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DeepSMOTE: Fusing Deep Learning and SMOTE
for Imbalanced Data
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Abstract— Despite over two decades of progress, imbalanced
data is still considered a significant challenge for contemporary
machine learning models. Modern advances in deep learning
have further magnified the importance of the imbalanced data
problem, especially when learning from images. Therefore, there
is a need for an oversampling method that is specifically tai-
lored to deep learning models, can work on raw images while
preserving their properties, and is capable of generating high-
quality, artificial images that can enhance minority classes and
balance the training set. We propose Deep synthetic minority
oversampling technique (SMOTE), a novel oversampling algo-
rithm for deep learning models that leverages the properties
of the successful SMOTE algorithm. It is simple, yet effective
in its design. It consists of three major components: 1) an
encoder/decoder framework; 2) SMOTE-based oversampling;
and 3) a dedicated loss function that is enhanced with a
penalty term. An important advantage of DeepSMOTE over
generative adversarial network (GAN)-based oversampling is that
DeepSMOTE does not require a discriminator, and it generates
high-quality artificial images that are both information-rich and
suitable for visual inspection. DeepSMOTE code is publicly
available at https://github.com/dd1github/DeepSMOTE.

Index Terms— Class imbalance, deep learning, machine learn-
ing, oversampling, synthetic minority oversampling technique
(SMOTE).

I. INTRODUCTION

LEARNING from imbalanced data is among the most
crucial problems faced by the machine learning com-

munity [1]. Imbalanced class distributions affect the training
process of classifiers, leading to unfavorable bias toward the
majority class(es). This may result in high error, or even
complete omission, of the minority class(es). Such a situation
cannot be accepted in most real-world applications (e.g., medi-
cine or intrusion detection) and thus algorithms for countering
the class imbalance problem have been a focus of intense
research for over two decades [2]. Contemporary applications
have extended our view of the problem of imbalanced data,
confirming that disproportionate classes are not the sole source
of learning problems. A skewed class imbalance ratio is often
accompanied by additional factors, such as difficult and bor-
derline instances, small disjuncts, small sample size [2], or the
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drifting nature of streaming data [3], [4]. These continuously
emerging challenges keep the field expanding, calling for
novel and effective solutions that can analyze, understand, and
tackle these data-level difficulties. Deep learning is currently
considered as the most promising branch of machine learning,
capable of achieving outstanding cognitive and recognition
potentials. However, despite its powerful capabilities, deep
architectures are still very vulnerable to imbalanced data
distributions [5], [6] and are affected by novel challenges such
as complex data representations [7], the relationship between
imbalanced data and extracted embeddings [8], the continually
drifting nature of data [9], and learning from an extremely
large number of classes [10].

A. Research Goal

We propose a novel oversampling method for imbalanced
data that is specifically tailored to deep learning models and
that leverages the advantages of synthetic minority oversam-
pling technique (SMOTE) [11], while embedding it in a deep
architecture capable of efficient operation on complex data
representations, such as images.

B. Motivation

Although the imbalanced data problem strongly affects both
deep learning models [12] and their shallow counterparts, there
has been limited research on how to counter this challenge in
the deep learning realm. In the past, the two main directions
that have been pursued to overcome this challenge have
been loss function modifications and resampling approaches.
The deep learning resampling solutions are either pixel-based
or use generative adversarial networks (GANs) for artificial
instance generation. Both these approaches suffer from strong
limitations. Pixel-based solutions often cannot capture com-
plex data properties of images and are not capable of generat-
ing meaningful artificial images. GAN-based solutions require
significant amounts of data, are difficult to tune, and may suffer
from mode collapse [13]–[16]. Therefore, there is a need for
a novel oversampling method that is specifically tailored to
the nature of deep learning models, can work on raw images
while preserving their properties, and is capable of generating
artificial images that are of both of high visual quality and
enrich the discriminative capabilities of deep models.

