
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

DualConv: Dual Convolutional Kernels for Lightweight Deep Neural Networks
Jiachen Zhong , Junying Chen , Member, IEEE, and Ajmal Mian , Senior Member, IEEE

Abstract— Convolutional neural network (CNN) architectures are gen-
erally heavy on memory and computational requirements which make
them infeasible for embedded systems with limited hardware resources.
We propose dual convolutional kernels (DualConv) for constructing
lightweight deep neural networks. DualConv combines 3 × 3 and 1 × 1
convolutional kernels to process the same input feature map channels
simultaneously and exploits the group convolution technique to efficiently
arrange convolutional filters. DualConv can be employed in any CNN
model such as VGG-16 and ResNet-50 for image classification, you only
look once (YOLO) and R-CNN for object detection, or fully convolutional
network (FCN) for semantic segmentation. In this work, we extensively
test DualConv for classification since these network architectures form
the backbone for many other tasks. We also test DualConv for image
detection on YOLO-V3. Experimental results show that, combined with
our structural innovations, DualConv significantly reduces the compu-
tational cost and number of parameters of deep neural networks while
surprisingly achieving slightly higher accuracy than the original models in
some cases. We use DualConv to further reduce the number of parameters
of the lightweight MobileNetV2 by 54% with only 0.68% drop in accuracy
on CIFAR-100 dataset. When the number of parameters is not an issue,
DualConv increases the accuracy of MobileNetV1 by 4.11% on the same
dataset. Furthermore, DualConv significantly improves the YOLO-V3
object detection speed and improves its accuracy by 4.4% on PASCAL
visual object classes (VOC) dataset.

Index Terms— Dual convolution, lightweight deep neural
network, parameter reduction, performance improvement.

I. INTRODUCTION

Convolutional neural networks (CNNs) have achieved unmatched
performance in many applications such as image classification, object
detection, and semantic segmentation. Current research trend of
improving and enhancing network performance makes the networks
deeper and more complex, which eventually leads to a dramatic
increase in the model size (number of parameters/weights) and
the required computational resources. Due to these two reasons,
modern CNN models can only run on servers equipped with high-
performance GPUs. Although embedded devices and mobile plat-
forms have a huge demand for deployment of deep models, current
architectures are not suitable for these systems due to their limited
memory, power, and computational resources. Therefore, designing
lightweight yet accurate CNN models that can be deployed in embed-
ded devices and mobile platforms has become an active research
direction.

Manuscript received June 8, 2021; revised November 11, 2021 and
February 3, 2022; accepted February 9, 2022. This work was supported
in part by the National Natural Science Foundation of China under Grant
61802130 and in part by the Guangdong Natural Science Foundation under
Grant 2019A1515012152 and Grant 2021A1515012651. Ajmal Mian was
supported by the Australian Research Council Future Fellowship funded by the
Australian Government under Project FT210100268. (Corresponding author:
Junying Chen.)

Jiachen Zhong and Junying Chen are with the School of Software Engineer-
ing, South China University of Technology, Guangzhou 510006, China, and
also with the Key Laboratory of Big Data and Intelligent Robot (SCUT), Min-
istry of Education, Guangzhou 510006, China (e-mail: 1173992770@qq.com;
jychense@scut.edu.cn).

Ajmal Mian is with the Department of Computer Science, The Uni-
versity of Western Australia, Crawley, WA 6009, Australia (e-mail:
ajmal.mian@uwa.edu.au).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TNNLS.2022.3151138.

Digital Object Identifier 10.1109/TNNLS.2022.3151138

In embedded devices and mobile platforms, the network accuracy,
computational complexity, and number of parameters are all equally
important factors for evaluating different network architectures.
Hence, many methods have been proposed to increase the efficiency
of neural network models. A general approach taken by these methods
is to start from a standard CNN model and increase the model
efficiency by reducing the number of parameters and floating-point
operations (FLOPs) through model compression. Model compression
can be divided into three broad categories: connection pruning [1],
filter pruning [2]–[8], and model quantization [1], [9].

Network connection pruning not only reduces the network com-
plexity but also prevents the network from overfitting. Hanson and
Pratt [10] proposed a pruning method based on bias parameter
attenuation. LeCun et al. [11] showed that a tradeoff can be made
between network accuracy and complexity by using second-derivative
information to remove unimportant weights from the network. Hassibi
and Stork [12] further extended the idea and argued that retraining a
highly pruned network (as in [11]) may lead to inferior generalization.
However, both the works by LeCun et al. [11] and Hassibi and
Stork [12] are based on the computation of the Hessian matrix which
incurs a high computational cost. The idea of filter pruning is to
prune the filter channels which contribute the least in the network
model [4], [5]. Lin et al. [3] modeled network channelwise pruning
as a Markov decision process and used reinforcement learning for
training. They named this method as runtime neural pruning (RNP)
as it pruned the deep neural network dynamically at runtime.
Luo et al. [4] and Li et al. [7] focused on filter level pruning which
pruned the whole filter if it was less important. He et al. [5] used the
least absolute shrinkage and selection operator (LASSO) regression to
select filter channels and least square reconstruction to rebuild the net-
work. After pruning the network, the model usually needs fine-tuning
to maintain its performance [2]. In model quantization, the idea is
to reduce the parameters of the network or to reduce the storage
bits of the feature maps [1], [9]. For example, Vanhoucke et al. [13]
used 8-bit unsigned char to reduce the storage bits of the activation
values. The reasoning behind this is that the accuracy/precision of
the weights in the process of network inference does not need to be
so high.

