This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

A Survey of Hardware Self-Organizing Maps

SlaviSa Jovanovié

Abstract— Self-organizing feature maps (SOMs) are commonly
used technique for clustering and data dimensionality reduction
in many application fields. Indeed, their inherent property of
topology preservation and unsupervised learning of processed
data without any prior knowledge put them in the front of
candidates for data reduction in the Internet of Things (IoT)
and big data (BD) technologies. However, the high computational
cost of SOMs limits their use to offline approaches and makes
the online real-time high-performance SOM processing more
challenging and mostly reserved to specific hardware implemen-
tations. In this article, we present a survey of hardware (HW)
SOM implementations found in the literature so far: the most
widely used computing blocks, architectures, design choices,
adaptation, and optimization techniques that have been reported
in the field of hardware SOMs. Moreover, we give an overview
of main challenges and trends for their ubiquitous adoption as
hardware accelerators in many application fields. This article is
expected to be useful for researchers in the areas of artificial
intelligence, hardware architecture, and system design.

Index Terms— Application-specific integrated circuit (ASIC),
data reduction, field-programmable gate array (FPGA), hard-
ware, real time, self-organizing map, survey, vector quantization.

I. INTRODUCTION

HE self-organizing map (SOM) is a special type of arti-
ficial neural network (ANN) proposed by Kohonen [1].
The SOM is an unsupervised learning algorithm performing a
nonlinear mapping from a given high-dimensional input vector
space to a low-dimensional map of neurons, usually a regular
2-D grid. It acts as a nonsupervised clustering algorithm as
well as a powerful visualization tool, and it has been used
to visualize, interpret, and classify large high-dimensional
data in many application domains, such as economy, industry,
management, sociology, geography, and text mining [2], [3].
Since its proposal, the implementation of the SOM algo-
rithm has been the topic of many research works [4]-[41].
Indeed, different implementations of SOMs have been pro-
posed so far: in software (SW) programmable platforms such
as central processing unit (CPU) [29]-[33], [35]-[37] and
graphics processing unit (GPU) [29]-[35] by using different
programming languages (C/C++ w/wo OpenMP, Python, R,

Manuscript received June 30, 2021; revised November 3, 2021 and
January 15, 2022; accepted February 14, 2022. This work was supported
by JSPS KAKENHI under Grant JP20K11999. (Corresponding author:
Slavisa Jovanovic.)

Slavisa Jovanovi¢ is with CNRS, IJL, Université de Lorraine, 54000 Nancy,
France (e-mail: slavisa.jovanovic@univ-lorraine.fr).

Hiroomi Hikawa is with the Department of Science and Engineering, Kansai
University, Osaka 564-8680, Japan (e-mail: hikawa@Xkansai-u.ac.jp).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3152690.

Digital Object Identifier 10.1109/TNNLS.2022.3152690

, Member, IEEE, and Hiroomi Hikawa

, Member, IEEE

TABLE I
ACRONYMS AND TERMS USED FREQUENTLY IN THIS ARTICLE

SOM Self-Organizing map

HW Hardware

SW Software

ANN Artificial Neural Network

PE Processing Element

LUT Look-Up Table

FPGA Field Programmable Gate Array

CMOS Complementary Metal-Oxide-Semiconductor

ASIC Application Specific Integrated Circuit

GPU Graphics Processing Unit

CPU Central Processing Unit

SoC System-on-chip

NoC Network-on-a-chip

GWS Global Winner Search

WTA Winner-take-all

BMU Best Matching Unit

neuron SOM node

learning phase Weights update through iterations

recall phase BMU search in a learnt SOM map

prototype vector | SOM neuron’s weight after training

codebook SOM neuron weights after training
(all prototype vectors)

learning kernel neighbourhood function

CUDA, and so on) or in dedicated hardware (HW) imple-
mented on field-programmable gate arrays (FPGAs) or in
application-specific integrated circuit (ASICs) by proposing
specific hardware architectures exploiting the inherent paral-
lelism of the SOM algorithm for better performances [4]—-[28].
In applications requiring a large number of neurons (i.e., more
than 10?) and/or processing huge volumes of data (i.e., more
than 10* of samples with dimensions >10?), the SOM algo-
rithm requires significant processing power that often cannot
be provided with the conventional CPU-based computing plat-
forms. In the last decade, as shown in Fig. 1, with a massive
surge of general-purpose computation on GPUs (GPGPU), the
SOM GPU-based implementations have gained an increasing
interest due to their significant speedups with respect to CPU
counterparts, as well as impressive improvements in terms of
performances in comparison with HW SOMs [33]. On the
other hand, the GPU processing power is to the detriment
of the overall energy efficiency (number of operations, i.e.,
connection updates, per second per consumed watt), which
is more than ten times higher for the FPGA-based SOMs,
as reported in [35]. In addition, the substantial parallelism
found in the SOM algorithm with the high energy efficiency is
the main reason to target HW for SOM implementations. This
article gives an overview of the hardware, application-specific
implementations of the SOM algorithm, the most widely used
computing blocks, architectures, design choices, adaptation,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2609-3500
https://orcid.org/0000-0001-6459-7043

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2
107
FPGA, ASIC

@ 10°
a8
=
S
= 10
val
S
<
]
= 104 GPU
"y
~
3
m 1

1074

CPU
1995 2000 2005 2010 2015 2020
Fig. 1. Performance overview of different SOM implementations (in

million of connection updates per second—MCUPS, see Section V-C) (1995-
2021): HW (FPGA and ASIC) implementations (data extracted from [4]-
[28], [35]); GPU implementations (data extracted from [29]-[35]); and CPU
implementations (data extracted from [29]-[33], [35]-[37]).

1 2 3 4 K

input vector T

2 n - » .
= ——directneighbors

e e ® - - .0

TME 43

4@ ® L R
. . . H .

L] - - L] L

L] - - L] -
Lo @ @ @ @

Fig. 2. TIllustration of a 2-D SOM structure: the black nodes represent the
neurons, the grayed area represents the direct neighbors of the neuron K + 3,
and the light gray lines represent the input vector delivery to all neurons.

and optimization techniques that have been reported in the
literature so far in the field of HW SOMs.

The remainder of this article is organized as follows.
Section II describes the original SOM algorithm, while
Section III provides an overview of hardware adaptations of
the original SOM algorithm in all phases (initialization, vector
distance computation, BMU search operation, neighborhood
function, and weight update). Section IV describes the types
of architectures commonly found in hardware implementations
of SOM. In Section V, the methods, tools, datasets, and appli-
cation use cases for validation of hardware SOMs as well as
an overview of their performance measurements are provided.
Open research and challenging problems in the field of HW
SOM implementations are discussed in Section VI. Finally,
Section VII provides the final conclusion of the present survey.
In addition, Table I shows acronyms and terms frequently used
in this article.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Algorithm 1 SOM algorithm [1]

1 SOM Algorithm (G, X)

inputs : The initial set G of neurons with weights ;
The set X of input vectors ¥
output: The set G of trained neurons
2 Initialization (G,parameters);
3 while Stopping criteria not met do
4 for A random Z € X do
5 foreach i € G do
6 | di 2= 1tilly | Distance
7 end Recall
8 c= argrgin(dz) BMU
ic .
9 if (learning) then Learning
10 foreach i € G do
11 €n < hei(i,ic)
12 M — M + €n (T — Min)
13 end
14 end
15 end
16 end
17 return G;

II. BACKGROUND
A. Original Self-Organizing Map Algorithm
The original SOM algorithm proposed by Kohonen is sum-
marized in Algorithm 1. Its starting point is a map of neurons
i € G usually placed in a two-dimensional L x K grid,
as shown in Fig. 2. Every neuron i € G on the map includes
a D-dimensional vector mi; € NP, called the weight vector

i = {pi0s tijts s Hisjs-o s Mip—1} € R°. (1)

The learning phase starts with an appropriate initialization,
where each weight vector’s element u; ; (0 <i < L-K,0 <
Jj < D) is initialized with a random value. In the learning
phase, which is carried out through 4 € N steps or iterations,
the map is trained with a set of training vectors ¥ € X C RP

)_C>={fo,f],...,fj,...,f[)_1}EmD. 2)

At the beginning of each iteration, a training vector X is
delivered to all neurons of the map, as shown with light
gray lines in Fig. 2. In each iteration, all neurons calculate
the distances of their weight vectors m; with respect to the
input vector X. Then, the neuron-C € G that has the closest
weight vector m ¢ to the input vector X is determined from the
calculated vector distances of all neurons

C = argmin(|1¥ — ;). 3

This search for the neuron having the shortest vector distance
is often called a winner-take-all (WTA) or best matching unit
(BMU) operation, while the elected neuron is called winner
or BMU neuron.

In Kohonen’s study [1], the Euclidean metric is used as the
vector distance to find similarities between input X and weight
vectors i

I1F = riills = /G0 — #i0)? + -+ Epot — wip-? @)

After the winner neuron is determined, the weight vectors of
the neurons in its neighborhood are updated toward the input
vector as

it + 1) =it (1) + hei [X(0) — 1 ()] Q)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JOVANOVIC AND HIKAWA: SURVEY OF HARDWARE SELF-ORGANIZING MAPS

TABLE II

TiIME COMPLEXITY OF THE MAIN OPERATIONS OF THE
SOM ALGORITHM [42]

Operations Sequential Tdeal Parallle;ll practice?
© Distance O(nPD°) O(D) O(nD/P%)
2, BMU O(n) O(n) O(log P)°
g Update O(nD) O(D) O(nDJP)
O [Neighbourhood | O(nD) O(1) O(n/P)
g Supply & O(nD) O(1) O(D)
A | Broadcast BMU | O(n) o) O(1)

Total O(nD) O(D +n) | O(log P+ nD/P)

“Best values

bn = LK - the total number of neurons in an L x K map

¢D - the input vector dimension

4P - the number of processing units used for computation
¢Global BMU operation; the associated local BMU with O(n/P)

where r € N represents the discrete-time coordinate and h,;
is the neighborhood function used to find the neighborhood
neurons in the vicinity of the winner neuron whose weights are
updated at the end of an iteration. Originally, the neighborhood
function h; is defined as follows [1]:

|lrc = 7ill
hci = a(t) exp(—W)

where ¢ € R? and 7; € R? are position vectors of the winner
neuron-C and neuron-i, respectively, and a(¢) and o (f) are
learning rate and neighborhood radius, respectively.

After the unsupervised learning with the training vectors,
the SOM builds the weight map representing the quantized
projection of the input vector space, whose probability density
function is represented with the distributed prototype vectors
of the SOM weight map. Moreover, the weights of the SOM
are retained and are used in the recall phase, where only the
winner neuron search is carried out without weight update
(see Algorithm 1). An example of the behavior of a 16 x 16
SOM processing three-dimensional vectors during the learning
phase is shown in Fig. 3. Small red dots distributed in a
triangular shape represent the input vectors, and the larger
blue plots specify weights of neurons, while lines connect
the weights of nearest neighbors’ neurons. Since the weight
vectors are initialized with small values, they cluster at the
origin of the plot, as shown in Fig. 3(a). Weights then gradually
expand in an orderly way through numerous training iterations
(E represents training iterations) until they approximate the
distribution of the input samples. Note that the positional
relationship between neurons in the vector space is maintained
during training. This is possible due to the SOM inherent
topology-preserving nature, which maps input vectors close to
each other in the input vector space onto neighboring neurons
of the SOM.

In the SOM algorithm, during an iteration, each neuron
carries out the vector distance computation and the weight
vector update. These operations are independent between
neurons and can be performed simultaneously (see Algo-
rithm 1). Consequently, this inherent parallelism of the SOM
algorithm makes it suitable for hardware implementations.
Neurons implemented in hardware can work in parallel, while
the neurons in software are executed sequentially. Therefore,

(6)

the hardware-implemented SOM can process its input vectors
more efficiently than the software implemented one. This
efficient computational power is especially desired when the
size of the SOM or the input vector dimension is large. Due
to the parallelism of the algorithm, the more neurons or vector
processing elements (PEs) are implemented in hardware, the
higher performance is obtained. In addition, the number of
neurons implemented in hardware can be increased easily
because they work independently of other neurons. As a result,
the hardware SOM has the potential to provide high scalability.
However, the bottleneck of the SOM algorithm is the winner
search operation, in which the shortest vector distance must be
searched. Indeed, all vector distance values must be compared
to find the shortest one, and various hardware comparison
methods have been proposed so far, as discussed in Section I'V.
Moreover, Table II summarizes the time complexity of the
main operations of the SOM algorithm, for sequential and
parallel implementations as well [42] supports the idea that by
introducing SOM operation-specific hardware, a considerable
gain in overall performances can be obtained.

III. SOM ALGORITHM FOR HARDWARE IMPLEMENTATON

As mentioned earlier, the SOM algorithm is suitable for
hardware implementation because of its inherent parallelism.
However, hardware expensive functions, such as Gaussian
function in the original SOM algorithm, makes the hardware
implementation challenging because the hardware resources
of implementation platforms are limited. Therefore, the SOM
algorithm has been further modified to be more suitable for
hardware implementations.

This section provides an overview of hardware adaptations
of the original SOM algorithm in all phases: initialization,
vector distance computation, BMU search operation, neigh-
borhood function, and weight update (see Table III for the
overall summary).