C. Summary

We propose DeepSMOTE, a novel oversampling algorithm
for deep learning models based on the highly popular SMOTE
method. Our method bridges the advantages of metric-based
resampling approaches that use data characteristics to
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leverage their performance, with a deep architecture capable
of working with complex and high-dimensional data.
DeepSMOTE consists of three major components: 1) an
encoder/decoder framework; 2) SMOTE-based oversampling;
and 3) a dedicated loss function enhanced with a penalty term.
This approach allows us to embed effective SMOTE-based
artificial instance generation within a deep encoder/decoder
model for a streamlined and end-to-end process, including
low-dimensional embeddings, artificial image generation, and
multiclass (MC) classification.

D. Main Contributions
In order for an oversampling method to be successfully

applied to deep learning models, we believe that it should meet
three essential criteria: 1) it should operate in an end-to-end
manner; 2) it should learn a representation of the raw data and
embed the data into a lower dimensional feature space; and
3) it should readily generate output (e.g., images) that can be
visually inspected. In this article, we propose DeepSMOTE,
which meets these three criteria, and also offers the following
scientific contributions to the field of deep learning under class
imbalance.

1) Deep oversampling architecture: We introduce
DeepSMOTE, a self-contained deep architecture
for oversampling and artificial instance generation that
allows efficient handling of complex-imbalanced and
high-dimensional data, such as images.

2) Simple and effective solution to class imbalance: Our
framework is simple, yet effective in its design. It con-
sists of only three major components responsible for
low-dimensional representations of raw data, resam-
pling, and classification.

3) No need for a discriminator during training: An impor-
tant advantage of DeepSMOTE over GAN-based over-
sampling lies in the fact that DeepSMOTE does not
require a discriminator during the artificial instance
generation process. We propose a penalty function that
ensures efficient usage of training data to prime our
generator.

4) High-quality image generation: DeepSMOTE generates
high-quality artificial images that are both suitable for
visual inspection (they are of identical quality as their
real counterparts) and information-rich, which allows for
efficient balancing of classes and alleviates the effects
of imbalanced distributions.

5) Extensive experimental study: We propose a carefully
designed and thorough experimental study that com-
pares DeepSMOTE with state-of-the-art oversampling
and GAN-based methods. Using five popular image
benchmarks and three dedicated skew-insensitive met-
rics over two different testing protocols, we empirically
prove the merits of DeepSMOTE over the reference
algorithms. Furthermore, we show that DeepSMOTE
displays an excellent robustness to increasing imbalance
ratios, being able to efficiently handle even extremely
skewed problems.

E. Article Outline
In this article, we first provide an overview of the imbal-

anced data problem and the traditional approaches that have

been employed to overcome this issue. Next, we discuss how
deep learning methods have been used to generate data and
augment imbalanced datasets. We then introduce our approach
to imbalanced learning, which combines deep learning with
SMOTE. Finally, we discuss our extensive experimentation,
which validates the benefits of DeepSMOTE.

II. LEARNING FROM IMBALANCED DATA

The first works on imbalanced data came from binary
classification problems. Here, the presence of majority and
minority classes is assumed, with a specific imbalance ratio.
Such skewed class distributions pose a challenge for machine
learning models, as standard classifiers are driven by a 0–1
loss function that assumes a uniform penalty over both classes.
Therefore, any learning procedure driven by such a function
will lead to a bias toward the majority class. At the same
time, the minority class is usually more important and thus
cannot be poorly recognized. Therefore, methods dedicated to
overcoming the imbalance problem aim at either alleviating
the class skew or alternating the learning procedure. The three
main approaches are as follows.

A. Data-Level Approaches

This solution should be viewed as a preprocessing phase
that is classifier-independent. Here, we focus on balancing
the dataset before applying any classifier training. This is
usually achieved in one of three ways: 1) reducing the size of
the majority class (undersampling); 2) increasing the size of
minority class (oversampling); or 3) a combination of the two
previous solutions (hybrid approach). Both under- and over-
sampling can be performed in a random manner, which has
low complexity, but leads to potentially unstable behavior (e.g.,
removing important instances or enhancing noisy ones). There-
fore, guided solutions have been proposed that try to smartly
choose instances for preprocessing. While not many solutions
have been proposed for guided undersampling [17]–[19], over-
sampling has gained much more attention due to the success
of SMOTE [11], which led to the introduction of a plethora
of variants [20]–[24]. However, recent works show that
SMOTE-based methods cannot properly deal with multimodal
data and cases with high intraclass overlap or noise. Therefore,
completely new approaches that do not rely on k-nearest
neighbors have been successfully developed [25], [26].