In practice, model compression is a costly and difficult process.
Therefore, there is a need to design efficient networks right from the
start. One such method is to design efficient network architectures
that inherently have fewer parameters and lower complexity. An effi-
ciently designed network architecture requires less data and time to
train and is also easy to prune after training. However, designing a
new network architecture that maintains high accuracy with minimal
computational cost requires significant effort given the large number
and space of hyperparameters. Moreover, this approach also does not
take advantage of the many existing standard network architectures.
Hence, a better approach is to design efficient convolutional filters
for existing standard network architectures. The new convolutional
filters can simply replace standard convolutional filters in existing
CNN model architectures to reduce their computational complexity
without sacrificing accuracy.

SqueezeNet proposed by Iandola et al. [14] significantly reduces
parameters and computational complexity while maintaining network
accuracy. Its network structure unit introduces 1 × 1 convolution

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-4120-7510
https://orcid.org/0000-0002-5614-9731
https://orcid.org/0000-0002-5206-3842


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

to reduce the computational complexity. The 1 × 1 convolutional
kernels not only reduce the network parameters and computational
complexity but also offer the flexibility to control the depth of the
feature maps, achieve cross-channel information fusion, and provide
an additional level of nonlinearity. Depthwise separable convolution
was proposed in MobileNetV1 by Howard et al. [15]. The depthwise
separable convolution is a form of factorized convolution that factor-
izes a standard convolution into a depthwise and a 1 × 1 pointwise
convolution. When the 1 × 1 convolution is used to filter the input
feature maps, it fuses the original information of each channel of
input feature maps into the output feature maps. Hence, the original
information of input images can pass to deeper convolutional layers.
MobileNetV2 [16] proposed inverted residual blocks which first use
1 × 1 convolutions to increase the number of channels of the input
feature maps and then use depthwise separable convolutions to filter
the features. ShuffleNet proposed by Zhang et al. [17] uses a form
of convolution called group convolution (GroupConv) to reduce the
computational cost of the network. It also uses the channel shuffle
operation to enhance the interaction between different groups of chan-
nels. Heterogeneous convolution (HetConv) [18] uses heterogeneous
convolutional kernels with different sizes within a convolutional filter.
Whereas the 3 × 3 convolution in HetConv extracts the spatial infor-
mation of input feature map, the 1×1 convolution in HetConv reduces
the computational cost of neural network allowing for information
sharing between convolutional layers. Heterogeneous convolutional
filters are applicable to existing standard network architectures to
reduce the network complexity.

Inspired by GroupConv and HetConv, we propose dual convolution
(DualConv), designing a new convolutional filter which integrates
3 × 3 group convolution with 1 × 1 pointwise convolution to deal
with the same input feature map channels simultaneously. Because
DualConv uses 1×1 convolution to preserve the original information
of input feature maps, the 3 × 3 convolutional filters at deeper
convolutional layers can still learn from the original information of
input feature maps. DualConv is more efficient and more general
compared to model compression methods, because it can be applied
to all current and future CNN architectures.

The proposed DualConv is used to replace the standard convolution
in VGG-16 [19] and ResNet-50 [20] to perform image classification
experiments on CIFAR-10 [21], CIFAR-100 [21], and the large-scale
ImageNet [22] datasets. Our results show that the proposed DualConv
significantly reduces the cost of network computation and the number
of parameters while surprisingly achieving slightly higher accuracy
than the original models in some cases. For better comparison,
we reproduce GroupConv and HetConv to replace the standard con-
volution in VGG-16 on CIFAR-10 dataset, and replace the standard
convolution in ResNet-50 on ImageNet dataset. Quantitative results
and visual analysis show that DualConv generally achieves higher
accuracy than GroupConv and HetConv with slightly higher number
of parameters. DualConv is further applied to modify the convolu-
tional filters in MobileNetV1. Our DualConv-modified MobileNetV1
performs more accurately than the original MobileNetV1 as well
as the GroupConv-modified (or HetConv-modified) MobileNetV1.
DualConv is also applied to modify the convolutional filters in
MobileNetV2, reducing its parameters by 54% with only 0.68% drop
in accuracy on CIFAR-100 dataset.

The proposed DualConv is further tested on object detection task
by replacing the 3 × 3 standard convolution in the you only look
once model (YOLO-V3) [23]. Experiments on PASCAL visual object
classes (VOC) dataset [24] show that DualConv-modified YOLO-V3
requires much less computations leading to faster detection speed.
Moreover, DualConv-modified YOLO-V3 improves the mean average
precision (mAP) value of each image with 4.4% higher accuracy.

II. RELATED WORK

Efficient convolutional filters can effectively reduce the computa-
tional cost and parameters of a neural network, and eliminate the need
for designing new convolutional network architectures from scratch.
Three types of efficient convolutional filters have been proposed in the
literature to replace standard convolutional filters in existing network
architectures. We briefly describe these below.