A. Initialization

Even though, in the original SOM algorithm, it is suggested
to use random initial values for demonstrations purposes,
it turns out that this initialization policy does not necessarily
provide the best performances in terms of convergence speed
to the stationary values and quality of resulting maps [1], [43].
The initialization of SOMs has been widely studied in the
literature [1], [43]-[48]. Basically, two groups for initialization
purposes can be found [1], [44], [45]: random initialization
and linear initialization (often called data-driven initialization).
In the random initialization, the weights of the SOM neurons
are initialized: either by randomly choosing data in the range
of values observed in the input dataset, by randomly selecting
the data from the input datasets, or by randomly choos-
ing the perturbed values around the mean values observed
in the input dataset. In the data-driven or linear initialization,
the input datasets are previously analyzed before initializing
the SOM weights. Different methods can be found in the
literature: based on the data analysis with k-means where input
datasets are projected on the map of the same size in order
to find the cluster centers that are then rearranged with some

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 3.

heuristics to fit the used SOM map [44]; on the statistical
analysis such as principal component analysis (PCA) on
regular grids [47] where largest eigenvectors of the projected
input dataset are chosen; or the same PCA-based analysis with
projection on irregular grids [45], by using connected graphs
to rearrange the most distant elements in the input dataset of
nonvectorial elements [46], or by placing the SOM neurons
on the Hilbert self-similar curves [47]. Akinduko et al. [48]
compared random and PCA-based initialization on quasi-
linear and nonlinear datasets. They concluded that there is
no universal initialization policy giving the best performances
in terms of convergence and quality of obtained results; the
random initialization performs better on nonlinear datasets,
whereas the PCA-based initialization gives better results for
quasi-linear ones.

When the SOMs are implemented in software, as it was
the case in all initialization techniques previously presented,
the weights can be easily programmed. However, the vector
initialization is a burden for the hardware implementation since
it requires additional circuits such as a linear feedback shift
register (LFSR) that provides random values. If a single LFSR
is employed, all vector elements must be initialized one by
one, and thus, a communication link between the initialization
circuit and all neurons is necessary. On the other hand, each
neuron can have its own LFSR. In this case, the global
communication link is not necessary, but all LFSRs must be
differently initialized to generate different values, which thus
breaks modularity of neurons. A weight programmability is
necessary for neurons to modify their weights, but additional
circuits to initialize all weight vector elements increase the
hardware cost of the neurons. Thus, if possible, it is desirable
to omit the initialization of the weight vector.

Kolasa et al. [49] investigated the weight initialization
problem of the hardware SOM by simulations. Comprehen-
sive simulations were carried out for several initialization
strategies with different scenarios, and the result revealed
that the hardware SOMs in many situations could be trained
without any initialization, simply by using zeroed weights.
These results are explained by the influence of the SOM
algorithm’s neighborhood mechanism that in a given learning
cycle stimulates also the activity of the neurons topologically
positioned in a broader vicinity of the winner neuron.

This study was followed by [50] where an efficient initial-
ization of HW SOM neuron weights was investigated. The
obtained results confirmed that the SOM could learn properly
even if the learning process started with zeroed weights.

Weight vectors during training. (a) E =0. (b) E=1. (c) E =3. (d) E = 256.

In addition, in this work, an initialization circuit with full
programmability of the weights was also proposed for the map
without the neighborhood function.

B. Vector Distance Computation

The Euclidean metric is one particular type of a Minkowski
metric that can be considered as a generalization of both
the Euclidean distance and the Manhattan distance. The
Minkowski distance is defined as

D—1 L
DE,m)y =D 1&—wl") .)
i=0
By setting L = 2, the Minkowski distance corresponds to
the Euclidean distance. The Minkowski norm with L = 1 is
known as Manhattan, City block, or Taxicab metric
D-1
Dy@E i)y =D& —uil. ®)
i=0
Since no squaring or square root circuit is required, the
silicon area saving caused by the Manhattan metric is sig-
nificant, and it is well suited for hardware implementation.
Dlugosz et al. [51] investigated the effect of the Euclidean and
Manhattan distances on the learning. The detailed system-level
simulations showed that the Euclidean and Manhattan dis-
tances both lead to similar learning results. Another variant of
the Minkowski distance is the Chebyshev distance (also known
as chessboard distance) that can be obtained with L = oo

D—1

. D—1

Jim. 4§0|@—u,~ |- =max | & — i | . ©)
P

Pena et al. [11] investigated the use of the Chebyshev
distance in HW SOMs and concluded from FPGA synthesis
results that the Manhattan distance outperforms the Chebyshev
one in terms of speed but at the expense of higher HW
resources (bigger chip area).

In the original SOM algorithm, the computed Euclidean
distances of all neurons are compared to find the shortest one.
Even if the square root is not calculated, there is no effect on
the magnitude comparison of the distances. Therefore, another
popular vector distance metric is squared Euclidean distance
because the hardware cost of the square root function is very
expensive

D-1
Ds(¥,) = D (& —).

i=0

(10)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JOVANOVIC AND HIKAWA: SURVEY OF HARDWARE SELF-ORGANIZING MAPS

[66]
Other 1 &)
[27]
[65] [52] [88] [25]
[16] [64] [87] 53] [54]
g 111 Eh F
o] 2 49] [63]
:
Z (23
[19] [40]
jg ”) HE) 76)
o] [18] [22]
- (15] (20] [85]
[23] [69]
8] 90]
[61] [10] [24] [72]
[117 5] 7 [70] [17) [73] [71]
[6] [9) [11] [13] [51] [50] [67]
4] 68] [12] [14] [91] [49] [21] [26]
1995 2000 2005 2010 2015 2020
(A)

Manhattan
Ik
52.7/\/
23.6 ot
4 ler

//

< 164 |73
Squared ;ucl\/ uclidean distance
distance - || - ||2 -1l

(B)

Fig. 4. Vector distance functions in HW SOM implementations (1995-2021): (a) overview and (b) percentage chart.

(A)
do dy ds
ator

d,
0 1 2 3 i
y 3 Y
o o

Fig. 5. BMU search circuit. (a) Bit serial. (b) Binary tree.

The types of the vector distance that have been used in
the hardware SOMs so far are summarized in Fig. 4 and
Table III. It can be noticed that more than 75% of the used
vector distances in the HW SOMs in the last 25 years (1995-
2021) are the Manhattan, squared Euclidean, and Euclidean
distance. This ongoing trend is also found in the recent
state-of-the-art HW SOM implementations. The last quarter
(“Other” in Fig. 4) is the different attempt to use uncommon
distance metrics for the HW SOM algorithm: modified Ham-
ming distance [52], frequency comparison [25], dot product
cosine [53], inner product [27], count of cycle slips [54], and
SO on.

C. BMU (Winner) Search

In the winner search, often referred to as the BMU or WTA
search operation, the neuron unit that has the closest weight to
the input vector (shortest distance) is searched. In HW SOMs,

this operation is implemented either with analog or digital
BMU circuits.

1) Analog BMU Search Circuit: Different analog hardware
WTA computation circuits have been proposed in the liter-
ature. One of the WTA circuits is MAXNET [55], where
neurons in the network mutually inhibit each other while
activating themselves. Eventually, only one neuron is kept
activated and becomes the winner. Lazzaro et al. [56] proposed
a CMOS WTA circuit, where signals are represented as analog
currents. Osteret al. [57]examined analytically the ability
of a spike-based WTA network. Similarly, other examples
of spiking WTAs with temporal coding have been reported
in [58]-[60].

2) Digital BMU Search Circuit: Among digitally imple-
mented WTAs, a bit-serial parallel minimum search circuit,
shown in Fig. 5(a), is reported in [1]. The bit-serial winner
determination is based on a bit-by-bit comparison of all neu-
rons’ vector distances, performed in parallel. This calculation
requires a global AND operation between all neurons and
feedback to them. The distance of each neuron is loaded
to a shift register and its corresponding flag is set to “1”
at the beginning of the search operation. All the neurons in
the network, in particular the most significant bits (MSBs) of
their shift registers, are sequentially connected through AND
gates. The AND chain signal becomes low if at least one of
these MSB bits is zero. The bit comparison starts from the
MSB and proceeds through the least significant bit (LSB) by
shifting the register to the left, covering one bit per stage (per
clock). At any stage, the flags of the neurons with MSB =
“1” are reset to zero if one of the MSBs of all the neurons
is zero (the AND chain signal is zero). Otherwise, the flag
is unchanged if it is already zero. Resetting the flag of a
neuron to zero eliminates that neuron from further competition.
After the last stage, only the neurons with shortest distances
are left and their flag is “1.” Therefore, this method takes
L clock periods to complete the search, where L is the bit
length of the distance norm. Similarly, Tamukoh et al. [9]
proposed a WTA circuit, which is a modified version of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6
12 1.2
Gaussian Rectangle
1 1
08 0.8
2086 £06
04 0.4
0.2 0.2
0 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Ire-ril Ire-ril
(a) (B)
12 1.2
Negative powers of two Triangufar
1 1
08 0.8
£06 £06
04 0.4
0.2 0.2
0 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
Ire-ril Ire-ril
(©) (D)
Fig. 6. Neighborhood functions. (a) Gaussian, (b) rectangular, (c) negative

powers of two, and (d) triangular.

bit-serial comparison. The proposed WTA circuit performs a
rough comparison of neurons’ distances in the early stage and
a strict one later, which allows the faster learning in massively
parallel SOM architectures.

Hikawa et al. [23] modified the bit-serial comparison circuit
so that all neurons’ distance bits at the same position are
tested simultaneously without any shift registers. Thus, most
significant bits of the neurons’ distance are excluded from the
winner search. The comparison results indicating whether a
neuron is still a candidate for the winner or not are propagated
to the lower bit through a signal instead of being stored in a
flag register, as it was the case in the bit-serial winner search.
At the LSB position, the neuron having the shortest distance is
determined. This winner search circuit is a pure combinatorial
circuit (no clock), leading though to a longer latency (poorer
performance) of the circuit.

Another popular method of doing fast BMU search is
using several parallel comparators in a binary tree structure.
An example of the binary tree search circuit is shown in
Fig. 5(b). Each comparator is accompanied with two 2-to-1
multiplexers (MUX) whose selection signals are controlled by
the comparator’s output. The winner is selected by tournament
selections, and the multiplexer forwards the shortest distance
and the corresponding neuron ID to the next stage. This
parallel binary-tree BMU search method is implemented as
a global WTA circuit that collects vector distance data from
all the neurons of the map.

Mailachalam et al. [61] compared the bit-serial minimum
and the binary-tree search circuits in terms of the speed,
hardware resources (chip area), and circuit complexities. They
concluded that the binary tree method is faster than the
bit-serial method, allowing to build HW SOMs with better
performances. On the other hand, in terms of needed hardware
resources for their implementation, often presented with the
chip area the designed circuit will have once manufactured,
no difference was found.

The hardware SOM proposed by Hendry et al. [7] employs
a unique winner search circuit. In this method, the distance

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

value stored within each neuron is decreased by one at each
clock cycle until zero is reached. The neuron or neurons, which
first reach zero, candidate themselves to become the winner
by attempting to output their identifier to the global output
bus. Since it is possible that several neurons have the same
minimum distance, the global winner is randomly chosen from
those neurons.

Kurdthongmee [62] proposed a low-latency digital BMU
search circuit for HW SOM quantizers. The general idea is to
use a K-address 1-bit memory, where K corresponds to the
maximal value of distance encountered in a given application
(here color quantization). The 1-bit memory location is used to
indicate whether the corresponding distance is found (“1” or
“occupied”) or not (“0” or “unoccupied”) in a given learning
iteration. At the end, the first “occupied” memory location
starting from the beginning designates the BMU for a given
learning iteration. The index of the first “occupied” memory
location is retrieved with a custom lookup table (LUT)-
based circuit. The proposed BMU search approach reduces
the latency of the overall BMU operation (0.62 times of the
conventional method with comparators and binary tree) to the
detriment of the hardware cost (2x overhead for an FPGA
implementation).

D. Neighborhood Function

A very important feature of the SOM is its topology-
preserving nature, where two adjacent vectors in the input
vector space are mapped onto adjacent neurons on the map.
This topology-preserving nature is realized by the weight
update with the neighborhood function, which affects as well
the performance of the SOM in the recall phase. The original
algorithm uses the Gaussian neighborhood function shown
in (6) and Fig. 6(a). However, the Gaussian neighborhood
function is not suitable for hardware implementation because
of its high hardware cost. Straightforward way to implement
the Gaussian function is to store precomputed values in
a lookup table (LUT). The size of neighborhood depends
on the SOM size, and thus, the memory content that imple-
ments the LUT-based Gaussian function tends to be large,
leading to the need for more hardware resources. Moreover,
the LUT-based neighborhood function requires the use of
multiplier for vector adaptation, which should be avoided due
to its higher hardware cost. Thus, most of the hardware SOMs
use simplified neighborhood functions.

The most simple neighborhood function is a rectangular or
step function, as shown in Fig. 6(b). With this function, only
weight vectors of the neurons within a certain radius R from
the winner neuron are updated with the same update coefficient
o. Since no multiplication is necessary to implement the neigh-
borhood function, the hardware cost for the neighborhood
function is reduced. The works in [5], [7], [15], [52], and [63]
used the rectangular function.

A function, the value of which is restricted to negative
powers of two, is another popular neighborhood function in
HW SOMs. The multiplication can be replaced by a shift
operation because the values are restricted to the negative
powers of two. This function is shown in Fig. 6(c). The

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JOVANOVIC AND HIKAWA: SURVEY OF HARDWARE SELF-ORGANIZING MAPS

87) 53]
NA A [61] [51] [89] [88] [79] [85]
[10] [91] [90] [20]
LUT A
— [16] 167)
',9_7 Other e -
Y Prog
S Step 5]
< 7P /52 f50]
8 Rect. |
= 5] ul 64] 49] [63]
5 66,
2 A4 [65] [81] [50](71][54]
< (4] (14 a9
3 [40]¢ ¢ [28]
z (23], 4[76]
2-54 [73]22]27]
9] [69]
{6 [o1 [11] [13] 18] [24]
8] [12] [70] (17] [21] [26] [72]
1995 2000 2005 2010 2015 2020

(A)

Fig. 7.

multiplication by the neighborhood function is executed by the
right-shift arithmetic operation, and its shift size is determined
by the distance to the winner neuron. As shown in Fig. 7 and
Table III, many hardware SOMs employ the negative-powers-
of-two neighborhood function.

