
i.e., l 
=k, the term ((dst

K )/(dθ l)) is expanded as follows:
dst

K

dθ l
= ∂ st

K

∂θ l
+ ∂ st

K

∂ st−1
K

dst−1
K

dθ l
+ ∂ st

K

∂ yt−1
K

d yt−1
K

dθ l
+ ∂ st

K

∂ yt
K−1

d yt
K−1

dθ l

dst
K

dθ l
= ∂ st

K

∂ st−1
K︸ ︷︷ ︸

Temporal

⎛
⎜⎜⎜⎝∂ st−1

K

∂θ l
+∂ st−1

K

∂ st−2
K

···+ ∂ st−1
K

∂ yt−1
K

···+ ∂ st−1
K

∂ yt
K−1︸ ︷︷ ︸

Spatial

...

⎞
⎟⎟⎟⎠+ ∂ st

K

∂ yt−1
K

(
∂ yt−1

K

∂θ l
+∂ yt−1

K

∂ st−1
K

...

)

+ ∂ st
K

∂ yt
K−1︸ ︷︷ ︸

Spatial

⎛
⎜⎜⎜⎜⎝

∂ yt
K−1

∂θ l
+∂ yt

K−1

∂ st−1
K−1︸ ︷︷ ︸

Temporal

...

⎞
⎟⎟⎟⎟⎠. (51)

As one can readily see, there are cross-layer dependencies
involved, for example, through the terms ((∂ st−1

K )/(∂ yt
K−1))

and ((∂ st
K )/(∂ yt

K−1)).
Similar to the case of a single-layer network we derived

earlier, we also separate the gradient into an eligibility trace,
which contains only temporal components, and into a learning
signal, which contains only spatial components. Therefore,
we define the recursive term ε

t,θ l
m,l as

ε
t,θ l
m,l := dst

m

dθ l
(52)

ε
t,θ l
m,l = ∂ st

m

∂ st−1
m
ε

t−1,θ l
m,l + ∂ st

m

∂ yt−1
m

(
∂ yt−1

m

∂ st−1
m
ε

t−1,θ l
m,l + ∂ yt−1

m

∂θ l

)

+ ∂ st
m

∂ yt
m−1

(
∂ yt

m−1

∂ st
m−1

ε
t,θ l
m−1,l + ∂ yt

m−1

∂θ l

)
+ ∂ st

m

∂θ l
(53)

with the following properties:

ε
t,θ l
l := ε

t,θ l
l,l (54)

= ∂ st
l

∂ st−1
l

ε
t−1,θ l
l

+ ∂ st
l

∂ yt−1
l

(
∂ yt−1

l

∂ st−1
l

ε
t−1,θ l
l + ∂ yt−1

l

∂θ l

)
+ ∂ st

l

∂θ l

=
(

dst
l

dst−1
l

ε
t−1,θ l
l +

(
∂ st

l

∂θ l
+ ∂ st

l

∂ yt−1
l

∂ yt−1
l

∂θ l

))
(55)

et,θ l
l := d yt

l

dθ l
=

(
∂ yt

l

∂ st
l

ε
t,θ l
l + ∂ yt

l

∂θ l

)
ε

t<1,θ l
m,l = 0, ε

t,θ l+1

l,l+1 = 0, εt,θ l<1
m,l<1 = 0, εt,θ l

m<1,l = 0. (56)

Because the definition in (54) coincides with the eligibility
trace in (6), we refer to ε

t,θ l
l,m as the generalized eligibility

tensor. The term ε
t,θ l
m,l for m 
= l and l 
= k contains a recursion

in time, i.e., it depends on ε
t−1,θ l
m,l , similarly as (41), but

additionally it contains a recursion in space, i.e., it depends
on other layers through εt,θ l

m−1,l .
If we insert the term ε

t,θ l
m,l from (53) into (50)

dE

dθ l

=
∑

1≤t≤T

∂ Et

∂ yt
K

(
∂ yt

K

∂ st
K

ε
t,θ l
K ,l + ∂ yt

K

∂θ l

)
(57)

dE

dθ l

=
∑

1≤t≤T

(
dEt

d yt
K

(
∂ yt

K

∂ st
K

∂ st
K

∂ st−1
K

ε
t−1,θ l
K ,l

+∂ yt
K

∂ st
K

∂ st
K

∂ yt−1
K

(
∂ yt−1

K

∂ st−1
K

ε
t−1,θ l
K ,l + ∂ yt−1

K

∂θ l

)