A. Depthwise Separable Convolution

A standard convolution, shown in Fig. 1(a), simultaneously per-
forms feature extraction and channel fusion on the input feature maps.
Depthwise separable convolution in MobileNetV1 [15] decomposes
the standard convolution into depthwise convolution and pointwise
convolution as shown in Fig. 1(b). In depthwise convolution, a single
convolutional kernel is applied to each input channel. Usually, a
3 × 3 convolution is used for such feature extraction. Pointwise
convolution applies 1 × 1 convolution to the output feature map
of depthwise convolution to perform channelwise fusion. Hence,
by splitting the feature extraction and channel fusion, the depthwise
separable convolution significantly reduces the number of parameters
and consequently the computations performed by the network.

B. Group Convolution

The concept of GroupConv was first proposed in AlexNet [25].
Due to limited GPU performance, at that time, the model was divided
into two GPUs for training. In GroupConv, the convolutional filters
are divided into G groups and the input feature map channels are
also divided into G groups as shown in Fig. 1(c). Each group
of convolutional filters processes the corresponding group of input
feature map channels. Since each group of convolutional filters is
only applied to the corresponding input channel group, the computa-
tional cost of convolution is significantly reduced, but the channel
information is not shared between different groups, i.e., different
groups of output feature map channels only receive information from
their corresponding groups of input channels. This hinders the flow
of information between different groups of channels, reducing the
feature extraction ability of GroupConv. To overcome this issue,
ShuffleNet [17] performs a channel shuffle operation to enhance the
information exchange between different groups of channels.

C. Heterogeneous Convolution

HetConv [18] contains both 3×3 convolution and 1×1 convolution
in one convolutional filter, as shown in Fig. 1(d). Note that the hetero-
geneous filters are arranged in a shifted manner (see Fig. 3 in [18]).
The M/P 3 × 3 convolutional kernels are discretely arranged, and
the 3×3 and 1×1 kernels alternate within a convolutional filter. The
computational complexity of the original 3 × 3 standard convolution
can be reduced by three to eight times using heterogeneous convolu-
tional filters, without sacrificing the accuracy of the network much.
The heterogeneous design essentially breaks down the continuity
of cross-channel information integration and negatively affects the
preservation of complete information of input feature map. Therefore,
such a strategy could reduce the network accuracy.

III. PROPOSED DUAL CONVOLUTION

A. Design Scheme of Dual Convolution

We propose dual convolution which combines the strengths of
group convolution and heterogeneous convolution. Whereas some
convolutional kernels perform both 3 × 3 and 1 × 1 convolutional
operations simultaneously, others only perform 1 × 1 convolutions,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

Fig. 1. Convolutional filter designs of (a) standard convolution, (b) depthwise separable convolution, (c) group convolution, (d) heterogeneous convolution,
and (e) proposed dual convolution. M is the number of input channels (i.e., the depth of input feature map), N is the number of convolutional filters and also
the number of output channels (i.e., the depth of output feature map), Di is the width and height dimension of input feature map, K × K is the convolutional
kernel size, G is the number of groups in group convolution and dual convolution, and 1/P is the ratio of 3 × 3 convolutional kernels in heterogeneous
convolution. Note that the heterogeneous filters are arranged in a shifted manner [18].

Fig. 2. Structural layout of dual convolution.

as shown in Fig. 1(e). The structural layout of dual convolution is
shown in Fig. 2. Note how the 3 × 3 convolution moves in the
feature map channel dimension and yet the 1 × 1 convolution is
performed on all input channels. Our approach can be regarded as
the combination of 3 × 3 group convolution and 1 × 1 pointwise
convolution on the same input feature map, which makes it easy
to integrate into existing network architectures. Because applying
continuous 1 × 1 convolution on input feature maps can preserve
the original information, it can help deeper convolutional layers to
extract information more effectively.

DualConv not only solves the problem of poor communication
of GroupConv but also improves the performance of deep neural
networks compared to HetConv. In the GroupConv shown in
Fig. 1(c), every N/G convolutional filters handle M/G input fea-
ture map channels, extracting information for N/G output feature
map channels. As each convolutional filter extracts information
from only 1/G input channels, the output feature map channel of
such convolutional filter contains less information than that of the

convolutional filter which handles the complete input feature map.
Based on this observation, we add M 1 × 1 convolutional kernels to
each convolutional filter so that it is able to handle the complete input
feature map for better information extraction and sharing between
convolutional layers. In the HetConv shown in Fig. 1(d), M/P
kernels are 3 × 3 convolutional kernels, and the rest (M − M/P)
kernels are 1×1 convolutional kernels. Such alternative arrangement
breaks down the continuity of cross-channel information integration
and negatively affects the preservation of complete information of
input feature map. Based on this observation, we design parallel
1 × 1 convolutional kernels for all the 3 × 3 convolutional kernels,
so as to preserve the original information of input feature maps to
help deeper convolutional layers to extract more effective features.