B. Algorithm-Level Approaches

Contrary to the previously discussed approaches, algorithm-
level solutions work directly within the training procedure of
the considered classifier. Therefore, they lack the flexibility
offered by data-level approaches, but compensate with a more
direct and powerful way of reducing the bias of the learning
algorithm. They also require an in-depth understanding of how
a given training procedure is conducted and what specific part
of it may lead to bias toward the majority class. The most
commonly addressed issues with the algorithmic approach are
developing novel skew-insensitive split criteria for decision
trees [27]–[29], using instance weighting for support vector
machines [30]–[32], or modifying the way different layers are
trained in deep learning [33]–[35]. Furthermore, cost-sensitive
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solutions [36]–[38] and one-class classification [39]–[41] can
also be considered as a form of algorithm-level approaches.

C. Ensemble Approaches

The third way of managing imbalanced data is to use
ensemble learning [42]. Here, one either combines a popular
ensemble architecture (usually based on Bagging or Boost-
ing) with one of the two previously discussed approaches
or develops a completely new ensemble architecture that is
skew-insensitive on its own [43]. One of the most successful
families of methods is the combination of Bagging with
undersampling [44]–[46], Boosting with any resampling tech-
nique [47]–[49], or cost-sensitive learning with multiple clas-
sifiers [50]–[52]. Data-level techniques can be used to manage
the diversity of the ensemble [53], which is a crucial factor
behind the predictive power of multiple classifier systems.
Additionally, to manage the individual accuracy of classifiers
and eliminate weaker learners, one may use dynamic classifier
selection [54] and dynamic ensemble selection [55], which
ensures that the final decision will be based only on the most
competent classifiers from the pool [56].

III. DEEP LEARNING FROM IMBALANCED DATA

Since the imbalanced data problem has been attracting
increasing attention from the deep learning community, let us
discuss three main trends in this area.

A. Instance Generation With Deep Neural Networks

Recent works that combine deep learning with shallow over-
sampling methods do not give desirable results and traditional
resampling approaches cannot efficiently augment the training
set for deep models [2], [57]. This leads to an interest in gen-
erative models and adapting them to work in a similar manner
to oversampling techniques [58]. An encoder/decoder combi-
nation can efficiently introduce artificial instances into a given
embedding space [59]. GANs [60], variational autoencoders
(VAEs) [61], and Wasserstein autoencoders (WAEs) [62] have
been successfully used within computer vision (CV) [63], [64]
and robotic control [65], [66] to learn the latent distribution of
data. These techniques can also be extended to data generation
for oversampling (e.g., medical imaging) [67].

VAEs operate by maximizing a variational lower bound of
the data log-likelihood [68], [69]. The loss function in a VAE is
typically implemented by combining a reconstruction loss with
the Kullback–Leibler (KL) divergence. The KL divergence can
be interpreted as an implicit penalty on the reconstruction loss.
By penalizing the reconstruction loss, the model can learn
to vary its reconstruction of the data distribution and thus
generate output (e.g., images) based on a latent distribution
of the input.

WAEs also exhibit generative qualities. Similar to VAEs, the
loss function of a WAE is often implemented by combining a
reconstruction loss with a penalty term. In the case of a WAE,
the penalty term is expressed as the output of a discriminator
network.

GANs have achieved impressive results in the computer
vision arena [70], [71]. GANs formulate image generation
as a min–max game between a generator and a discriminator

network [72]. Despite their impressive results, GANs require
the use of two networks, are sometimes difficult to train, and
are subject to mode collapse (i.e., the repetitive generation of
similar examples) [13]–[16].