Dlugosz et al. [14], [64] proposed a triangular neighbor-
hood function. As shown in Fig. 6(d), the function value
linearly decreases with the distance to the winner neuron.
The effect of this triangular neighborhood function on the
SOM learning was studied by Hspice simulation [65], [66]
and revealed that it can be successfully used instead of
the Gaussian neighborhood function. Moreover, the sound
performance of the SOM was also confirmed in the cases
where the signal resolution of the neighborhood function was
low. However, the triangular neighborhood function requires
multipliers for its computation, leading to a higher hardware
cost.

The hardware SOM proposed by Pohl et al. [10] is based
on the modular array architecture where neurons exchange
data via a shared bus. In this approach, during each iteration,
the distance value to the winner in every neuron is decreased
by one at each clock cycle. Then, the neuron whose distance
reaches zero takes a value from the shared data bus, which rep-
resents the update coefficient for the neighborhood function.
These values, provided by the bus to all the neurons of the
architecture, are the neighborhood function values previously
precalculated in software and stored in the memory.

The neighborhood function proposed in [16] is realized as a
combination of an update pulse generator and an update pulse
selector. The update pulse generator generates three pulse
signals with different frequencies. The amount of update to
use by the neighborhood function is proportional to the chosen
frequency. Thus, the winner neuron uses the highest frequency
update pulse, whereas its neighboring neurons use the lower
frequency ones. To provide satisfactory learning results, these
frequencies are determined and predefined offline. The neigh-
borhood mechanism used in [17] was implemented in the
similar way, where three precalculated neighborhood function

275 - Neg.
power of 2

40.0

Triang.

Neighborhood functions in HW SOM implementations (1995-2021): (a) overview and (b) percentage chart.

values are broadcast to all the neurons of the map. Each
neuron uses the appropriate value according to its distance to
the winner neuron. In addition, the function values are made
adaptively large to cover the cases where the distance to the
winner neuron is larger than the usual one. Thus, the learning
performance in terms of quantization error is also improved.

Despite the optimizations mentioned above, all hardware
implementations of the SOM presented in the literature are
affected by a common problem, i.e., the performance decreases
with an increasing number of neurons. The winner search oper-
ation, commonly realized with a comparator tree, is the main
reason for this performance degradation (see Section III-C and
Table II). Cardarilli et al. [67] proposed the all winner-SOM
(AW-SOM), a modified version of the SOM algorithm. The
AW-SOM is based on the following idea; if the input vector
is close enough to the winner neuron, the coordinates of the
former can be used directly in the neighborhood function.
Because the AW-SOM does not use the conventional neighbor-
hood function that requires the coordinate of the global winner,
it does not require neither the identification of the winner
neuron, which is the most critical operation in terms of propa-
gation delay. Experimental results show that if the neurons are
initialized using a uniform or random distribution, the results
of AW-SOM and traditional SOM clustering are comparable
in 92% of the cases. The failed cases are related to the bad
position of the clusters with respect to the initial position of
the neuron. In addition, the absence of the comparator tree for
the winner neuron selection considerably improves the system
performance (see Section V-C). On the other hand, because the
topological relations between neurons are not considered and
the winner-based neighborhood function is not used as well,
the topology-preserving nature of the SOM, stated earlier as
one of the pillars of the SOM algorithm, is not guaranteed in
this approach.

The types of the neighborhood functions that are used in
the hardware SOMs are summarized in Fig. 7 and Table III.
It can be noticed that almost a half of the used neighborhood
functions in the HW SOMs in the last 25 years (1995-2021) is

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

¢

daray

(A) (B)

Fig. 8.

e e]
O O

Barrel
shifter

(B)

Fig. 9. Weight update methods with (a) register and (b) memory.

the negative-powers-of-two function, which is also the current
trend in the recent state-of-the-art HW SOM implementations,
followed by triangular (16.7%) and rectangular neighboring
function (11.1%). Some examples of LUT-based [10], [16] or
programmed [25] neighboring functions can also be found as
well as the HW SOMs without neighboring function [67], [68].

E. Weight Vector Update

Hardware SOMs handling low-dimensional vectors, such as
[11], [24], [26], use registers for storing the weight vector
elements. Fig. 9(a) shows an example of weight update circuit
for a single-element vector. This circuit comprises a register,
where the weight value is stored, a barrel shifter for the
neighborhood function, and a 2-to-1 multiplexer to choose if
the weight value needs to be updated or not. The circuit first
calculates (£ — u), which is the difference between the input
and the weight vector element. This difference is then fed to
a barrel shifter that outputs (¢ — u)/29, which is a Q-bit
shifted value to the right of the initial difference. If the signal
S is one, the barrel shifter output is added to the register;
otherwise, no change in the weight value. The values of §
and Q are determined by computing the distance between the
neuron whose weights are updating and the winner one. Con-
sequently, by controlling S and Q, the negative-powers-of-two
neighborhood function is implemented. In addition, to process
D-dimensional vectors, D update circuits are employed to
update D vector elements simultaneously.

On the other hand, in the HW SOMs targeting higher
dimensional vectors, such as [9], [19], [69], a memory block
is often employed to store the weight vector elements. In this
case, a typical update circuit is shown in Fig. 9(b). It can be
noticed that is heavily inspired by the update circuit used for
low-dimensional vectors and presented in Fig. 9(a). The main
difference is the replacement of the register with a memory

| A (Ec) %

Hardware SOM architecture types. (a) Dedicated processor, (b) distributed, (c) systolic array, and (d) modular.

block and the addition of an address generator, whose function
is to provide memory addresses to access all weight vector
elements. In this update circuit, the weight vector elements
are read out sequentially from the memory and are modified
in the same way as in Fig. 9(a).

IV. HARDWARE SOM ARCHITECTURE

As substantial parallelism is found in the SOM algorithm,
various hardware SOM architectures aiming to speed up its
computation and provide better both, learning and recall
performances, have been proposed in the literature. These
hardware SOMs, which employ a high degree of parallel
computation to accelerate the SOM algorithm, are listed in
Fig. 10 and Table III. Typically, four types of SOM computing
architecture, shown in Fig. 8, can be found in the HW SOMs
(see Fig. 10 for percentage chart):

1) dedicated processor;

2) systolic array;

3) distributed;

4) modular architecture.

A. Dedicated Processor

The dedicated processor hardware, shown in Fig. 8(a),
typically consists of computing components dedicated for
the SOM computation. These components are a memory for
storing all weight vectors, a vector distance computing unit,
a WTA unit for the winner search operation, and a component
performing the weight update. Since the SOM computation is
based on the vector arithmetics, the computing units in this
processor (the vector distance and weight update units) can
handle vectors.

Asanovic [4] implemented the SOM algorithm within the
Spert-1I system based on a TO vector microprocessor. The TO
microprocessor includes an MIPS-II compatible RISC CPU
with a 1-kB on-chip instruction cache, a fixed-point vector
coprocessor, and an external memory interface. By making
use of these available parallel computation resources, the SOM
computation was highly accelerated (more than 10x compared
to the state-of-the-art architectures at the time).

Kurdthongmee [70] proposed a color image compres-
sion system based on a hardware SOM, which employs a
rational-numbering system for the codebook and learning ker-
nel. Use of the rational numbering system and approximated
nonlinear learning kernel extends the capabilities of the quan-
tizer. The experimental results proved that the quality of the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JOVANOVIC AND HIKAWA: SURVEY OF HARDWARE SELF-ORGANIZING MAPS

[19] [40]
Scalable A i [zé]z%g]
[6] [0] [13] o
o Modular § : 3
= [15]
=
5 SAA A
3 5] (12] 28]
%
= [68J)
< Dist. 1 2
8]
[10] [11] [74]
[7 [16] (14 [17][73]
Ded. proc. 4 [71[]’.2]
B . 7] . [27]
1995 2000 2005 2010 2015 2020
(A)

Dedicated
processor
16.7
Distributed
367
)) 23:3 Scalable
- 10.0 13.3

Systolic Arm

Modular

(B)

Fig. 10. Architectures in HW SOM implementations (1995-2021): (a) overview and (b) percentage chart.

outcome images is superior to predecessor implementations
with an acceptable throughput and FPGA resource utilizations.

Tanaka et al. [27] developed a single layer of a deep
SOM network and a fully connected neural network (FCNN),
used to mimic the function and structure of the amygdala.
The amygdala is a specific area of the brain associated with
classical fear conditioning. In general, the performance of
deep neural networks (DNNs) is quite reliant on the avail-
ability of large amounts of training data, which is not always
present. The authors tackled this problem by the brain-inspired
amygdala model to achieve computer learning with limited
training data. Hardware for the deep SOM network and the
FCNN was designed and implemented on an FPGA, and the
proposed amygdala model was applied to a robot waiter task
in a restaurant. The experimental results show that the model
learns a customer’s preferences after only a few human-robot
interactions.

Sun et al. [71] presented a hardware platform for accelerat-
ing the SOM algorithm. In the proposed platform, four types of
neuron network topology are supported: 1-D array, 2-D square,
3-D cube, and binary tree. The proposed acceleration circuit
contains eight processing units performing weight update
and distance calculations for eight neurons simultaneously.
It also includes a comparator tree to find the winner neuron.
The proposed accelerator was applied to three applications:
chromaticity diagram learning, labeling of handwritten number
image, and image vector quantization. The functionality of the
proposed platform was proven by MATLAB simulations of
these applications, whereas the hardware cost estimation was
carried out through the FPGA synthesis.

de Sousa et al. [72] proposed an FPGA-based SOM
architecture called SOMprocessor. The proposed architecture
explores two different computational strategies to improve
both the data flow through the processor and its flexibility
to implement different network topologies. The first improve-
ment is achieved by multiplexer components, which supports
alternating processing of neuron sets by the arithmetic cir-

cuits. This strategy provides a more flexible use of the chip,
in which larger networks can be even processed in low-
density FPGAs. The second improvement is the inclusion of a
pipeline architecture for the training algorithm so that different
parts of the circuit could process data at the same time. The
SOMprocessor was applied to a video categorization task,
on the example of human actions video categorization for
autonomous surveillance.

B. Distributed Architecture

The distributed architecture shown in Fig. 8(b) is based
on the use of multiple PEs. Thus, it can be regarded as a
dedicated array processor for the SOM architecture. Also, it is
considered as a massively parallel architecture when a large
number of PEs are included in the array. All PEs perform a
part of the SOM computation in parallel. Global computations,
such as the winner neuron search, are carried out by the PEs,
whereas interconnections propagate the necessary information
throughout the entire structure. Each PE may process multiple
neurons and the highest parallelism is achieved if each PE
processes a single neuron, which also yields the highest
efficiency.

1) Processing Element: The PEs execute the same com-
putation on different data, i.e., weight vectors. Thus, some
researchers, such as [7], [8], [10], employed a single instruc-
tion multiple data (SIMD) processor for flexibility. The same
instructions or commands are generated by a global controller
and fed to the SIMD processors. Hendry et al. [7] presented
their SIMD array for the hardware SOM as a soft IP core so
that the number of neurons, the number of elements per vector,
and the number of bits of each element could be defined by
synthesis time parameters.

Another example is the hardware SOM proposed by
Sudha et al. [68]. They presented a novel hardware architecture
for a 3-D SOM, designed for color quantization. Color quan-
tization is a process of generating a color palette containing a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

limited number of colors from a full-color image and can be
done with the SOM. The generated color palette is afterward
used to reconstruct the image (i.e., for image compression
purpose). Each pixel of the reconstructed image is replaced
with one of the colors from the palette. This process allows to
quantize the initial color of each pixel in the image and thus
reduces the image data size without significantly degrading
the image quality. In the 3-D SOM, the neurons are arranged
as points on a cube with their red, green, and blue axes. The
sequence of operations in the coding phase is controlled by
the instructions generated and propagated by the control unit
of the proposed SOM architecture.

Another approach to build SOM PE is by using dedicated
PE circuits made of hardwired logic circuit defined at the
register transfer level (RTL). Since this approach does not
have to decode the instructions or commands, the higher
performance is yielded at the expense of the overall flexibility.
This type of hardware neurons was used in the hardware
SOMs listed in Table III and labeled as “distributed” in the
“architecture type” column.

2) Interconnection Links: The distributed architecture
requires communication links between the PEs, the controller,
and I/O. Examples of a global bus-based communication
method can be found in [9], [16], [17]. In these approaches,
a global winner search (GWS) operation is commonly carried
out. The GWS circuit collects all weight vector distances from
all neurons, and the global winner is searched and identified.

The works, such as [11], [14], [73], employed the local
interconnection network, in which the PEs are connected with
their direct adjacent neurons. The input vectors are fed to the
SOM through the local links and the winner neuron search
is distributed among groups of neurons by using the local
interconnections. The local winner within a group of direct
neighboring neurons (next to each other) is searched first.
Then, the global winner is determined by comparing the local
winners from all the neuron groups.

de Abreu de Sousa et al. [21] compared three types of
architecture for executing the SOM learning and recall phases:
distributed, centralized, and hybrid. The centralized architec-
ture is defined as the architecture using a central control unit
to collect the distance information from all neurons and for the
BMU search as well. In the distributed architecture, the local
winner of the neighboring neurons is computed and broadcast
to all other neurons. This process is continuously repeated,
and at the end, the global shortest distance value is propagated
through the entire network. The third architecture is a hybrid
model, which is a mix of the two previous architectures. The
FPGA implementations of the three models were compared
to support the system design choices. Results show that the
centralized model outperforms the other models in terms of
chip area occupation and maximum operating clock frequency.

Rodriguez et al. [74] presented the generic iterative grid
principles for distributed computing. The use of the iterative
grid to implement three types of SOMs, i.e., the original
Kohonen SOM (KSOM), the dynamic SOM (DSOM), and
the pruning cellular SOM (PCSOM), was investigated. Due
to the iterative grid, the implementations of those SOMs are
fully decentralized. The behavior of these iterative grid models

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

was simulated and was found to be competitive to centralized
models using the Manhattan distance as the vector distance
metric.