We combine the above two modifications together to design Dual-
Conv. We divide N convolutional filters into G groups, each group
handles the complete input feature map where M/G input feature
map channels are processed by 3×3 and 1×1 convolutional kernels
simultaneously and the rest (M − M/G) input channels are processed
by 1 × 1 convolutional kernels solely. The results of simultaneous
3 × 3 and 1 × 1 convolutional kernels are summed up, as indicated
by the ⊕ sign in Fig. 1(e). Because the filter group structure enforces
a block-diagonal sparsity on the channel dimension, the filters with
high correlation are learned in a more structured way [26]. As such,
we do not arrange the convolutional filters in a shifted manner. The
design of DualConv reduces the parameters of original backbone
network models through group convolution strategy and promotes
better information sharing between convolutional layers by preserving
the original information of input feature maps and allowing for
maximum cross-channel communication with M 1 × 1 convolutions.
As a result, DualConv can be constructed without the need for
channel shuffle operation.

Assume that the size of output feature map is Do × Do × N ,
where Do is the width and height dimension of output feature map.
In the standard convolution shown in Fig. 1(a), the input feature map
is filtered by N convolutional filters with size of K × K × M in



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

the convolutional layer, where K × K is the convolutional kernel
size. Therefore, the total number of FLOPs performed in a standard
convolutional layer FLSC is

FLSC = D2
o × K 2 × M × N . (1)

In DualConv, the number of convolutional filter groups G is
used to control the proportion of K × K convolutional kernels in
a convolutional filter. For a given G, the proportion of combined
simultaneous convolutional kernels with size of (K × K + 1 × 1)
is 1/G of all channels, while the proportion of the remaining
1 × 1 convolutional kernels is (1 − 1/G). Therefore, in a dual
convolutional layer composed of G convolutional filter groups, the
number of FLOPs for the combined convolutional kernels is

FLCC = (
D2

o × K 2 × M × N + D2
o × M × N

)
/G (2)

and the number of FLOPs for the remaining 1 × 1 pointwise
convolutional kernels is

FLPC = (
D2

o × M × N
) × (1 − 1/G). (3)

The total number of FLOPs is

FLDC = FLCC + FLPC

= D2
o × K 2 × M × N/G + D2

o × M × N . (4)

Comparing the computational cost (FLOPs) of dual convolutional
layer with that of standard convolutional layer, the computational
reduction ratio RDC/SC is

RDC/SC = FLDC

FLSC
= 1

G
+ 1

K 2
. (5)

As seen from (5), given that K = 3 in DualConv design, the speedup
can reach eight to nine times when G is large.

B. Comparison With Previous Work

As shown in Fig. 1(b), a depthwise separable convolutional layer
contains two convolutional layers, i.e., a depthwise convolutional
layer followed by a pointwise convolutional layer, which increases the
network complexity. On the contrary, the proposed DualConv does
not add additional layers to the network. The number of FLOPs for
a depthwise separable convolutional layer is

FLDSC = D2
o × (

K 2 × M + M × N
)
. (6)

The computational reduction ratio over the standard convolutional
layer RDSC/SC is

RDSC/SC = FLDSC

FLSC
= 1

N
+ 1

K 2
. (7)

As mentioned in Section III-A, each convolutional filter in Group-
Conv extracts information from only 1/G input channels, while the
convolutional filter in DualConv handles the complete input feature
map. In a group convolutional layer, the number of FLOPs is

FLGC = (
D2

o × K 2 × M × N
)
/G (8)

and the computational reduction ratio RGC/SC is

RGC/SC = FLGC

FLSC
= 1

G
. (9)

Unlike HetConv where the 1 × 1 convolution is not applied to
all input feature map channels, the proposed DualConv operates
1 × 1 convolution on the whole input feature map. It can retain
and fuse the information of the original input features better than
HetConv, with only a slight increase in the number of FLOPs

and parameters. The number of FLOPs for a heterogeneous convo-
lutional layer is

FLHC = (
D2

o × M × N
) × K 2 + P − 1

P
(10)

and the computational reduction ratio RHC/SC is

RHC/SC = FLHC

FLSC
= 1

P
+ 1

K 2
− 1

P × K 2
. (11)

As derived from (7) and (11), given K = 3, when N and P are
large, the speedup of depthwise separable convolution and HetConv
can reach eight to nine times, which is similar to the speedup of
DualConv. However, the speedup of GroupConv is proportional to G.

IV. EXPERIMENTS AND DISCUSSIONS

We perform extensive experiments using the proposed dual con-
volutional filters. The tradeoff between accuracy and computational
cost of the network model is adjusted by the number of convolutional
filter groups, G. When the value of G is large, the structure of
DualConv becomes closer to the standard convolution consisting of
all 1 × 1 convolutional kernels. In general, DualConv retains the
accuracy of the original network and in some cases achieves slightly
higher accuracy than the original convolutional filter. Moreover,
compared to other efficient convolutions with similar computational
cost, DualConv achieves higher network accuracy. Hence, DualConv
makes it more feasible to deploy deep CNNs on mobile platforms or
embedded devices.