B. Loss Function Adaptation

One of the most popular approaches for making neural
networks skew-insensitive is to modify their loss function.
This approach successfully carried over to deep architectures
and can be seen as an algorithm-level modification. The idea
behind modifying the loss function is based on the assumption
that instances should not be treated uniformly during training
and that errors on minority classes should be penalized more
strongly, making it parallel to cost-sensitive learning [38].
Mean False Error [73] and Focal Loss [74] are two of the
most popular approaches based on this principle. The former
simply balances the impact of instances from minority and
majority classes, while the latter reduces the impact of easy
instances on the loss function. More recently, multiple other
loss functions were proposed, such as Log Bilinear Loss [75],
Cross Entropy Loss [76], and Class-Balanced Loss [77].

C. Long-Tailed Recognition

This subfield of deep learning evolved from problems where
there is a high number of very rare classes that should
nevertheless be properly recognized, despite their low sample
size. Long-tailed recognition can be thus seen as an extreme
case of the MC imbalanced problem, where we deal with
a very high number of classes (hundreds) and an extremely
high imbalance ratio. Due to very disproportionate class sizes,
direct resampling is not advisable, as it will either significantly
reduce the size of majority classes or require creation of
too many artificial instances. Furthermore, classifiers need to
handle the problem of small sample size, making learning
from the tail classes very challenging. It is important to note
that the majority of works in this domain assume that the
test set is balanced. Very interesting solutions to this problem
are based on adaptation of the loss function in deep neural
networks, such as equalization loss [78], hubless loss [79],
and range loss [80]. Recent works suggest looking closer
at class distributions and decomposing them into balanced
sets—an approach popular in traditional imbalanced classifica-
tion. Zhou et al. [81] proposed a cumulative learning scheme
from global data properties down to class-based features.
Sharma et al. [82] suggested using a small ensemble of three
classifiers, each focusing on majority, middle, or tail groups
of classes. Meta-learning is also commonly used to improve
the distribution estimation of tail classes [83].

IV. DEEPSMOTE

A. Motivation

We propose DeepSMOTE, a novel and breakthrough over-
sampling algorithm dedicated to enhancing deep learning
models and countering the learning bias caused by imbalanced
classes. As discussed above, oversampling is a proven tech-
nique for combating class imbalance; however, it has tradition-
ally been used with classical machine learning models. Several
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attempts have been made to extend oversampling methods,
such as SMOTE, to deep learning models, although the results
have been mixed [84]–[86]. In order for an oversampling
method to be successfully applied to deep learning models,
we believe that it should meet three essential criteria.

1) It should operate in an end-to-end manner by accepting
raw input, such as images (i.e., similar to VAEs, WAEs,
and GANs).

2) It should learn a representation of the raw data and
embed the data into a lower dimensional feature space,
which can be used for oversampling.

3) It should readily generate output (e.g., images) that can
be visually inspected, without extensive manipulation.

We show through our design steps and experimental evalu-
ation that DeepSMOTE meets these criteria. In addition, it is
capable of generating high-quality, sharp, and information-rich
images without the need for a discriminator network.

B. DeepSMOTE Description

DeepSMOTE consists of an encoder/decoder framework,
a SMOTE-based oversampling method, and a loss function
with a reconstruction loss and a penalty term. Each of these
features is discussed below, with Fig. 1 depicting the flow of
the DeepSMOTE approach, while the pseudo-code overview
of DeepSMOTE is presented in Algorithm 1.