C. Systolic Array Architecture

Based on the distributed PE array structure, previously intro-
duced, some of the HW SOM architectures, such as the works
presented in [5], [12], and [28], employ also the systolic model
of data exchange. For instance, the systolic array proposed by
Kung [75] is a homogeneous network of tightly coupled PEs,
as shown in Fig. 8(c). Each PE independently computes a
partial result using the data received from its neighborhood
PEs in the upstream direction(s), stores the result within
itself, and passes it to its neighboring PEs in the downstream
direction(s). Thus, every PE performs different computation.
In addition, the data path is aggressively pipelined allowing to
increase the overall architecture performances.

Ienne et al. [5] employed the MANTRA I system to
validate the new SOM learning algorithm they proposed. The
MANTRA T system is a massively parallel system based on
the systolic array of up to 1600 PEs. The systolic array at
the heart of the SIMD part of the proposed architecture is a
square mesh of GENES IV PEs, designed in CMOS 1 ym
standard-cell technology. In the original learning algorithm,
the weights are updated after the presentation of every input
vector. On the contrary, in the proposed architecture, the
weight vectors are updated after the presentation of a group of
inputs in a batch fashion. Consequently, the authors proposed a
new weight update algorithm called mantra algorithm, which is
an intermediate between the original and the batch algorithm.
With the mantra algorithm, the winner selection is based on
the batch algorithm, and the weights are updated by using
the original method. It was validated through theory and
simulations that the mantra algorithm performs almost as well
as the original learning algorithm. The main advantage of
the mantra algorithm is its finer grain of parallelism, which
allows it to be used in hardware with a very large number
of processors without compromising the properties of the
algorithm.

Manolakos et al. [12] designed a modular SOM systolic
architecture, described as a soft IP core in a synthesizable
VHDL. The network size, the vectors dimension, the weight
and data element bit width precision, and so on are all tunable
parameters. The proposed array is made of two types of
PEs: the recall mode PE (PER) and the weights update PE
(PEU). An SOM module control unit (MCU) generates all the
necessary control signals for both array columns. The proposed
SOM was implemented on an FPGA and validated on a vector
classification task in real time working on input vectors with
thousands of elements.

Similarly, Ben Khalifa er al. [28] proposed a new SOM
architecture called systolic-SOM (SSOM). The SSOM is based
on the use of a generic model, also inspired by a systolic
movement. In this model, two levels of nested parallelism of
neurons and connections are used. The proposed approach was
validated and its performances were evaluated through several
different SOM networks integrated on an FPGA platform.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JOVANOVIC AND HIKAWA: SURVEY OF HARDWARE SELF-ORGANIZING MAPS

D. Modular Architecture

Problem of the distributed architecture is its expandabil-
ity. In order to increase the number of neurons, the whole
system must be redesigned. The modular architecture shown
in Fig. 8(d) divides the whole SOM hardware into modules.
Each module is usually the distributed architecture SOM (see
Section IV-B), and the number of neurons can be increased
easily by adding new modules. Thus, this approach provides
the expandability to the HW SOM architecture.

Lachmair et al. [15] proposed hardware SOM based on the
modular architecture, called gNBXe. This work is based on
the principles of NBX and gNBX, previously introduced in [6]
and [10], respectively. It consists of a global controller (GC)
and the PEs that are the hardware units performing the
calculations for simulating the neurons. The local controller in
a PE translates the macro commands from the global controller
to the local control signals, allowing the corresponding PE to
perform the calculations related to the neuron specified in the
macro command. Consequently, the system can be extended by
adding the gNBXe modules into the system bus architecture.

Ramirez-Agundis et al. [13] proposed a modular, massive-
parallel, SOM-based vector quantizer for real-time video cod-
ing. The hardware architecture is divided into three sections:
the processing units array, the address generator, and the
control unit. The processing units array is distributed in
modules, with 16 units each and a maximum of 16 modules
(up to 256 neurons). Input vectors are stored in an external
memory. To process one input vector, its elements are read
from the memory and applied to the input of the network,
one element at a time, until the complete vector is scanned.
At the training stage, the scan is done twice. The first scan
is to determine the winner neuron, whereas the second one is
to update the weights. Each module consists of 16 processing
units and a comparator to identify the local winner neuron
inside that module. The control unit determines the global
winner. The maximum frequency obtained after the place and
route was 71.43 MHz when the design was implemented on
an FPGA device.

E. Scalable/Flexible Architecture

A joint research group from the University of Lorraine and
the University of Sousse has proposed hardware SOM archi-
tecture that uses network-on-chip (NoC) communication as
an alternative communication approach [18], [19], [22], [40],
[76]. The NoC is a network-based communication subsystem
and is presented as an alternative to a traditional shared bus
allowing the connection of several PEs on a single chip [77],
[78]. The NoCs enjoy an explicit parallelism, high bandwidth,
and a high degree of modularity, which makes them very
suitable for distributed architectures such as SOM networks.
The common structure of a 2-D mesh NoC is composed of
the same number of PEs and routers. The data are transmitted
among neurons by using packets and well-defined protocols
and routing policy (i.e., wormhole routing and XY routing
algorithm). The architecture can define its communication
links dynamically by programming the packets. Its significant
feature is that the NoC based architecture can perform different

applications in a time-sharing manner by dynamically defining
the use of neurons and their interconnections [76]. The pro-
posed hardware SOM architecture also employs the systolic
way of data exchange through the NoC, which provides high
flexibility and scalability.

Recently, Hikawa [26], [69] proposed a hierarchical archi-
tecture, called nested architecture. In this layered architecture,
the top module is made of four submodules placed in the
second layer, and each submodule is made of smaller sub-
submodules in the third layer. Each module in the bottom layer
is made of four neuron units. Consequently, this architecture
provides high expandability where, only by adding a module,
the number of neurons is quadrupled.

F. Vector Representation

Researchers have been developing hardware SOMs and their
components using digital or analog signals and techniques to
represent the vector element values. Some HW SOM compo-
nents are designed by using different analog techniques (i.e.,
current mode circuits [51] and WTA classifiers [79]). On the
other hand, for a complete HW SOM implementation, all of
the hardware implementations found in the literature so far
employed digital techniques, as summarized in Table III. This
implementation preference can be explained by the fact that
digital implementation can take advantage of the benefits of the
state-of-the-art VLSI and ULSI techniques [80] and powerful
design environment tools and methods, such as the hardware
description languages (HDL) and the easy accessibility of
FPGAs. On the contrary, the primary disadvantage of analog
implementations is low design flexibility even though it can
possibly provide higher speed with lower hardware cost.

1) Analog: As mentioned before, some computing compo-
nents implemented with analog techniques have been reported
so far. However, to the best of our knowledge, no full analog
implementation of SOM can be found in the literature. Here,
the full implementation of SOM is assumed to include both the
learning and the recall capabilities. Indeed, it is hard for the
analog implementations to provide the learning mechanism of
the SOM, where the weight values must be adjusted according
to the input vectors. In addition, it is difficult to build and
design an analog circuit that holds a number of analog weight
values that are also programmable.

Dlogosz et al. [51] proposed analog components for the
SOM, which includes an analog current-mode circuit for
distance calculation between the weight and input vectors
and a new analog programmable neighborhood mechanism,
providing the triangular neighborhood function [64].

Shah et al. [79] presented a vector classifier based on a
vector-matrix multiplier (VMM) and a winner-take-all (WTA)
classifier structure. The proposed classifier was implemented
on a large-scale system-on-chip (SoC) field-programmable
analog array (FPAA). The implemented design is a mixed-
mode system, including the analog classifier data path and the
control circuitry for weight updates which is done with the
microprocessor available on the SoC FPAA.

2) Digital: The most effective solution to design the hard-
ware SOM is to implement the whole system in silicon with

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Other)
88]
Simulation 1 & &
[61] [65] [52] [50]
[64] [49] [71]
;,5 [66]
o) 109 4 5] 8
< CMOS [51]
= @ U By
g [40]
25]
[[]7?]]
23] [72
FPGA A 9o 95
[10] [19] [22] [67]
[(70] [54] [89] [73] [27]
[6] [9] [11] [13] [81] [91] [18] [24] [28]
[68] [16] [12] [14] [15] [17] [21] [26] [69]
1995 2000 2005 2010 2015 2020
(A4)

Fig. 11.

digital technology. As shown in Fig. 11 and Table III, we seem
to have two choices of technologies: complementary metal—
oxide—semiconductor (CMOS) implementation or FPGAs.

The TO processor for the Spert-II vector microprocessor
system that implemented the SOM was fabricated with 1-um
CMOS design rules [4]. Similarly, the GENES IV processor
was designed in CMOS 1-um standard-cell technology, which
is the basic block of the MANTRA I system implementing
the SOM with the mantra algorithm [5]. The NBX processor
was synthesized with the 0.8-ym CMOS standard-cell process
and was used to build the MoNA system to implement the
SOM [8]. Kim et al. [63] implemented their HW SOM with
65-nm CMOS technology, used for electrocardiogram (ECG)
clustering.

Key design issues for the implementation technology are
area, signal delay, and power consumption. The CMOS imple-
mentation is superior to the FPGA in terms of all these design
issues. In contrast, big advantage of the FPGA technology is its
reconfigurability and smaller nonrecurring engineering (NRE)
costs. Use of the FPGA can be viewed as an intermediate
solution between the ASIC and the software approach. In terms
of the area, speed, and power consumption, the recent families
of the major FPGA vendors have been improved significantly,
which has caused a huge increase in their use in the various
hardware designs. Motivated by the high speed and the low
cost of parallel computation, numerous studies have employed
the FPGA technology as the hardware platform to implement
the SOM. As it has been shown in Fig. 11, almost two thirds
of the HW SOM implementations have been implemented by
using the FPGA technology. Moreover, this trend is especially
valid in the last five years.

In digital design techniques, fixed-point binary represen-
tation is usually used to reduce the computing cost and
memory usage, instead of floating-point representation. The
crucial issue of the binary representation is the data size
affecting the obtained precision. In addition, the reduction
of the number of bits has an influence on the circuit size
of the computing components, which significantly affects the

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

FPGA
Other

65.4 /_\/
) 19.2

Simulation

13.

ot

(B)

Technologies in HW SOM implementations (1995-2021): (a) overview and (b) percentage chart.

number of neurons that can be synthesized on a single FPGA
device.

Dlugosz et al. [81] studied the allowable reduction of the
number of bits of some internal signals in an HW SOM
implementation that does not deteriorate the SOM network
behavior. To determine the influence of the bit lengths of
signals on the quality of learning process, a series of sim-
ulations was completed using the accurate software model of
the SOM implemented on an FPGA device. They revealed
that the length of some internal signals can be shortened to
7 bits without disrupting the learning process and deteriorating
the overall quantization error. Consequently, by shortening the
data length of some internal signals, the number of neurons
that can be implemented on a single device increases by 240%
compared to the case where the resolution was unchanged
from 16 bits.

A tristate SOM as a resource-efficient architecture for
implementation on FPGA was proposed by Appiah et al. [52].
The tristate SOM maintains the tristate weights with {0, 1,#}
as the possible values, where “#” represents “don’t care” state.
In addition, a modified version of the Hamming distance is
used to compare input to weight vectors. Since the weight
takes only three states, each state could be represented by a
two-bit binary code.

Kleyko et al. [53] presented a generalization of the tristate
self-organizing maps. In the proposed SOM, weights are
allowed to be updated beyond [—1, 1] to the wider range of
[—x, x]. A clipping function is used as a nonlinear activation
function, which is applied to all weights of each neuron. The
proposed SOM achieves a better accuracy in a classification
task when compared to the original tristate SOM.

3) Pulse-Based Architecture: One of the important objec-
tives in brain modeling is to explain how the organizational
order emerges by itself in the various brain maps. Koho-
nen [82] demonstrated that the SOM has a similar self-ordering
function to that found in the biological brain. In biological
neural systems, information is conveyed by electric pulses.
Neural network hardware architecture that uses pulse signals

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JOVANOVIC AND HIKAWA: SURVEY OF HARDWARE SELF-ORGANIZING MAPS

to perform the neuron’s computation has been proposed
and investigated [83]. A popular approach for implementing
hardware neural networks is a stochastic computation [84].
The advantage of stochastic computing is that the computing
elements can be realized with a smaller circuit than the
conventional arithmetic ones. In stochastic computing systems,
a global clock provides a time interval during which each
weight value is defined. Pulse stream signal and its pulse
density, i.e., probability of the presence of pulse during the
interval, are used to represent a vector value. Thus, various
computations can be implemented with a simple gate circuit.

Moran et al. [85] proposed a novel HW/SW hybrid SOM
implementation using stochastic computing. Several stochastic
block designs were implemented as the squared Euclidean dis-
tance and the WTA similarity check hardware. The proposed
SOM was implemented on a hard processor system (HPS) and
an FPGA. The WTA unit, implemented on the FPGA, carries
out the WTA computation and returns the winning neuron
index to the HPS. Then, software running on the HPS performs
the weight update of all neurons. In this way, the SOM learning
is carried out within a combined HW/SW codesign.

As another pulse-based SOM architecture, Hikawa [16]
proposed a hardware SOM that uses the phase-modulated
pulse signal to represent the weight value of neurons. The
elements of the input and weight vectors are given as the phase
of the input and internal carrier signals, and a digital phase-
locked loop (DPLL) is employed as a computing element
because the operation of the DPLL is very similar to that
of the SOM’s computation. The vector distance is computed
as a phase difference of the two signals, and the winner is
found by the binary-tree type BMU search circuit. Another
DPLL-based SOM is proposed in [86]. It employs a new
WTA method, in which the winner neuron is determined by
the competition between the neurons. In all the neurons, the
similarity of the carrier signals is given as pulse signals. The
accumulation of these pulse signals is carried out within a
digital counter. The neuron whose counter overflows first is
chosen as the winner. To determine the winner, these neurons
compete with each other for the time it takes for the counter
to overflow. The winner neuron then spreads an update pulse
signal, and its frequency is halved when it goes through
other neurons. As a result, the negative-power-of-two type of
neighborhood function is implemented. The proposed winner
search method does not require global communication between
neurons, which makes the architecture scalable.