A. VGG-16 and ResNet-50 on CIFAR-10

For VGG-16 network architecture, we replace the 3 × 3 standard
convolutions in the last 12 layers with the proposed DualConv. The
G values for all replaced layers are the same, and the number
of convolutional kernels in each layer is kept the same as that
of the original VGG-16 network. In ResNet-50 network structure,
we use DualConv to replace all the 3 × 3 standard convolutions
with stride 1 in the convolutional layers (except the first layer). For
hyperparameters, we set the weight decay to 5e-4, the initial learning
rate to 0.1 and multiply it by 0.1 after every 50 epochs. We use
the stochastic gradient descent (SGD) optimizer and the multiply step
learning rate decay strategy.

Table I shows the performance comparisons of DualConv, Group-
Conv, and HetConv on CIFAR-10 dataset using VGG-16 network
architecture. Table I also illustrates the comparisons with several
representative model compression methods applied to VGG-16, e.g.,
Li-pruned [7], structured Bayesian pruning (SBP) [8], and auto-
balanced filter pruning (AFP) [6]. For a fair comparison between
different convolutional filters under the same implementation frame-
work, the proposed DualConv and the reproduced GroupConv and
HetConv are all implemented in the PyTorch framework adopting the
im2col method to flatten the feature maps and convolutional kernels.
The implementation framework and the flattening method may be
the reasons why the reproduced HetConv performs slightly (0.2%–
0.76%) worse than the HetConv reported in [18].

In Table I, with the increase of G value, the number of FLOPs and
parameters of network decrease significantly, whereas the network
accuracy drops slightly. When G = 4, the accuracy of VGG-16
network is actually higher than that of standard VGG-16 network
while the computations and the parameters are both reduced by
over 60%. DualConv generally obtains higher accuracy than HetConv,
demonstrating better feature learning ability than HetConv, since
1 × 1 convolution is applied to all channels. Moreover, as for
ResNet-50, the accuracy of ResNet-50 with DualConv outperforms
the standard ResNet-50 network and the computations and parameters
are reduced significantly by over 25% when G = 8.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

TABLE I

PERFORMANCE OF VGG-16 AND RESNET-50 WITH DUALCONV,
GROUPCONV, OR HETCONV ON CIFAR-10

USING DIFFERENT SETTINGS1

Our results demonstrate that 1 × 1 pointwise convolution can
transfer and fuse the information of input feature maps well, and
the output feature maps can retain the information of input feature
maps better. Hence, it can be performed without the need for channel
shuffle operation.

B. MobileNetV1 and MobileNetV2 on CIFAR-10

In MobileNetV1 network architecture, we replace all the depthwise
separable convolutions with our proposed dual convolutions. Since
the images in CIFAR-10 and CIFAR-100 datasets are much smaller
than the images in ImageNet dataset, the stride of the first depthwise
separable convolutional layer in the original or DualConv-modified
MobileNetV1 network is modified to 1 instead of 2. In MobileNetV2
network structure, we replace the inverted residual block with our
proposed dual convolution while the convolution stride is kept as 1.
The replacement strategy is to add batch normalization and ReLU6
operations after the proposed dual convolution when replacing the
inverted residual block. The experimental settings are the same as
those in Section IV-A.

Table II shows our experimental results. In MobileNetV1 network
structure, although the proposed DualConv increases the parame-
ters and computational cost of the original MobileNetV1 network,
it improves the network accuracy by 1.23%. Even when G = 32,
MobileNetV1 with DualConv still has higher accuracy than the
original MobileNetV1 network with similar parameters and com-
putational cost. In MobileNetV2 network structure, our proposed
DualConv can decrease the network parameters and computational
cost exceeding 60% with only 1.16% drop in accuracy when G = 32.

TABLE II

PERFORMANCE OF MOBILENETV1 AND MOBILENETV2 WITH
DUALCONV ON CIFAR-10 USING DIFFERENT SETTINGS

TABLE III

PERFORMANCE OF VGG-16 AND RESNET-50 WITH DUALCONV

ON CIFAR-100 USING DIFFERENT SETTINGS

C. VGG-16 and ResNet-50 on CIFAR-100

In this experiment, we use DualConv to modify VGG-16 and
ResNet-50 network structures to perform image classification on a
larger dataset CIFAR-100. We replace the 3×3 standard convolutions
with dual convolutions. Note that, the VGG-16 architecture used
for CIFAR-100 dataset has three fully connected layers, while the
VGG-16 architecture used for CIFAR-10 dataset has only one fully
connected layer. The values of the hyperparameters are set as: weight
decay = 5e-4, and initial learning rate = 0.1 which is multiplied
by 0.2 after every 60 epochs. Moreover, we use SGD optimizer and
multiply step learning rate decay strategy.

The Top-1 accuracy of the networks are recorded in Table III.
As shown in Table III, when we replace the 3 × 3 standard convolu-
tions of VGG-16 with the proposed dual convolutions, the accuracy
improves when G increases to 8. The computational cost is reduced
by more than 70% when G = 8. When G increases further, the
accuracy of network drops slightly, but the number of parameters
and computational cost are further reduced. On the other hand, the
best accuracy of ResNet-50 with DualConv is achieved when G = 4,
which is only 0.02% lower than the original ResNet-50, but the
number of parameters and computational cost are reduced by more
than 20%. These results demonstrate the strong generalization ability
of the proposed DualConv.