Algorithm 1 DEEPSMOTE
Data: B: batches of imbalanced training data

(D) B = {b1, b2, . . . , bn}
Input: Model parameters: � = {�0,�1, . . . ,� j }; Learning

Rate: α
Output: Balanced training set.
Symbols: RL - Reconstruction loss; PL - Penalty loss;
TL - Total loss;
C - Set of classes in D;
CM - Set of minority classes in D;
G - Set of generated and encoded examples;
S - Set of generated and decoded data (balanced).
Train the Encoder / Decoder:
for e← epochs do

for b← B do
Eb ← encode(b)
Db ← decode(Eb)
RL = 1

n

∑n
i=1(Dbi − bi)

2

CD ← randomly sample a class f rom C
Cb ← randomly sample |b| instances f rom CD

ES ← encode(Cb)
PE ← permute order(ES)
DP ← decode(PE )
PL = 1

n

∑n
i=1(DPi − CDi)

2 TL = RL + PL

� := �− α ∂TL
∂�

Generate Samples:
foreach m ← minori t y class (CM ) do

Cmd ← select (Cm imbalanced data)
Em ← encode(Cmd )
Gm ← SM OT E(Em)
Sm ← decode(Gm )

C. Encoder/Decoder Framework

The DeepSMOTE backbone is based on the deep convo-
lutional GAN (DCGAN) architecture, which was established

by Radford et al. [87]. Radford et al. [87] used a discrimi-
nator/generator in a GAN, which is fundamentally similar
to an encoder/decoder because the discriminator effectively
encodes input (absent the final, fully connected layer) and the
generator (decoder) generates output.

The encoder and decoder are trained in an end-to-end
fashion. During DeepSMOTE training, an imbalanced dataset
is fed to the encoder/decoder in batches. A reconstruction loss
is computed on the batched data. All classes are used during
training so that the encoder/decoder can learn to reconstruct
both majority and minority class images from the imbalanced
data. Because there are few minority class examples, majority
class examples are used to train the model to learn the basic
reconstruction patterns inherent in the data. This approach
is based on the assumption that classes share some similar
characteristics (e.g., all classes represent digits or faces). Thus,
for example, although the number 9 (minority class) resides in
a different class than the number 0 (majority class), the model
learns the basic contours of digits.

D. Enhanced Loss Function

In addition to a reconstruction loss, the DeepSMOTE loss
function contains a penalty term. The penalty term is based on
a reconstruction of embedded images. DeepSMOTE’s penalty
loss is produced in the following fashion. During training,
a class (c) is randomly selected from the set of all classes (C).
A group of examples is then randomly sampled from c that is
equal in number to the batch size. Thus, the number of sampled
examples is the same as the number of examples used for
reconstruction loss purposes; however, unlike the images used
during the reconstruction loss phase of training, the sampled
images are all from the same class. The sampled images are
then reduced to a lower-dimensional feature space by the
encoder. During the decoding phase, the encoded images are
not reconstructed by the decoder in the same order as the
encoded images. By changing the order of the reconstructed
images, which are all from the same class, we effectively
introduce variance into the encoding/decoding process. For
example, the encoded order of the images may be D0, D1,
D2, and the decoded order of the images may be D2, D0,
D1. This variance facilitates the generation of images during
inference (where an image is encoded, SMOTEd, and the
decoded).

Essentially, the permutation step is necessary because
DeepSMOTE uses an autoencoder (an encoder plus a decoder).
The output of an autoencoder is deterministic with respect to
its input, in the sense that an autoencoder can only decode or
generate what it encodes. In a standard autoencoder, there is
no variance in the data that is encoded and decoded. Thus,
a standard autoencoder is not capable of generating examples
that are different from the input data. Our goal is to introduce
variance into the encoded feature space, so that the decoded
example is different from the input to the autoencoder, yet
constrained by the inputted data. We introduce variance into
the encoding/decoding process by permuting the order of the
encoded data. Thus, there is bound to be some difference
between encoded image D0 and decoded image D1. The
difference is not likely to be extremely large, since D0 and
D1 D0 are both from the same class; however, there will be
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Fig. 1. Illustration of DeepSMOTE implementation. The encoder/decoder structure is trained with imbalanced data and a reconstruction and penalty loss.
During training, data is sampled, encoded, and the order of examples are permuted before decoding. The trained encoder and decoder are then combined with
SMOTE to produce oversampled data.

some difference. This difference becomes the penalty term.
By introducing variance into the encoding process, the decoder
gains “practice” at decoding examples that are different from
the input data (which a standard decoder in an autoencoder
is not trained to do). This “practice” is necessary because
during inference, an example is encoded, then it is changed
via SMOTE interpolation to a different example, which the
decoder must decode.