Hikawa [87] proposed a vector classifier based on the
WTA neural network (WTANN). In the WTANN, its input
and weight vectors are represented by frequencies of carrier
signals, and the weight update is carried out with a digital
frequency-locked loop (DFLL). The winner search operation
is implemented by using frequency comparators distributed
among all neurons, allowing to easily increase the number of
neurons in the proposed approach. In [88], a modified winner
search method is proposed, where a cycle slip detector is
employed to estimate the frequency difference of the signals.
Since the number of cycle slips increases in proportion to the
frequency difference of the two signals, the similarity between
the signals in the frequency is assessed by counting the

cycle slips. A VHDL simulation revealed that accuracy in the
WTA operation of the proposed method is much better than
the frequency comparator-based WTA circuit. However, the
abovementioned WTANNSs are not the classical SOM imple-
mentations since they do the learning without the neighbor-
hood function, thus violating the topology preservation. On the
other hand, the proposed WTANNs were used to test and
demonstrate the use of the frequency-modulated pulse signal in
the WTA function, i.e., vector distance computation and BMU
search. In addition, the use of the frequency-modulated signal
with the DFLL was also adopted to build SOM hardware
in [25]. In the proposed SOM, the vector values are conveyed
by the frequency-modulated signals and the DFLL is used for
the neuron’s computation. For the winner search, a cycle slip
detector is also employed. In [54], this DFLL-based SOM is
improved by employing the triangular neighborhood function.
This function is implemented by using pulsewidth-modulated
signals spread from the winner neuron without multipliers.

G. Off-Chip Learning Architecture

The works listed in Table III can be divided into two
categories: the first category is called on-chip learning where
the learning algorithm is also implemented in hardware; the
second one, called off-chip learning, where the HW imple-
mentations belonging to this category perform only the recall
operation. The recall operation, as shown in Algorithm 1,
requires only the BMU search without the weight vector
update operation. Thus, the vector distance calculation and the
argmin function are only implemented in hardware. In the off-
chip learning approach, weight vectors are trained beforehand,
often by a software running on a computer, and then are loaded
into the hardware to perform the recall operation.

Li et al. [89] developed an SOM-based positioning scheme
for continuous crystal-based PET detector. The SOM training
phase was accomplished off-line by MATLAB software and
the test phase of the scheme was implemented on FPGA.
Similarly, Hikawa et al. [90] proposed a hardware hand sign
recognition system with a hybrid network called SOM-Hebb
classifier. The weight vectors were trained by an off-chip
computer, and the SOM implemented on FPGA performed
the recall function only. Other examples of hardware SOMs
working in the recall mode were proposed by Kurdthong-
mee [91] and Huang er al. [20] for image compression. In the
former work, a memory-based BMU search unit was proposed,
resulting in a reduced final number of colors. In Huang’s work,
a reconfigurable complete-binary-adder-tree (RCBAT), where
the reuse of the employed arithmetic units is possible, was
devised to reduce the hardware usage. In addition, by dis-
tributing the codebook into parallel PE blocks, the proposed
design successfully demonstrated a high compression speed
up to 500 frames/s.

V. IMPLEMENTATION AND APPLICATIONS
A. Implementation Platforms

To demonstrate or investigate the proposed HW SOM
architectures or their computing components, authors use

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

' (4) '
E(B)
(©)

Fig. 12. Color quantization results. Original picture (left), generated
color palette (middle), and reconstructed picture (right). (a) Earth, PSNR =
43.16 dB, (b) Mandrill, PSNR = 32.30 dB, and (c) Parrots, PSNR = 32.82 dB.

various methods and tools, including simulation and/or phys-
ical experimental validations. Some of the works presented
in Fig. 11 and Table III were investigated by simulations
(almost one fifth of the proposed HW SOM implementations).
Among simulation validation tools, we can find examples
of VHDL simulation [87], [88], HSpice simulation [65], and
MATLAB simulation [71]. The simulation verification is very
flexible and useful approach in order to validate the algorithms
or circuits before their physical implementation. On the other
hand, physical experimental verification is the common way
of validating HW SOM implementations, where CMOS and/or
FPGA technologies are targeted (almost 80% of the reported
works in Fig. 11 and Table III).

B. Datasets/Target Applications

Table III summarizes the used datasets and target applica-
tions for validation of the proposed HW SOM architectures:
artificial datasets, image coding and compression experiments,
and classification tasks on publicly available datasets (MNIST,
IRIS, and so on). From Table III, it can be noticed that most
of the proposed HW SOM architectures were validated by
using in-lab artificial datasets, which often represents a simple
dataset to confirm the SOM’s basic functions, such as the
topology-preserving nature.

Many HW SOMs are applied to image coding or image
compression applications. The main reason for this type of
validation is that the obtained results are easily observable.
Indeed, in these applications, the weight vectors are often
represented as colors from the input dataset, which are the used
images. In a true color digital image, each pixel is represented
by R-G-B components, whose intensity is coded with 24 bits
(8 bits per component). Thus, the size of a high-resolution

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

image can be quite large (a number of pixels x 24 bits).
In image compression, the main goal is to reduce the overall
data size of manipulated images for storage or transmission
purposes. One of the methods to compress an image is to
reduce the total number of colors used to code it, which is
commonly called color compression. The color compression
limits the number of colors in an image and can be done
with SOMs. Indeed, by presenting random input vectors (read
pixels) from an image, the SOM selects the best colors from
it by using its vector quantization capability. The result of
this operation is a palette of the limited number of the most
representative colors in the input image. This palette simply
represents the SOM weights of the trained map. To produce the
compressed image, each pixel of the initial image is replaced
with the index of the most similar color from the SOM palette
(obtained through the SOM recall operation). Thus, instead of
using 24 bits to code a pixel, each pixel is coded with the
number of bits necessary to uniquely identify each neuron in
the map (i.e., 8 bits for a 16 x 16 map). An example of the
color compression with an SOM is shown in Fig. 12 [17].
The original image, the color palette consisting of 256 colors
and obtained after training a 16 x 16 SOM network, and
image reconstructed by using the palette colors are shown.
In addition, instead of using only one pixel as the input vector
of the SOM map, B x B blocks of pixels can be presented
as input vectors and quantized by the SOM in the same way
as previously presented. The HW SOMs in [13], [17], [18],
[20], [28], [40], [67], [68], [70], [71], [76], [91] were applied
to the real-time color/image compression.

Another popular application for validation of HW SOMs is
various classification tasks. In [4], a speech coding bench-
mark provided by EPFL was used to measure the train-
ing performance of the proposed SOM. Appiah et al. [52]
applied their HW SOM to recognize handwritten digits. The
authors used the Modified National Institute of Standards and
Technology (MNIST) database [92], which is a database of
handwritten digit images. In this database, each image is a
28 x 28 greyscale image, which can be considered as an input
vector whose dimension is 28 x 28 = 784. An example of
the MNIST data clustering [69] is shown in Fig. 13, where
784-D vectors were mapped onto a lower two-dimensional
16 x 16 SOM. It can be seen that due to the SOM topology-
preserving nature, the same digit characters are assigned to
adjacent neurons. Note also that clusters representing different
digits but similar shape are assigned to neighboring neurons.
In this way, the SOM can be used to visualize relations among
input vectors. Other examples of the use of the MNIST dataset
also for recognition or clustering applications can be found
in [53], [69], [71]. Another example of classification tasks
used to validate an HW SOM architecture is the hand sign
recognition system proposed in [90]. In the proposed system,
preprocessed input images were applied to the off-line trained
SOM used in the recall mode allowing to achieve real-time
hand sign recognition (60 frames/s with a recognition accuracy
of 97.1%). Moreover, the IRIS dataset has also been used for
many statistical classification techniques in machine learning
algorithms and HW SOM validation as well. The IRIS dataset
consists of 50 samples from each of three species of Iris

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JOVANOVIC AND HIKAWA: SURVEY OF HARDWARE SELF-ORGANIZING MAPS

Fig. 13. MNIST clustering example.
107 —
CMOS 35]
FPGA
100 4 Multi-FPGA
105 i [22] (671
[17] [20] 1261179
. 9] [15] [28] [69]
A 10" 4] (13 [24] [23]
) [12] 21 o7
% 103 4 [8] [19]
(7] (18]
[10] [14]
1024 4 (73]
(1] _
10" 4 (5] (54]
0 [16] [25]
10° T T T T T T
1995 2000 2005 2010 2015 2020

Fig. 14. Overview of performances of the HW SOM architectures in million
of CUPS (MCUPS) (1995-2021).

(Iris setosa, Iris virginica, and Iris versicolor). Each sample
consists of four features: the length and the width of the
sepals and petals, in centimeters. Classification performances
of the works in [85], [87] were demonstrated by using the
IRIS dataset. Finally, the mixed-mode classifier proposed by
Shah et al. [79] was trained to identify the sound source,
whether it is a generator, truck, or car.

Another data clustering application based on the SOM’s
vector quantization capability is presented in [15]. Lach-
mair ef al. [15] used hyperspectral image data of the lunar
crater volcanic field (LCVF) in Nevada, taken by NASA’s
AVIRIS sensor for clustering target. Since the LCVF dataset
is fairly large with the high-dimensional vectors (in the
hyperspectral image) and it has complex cluster structure, the
clustering of these hyperspectral images is seen as a quite
challenging and nontrivial task. Similarly, Kim ez al. [63]

© FPGA
@ Multi-FPGA

W SR EE e =
® CMOS ! [351@

106 4

105 4 - b O
@
[BT e R A ey
Ay 6|0 |
8 C[e) |
= 10° : |
102 4 3 : \’echr,dim;nsiuu N ,L,
oy | | 100
10 O[,)j o4 | 1000 |
one | ORs] 2048 1
10° : : : . -
10° 10 10% 10% 10* 10°
Number of neurons
(a)
’ 0 CMOS
10% 4 e e 8 FPGA
Of24] A
; [17]8[2G] @© MultiFPGA
104 gy :
_8 [72]® i Vector dimznsion !
= o0 ol D 100
g 13 6Qors) S :
£ 100 4 oy [57]] :) 1000
= (o118
g-z 2048
=) Poem | 1 !
O =14 one [S L
s 10 Ot CO @
1 [
M 2% e |
10724 T 7(5[775]7% """""""""" f“]O":'
| oh 1
i |

10° 10! 10% 10% 10* 10°
Number of neurons

(b)

Fig. 15. Overview of performances of the HW SOM architectures in million
of CUPS (MCUPS) as a function of the number of neurons and input vector
dimension: (a) raw values and (b) normalized by the number of neurons and
input vector dimension.

used the proposed HW SOM implemented in 65-nm CMOS
technology for electrocardiogram (ECG) clustering or de
Abereu de Sousa et al. [24] proposed an FPGA-based SOM to
detect 64-quadrature amplitude modulation (QAM) symbols,
commonly applied in many communication systems. The use
of SOM in the quadrature/in-phase pair detection allows the
continuous adjustment to the QAM constellation with no
supervision. Consequently, bandwidth savings are obtained
without the need for training data retransmission.

C. Performance Measure

The processing speed of the HW SOM architectures is
usually evaluated by connection updates per second (CUPS).
This metric quantifies the number of weight updates that the
SOM system performs per second during the learning process

D-N
T;