D. MobileNetV1 and MobileNetV2 on CIFAR-100

In this experiment, we test the proposed DualConv in MobileNetV1
and MobileNetV2 network structures to perform image classification



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE IV

PERFORMANCE OF MOBILENETV1 AND MOBILENETV2 WITH
DUALCONV ON CIFAR-100 USING DIFFERENT SETTINGS

on CIFAR-100 dataset. The experimental settings are the same as
those in Section IV-C.

As shown in Table IV, when we replace the depthwise sep-
arable convolutions of MobileNetV1 network with the proposed
dual convolutions, the accuracy increases by 4.11% when G = 4.
Even when the G value increases to 32, the network accuracy
still outperforms the standard MobileNetV1 architecture and has
similar computational cost. In MobileNetV2 network structure, the
proposed dual convolution greatly reduces the network parameters
and computational cost with only a slight drop in accuracy (0.68%
when G = 2 or G = 4). These experimental results also confirm the
strong generalization ability of the proposed DualConv.

E. VGG-16 and ResNet-50 on ImageNet

We experiment with the DualConv-modified VGG-16 and
ResNet-50 network architectures on the large-scale ImageNet dataset.
The modification strategy of VGG-16 is the same as that described
in Section IV-A, and VGG-16 for ImageNet also has three fully
connected layers as that for CIFAR-100. For ResNet-50 network,
we use DualConv to replace all the 3 × 3 standard convolutions
with stride 1 and 2 in the convolutional layers (except the first
layer). Moreover, the values of the hyperparamters are set as: weight
decay = 1e-4, batch size = 128, initial learning rate = 0.01 in
VGG-16 and 0.1 in ResNet-50, and the learning rate is multiplied
by 0.1 after every 30 epochs. Both network architectures are trained
for 90 epochs.

Table V presents the performance of VGG-16 and ResNet-50 net-
works with DualConv on ImageNet. Some representative model com-
pression methods (including RNP (3X) [3], CP 2X [5], ThiNet [4],
and neuron importance score propagation (NISP) [2]), HetConv-
modified VGG-16 and ResNet-50 (achieving the best performance
when P = 4), and GroupConv-modified ResNet-50 (achieving the
best performance when G = 2) are also compared.

As illustrated in Table V, when G = 2, the computational cost
of VGG-16 with DualConv decreases by about 38% compared to
the original VGG-16 network with only a slight drop in accuracy
(0.48% in Top-1 accuracy and 0.17% in Top-5 accuracy). Note
that, the number of parameters of VGG-16 with DualConv does not
change much on the ImageNet dataset. This is because the last fully
connected (nonconvolutional) layers occupy most of the parameters,
i.e., about 102 M on ImageNet dataset. In the case for ResNet-50, the
model with DualConv significantly decreases the computational cost
and parameters of the original ResNet-50 model with a slight drop
in accuracy (0.18% in Top-1 accuracy and 0.29% in Top-5 accuracy)
when G = 2. Furthermore, from Table V, we can see that our
proposed DualConv achieves better accuracy than model compression

TABLE V

PERFORMANCE OF VGG-16 AND RESNET-50 WITH DUALCONV

ON IMAGENET USING DIFFERENT SETTINGS1

methods and other efficient convolutional filters (i.e., GroupConv and
HetConv) with similar parameters and computational cost.

F. MobileNetV1 and MobileNetV2 on ImageNet

We also experiment with the DualConv-modified MobileNetV1
and MobileNetV2 network architectures on the large-scale ImageNet
dataset. The stride of the first depthwise separable convolutional
layer in the original or DualConv-modified MobileNetV1 network is
changed back to 2 for ImageNet dataset. The hyperparameter settings
in MobileNetV1 are the same as those in ResNet-50 on ImageNet
(as described in Section IV-E). The values of the hyperparamters in
MobileNetV2 are set as: weight decay = 4e-5 and initial learning
rate = 0.05. Besides, Cosine learning rate decay strategy is used,
and the network is trained for 150 epochs.

Table VI shows that although DualConv increases the accuracy of
MobileNetV1 network (up to 1.64% in Top-1 accuracy and 1.11%
in Top-5 accuracy), it also increases the network parameters and
computational cost. As for MobileNetV2, the model parameters and
computational cost are reduced by applying DualConv. However, the
accuracy of MobileNetV2 with DualConv is lower than the original
MobileNetV2. A possible reason for this is that we use DualConv to
replace the entire inverted residual block in MobileNetV2 network,
activating the feature maps once, while the inverted residual block
activates the feature maps twice.

Our results show that DualConv can be integrated in both stan-
dard and lightweight network architectures to increase the network
accuracy and reduce the network parameters and computational cost.
Our experiments also demonstrate that the proposed DualConv can
fit to various image classification datasets well and has a strong
generalization capability.