The penalty loss is based on the mean squared error (MSE)
difference between D0 and D1, D1 and D2, and so on, as if
an image was oversampled by SMOTE (i.e., as if an image
were generated based on the difference between an image
and the image’s neighbor). This step is designed to insert
variance into the encoding/decoding process. We, therefore,
obviate the need for a discriminator because we use training
data to train the generator by simply altering the order of the
encoded/decoded images.

As a refresher, the SMOTE algorithm generates synthetic
instances by randomly selecting a minority class example and
one of its class neighbors. The distance between the example
and its neighbor is calculated. The distance is multiplied by
a random percentage (i.e., between 0 and 1) and added to
the example instance in order to generate synthetic instances.
We simulate SMOTE’s methodology during DeepSMOTE
training by selecting a class sample and calculating a distance
between the instance and its neighbors (in the embedding
or feature space), except that the distance (MSE) during
training is used as an implicit penalty on the reconstruction
loss. As noted by Arjovsky et al. [16], many generative deep
learning models effectively incorporate a penalty, or noise,
term in their loss function, to impart diversity into the model
distribution. For example, both VAEs and WAEs include
penalty terms in their loss functions. We use permutation,
instead of SMOTE, during training because it is more memory
and computationally efficient. The use of the penalty term, and
SMOTE’s fidelity in interpolating synthetic samples during the
inference phase, allows us to avoid the use of a discriminator,
which is typically used by GAN and WAE models.

E. Artificial Image Generation

Once DeepSMOTE is trained, images can be generated with
the encoder/decoder structure. The encoder reduces the raw
input to a lower-dimensional feature space, which is over-
sampled by SMOTE. The decoder then decodes the SMOTEd
features into images, which can augment the training set of a
deep learning classifier.

The main difference between the DeepSMOTE training and
generation phases is that during the data generation phase,
SMOTE is substituted for the order permutation step. SMOTE
is used during data generation to introduce variance, whereas
during training, variance is introduced by permuting the order
of the training examples that are encoded and then decoded
and also through the penalty loss. SMOTE itself does not
require training because it is nonparametric.

V. EXPERIMENTAL STUDY

We have designed the following experimental study in order
to answer the following research questions.

RQ1: Is DeepSMOTE capable of outperforming state-of-
the-art pixel-based oversampling algorithms?

RQ2: Is DeepSMOTE capable of outperforming state-
of-the-art GAN-based resampling algorithms
designed to work with complex and imbalanced data
representations?

RQ3: What is the impact of the test set distribution on
DeepSMOTE performance?

RQ4: What is the visual quality of artificial images gener-
ated by DeepSMOTE?

RQ5: Is DeepSMOTE robust to increasing class imbalance
ratios?

RQ6: Can DeepSMOTE produce stable models under
extreme class imbalance?

A. Setup

1) Overview of the Datasets: Five popular datasets were
selected as benchmarks for evaluating imbalanced data over-
sampling: Modified National Institute of Standards and
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TABLE I

CLASS DISTRIBUTIONS OF FIVE BENCHMARK DATASETS USED
IN EXPERIMENTAL EVALUATION

Technology dataset (MNIST) [88], Fashion-MNIST dataset
(FMNIST) [89], CIFAR-10 [90], the street view house num-
bers (SVHNs) [91], and Large-scale CelebFaces Attributes
(CelebA) [92]. Below we discuss their details, while their class
distributions are given in Table I.

1) MNIST/FMNIST: The MNIST dataset consists of hand-
written digits and the FMNIST dataset contains Zalando
clothing article images. Both training sets have 60 000
images. Both datasets contain gray-scale images (1 ×
28 × 28), with ten classes each.