CUPS =

f Y

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE III

SOM RELATED WORKS IN THE LITERATURE

Work Architecture Vector Neighborhood SOM size Vector Precision Technology MCUPS Application
distance function dimension (bit) data set
4] Vector processor Manhattan Triangular 20 x 20 12 16 CMOS 100.6 EPFL speech
coding benchmark
5] Systolic array Manhattan Rectangular 6x 10 7 16 CMOS 13.9 m\r::‘zf: stem
6] Modular Manhattan N°ga:‘[‘t‘\£)“'""” 250 x 250 9 16 FPGA (xcv3200e) 5700 NA
[61] SIMD PE array Manhattan NA NA NA NA B h:{’::'l"v‘“"‘l NA NA
68] SIMD PE array Manhattan Not used 2x2x2 3 3 FPGA (v81201g000) NA Color compression
[7] SIMD array Manhattan Rectangular 16 x 16 16 8 . S 660 I\
Modular SR Negative powers . . ~ o .
B | (s pENBX) Manhattan S 16 % 8 128 8 CMOS 1318 NA
9] Distributed Manhattan N“gai)‘f":“{:)”“'"“ 16 x 16 128 16 FPGA (xc2v6000) 17500 Image enlargement
[10] (SIMi\)I(:-’dI:‘);z\'BX) Manhattan Precalculated 24 % 32 58 16 FPGA (xc2v4000) 212 Artificial data set
[11] Distributed Manhattan N*"‘;‘fﬁ)‘)w"“ 10 2 8 FPGA (xc25400) 28.38 Artificial data set
[12] Systolic array Manhattan Neg“g‘f”fwf;"wm 100 2048 8, 12 FPGA (xc2v6000) 3467 NA
[13] Modular Manhattan N ega:‘fvt\gz“”e‘“ 256 16 s FPGA (xc2v6000) 6372 Image compression
Ti4] Distributed Manhattan Triangular TXT 2 NA FPGA (xchvIx110t) | 300 NA
[70] | Custom processor Manhattan Negative powers of two | 16 x 16 3 NA FPGA (xc2vp30fiso6) | NA Color compression
L - Modified) 100 784 Simulation . MNIST recognition .)
[52] | Custom processor Homming Rectangular 1 768 NA 160 NA Jonce cpatom TFStAte SOM
[81] | Custom processor NA Triangular 33 2 7,10,16 FPGA (xchvlx110t) NA Artificial data set
10 x 10
15] (PE‘;E‘;;) ;?:;:;:;ln Step function 6050 194 16 (‘i‘t”;* 1‘;21\5‘(}5) 20604 LCVF data
[16] Distributed Phase error count Precalculated 5x5 2 0 FPGA (EP20K400) 189 Artificial data set
7] Distributed Manhattan N ega;’: o powers 16 x 16 3 16 FPGA (xc6vsx315t) | 25344 f:l‘;f‘z;]‘:)‘:t‘:;:;
NoC Squared Negative powers . - -
18] © disteibuted i PO 16 % 16 3 8 FPGA (xcTvx485T) | 480 Color compression
NoC Squared Negative powers _ .) .
19] oo : s 5x5 32 NA FPGA (Virtex-6) 724 NA
& distributed Buclidean of two
[21] | Custom processor Manhattan N‘\g*“;‘f" :“%:)‘me 25 2 8 FPGA (xcbvlx75t) | 5847.5 Artificial data set
} o I Negative powers 16 2 16 oA (e 76.16
73] Distributed Manhattan o b 3 16 FPGA (xe5vIx50t) | ool NA
[63] Distributed Euclidean Rectangular 5x5 128 10 CMOS NA ECG clustering
) . o Negative powers) . N FPGA (Kintex- N "
[24] | Custom processor Manhattan St 64 2 16 UXOKU03%) 8050 QAM detection
) NoC Squared Negative powers) FPGA -
(22] & distributed Euclidean of two 1616 26 NA (VCT07 Virtex-7) 77301 Na
23] Disitributed Manhattan N°g"f)‘f"f“f:)°“'°r5 16 x 16 3 16 FPGA (xc7vx690tffg) | 9984 Artificial data set
[25] Distributed 5;’1‘;‘“:“‘]’; Programmable 16 x 16 3 16 FPGA (xcvsx315t) 5.71 Artificial data set
y NoC Squared Negative powers 10 % 10 . . . —
[40] © disteibuted it S gt 3~ 12 3 FPGA (Xilinx VC707) | NA Image compression
26] Distributed Manhattan Negative powers 16 x 16 3 16 FPGA (xc7vx690tffg) | 33024 Artificial data set
(Nested) of two
1271 | Custom processor Inner product Neg":r"f‘i?“"’“ 272 2;’(6‘ ((12:“(112:2) NA FPCA (xczudeg) 2796 Amygdala model
85] Distributed l;‘i‘l“::i] NA 9 4 8 FPGA (DE10-Nano) NA Iris classification
; NoC Squared Negative powers 6% 6~ Y FPGA :
[76] & distributed Euclidean of two 15 x 15 3~12 8 (VCT07 Virtex-7) NA [mage compression
100 x 100 3 Color map
[71] | Custom processor Manhattan Triangular 20 x 20 784 3 :‘fﬁiﬁ NA MNIST labelling
16 16 © ¢ Image compression
. - dot product) Model : -
53] Algorithm cosine sty NA 20 ~ 100 784 NA domiation NA MNIST recognition
28] Systolic array ;\:*C'l‘z:s; N Ega;‘t‘f W{:’W"’“ 16 x 16 32 s FPGA (xcTvxdS5t) | 23997 Image compression
67] “ustom processor Manhattan ot use 256 3 16 SA (xcTvx690 109800 mage compression
C Manh Not used FPGA T
72 ustom processor Manhattan gative power: 10 x 10 7 16 FPGA (xcvuddo 37620) actions
2 - Manh Negative powers 0% 10 0 FPGA 240 37620 Human actions
of two video categorization
69] D'(‘l\";‘i’e‘t‘l‘f‘l Manhattan Neg“:}‘f":“{:)"w"” 16 x 16 784 16 FPGA (xcTvx690tffg) | 15012 MNIST clustering
[54] Distributed :?I‘:n:l::i Triangular 16 x 16 3 16 FPGA (xc6vsx315t) 15 Artificial data set
91 ustom processor Manhattan . 16 x 16 ’ FPGA (xcdvlx? olor compression
¢ Manh: NA 6x16 NA NA FPGA 1x200 NA Col i
- N : ; : Positioning scheme
189] | Custom processor Euclidean NA NA NA NA FPGA (Arria I1) NA Pt e
[90] | Custom processor Manhattan NA 256 32 16 FPGA (xc3sT00A) NA Real-time hand
sign recognition
) - Squared N oA fa o | 28401 o
20] SIMD PE array P NA 256 64 3 FPGA (Stratic IV) | y1ing Tmage compression
, Neighborhood R § Model :
[65] O NA Triangular NA NA NA cmiation NA NA
[64] Neighborhood NA Triangular NA NA Analog CMOS NA NA
mechanism Model simulation
151] Vector dist. Manhattan NA NA NA Analog CMOS NA NA
calc. circuit Model simulation
6] Nelghboring NA Triangular NA NA NA CMOS (Hspice NA NA
mechanism simulation)
Initialization of Euclidean Rectangular 4 x4~ Software model -
49) neuron weights Manhattan Triangular 32 x 32 2 NA simulation NA Na
; o 3 3 B Artificial data
g7 | WTANN (Winner Freq. comparison NA 3 4 16 VHDL NA IRIS data
search circuit) 3 13 simulation WINE data
[gg) | WTANN (Winner Cycle slip count NA 8 3 16 VHDL NA Artificial data
search circuit) simulation
ol VMM + WTA Analog vector matrix NA 3 2]4 SoC FPAA A Sound source identification
multiplication (generator, truck, or car)
_ Weight init. Euclidean Rectangular Ax4n . . .
[50] ‘ circuit ‘ Manhattan Triangular 32 % 32 2 NA Model simulation NA NA
35] (gln\é"gg“\‘]m) S:‘C‘l“";:;‘n Precalculated 84000 1000 16 FPGA (xcv7fx690t) | 5700000 Artificial data set

where D is the input vector dimension, N is the total number

cycles needed to finish one learning iteration, and f is the

of neurons in the SOM network, 77 is the total time in clock maximal operating frequency of the HW architecture.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

JOVANOVIC AND HIKAWA: SURVEY OF HARDWARE SELF-ORGANIZING MAPS

The performances of the HW SOM architectures reported
in the literature so far are shown in Figs. 14 and 15 and in
Table III in terms of million of CUPS (MCUPS) for a period
(1995-2021); in terms of million of CUPS (MCUPS) as a
function of the number of neurons and input vector dimension
(raw and normalized values); and in the column “MCUPS.”
From the presented results, it can be noticed that the highest
performance of 5.7 GCPS was achieved by the approach pro-
posed by Lachmair er al. [35]. It should be mentioned that this
reported value is for MCPS (evaluated only in the recall phase
without updates) and not for MCUPS. Thus, to have an order
of MCUPS, this value should be at least divided by a factor
of 2. The second best performance of 109 800 MCUPS was
achieved by the AW-SOM [67]. This is not surprising at all and
is mainly due to the modified SOM algorithm, which is at the
heart of this approach: no use of any neighborhood function
and no BMU search at all. A small reminder is that the
BMU search operation is the biggest performance bottleneck
of all HW SOM architectures. Moreover, the AW-SOM does
not have all the features provided by the conventional SOMs
because the neighborhood function and topological relations of
the neurons were also omitted. Another way of presenting the
performances of the HW SOM architectures is to normalize the
values of MCUPS by the number of neurons and input vector
dimension. These results are presented in Fig. 15(b). If we look
at 11, the normalized MCUPS presents only the ratio between
the maximum operating frequency and the time needed to
finish one learning operation. This value is more representative
as it shows the most optimized HW SOM architectures (the
higher is better).

In addition, it should also be noted (see Fig. 14) that the
performances of the most recent HW SOM implementations
are almost all in a range between 10 and 100 Giga CUPS.
This can be explained by the use of the most recent FPGA
devices and in the adoption of the architectural choices dis-
cussed earlier in this article. It should also be highlighted
that the performance of the hardware SOM with the off-chip
architecture presented in [20] was given in Figs. 14 and 15
and Table III in connections per second (CPS) (evaluated only
in recall phase).

VI. OPEN RESEARCH PROBLEMS

From the previous discussion on the different aspects of
the HW SOM architectures found in the literature, it can be
concluded that significant improvements have been achieved
in the last few decades at all, circuit, algorithmic, and architec-
tural levels. Consequently, these improvements pave the way
to use the SOM algorithm in a large variety of applications
with specific data and computing requirements [93]-[98].

Although the SOM algorithm is not new, its simplicity
and capability to tackle a large variety of problems starting
from vector quantization and clustering through data visu-
alization and image/video processing keep it attractive now
more than ever, especially nowadays where the big data (BD)
and Internet of Things (IoT) infrastructures are at the origin
of a tremendous amount of data of different types, which is
continuously generated and supplied by a myriad of sensors
deployed everywhere.

The possibility to make HW SOMs ubiquitous and easily
accessible as HW IPs and accelerators in many application
fields (and HW platforms) goes through the solution of some
still open research and challenging problems, which can be
categorized into four groups.

1) Huge Scalable HW SOM: From the recent state-of-the-
art works, it has been shown that the new trends in the
design of HW SOMs are oriented toward scalable and
expandable architectures [18], [19], [22], [26], [40], [69],
[76]. This current trend is in line with the explosive
growth of data volumes we are witnessing these last
few years where very large SOM architectures in terms
of neurons are necessary to satisfy these huge volume
data-related needs. The design of new high-performance
scalable and expandable HW SOM architectures will
allow to tackle this problem easier where these new
architectures will be used as the basic building blocks
for larger networks of different size.

Fast BMU Search: High degree of scalability and the
possibility to build huge HW SOMs put in the forefront
the problem of BMU search in such networks, the oper-
ation which is even in today’s HW SOM architecture
identified as the biggest performance bottleneck. Poten-
tial alternatives could be newly adapted SOM algorithms
as the one proposed in AW-SOM [67] or even to shorten
the BMU search operation by exploiting the inherent
topology preservation property of SOMs [99].

High Configurability: The new HW SOM architec-
tures have to be not only as much as possible
high performance and scalable but also highly config-
urable and adaptable to a large variety of applications.
Ideally, the new HW SOM architectures should be
application-agnostic and all application-specific needs
should be provided as a simple list of online and
real-time configurable parameters.

Toward Growing HW SOM-Models: High configurability
of the HW SOM architectures implies also to have the
possibility to change the number of neurons dynamically
or to adapt it to learning requirements of a given
application. Consequently, dynamic and growing coun-
terparts of the SOM algorithm should be targeted in HW
SOM architectures. For instance, the pioneering work
presented in [100] where a growing grid (GG)-based
algorithm has been implemented in hardware is an exam-
ple of these dynamic and growing HW architectures.
Ideally, the growing neural gas (GNG)-based models
that are quite challenging and more advantageous over
other growing models should find their implementations
in HW in the near future.

2)

3)

4)

VII. CONCLUSION

In this article, a survey of hardware SOM implementations
has been presented. The SOM algorithm, whose simplicity and
capability to tackle a large variety of problems (vector quanti-
zation, clustering, data visualization, image/video processing,
and so on), is still attractive in many application fields and is
considerably gaining more attention in nowadays’s BD and IoT
infrastructures. Its inherent property of topology preservation

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

and unsupervised learning of processed data without any
prior knowledge put it in the front of candidates for data
reduction. However, its high computational cost makes the
online real-time high-performance SOM processing mostly
reserved for specific hardware implementations. In this article,
we gave an overview of the hardware, application-specific
implementations of the SOM algorithm, the most widely used
computing blocks, architectures, design choices, adaptation,
and optimization techniques that have been reported in the
literature so far in the field of hardware SOMs. Moreover,
an overview of main challenges and trends for their ubiquitous
adoption as hardware accelerators in many application fields
has also been addressed. This article is expected to be useful
for researchers in the area of artificial intelligence in a broader
sense, real-time hardware architecture, and system design with
tight design constraints in terms of performance (timing),
power, and area.

(1]
(2]

(31
(4]

[5]

(6]

(71

(8l

[91

[10]

[11]

[12]

[13]

[14]

REFERENCES

T. Kohonen, Self-Organizing Maps.
Springer-Verlag, 2001.

U. Asan and S. Ercan, “An introduction to self-organizing maps,”
in Computational Intelligence Systems in Industrial Engineering,
vol. 6, Cengiz Kahraman, Ed. Paris, France: Atlantis Press, 2012,
pp. 295-315.

G. K. Matsopoulos, Self-Organizing Maps. Vukovar, Croatie: InTech,
2010.

K. Asanovic, “A fast Kohonen net implementation for spert-II,” in
Proc. Int. Work-Conf. Artif. Natural Neural Netw. (IWANN), 1997,
pp- 792-800.

P. Ienne, P. Thiran, and N. Vassilas, “Modified self-organizing feature
map algorithms for efficient digital hardware implementation,” /IEEE
Trans. Neural Netw., vol. 8, no. 2, pp. 315-330, Mar. 1997, doi:
10.1109/72.557669.

M. Porrmann, M. Franzmeier, H. Kalte, U. Witkowski, and U. Riickert,
“A reconfigurable SOM hardware accelerator,” in Proc. Eur. Symp.
Artif. Neural Netw. (ESANN), Apr. 2002, pp. 337-342.

D. C. Hendry, A. A. Duncan, and N. Lightowler, “IP core
implementation of a self-organizing neural network,” IEEE Trans.
Neural Netw., vol. 14, no. 5, pp. 1085-1096, Sep. 2003, doi:
10.1109/TNN.2003.816353.

M. Porrmann, U. Witkowski, and U. Ruckert, “A massively par-
allel architecture for self-organizing feature maps,” IEEE Trans.
Neural Netw., vol. 14, no. 5, pp. 1110-1121, Sep. 2003, doi:
10.1109/TNN.2003.816368.