+ ∂ yt
K

∂ st
K

∂ st
K

∂ yt
K−1

(
∂ yt

K−1

∂ st
K−1

ε
t,θ l
K−1,l +

∂ yt
K−1

∂θ l

)

+∂ yt
K

∂ st
K

∂ st
K

∂θ l

)
+ ∂ yt

K

∂θ l

)
(58)

the two recurrencies — ε
t,θ l
K−1,l in space, and ε

t−1,θ l
K ,l in

time—become apparent. Therefore, it can be seen that when
expanding εt,θ l

K−1,l far enough in space, eventually terms involv-
ing εt,θ

l,l = ε
t,θ l
l are reached. We isolate the components involv-

ing only layer l, which allows us to rewrite (58) as

dE

dθ l
=

∑
1≤t≤T

⎛
⎝ dEt

d yt
K

⎛
⎝ ∏

(K−l+1)>m≥1

∂ yt
K−m+1

∂ st
K−m+1

∂ st
K−m+1

∂ yt
K−m

⎞
⎠

(
∂ yt

l

∂st
l

ε
t,θ l
l + ∂ yt

l

∂θ l

)
+ R

⎞
⎠. (59)

Note that all remaining terms were collected into a residual
term R explicitly expressed in (10) of the main text.
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In addition, we define a generalized learning signal Lt
l and

a generalized eligibility trace et,θ l
l as

Lt
l = ∂ Et

∂ yt
K

⎛
⎝ ∏

(K−l+1)≥m≥1

∂ yt
K−m+1

∂ st
K−m+1

∂ st
K−m+1

∂ yt
K−m

⎞
⎠ (60)

et,θ l
l =

(
∂ yt

l

∂ st
l

ε
t,θ l
l + ∂ yt

l

∂θ l

)
(61)

see (8) and (9) of the main text. This allows to express the
parameter update as

dE

dθ l
=

∑
1≤t≤T

[
Lt

l e
t,θ l
l + R

]
(62)

see (7) of the main text.
Finally, by omitting the residual term R, we arrive at the

simplified approximate expression of OSTL for deep recurrent
networks, given in (12) of the main text.

APPENDIX C
COMPLEXITY ANALYSIS

In this section, we investigate the computational complexity
of OSTL for a single-SNN layer, where the state and output
equations are given by

st = g
(
W yt

0 + H yt−1 + d · st−1 � (
�− yt−1)) (63)

yt = h
(
st + b

)
(64)

see (1) and (2) of the main text. The majority of the
computations arise from calculating the eligibility tensors as
given in (43). Specifically, the term ((dst )/(dst−1))εt−1,θ is
computationally the most intensive one, as it requires matrix
multiplications. We use the index notation to explicitly investi-
gate the complexity in terms of the number of multiplications
involved. Note that the indices do not indicate a specific layer,
but indicate elements of a matrix. The eligibility tensors are
computed as

εt,θ
opq =

(
dst

o

dst−1
r

εt−1,θ
rpq +

(
∂st

o

∂θpq
+ ∂st

o

∂yt−1
r

∂yt−1
r

∂θpq

))
(65)

εt,θ
opq ∼ dst

o

dst−1
r

εt−1,θ
rpq .

Thus, we observe

εt,θ
opq ∼ O(n) and εt,θ ∼ O

(
n4

)
.

In particular, computing a single value of the eligibility tensor
εt,θ

opq requires O(n) multiplications, where n denotes the num-
ber of units in the layer. Therefore, the total computational
cost of OSTL for shallow SNNs is O(n4) as stated in Table I
of the main text. In case of a deep architecture, this complexity
scales with the number of layers, i.e., O(K n4), where K
denotes the number of layers and n = max1≤l≤K nl denotes the
maximum layer size in the network. However, if we analyze
a feed-forward SNN with the state and output equations

st = g
(
W yt

0 + d · st−1 � (
�− yt−1)) (66)

yt = h
(
st + b

)
(67)

Fig. 7. Execution time of OSTL for various layer sizes.

the eligibility tensor εt,θ
opq reduces to a rank-two tensor, because

the Jacobian ((dst
o)/(dst−1

r )) reduces to a diagonal matrix as

εt,θ
opq = dst

o

dst−1
r

δo,rε
t−1,θ
rpq +

(
∂st

o

∂θpq
δo,q + ∂st

o

∂yt−1
r

δo,r
∂yt−1

r

∂θpq
δr,q

)
(68)

εt,θ
op ∼ dst

o

dst−1
r

δo,rε
t−1,θ
rp ∼ dst

o

dst−1
o

εt−1,θ
op . (69)

Thus, we observe that the number of multiplications is

εt,θ
op ∼ O(1) and εt,θ ∼ O

(
n2

)
.