G. Classification Time on ImageNet

As pointed out in [27], FLOPs is an indirect network efficiency
metric but speed is a direct metric. Therefore, not only the computa-
tional cost (FLOPs) and number of parameters are important for the
evaluation of efficient convolutional filters, but also the inference time



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

Fig. 3. Visualizations of an example image for ResNet-50 and MobileNetV1 networks on ImageNet dataset. (a) Original input image. (b)–(g) Heatmaps
obtained by Grad-CAM method on ResNet-50 networks. (h)–(m) Guided Grad-CAM visualizations integrating guided backpropagation with Grad-CAM on
ResNet-50 networks. (n)–(s) Heatmaps obtained by Grad-CAM method on MobileNetV1 networks. (t)–(y) Guided Grad-CAM visualizations integrating guided
backpropagation with Grad-CAM on MobileNetV1 networks. (a) Input Image. (b) ResNet-50. (c) ResNet-50_G2. (d) ResNet-50_G4. (e) ResNet-50_G8.
(f) ResNet-50_GC_G2. (g) ResNet-50_HC_P4. (h) ResNet-50. (i) ResNet-50_G2. (j) ResNet-50_G4. (k) ResNet-50_G8. (l) ResNet-50_GC_G2. (m) ResNet-
50_HC_P4. (n) MobileNetV1. (o) MobileNetV1_G2. (p) MobileNetV1_G4. (q) MobileNetV1_G8. (r) MobileNetV1_GC_G2. (s) MobileNetV1_HC_P4.
(t) MobileNetV1. (u) MobileNetV1_G2. (v) MobileNetV1_G4. (w) MobileNetV1_G8. (x) MobileNetV1_GC_G2. (y) MobileNetV1_HC_P4.

TABLE VI

PERFORMANCE OF MOBILENETV1 AND MOBILENETV2 WITH

DUALCONV ON IMAGENET USING DIFFERENT SETTINGS

is an important evaluation metric. We measure the inference time per
image for each network model. The GPU inference time is recorded
on a single NVIDIA Tesla V100 GPU, and the CPU time is recorded
using a single thread on an Intel Core i7-8700 CPU. Since the image
classification models generally run fast on V100 GPU and there
exists synchronization overhead between GPU threads, we cannot
see an obvious difference in GPU inference time between different
models. Hence, we discuss about the CPU inference time for the
evaluated models. It is demonstrated in Table V that the proposed
DualConv not only reduces the parameters and computational cost
of VGG-16 and ResNet-50 but also reduces their CPU inference
time by 52% and 24%, respectively. Moreover, Table VI shows that
although DualConv increases the inference time of MobileNetV1, but
it reduces the model parameters, computational cost and inference
time of MobileNetV2.

Because GroupConv leads to higher memory access cost when
the number of groups (G) is larger [27], we can see from the CPU
inference time in Table V that the DualConv-modified VGG-16 and
ResNet-50 networks achieve faster speeds when G = 16 and G = 8,
but not when G = 32.

About the inference time comparisons with GroupConv and Het-
Conv, we can see from Tables V and VI that when the values of G

(or P) are the same, GroupConv-modified models run faster than
DualConv-modified models but HetConv-modified models run slower
than DualConv-modified models (e.g., HetConv-modified ResNet-50
runs for 92.83 ms while DualConv-modified ResNet-50 runs
for 79.47 ms). The former phenomenon is consistent with the number
of FLOPs and parameters, but the latter is inconsistent because
the HetConv filters are arranged in a shifted manner [18], which
decreases the inference speed. This reflects the efficiency of the
proposed DualConv.

H. Visual Analysis

To better illustrate the benefit of DualConv, we apply gradient-
weighted class activation mapping (Grad-CAM) [28] and guided
backpropagation [29] methods to visualize the ResNet-50 and
MobileNetV1 networks on ImageNet dataset to obtain high-resolution
class-discriminative visualizations. The resulting heatmaps and
guided Grad-CAM visualizations of an example image are shown
in Fig. 3. From Fig. 3, we can see that when DualConv (G =
2) is applied to ResNet-50, the localization shown in Grad-CAM
heatmap is more centered than other ResNet-50 networks, and
the fine-grained details in its guided Grad-CAM visualization are
clearer than other ResNet-50 networks except the original ResNet-
50. Besides, DualConv-modified MobileNetV1 (G = 2) presents the
best localization and clearest fine-grained details among the compared
MobileNetV1 networks.

I. YOLO-V3 on PASCAL VOC

To show that the proposed DualConv can generalize to dif-
ferent tasks, we apply DualConv to object detection model.
YOLO-V3 [23] is one of the common one-stage object detec-
tion frameworks using a single CNN to predict multiple bounding
boxes and class probabilities. Since the first convolutional layer of
YOLO-V3 network is important for the low-level information extrac-
tion, it is not modified. All the remaining convolutional layers are
modified with DualConv. The 3 × 3 standard convolutions with
stride 1 in YOLO-V3 are replaced by dual convolutions. However,
we do not replace the 3 × 3 convolutions with stride 2 in YOLO-V3
because the 1 × 1 convolutions with stride 2 would harm the
information preservation and channel fusion of input feature maps.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE VII

PERFORMANCE OF YOLO-V3 WITH DUALCONV
ON PASCAL VOC 2007 TEST SET

The original YOLO-V3 and DualConv-modified YOLO-V3 models
are all trained from scratch. All the network models are trained for
100 epochs. We resize the input images to 416 × 416 and use all
16 551 images in the training and validation sets of PASCAL VOC
2007 + 2012 for training, and use the test set of PASCAL VOC
2007 for computing the mAP. First, the average precision (AP) value
of each class in PASCAL VOC 2007 is obtained by calculating the
area under the precision-recall curve, and then these are averaged to
get the mAP value. The inference time is recorded using one NVIDIA
Tesla V100 GPU.