2) CIFAR-10/SVHN: The CIFAR-10 dataset consists of
images, such as automobiles, cats, dogs, frogs, and birds,
whereas the SVHN dataset consists of small, cropped
digits from house numbers in Google Street View
images. CIFAR-10 has 50 000 training images. SVHN
has 73 257 digits for training. Both datasets consist of
color images (3 × 32 × 32), with ten classes each.

3) CelebA: The CelebA dataset contains 200 000 celebrity
images, each with 40 attribute annotations (i.e., classes).
The color images (3 × 178 × 218) in this dataset
cover large pose variations and background clutter. For
purposes of this study, the images were resized to 3
× 32 × 32 and five classes were selected: black hair,
brown hair, blond, gray, and bald.

2) Introducing Class Imbalance: Imbalance was introduced
by randomly selecting samples from each class in the training
sets. For the MNIST and FMNIST, the number of imbalanced
examples were: [4000, 2000, 1000, 750, 500, 350, 200, 100,
60, 40]. For the CIFAR-10 and SVHN datasets, the number of
imbalanced examples were: [4500, 2000, 1000, 800, 600, 500,
400, 250, 150, 80]. For CelebA, the number of imbalanced
examples were: [9000, 4500, 1000, 500, 160]. For MNIST
and FMNIST, the imbalance ratio of the respective majority
class compared to the smallest minority class was 100:1; and
for CIFAR-10, SVHN, and CelebA, the ratio was approx.
56:1. For experiment 3, we created 20 versions of each dataset
with IR in [20 400]. This imbalance ratio is the disproportion
between largest and smallest classes, while all other imbalance
ratios are proportionately distributed according to the number
of classes. This is known as multiminority approach, where
we have a single majority class and all other classes being
minority ones.

3) Reference Resampling Methods: In order to evaluate
the effectiveness of DeepSMOTE, we compare it to state-
of-the-art shallow and deep resampling methods. We have
selected four pixel-based modern oversampling algorithms:

SMOTE [11], adaptive mahalanobis distance-based
oversampling (AMDO) [93], combined cleaning and
resampling (MC-CCR) [94], and radial-based oversampling
(MC-RBO) [95]. Additionally, we have chosen two of the top
performing GAN-based oversampling approaches: Balancing
GAN (BAGAN) [96] and generative adversarial minority
oversampling (GAMO) [97]. BAGAN initializes its generator
with the decoder portion of an autoencoder, which is trained
on both minority and majority images. GAMO is based on
a three-player adversarial game between a convex generator,
a classifier network, and a discriminator.

4) Classification Model: All resampling methods use an
identical Resnet-18 [98] as their base classifier.

5) Performance Metrics: The following metrics were used
to evaluate the performance of the various models: average
class specific accuracy (ACSA), macro-averaged geometric
mean (GM), and macro-averaged F1 measure (FM). Sokolova
and Lapalme have demonstrated that these measures are not
prejudiced toward the majority class [99].

6) Testing Procedure: A fivefold cross-validation was used
for training and testing the evaluated methods. Thus, we ran-
domly shuffled each training set and split the training sets into
fivefolds. Each fold was then selected as a test group with
the training examples drawn from the remaining groups. Two
approaches to forming test sets were employed: imbalanced
and balanced testing. For imbalanced testing, the ratio of
test examples follows the same imbalance ratio that exists
in the training set (this approach is common in the imbal-
anced classification domain). With the balanced test sets, the
number of test examples was approximately equal across all
classes (this approach is common in the long-tailed recognition
domain). For example, with MNIST/FMNIST, there are 60 000
examples. With fivefold cross-validation, each split consists
of 12 000 examples divided between ten classes or approx.
1200 examples per class.

7) Statistical Analysis of Results: In order to assess whether
DeepSMOTE returns statistically significantly better results
than the reference resampling algorithms, we use the Fried-
man test with Shaffer post-hoc test [100] and the Bayesian
Wilcoxon signed-rank test [101] for statistical comparison over
multiple datasets. Both tests used a statistical significance level
of 0.05.