This implies that OSTL enables training of feed-forward SNNs
with reduced time complexity of O(n2) for shallow and of
O(K n2) for K -layered networks. We empirically verified the
complexity for shallow networks and show the results in Fig. 7.
Note that this analysis holds also for single or multiple layers
of generic recurrent neural networks (RNNs).

APPENDIX D
RECURRENT LAYERS EMBEDDED IN

STATELESS NETWORKS

In many network architectures, a recurrent layer is embed-
ded along with an arbitrary number of nonrecurrent, stateless
layers, for example, a softmax output layer. From the perspec-
tive of OSTL, a stateless layer does not introduce any residual
term R, and therefore, OSTL maintains gradient equivalence
with BPTT even for deep architectures. To demonstrate this,
we consider a deep network consisting of stateless layers, with
the following state and output equations:

st
l = ψ

(
yt

l−1, θ l
)

(70)

yt
l = χ

(
st

l , θ l
)
. (71)

These equations simplify the term ε
t,θ l
m,l from (53) to

ε
t,θ l
m,l = ∂ st

m

∂ yt
m−1

(
∂ yt

m−1

∂ st
m−1

ε
t,θ l
m−1,l + ∂ yt

m−1

∂θ l

)
+ ∂ st

m

∂θ l
. (72)

If we insert this term into (57), we obtain

dE

dθ l
=

∑
1≤t≤T

(
dEt

d yt
K

(
∂ yt

K

∂ st
K

∂ st
K

∂ yt
K−1

(
∂ yt

K−1

∂ st
K−1

ε
t,θ l
K−1,l+

∂ yt
K−1

∂θ l

)

+∂ yt
K

∂ st
K

∂ st
K

∂θ l

)
+∂ yt

K

∂θ l

)
. (73)

By recursively inserting (72) into (73) until K − r = l, most
terms include partial derivatives of the form ((∂ yt

K−r )/(∂θ l))
or ((∂ st

K−r )/(∂θ l)). These terms vanish because the layer
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K − r does not depend on parameters θ l , except when
K − r = l . Therefore, (73) can be written as

dE

dθ l
=

∑
1≤t≤T

⎛
⎝ dEt

d yt
K

⎛
⎝ ∏

(K−l+1)>m≥1

∂ yt
K−m+1

∂ st
K−m+1

∂ st
K−m+1

∂ yt
K−m

⎞
⎠

×
(

∂ yt
l

∂ st
l

ε
t,θ l
l + ∂ yt

l

∂θ l

))
(74)

which is the combination of the generalized learning signal Lt
l

and eligibility trace et,θ l
l without any residual term R, as stated

in (62)

dE

dθ l
=

∑
1≤t≤T

Lt
l e

t,θ l
l . (75)

APPENDIX E
OSTL FOR LONG SHORT-TERM MEMORY

Because long short-term memory (LSTM) units are proba-
bly the most commonly used type of RNN units in contempo-
rary state-of-the-art machine learning applications, we include
an explicit derivation of OSTL for them. An LSTM unit
contains three gates and an internal state. A single layer l,
composed of LSTM units, is governed by the following:

it
l = g

(
Wi

l yt
l−1 + Hi

l yt−1
l + bi

l

)
(76)

ct
l = g

(
Wc

l yt
l−1 + Hc

l yt−1
l + bc

l

)
(77)

f t
l = g

(
W f

l yt
l−1 + H f

l yt−1
l + b f

l

)
(78)

st
l = f t

l � st−1
l + it

l � h
(
Ws

l yt
l−1 + Hs

l yt−1
l + bs

l

)
(79)

yt
l = ct

l � h
(
st

l

)
(80)

where typically g = σ and h = tanh. Note that we reformu-
lated (79) and (80) such that one can immediately see the
resemblance to the generalized form of (48) and (49) of the
main text. By using (8), the eligibility traces for a layer of
LSTM units take the following form:

e
t,Wi

l
l = diag

(
ct

l �h′ y,t
l

)
εt,Wi

l +diag
(
hy,t

l �g′c,t
l

)
Hc

l e
t−1,Wi

l
l

e
t,Hi

l
l = diag

(
ct

l �h′ y,t
l

)
εt,Hi

l +diag
(
hy,t

l �g′c,t
l

)
Hc

l e
t−1,Hi

l
l

e
t,bi

l
l = diag

(
ct

l �h′ y,t
l

)
εt,bi

l +diag
(
hy,t

l �g′c,t
l

)
Hc

l e
t−1,bi

l
l

e
t,W f

l
l = diag

(
ct

l �h′ y,t
l

)
εt,W f

l +diag
(
hy,t

l �g′c,t
l

)
Hc

l e
t−1,W f

l
l

e
t,H f

l
l = diag

(
ct

l �h′ y,t
l

)
εt,H f

l +diag
(
hy,t

l �g′c,t
l

)
Hc

l e
t−1,H f

l
l

e
t,b f

l
l = diag

(
ct

l �h′ y,t
l

)
εt,b f

l +diag
(
hy,t

l �g′c,t
l

)
Hc

l e
t−1,b f

l
l

e
t,Ws

l
l = diag

(
ct

l �h′ y,t
l

)
εt,Ws

l +diag
(
hy,t

l �g′c,t
l

)
Hc

l e
t−1,Ws

l
l

e
t,Hs

l
l = diag

(
ct

l �h′ y,t
l

)
εt,Hs

l +diag
(
hy,t

l �g′c,t
l

)
Hc

l e
t−1,Hs

l
l

e
t,bs

l
l = diag

(
ct

l �h′ y,t
l

)
εt,bs

l +diag
(
hy,t

l �g′c,t
l

)
Hc

l e
t−1,bs

l
l

e
t,Wc

l
l = diag

(
ct

l �h′ y,t
l

)
εt,Wc

l +diag
(
hy,t

l �g′c,t
l

)
ϒ t

l−1

+diag
(
hy,t

l �g′c,t
l

)
Hc

l e
t−1,Wc

l
l

e
t,Hc

l
l = diag

(
ct

l �h′ y,t
l

)
εt,Hc

l +diag
(
hy,t

l �g′c,t
l

)
ϒ t−1

l

+diag
(
hy,t

l �g′c,t
l

)
Hc

l e
t−1,Hc

l
l

e
t,bc

l
l = diag

(
ct

l �h′ y,t
l

)
εt,bc

l +diag
(
hy,t

l �g′c,t
l

)
+diag

(
hy,t

l �g′c,t
l

)
Hc

l e
t−1,bc

l
l

using (43) the eligibility tensors in the above-mentioned equa-
tions become

ε
t,Wi

l
l = dst

l

dst−1
l

ε
t−1,Wi

l
l +diag

(
hs,t

l �g′i,t
l

)
ϒ t

l−1

ε
t,Hi

l
l = dst

l

dst−1
l

ε
t−1,Hi

l
l +diag

(
hs,t

l �g′i,t
l

)
ϒ t−1

l

ε
t,bi

l
l = dst

l

dst−1
l

ε
t−1,bi

l
l +diag

(
hs,t

l �g′i,t
l

)
ε

t,W f
l

l = dst
l

dst−1
l

ε
t−1,W f

l
l +diag

(
st−1

l �g′ f,t
l

)
ϒ t

l−1

ε
t,H f

l
l = dst

l

dst−1
l

ε
t−1,H f

l
l +diag

(
st−1

l �g′ f,t
l

)
ϒ t−1

l

ε
t,b f

l
l = dst

l

dst−1
l

ε
t−1,b f

l
l +diag

(
st−1

l �g′ f,t
l

)
ε

t,Ws
l

l = dst
l

dst−1
l

ε
t−1,Ws

l
l +diag

(
it
l �h′s,t

l

)
ϒ t

l−1

ε
t,Hs

l
l = dst

l

dst−1
l

ε
t−1,Hs

l
l +diag

(
it
l �h′s,t

l

)
ϒ t−1

l

ε
t,bs

l
l = dst

l

dst−1
l

ε
t−1,bs

l
l +diag

(
it
l �h′s,t

l

)
ε

t,Wc
l

l = dst
l

dst−1
l

ε
t−1,Wc

l
l

+
(

diag
(

g′ f,t
l �st−1

l

)
H f

l diag
(

g′c,t−1
l �hy,t−1

l

)
ϒ t−1

l−1

)
+

(
diag

(
hs,t

l �g′i,t
l

)
Hi

l diag
(

g′c,t−1
l �hy,t−1

l

)
ϒ t−1

l−1

)
+

(
diag

(
it
l �h′s,t

l

)
Hs

l diag
(

g′c,t−1
l �hy,t−1

l

)
ϒ t−1

l−1

)
ε

t,Hc
l

l = dst
l

dst−1
l

ε
t−1,Hc

l
l +diag

(
g′ f,t

l �st−1
l

)
H f

l

diag
(

g′c,t−1
l �hy,t−1

l

)
ϒ t−2

l +diag
(

hs,t
l �g′i,t

l

)
Hi

l

diag
(

g′c,t−1
l �hy,t−1

l

)
ϒ t−2

l +diag
(
it
l �h′s,t

l

)
Hs

l

diag
(

g′c,t−1
l �hy,t−1

l

)
ϒ t−2

l

ε
t,bc

l
l = dst

l

dst−1
l

ε
t−1,bc

l
l

+
(

diag
(

g′ f,t
l �st−1

l

)
H f

l diag
(

g′c,t−1
l �hy,t−1

l

)
+diag

(
hs,t

l �g′i,t