H. Tamukoh, T. Aso, K. Horio, and T. Yamakawa, “Self-organizing
map hardware accelerator system and its application to realtime image
enlargement,” in Proc. IEEE Int. Joint Conf. Neural Netw., vol. 4,
Sep. 2003, pp. 2683-2687, doi: 10.1109/IICNN.2004.1381073.

C. Pohl, M. Franzmeier, M. Porrmann, and U. Ruckert, “gNBX-
reconfigurable hardware acceleration of self-organizing maps,” in Proc.
IEEE Int. Conf. Field- Program. Technol., Dec. 2004, pp. 97-104, doi:
10.1109/FPT.2004.1393256.

J. Pena, M. Vanegas, and A. Valencia, “Digital hardware architectures
of Kohonen’s self organizing feature maps with exponential neighbor-
ing function,” in Proc. IEEE Int. Conf. Reconfigurable Comput. FPGA’s
(ReConFig), Sep. 2006, pp. 1-8, doi: 10.1109/RECONEF.2006.307761.
I. Manolakos and E. Logaras, “High throughput systolic SOM
IP core for FPGAs,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process. (ICASSP), Apr. 2007, pp. II-61-11-64, doi:
10.1109/ICASSP.2007.366172.

A. Ramirez-Agundis, R. Gadea-Girones, and R. Colom-Palero,
“A hardware design of a massive-parallel, modular NN-based
vector quantizer for real-time video coding,” Microprocessors
Microsyst.,, vol. 32, mno. 1, pp.33-44, Feb. 2008, doi:
10.1016/j.micpro.2007.06.004.

R. Dlugosz, M. Kolasa, and M. Szulc, “An FPGA implementation of
the asynchronous programmable neighborhood mechanism for WTM
self-organizing map,” in Proc. 18th Int. Conf. Mixed Design Integr.
Circuits Syst. (MIXDES), Jun. 2011, pp. 258-263.

New York, NY, USA:

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

J. Lachmair, E. Merényi, M. Porrmann, and U. Riickert,
“A reconfigurable neuroprocessor for self-organizing feature
maps,” Neurocomputing, vol. 112, pp. 189-199, Jul. 2013, doi:
10.1016/j.neucom.2012.11.045.

H. Hikawa, “FPGA implementation of self organizing map with digital
phase locked loops,” Neural Netw., vol. 18, nos. 5-6, pp. 514-522,
2005, doi: 10.1016/j.neunet.2005.06.012.

H. Hikawa and Y. Maeda, “Improved learning performance of hardware
self-organizing map using a novel neighborhood function,” IEEE Trans.
Neural Netw. Learn. Syst., vol. 26, no. 11, pp. 2861-2873, Nov. 2015.
M. Abadi, S. Jovanovic, K. B. Khalifa, S. Weber, and M. H. Bedoui,
“A hardware configurable self-organizing map for real-time color quan-
tization,” in Proc. IEEE Int. Conf. Electron., Circuits Syst. (ICECS),
Monte Carlo, Monaco, Dec. 2016, pp. 336-339.

M. Abadi, S. Jovanovic, K. B. Khalifa, S. Weber, and M. H. Bedoui,
“A scalable flexible SOM NoC-based hardware architecture,” in
Advances in Self-Organizing Maps and Learning Vector Quantization,
vol. 428, E. Merényi, M. J. Mendenhall, and P. O’Driscoll, Eds. Cham,
Switzerland: Springer, 2016, pp. 165-175, doi: 10.1007/978-3-319-
28518-4_14.

Z. Huang et al., “A hardware-efficient vector quantizer based on self-
organizing map for high-speed image compression,” Appl. Sci., vol. 7,
no. 11, p. 1106, Oct. 2017, doi: 10.3390/app7111106.

M. A. A. de Sousa and E. Del-Moral-Hernandez, “Comparison of three
FPGA architectures for embedded multidimensional categorization
through Kohonen’s delf-organizing maps,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), Baltimore, MD, USA, May 2017, pp. 1-4.

S. Jovanovic, H. Rabah, and S. Weber, “High performance scalable
hardware SOM architecture for real-time vector quantization,” in Proc.
IEEE Int. Conf. Image Process., Appl. Syst. (IPAS), Sophia Antipolis,
France, Dec. 2018, pp. 256-261, doi: 10.1109/IPAS.2018.8708863.
H. Hikawa, H. Ito, and Y. Maeda, “A new hardware self-organizing map
architecture with high expandability,” in Proc. IEEE Int. Conf. Image
Process., Appl. Syst. (IPAS), Sophia Antipolis, France, Dec. 2018,
pp. 238-243.

M. A. de Abreu de Sousa, R. Pires, S. D. S. Perseghini, and
E. Del-Moral-Hernandez, “An FPGA-based SOM circuit architec-
ture for online learning of 64-QAM data streams,” in Proc.
Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2018, pp. 1-8, doi:
10.1109/1JCNN.2018.8489518.

H. Hikawa, H. Ito, and Y. Meda, “Hardware self-organizing map
based on frequency-modulated signal and digital frequency-locked
loop,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Florence, Italy,
May 2018, pp. 1-5, doi: 10.1109/ISCAS.2018.8351364.

H. Hikawa, “Nested hardware architecture for self-organizing map,
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Budapest, Hungary,
Jul. 2019, pp. 1-7.

Y. Tanaka and H. Tamukoh, “Hardware implementation of brain-
inspired amygdala model,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), Sapporo, Japan, May 2019, pp. 1-5.

K. Ben Khalifa, A. G. Blaiech, and M. H. Bedoui, “A novel hardware
systolic architecture of a self-organizing map neural network,” Comput.
Intell. Neurosci., vol. 2019, pp. 1-14, Apr. 2019.

L. Khacef, V. Gripon, and B. Miramond, “GPU-based self-
organizing maps for post-labeled few-shot unsupervised learning,”
2020, arXiv:2009.03665.

Y. Xiao, C. S. Leung, T.-Y. Ho, and P.-M. Lam, “A GPU implementa-
tion for LBG and SOM training,” Neural Comput. Appl., vol. 20, no. 7,
pp. 1035-1042, Oct. 2011.

V. Mallet, M. Nilges, and G. Bouvier, “Quicksom: Self-organizing
maps on GPUs for clustering of molecular dynamics trajectories,”
Bioinformatics, vol. 37, no. 14, pp. 2064-2065, Aug. 2021.

P. Wittek, S. C. Gao, I. S. Lim, and L. Zhao, “Somoclu: An efficient
parallel library for self-organizing maps,” J. Stat. Softw., vol. 78, no. 9,
pp. 1-21, 2017.

R. Mancini, A. Ritacco, G. Lanciano, and T. Cucinotta, “XPySom:
High-performance self-organizing maps,” in Proc. IEEE 32nd Int.
Symp. Comput. Archit. High Perform. Comput. (SBAC-PAD), Porto,
Portugal, Sep. 2020, pp. 209-216.

Y. Liu, J. Sun, Q. Yao, S. Wang, K. Zheng, and Y. Liu, “A scalable
heterogeneous parallel SOM based on MPI/CUDA,” in Proc. Asian
Conf. Mach. Learn., 2018, pp. 264-279.

J. Lachmair, T. Mieth, R. Griessl, J. Hagemeyer, and M. Porrmann,
“From CPU to FPGA—Acceleration of self-organizing maps for data
mining,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Anchorage,
AK, USA, May 2017, pp. 4299-4308.

>

http://dx.doi.org/10.1109/72.557669
http://dx.doi.org/10.1109/TNN.2003.816353
http://dx.doi.org/10.1109/TNN.2003.816368
http://dx.doi.org/10.1109/IJCNN.2004.1381073
http://dx.doi.org/10.1109/FPT.2004.1393256
http://dx.doi.org/10.1109/RECONF.2006.307761
http://dx.doi.org/10.1109/ICASSP.2007.366172
http://dx.doi.org/10.1016/j.micpro.2007.06.004
http://dx.doi.org/10.1016/j.neucom.2012.11.045
http://dx.doi.org/10.1016/j.neunet.2005.06.012
http://dx.doi.org/10.1007/978-3-319-28518-4_14
http://dx.doi.org/10.1007/978-3-319-28518-4_14
http://dx.doi.org/10.3390/app7111106
http://dx.doi.org/10.1109/IPAS.2018.8708863
http://dx.doi.org/10.1109/IJCNN.2018.8489518
http://dx.doi.org/10.1109/ISCAS.2018.8351364

JOVANOVIC AND HIKAWA: SURVEY OF HARDWARE SELF-ORGANIZING MAPS

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

G. Bouvier, N. Desdouits, M. Ferber, A. Blondel, and M. Nilges,
“An automatic tool to analyze and cluster macromolecular conforma-
tions based on self-organizing maps,” Bioinformatics, vol. 31, no. 9,
pp. 1490-1492, May 2015.

V. Moosavi, S. Packmann, and I. E. S. A. Vall. (2014). Sompy Python
Library for Self Organizing Map (SOM). GitHub. [Online]. Available:
https://github.com/sevamoo/SOMPY

L.-P. Chen, Y.-G. Liu, Z.-X. Huang, and Y.-T. Shi, “An improved
SOM algorithm and its application to color feature extraction,” Neural
Comput. Appl., vol. 24, nos. 7-8, pp. 1759-1770, Jun. 2014, doi:
10.1007/s00521-013-1416-9.

A. De, Y. Zhang, and C. Guo, “A parallel adaptive segmentation method
based on SOM and GPU with application to MRI image processing,”
Neurocomputing, vol. 198, pp. 180-189, Jul. 2016.

M. Abadi, S. Jovanovic, K. B. Khalifa, S. Weber, and
M. H. Bedoui, “A scalable and adaptable hardware NoC-based
self organizing map,” Microprocessors Microsyst., vol. 57, pp. 1-14,
Mar. 2018, doi: 10.1016/j.micpro.2017.12.007.

M. Porrmann, U. Witkowski, and U. Riickert, Implementation of Self-
Organizing Feature Maps in Reconfigurable Hardware. Boston, MA,
USA: Springer, 2006, pp. 247-269.

D. Timo Hémildinen, “Parallel implementations of self-organizing
maps,” in Self-Organizing Neural Networks, vol. 78, J. Kacprzyk,
U. Seiffert, and L. C. Jain, Eds. Berlin, Germany: Physica-Verlag HD,
2002, pp. 245-278.

T. Kohonen and P. Somervuo, “How to make large self-organizing maps
for nonvectorial data,” Neural Netw., vol. 15, nos. 89, pp. 945-952,
2002.

J. Vesanto and E. Alhoniemi, “Clustering of the self-organizing map,”
IEEE Trans. Neural Netw., vol. 11, no. 3, pp. 586-600, May 2000.
M. Attik, L. Bougrain, and F. Alexandre, “Self-organizing map ini-
tialization,” in Proc. Int. Conf. Artif. Neural Netw. Berlin, Germany:
Springer, 2005, pp. 357-362.

A. Fiannaca, R. Rizzo, A. Urso, and S. Gaglio, “A new SOM initializa-
tion algorithm for nonvectorial data,” in Proc. Int. Conf. Knowl.-Based
Intell. Inf. Eng. Syst. Berlin, Germany: Springer, 2008, pp. 41-48.

I. Valova, G. Georgiev, N. Gueorguieva, and J. Olson, “Initializa-
tion issues in self-organizing maps,” Procedia Comput. Sci., vol. 20,
pp. 52-57, 2013.

A. A. Akinduko, E. M. Mirkes, and A. N. Gorban, “SOM: Stochastic
initialization versus principal components,” Inf. Sci., pp. 364-365,
pp. 213-221, Oct. 2016.

M. Kolasa, R. Dlugosz, and W. Pedrycz, “Problem of efficient ini-
tialization of large self-organizing maps implemented in the CMOS
technology,” in Proc. IEEE 2nd Int. Conf. Cybern. (CYBCONF),
Jun. 2015, pp. 36-41.

M. Kolasa, R. Dtugosz, T. Talaska, and W. Pedrycz, “Efficient methods
of initializing neuron weights in self-organizing networks implemented
in hardware,” Appl. Math. Comput., vol. 319, pp. 31-47, Feb. 2018,
doi: 10.1016/j.amc.2017.01.043.

R. Dlugosz, T. Talaska, W. Pedrycz, and P.-A. Farine, “Low-power
Manhattan distance calculation circuit for self-organizing neural net-
works implemented in the CMOS technology,” in Proc. Eur. Symp.
Artif. Neural Netw., Comput. Intell. Mach. Learn. (ESANN), Bruges,
Belgium, Apr. 2012, pp. 615-620.

K. Appiah, A. Hunter, P. Dickinson, and H. Meng, “Implementation and
applications of tri-state self-organizing maps on FPGA,” IEEE Trans.
Circuits Syst. Video Technol., vol. 22, no. 8, pp. 1150-1160, Aug. 2012,
doi: 10.1109/TCSVT.2012.2197077.

D. Kleyko, E. Osipov, D. D. Silva, U. Wiklund, and D. Alahakoon,
“Integer self-organizing maps for digital hardware,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Budapest, Hungary, Jul. 2019, pp. 1-8.
H. Hikawa, “Hardware self-organizing map based on digital frequency-
locked loop and triangular neighborhood function,” IEEE Trans. Cir-
cuits Syst. I, Reg. Papers, vol. 68, no. 3, pp. 1245-1258, Mar. 2021,
doi: 10.1109/TCSI.2020.3046795.

R. P. Lippmann, “An introduction to computing with neural nets,”
IEEE ASSP Mag., vol. 4, no. 2, pp.4-22, Apr. 1987, doi:
10.1109/MASSP.1987.1165576.

J. Lazzaro, S. Ryckebusch, M. A. Mahowald, and C. A. Mead,
“Winner-take-all networks of O(N) complexity,” in Proc. Adv. Neural
Inf. Process. Syst. (NIPS), Jan. 1988, pp. 703-711.