From Table VII, we can see that the YOLO-V3_G4 model which
uses the proposed DualConv not only reduces the computational
cost and the number of parameters by about 50% but also improves
the accuracy (mAP) by 4.4% compared to the original YOLO-V3
model which uses 3 × 3 standard convolutions. The inference time
also improves from 26.66 to 19.79 ms (6.87 ms faster). Therefore,
DualConv not only compresses the model but also improves the
inference speed making it possible for object detection to be deployed
on mobile platforms or embedded devices.

Note that the results in Table VII are obtained for networks using
exactly the same settings, i.e., training from scratch on the same
training set with the same number of epochs. Hence, our comparison
is fair. These results are not comparable to the YOLO-V3 model that
is pretrained on the ImageNet dataset which is much bigger.

V. CONCLUSION

We propose DualConv that combines 3×3 group convolution with
1 × 1 pointwise convolution solving the problem of cross-channel
communication and preservation of the information in the original
input feature maps. Compared to HetConv, DualConv improves
network performance by adding minimal parameters. DualConv is
applied to common network structures to perform image classifi-
cation and object detection. By comparing the experimental results
of standard convolution and DualConv, the effectiveness and effi-
ciency of the proposed DualConv is demonstrated. As seen from
the experimental results, DualConv can be integrated in both stan-
dard and lightweight network architectures to increase the network
accuracy and reduce the network parameters, computational cost,
and inference time. We also demonstrate that DualConv can fit to
various image datasets well and has a strong generalization capabil-
ity. Future research work will focus on deployment on embedded
devices to further prove the efficiency of DualConv in practical
applications.

REFERENCES

[1] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” in Proc. Int. Conf. Learn. Represent., 2016, pp. 1–14.

[2] R. Yu et al., “NISP: Pruning networks using neuron importance score
propagation,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2018, pp. 9194–9203.

[3] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” in Proc.
Annu. Conf. Neural Inf. Process. Syst., 2017, pp. 2178–2188.

[4] J.-H. Luo, J. Wu, and W. Lin, “ThiNet: A filter level pruning method
for deep neural network compression,” in Proc. IEEE Int. Conf. Comput.
Vis. (ICCV), Oct. 2017, pp. 5058–5066.

[5] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 1389–1397.

[6] X. Ding, G. Ding, J. Han, and S. Tang, “Auto-balanced filter pruning
for efficient convolutional neural networks,” in Proc. AAAI Conf. Artif.
Intell., 2018, pp. 6797–6804.

[7] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient ConvNets,” in Proc. Int. Conf. Learn. Represent.,
2017, pp. 1–13.

[8] K. Neklyudov, D. Molchanov, A. Ashukha, and D. Vetrov, “Structured
Bayesian pruning via log-normal multiplicative noise,” in Proc. Annu.
Conf. Neural Inf. Process. Syst., 2017, pp. 6778–6787.

[9] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net:
ImageNet classification using binary convolutional neural networks,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), 2016, pp. 525–542.

[10] S. J. Hanson and L. Y. Pratt, “Comparing biases for minimal network
construction with back-propagation,” in Proc. Annu. Conf. Neural Inf.
Process. Syst., 1989, pp. 177–185.

[11] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Proc. Annu. Conf. Neural Inf. Process. Syst., 1990, pp. 598–605.

[12] B. Hassibi and D. G. Stork, “Second order derivatives for network
pruning: Optimal brain surgeon,” in Proc. Annu. Conf. Neural Inf.
Process. Syst., 1993, pp. 164–171.

[13] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on CPUs,” in Proc. Deep Learn. Unsupervised Feature Learn.
Workshop, 2011, pp. 1–8.

[14] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5 MB model size,” 2016, arXiv:1602.07360.

[15] A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” 2017, arXiv:1704.04861.

[16] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobileNetV2: Inverted residuals and linear bottlenecks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 4510–4520.

[17] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An
extremely efficient convolutional neural network for mobile devices,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 6848–6856.

[18] P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, “HetConv:
Heterogeneous kernel-based convolutions for deep CNNs,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 4835–4844.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Represent.,
2015, pp. 1–14.

[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[21] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
University of Toronto, Tech. Rep., 2009.

[22] O. Russakovsky et al., “ImageNet large scale visual recognition chal-
lenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, Dec. 2015.

[23] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”
2018, arXiv:1804.02767.

[24] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and
W. Zisserman, “The PASCAL visual object classes (VOC) challenge,”
Int. J. Comput. Vis., vol. 88, no. 2, pp. 303–338, Jun. 2010.

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Annu. Conf. Neural
Inf. Process. Syst., 2012, pp. 1097–1105.

[26] Y. Ioannou, D. Robertson, R. Cipolla, and A. Criminisi, “Deep roots:
Improving CNN efficiency with hierarchical filter groups,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jul. 2017, pp. 5977–5986.

[27] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 116–131.

[28] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 618–626.

[29] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Riedmiller, “Striving
for simplicity: The all convolutional net,” in Proc. Int. Conf. Learn.
Represent. Workshop, 2015, pp. 1–14.