l

)
Hi

l diag
(

g′c,t−1
l �hy,t−1

l

)
+diag

(
it
l �h′s,t

l

)
Hs

l diag
(

g′c,t−1
l �hy,t−1

l

))
with

dst
l

dst−1
l

= diag
(
f t

)+diag
(

st−1
l �g′ f,t

l

)
H f

l diag
(

ct−1
l �h′ y,t−1

l

)
+diag

(
hs,t

l �g′i,t
l

)
Hi

l diag
(

ct−1
l �h′ y,t−1

l

)
+diag

(
it
l �h′s,t

l

)
Hs

l diag
(

ct−1
l �h′ y,t−1

l

)
.

We have used the short-hand notation of ((dψ t
l )/(dω

t))=
g′|ψ t

l
=g′ψ,t

l with ψ={i,c,f,s} and ω={ yt−1
l ,θ l}, h(st

l )=
h y,t

l , ((dh(st
l ))/(dst

l ))=h′ y,t
l , h(Ws

l yt
l−1+Hs

l yt−1
l +bs

l )=hs,t
l ,
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and ((dh(Ws
l yt

l−1+Hs
l yt−1

l +bs
l ))/(dω))=h′|Ws

l yt
l−1+Hs

l yt−1
l +bs

l
=

h′ y,t
l . Furthermore, the elements of ϒ t

l are given by (ϒ t
l )opq=

δo,p(yt
l )q .

Considering the mean squared error loss with readout
weights given in (18) of the main text

Et=1

2

nK∑
i=1

((
Wout yt

K

)
i
−(

ŷt
)

i

)2
(81)

the learning signals become

Lt
l

= Lt
l+1

(
diag

(
ct

l+1�h′ y,t
l+1

)
(

diag
(

st−1
l+1�g′ f,t

l+1

)
W f

l+1+diag
(

hs,t
l+1�g′i,t

l+1

)
Wi

l+1

+diag
(

gi,t
l+1�h′s,t

l+1

)
Ws

l+1

)
+diag

(
hs,t

l+1�g′c,t
l+1

)
Hc

l+1

)
with

Lt
K =(

Wout
)�

yt
K − ŷt . (82)

APPENDIX F
OSTL FOR GATED RECURRENT UNIT

OSTL can also be applied to GRUs. To illustrate this,
we start from the state equations

ut
l = g

(
Wu

l yt
l−1 + Hu

l st−1
l + bu

l

)
(83)

vt
l = g

(
Wv

l yt
l−1 + Hv

l st−1
l + bv

l

)
(84)

st
l = ut

l � st−1
l

+(
�− ut

l

) � h
(
Wc

l yt
l−1 + Hc

l

(
vt

l � st−1
l

) + bc
l

)
(85)

where typically g = σ and h = tanh. Note that we reformu-
lated (85) such that one can immediately see the resemblance
to the generalized form of (48) and (49) of the main text.

As one can see, a gated recurrent unit (GRU) does not
have a separate output equation. Therefore, in order to remain
consistent with the previous notation and to apply OSTL,
we introduce a simple output equation

yt
l = st

l (86)

which does not change the behavior of the GRU. The eligi-
bility traces can then be calculated according to (8) as

e
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l
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l

using (43) the eligibility tensors in the equations earlier
become
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with
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We used the short-hand notation of ((dψ t
l )/(dω

t )) = g′|ψ t
l
=

g′ψ,t
l with ψ = {i, v, f, s} and ω = { yt−1

l , θ l}, h(Wc
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Considering again the mean squared error loss from (18),

the learning signals become
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with

Lt
K = (

Wout)�
yt

K − ŷt . (89)
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