M. Oster, R. Douglas, and S.-C. Liu, “Computation with spikes
in a winner-take-all network,” Neural Comput., vol. 21, no. 9,
pp. 2437-2465, Sep. 2009, doi: 10.1162/neco.2009.07-08-829.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]
[76]

[77]

[78]

[791

B. Ruf and M. Schmitt, “Self-organization of spiking neurons using
action potential timing,” IEEE Trans. Neural Netw., vol. 9, no. 3,
pp. 575-578, May 1998, doi: 10.1109/72.668899.

D. T. Pham, M. S. Packianather, and E. Y. A. Charles, “A self-
organising spiking neural network trained using delay adaptation,” in
Proc. IEEE Int. Symp. Ind. Electron., Jun. 2007, pp. 3441-3446, doi:
10.1109/ISIE.2007.4375170.

A. Gupta and L. N. Long, “Hebbian learning with winner take all
for spiking neural networks,” in Proc. Int. Joint Conf. Neural Netw.,
Jun. 2009, pp. 1054-1060, doi: 10.1109/IJCNN.2009.5178751.

B. Mailachalam and T. Srikanthan, “Area—time issues in the VLSI
implementation of self organizing map neural networks,” Microproces-
sors Microsyst., vol. 26, pp. 399-406, Dec. 2002, doi: 10.1016/S0141-
9331(02)00065-0.

W. Kurdthongmee, “A low latency minimum distance searching unit
of the SOM based hardware quantizer,” Microprocessors Microsyst.,
vol. 39, no. 2, pp. 135-143, Mar. 2015.

J. Kim and P. Mazumder, “Energy-efficient hardware architecture of
self-organizing map for ECG clustering in 65-nm CMOS,” IEEE Trans.
Circuits Syst. 1I, Exp. Briefs, vol. 64, no. 9, pp. 1097-1101, Sep. 2017.
R. Dlugosz, M. Kolasa, W. Pedrycz, and M. Szulc, “Parallel pro-
grammable asynchronous neighborhood mechanism for Kohonen SOM
implemented in CMOS technology,” IEEE Trans. Neural Netw., vol. 22,
no. 12, pp. 2091-2104, Dec. 2011.

R. Dlugosz, M. Kolasa, and K. Bielinski, “Programmable triangular
neighborhood function for Kohonen self-organizing map implemented
on chip,” in Proc. 17th Int. Conf. Mixed Design Integr. Circuits
Syst. (MIXDES), Jun. 2010, pp. 328-332.

M. Kolasa, R. Dlugosz, W. Pedrycz, and M. Szulc, “A programmable
triangular neighborhood function for a Kohonen self-organizing map
implemented on chip,” Neural Netw., vol. 25, pp. 146-160, Jan. 2012,
doi: 10.1016/j.neunet.2011.09.002.

G. C. Cardarilli, L. D. Nunzio, R. Fazzolari, M. Re, and S. Spand,
“AW-SOM, an algorithm for high-speed learning in hardware self-
organizing maps,” IEEE Trans. Circuits Syst. I, Exp. Briefs, vol. 67,
no. 2, pp. 380-384, Feb. 2020.

N. Sudha, T. Srikanthan, and B. Mailachalam, “A VLSI architecture
for 3-D self-organizing map based color quantization and its FPGA
implementation,” J. Syst. Archit., vol. 48, nos. 11-12, pp. 337-352,
Apr. 2003.

H. Hikawa, “Nested pipeline hardware self-organizing map for high
dimensional vectors,” in Proc. 27th IEEE Int. Conf. Electron.,
Circuits Syst. (ICECS), Glasgow, U.K., Nov. 2020, pp. 1-4, doi:
10.1109/ICECS49266.2020.9294973.

W. Kurdthongmee, “Utilization of a rational-based representation to
improve the image quality of a hardware-based K-SOM quantizer,”
J. Real-Time Image Process., vol. 6, no. 3, pp. 199-211, Sep. 2011.
Y.-H. Sun and T.-D. Chiueh, “A flexible and high-performance self-
organizing feature map training acceleration circuit and its applica-
tions,” in Proc. IEEE Int. Conf. Artif. Intell. Circuits Syst. (AICAS),
Mar. 2019, pp. 92-96, doi: 10.1109/AICAS.2019.8771556.

M. A. D. A. D. Sousa, R. Pires, and E. Del-Moral-Hernandez, “SOM-
processor: A high throughput FPGA-based architecture for implement-
ing self-organizing maps and its application to video processing,”
Neural Netw., vol. 125, pp. 349-362, May 2020.

M. A. A. de Sousa and E. Del-Moral-Hernandez, “An FPGA distributed
implementation model for embedded SOM with on-line learning,” in
Proc. Int. Joint Conf. Neural Netw. (IJCNN), Anchorage, AK, USA,
May 2017, pp. 3930-3937.

L. Rodriguez, L. Khacef, and B. Miramond, “A distributed cellular
approach of large scale SOM models for hardware implementation,”
in Proc. IEEE Int. Conf. Image Process., Appl. Syst. (IPAS), Sophia
Antipolis, France, Dec. 2018, pp. 250-255.

S. Y. Kung, VLSI Array Processors. Springer-Verlag, New York, 1998.
M. Abadi, S. Jovanovic, K. B. Khalifa, S. Weber, and M. H. Bedoui,
“A multi-application, scalable and adaptable hardware SOM archi-
tecture,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Budapest,
Hungary, Jul. 2019, pp. 1-8.

L. Benini and G. De Micheli, “Networks on chips: A new SoC
paradigm,” Computer, vol. 35, no. 1, pp. 70-78, Jan. 2002.

W. J. Dally and B. Towles, “Route packets, not wires: On-chip inter-
connection networks,” in Proc. 38th Design Autom. Conf., Jun. 2001,
pp. 684-689.

S. Shah and J. Hasler, “SoC FPAA hardware implementation of a
VMM+WTA embedded learning classifier,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 8, no. 1, pp. 28-37, Mar. 2018.

http://dx.doi.org/10.1007/s00521-013-1416-9
http://dx.doi.org/10.1016/j.micpro.2017.12.007
http://dx.doi.org/10.1016/j.amc.2017.01.043
http://dx.doi.org/10.1109/TCSVT.2012.2197077
http://dx.doi.org/10.1109/TCSI.2020.3046795
http://dx.doi.org/10.1109/MASSP.1987.1165576
http://dx.doi.org/10.1162/neco.2009.07-08-829
http://dx.doi.org/10.1109/72.668899
http://dx.doi.org/10.1109/ISIE.2007.4375170
http://dx.doi.org/10.1109/IJCNN.2009.5178751
http://dx.doi.org/10.1016/S0141-9331(02)00065-0
http://dx.doi.org/10.1016/S0141-9331(02)00065-0
http://dx.doi.org/10.1016/j.neunet.2011.09.002
http://dx.doi.org/10.1109/ICECS49266.2020.9294973
http://dx.doi.org/10.1109/AICAS.2019.8771556

20

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

S. Y. Kung, Digital Neural Networks. Upper Saddle River, NJ, USA:
Prentice-Hall, 1993.

R. Dlugosz, M. Kolasa, M. Szulc, W. Pedrycz, and P.-A. Farine,
“Implementation issues of Kohonen self-organizing map realized on
FPGA,” in Proc. Eur. Symp. Artif. Neural Netw., Comput. Intell. Mach.
Learn. (ESANN), Bruges, Belgium, Apr. 2012, pp. 633-638.

T. Kohonen, “The self-organizing map, a possible model of brain
maps,” Med. Biol. Eng. Comput., vol. 34, pp. 5-8, Mar. 1996.

L. M. Reyneri, “A performance analysis of pulse stream neural and
fuzzy computing systems,” IEEE Trans. Circuits Syst. II, Analog
Digit. Signal Process., vol. 42, no. 10, pp. 642-660, Oct. 1995, doi:
10.1109/82.471393.

Y. Liu, S. Liu, Y. Wang, F. Lombardi, and J. Han, “A survey of sto-
chastic computing neural networks for machine learning applications,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 7, pp. 2809-2824,
Jul. 2021, doi: 10.1109/TNNLS.2020.3009047.

A. Moran, J. L. Rossello, M. Roca, E. Isern, V. Martinez-Moll, and
V. Canals, “Self-organizing maps hybrid implementation based on
stochastic computing,” in Proc. XXXIV Conf. Design Circuits Integr.
Syst. (DCIS), Bilbao, Spain, Nov. 2019, pp. 1-6.

H. Hikawa, “DPLL based hardware SOM with a new winner-take-all
circuit,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Aug. 2013,
pp. 1-8, doi: 10.1109/IJCNN.2013.6707075.

H. Hikawa, “Vector classification by a winner-take-all neural network
with digital frequency-locked loop,” in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2015, pp. 1-8, doi: 10.1109/IICNN.2015.7280581.
H. Hikawa, “Improved winner-take-all circuit for neural network
based on frequency-modulated signals,” in Proc. IEEE Int. Conf.
Electron., Circuits Syst. (ICECS), Dec. 2016, pp. 85-88, doi:
10.1109/ICECS.2016.7841138.

D. Li, Y. Wang, L. Wang, and X. Cheng, “Implementation of self-
organizing map based positioning scheme on FPGA,” in Proc. IEEE
Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC), Nov. 2014, pp. 1-3.
H. Hikawa and K. Kaida, “Novel FPGA implementation of hand sign
recognition system with SOM—-Hebb classifier,” IEEE Trans. Circuits
Syst. Video Technol., vol. 25, no. 1, pp. 153-166, Jan. 2015, doi:
10.1109/TCSVT.2014.2335831.

W. Kurdthongmee, “A hardware centric algorithm for the best matching
unit searching stage of the SOM-based quantizer and its FPGA imple-
mentation,” J. Real-Time Image Process., vol. 12, no. 1, pp. 71-80,
Dec. 2013.

THE MNIST DATABASE of Handwritten Digits. Accessed:
Oct. 15, 2021. [Online]. Available: http://yann.lecun.com/exdb/mnist/
A. Ortiz, J. M. Gorriz, J. Ramirez, and D. Salas-Gonzalez, “Improving
MR brain image segmentation using self-organising maps and entropy-
gradient clustering,” Inf. Sci., vol. 262, pp. 117-136, Mar. 2014.

L. E. Brito da Silva and D. C. Wunsch, “An information-theoretic-
cluster visualization for self-organizing maps,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 29, no. 6, pp. 2595-2613, Jun. 2018.

Y. Zhang, Y. Tang, B. Fang, and Z. Shang, “Real-time object tracking in
video pictures based on self-organizing map and image segmentation,”
in Proc. IEEE 7th Joint Int. Inf. Technol. Artif. Intell. Conf., Dec. 2014,
pp. 559-563.

P. Gunawardena et al., “Real-time automated video highlight generation
with dual-stream hierarchical growing self-organizing maps,” J. Real-
Time Image Process., vol. 18, no. 5, pp. 1457-1475, Mar. 2020.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[97] S. Guo, J. Wang, Z. Chen, Y. Li, and Z. Lu, “Securing IoT space via
hardware trojan detection,” IEEE Internet Things J., vol. 7, no. 11,
pp. 11115-11122, Nov. 2020.

[98] S. Aly and S. Almotairi, “Deep convolutional self-organizing map
network for robust handwritten digit recognition,” IEEE Access, vol. 8,
pp. 107035-107045, 2020.

[99] Y. Bernard, N. Hueber, and B. Girau, “A fast algorithm to find best
matching units in self-organizing maps,” in Proc. Int. Conf. Artif.
Neural Netw. Cham, Switzerland: Springer, 2020, pp. 825-837.

[100] S. Jovanovic, H. Rabah, S. Weber, K. B. Khalifa, and M. H. Bedoui,
“Scalable, dynamic and growing hardware self-organizing architecture
for real-time vector quantization,” in Proc. 27th IEEE Int. Conf.
Electron., Circuits Syst. (ICECS), Nov. 2020, pp. 1-4.

Slavisa Jovanovi¢ (Member, IEEE) received the
B.S. degree in electrical engineering from the Uni-
versity of Belgrade, Belgrade, Serbia, in 2004, and
the M.S. and Ph.D. degrees in electrical engineering
from the University of Lorraine, Lorraine, France,
in 2006 and 2009, respectively.

From 2009 to 2012, he was with the Diagnosis and
Interventional Adaptive Imaging laboratory (IADI),
Nancy, France, as a Research Engineer working on
MRI-compatible sensing embedded systems. Then,
he joined the Faculty of Sciences and Technologies
and the Jean Lamour Institute (UMR 7198), University of Lorraine, Nancy,
France, where he is currently an Associate Professor. His main research inter-
ests include energy-harvesting circuits, neuromorphic architectures, reconfig-
urable network-on-chips, and algorithm-architecture matching for real-time
signal processing. He is the author and coauthor of more than 50 articles
in conference proceedings and international peer-reviewed journals. He holds
one patent.

Hiroomi Hikawa (Member, IEEE) received the
B.E., M.E.,, and Ph.D. degrees in electrical engineer-
ing from Keio University, Tokyo, Japan, in 1984,
1986, and 1989, respectively.

He then served as a Post-Doctoral Researcher with
the University of South Florida, Tampa, FL, USA.
From 1992 to 2008, he worked with the Com-
puter Science and Intelligent Systems Department,
Oita University, Oita, Japan. In 2008, he joined
the Department of Electrical and Electronic Engi-
neering, Kansai University, where he is currently a
Professor. His research interests include architecture for signal processing and
neural networks.

http://dx.doi.org/10.1109/82.471393
http://dx.doi.org/10.1109/TNNLS.2020.3009047
http://dx.doi.org/10.1109/IJCNN.2013.6707075
http://dx.doi.org/10.1109/IJCNN.2015.7280581
http://dx.doi.org/10.1109/ICECS.2016.7841138
http://dx.doi.org/10.1109/TCSVT.2014.2335831