8) DeepSMOTE Implementation Details: As mentioned
above, for DeepSMOTE implementation purposes, we used the
DCGAN architecture developed by Radford et al. [87], with
some modifications. The encoder structure consists of four
convolutional layers, followed by batch normalization [102]
and the LeakyReLu activation function [103]. Each layer
consists of convolutional channels (C), with specified kernel
size (K ), and stride (S). For all datasets, the convolutional
layers have the following parameters: C = [64, 128, 256, 512],
K = [4, 4, 4, 4], and S = [2, 2, 2, 2]. The final layer is a
dense layer, yielding a latent dimension of 300 for the MNIST
and FMNIST and 600 for the CIFAR-10, SVHN, and CelebA
datasets. The decoder structure consists of mirrored convolu-
tional transpose layers, which use batch normalization and the
rectified linear unit (ReLU) activation function [104], except
for the final layer, which uses Tanh. We train the models for
50–350 epochs, depending on when the training loss plateaus.
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Fig. 2. Illustration of the distribution of the MNIST instances among classes using PCA and t-SNE. High-dimensional images were first reduced using PCA
before applying t-SNE, with the x- and y-axes representing t-SNE components. (a) Original imbalanced training set distribution. (b) Balanced distribution using
BAGAN. (c) Balanced distribution with GAMO. (d) Balanced distribution with DeepSMOTE. (a) Imbalanced data. (b) BAGAN. (c) GAMO. (d) DeepSMOTE.

TABLE II

PERFORMANCE OF DEEPSMOTE AND REFERENCE METHODS ON IMBALANCED TEST SET

We use the Adam optimizer [105], with a 0.0002 learning
rate. We implement DeepSMOTE in PyTorch with a NVIDIA
GTX-2080 GPU. DeepSMOTE code is publicly available at
https://github.com/dd1github/DeepSMOTE.

B. Experiment 1: Comparison With State-of-the-Art

1) Placement of Artificial Instances: One of the crucial ele-
ments of oversampling algorithms based on artificial instance
generation lies in where in the feature space they place their
instances. Random positioning is far from desirable, as we
want to maintain the original properties of minority classes and
enhance them in uncertain/difficult regions. Those regions are
mostly class borders, overlapping areas, and small disjuncts.
Therefore, the best oversampling methods focus on smart
placement of instances that not only balances class distrib-
utions, but also reduces the learning difficulty. Fig. 2 depicts
a 2-D projection of an imbalanced MNIST dataset, as well
as the class distributions after oversampling with BAGAN,
GAMO, and DeepSMOTE. In Fig. 2, we performed dimen-
sionality reduction on the oversampled datasets by applying
principal component analysis (PCA), followed by t-distributed
stochastic neighborhood embedding (t-SNE) in order to better
visualize the data instance distributions [106]. We can notice
that both BAGAN and GAMO concentrate on saturating the
distribution of each class independently, generating a signifi-
cant number of artificial instances within the main distribution
of each class. Such an approach balances the training data and
may be helpful for some density-based classifiers. However,
neither BAGAN nor GAMO focus on introducing artificial
instances in a directed fashion to enhance class boundaries and
improve the discrimination capabilities of a classifier trained
on oversampled data. DeepSMOTE combines oversampling
controlled by the class geometry with our penalty function to
introduce instances in such a way that the error probability
is reduced on minority classes. We hypothesize that leads to
better placement of artificial instances and in result, as seen
in the experimental comparison, more accurate classification.

2) Comparison With Pixel-Based Oversampling: The first
group of reference algorithms is four state-of-the-art oversam-
pling approaches. Tables II and III show their results for three
metrics and two test set distribution types. We can clearly see
that pixel-based oversampling is inferior to both GAN-based
algorithms and DeepSMOTE. This allows us to conclude
that pixel-based oversampling is not a good choice when
dealing with complex and imbalanced images. Unsurprisingly,
standard SMOTE performs worst of all of the evaluated algo-
rithms, while three other methods try to offset their inability
to handle spatial properties of data with advanced instance
generation modules. Both MC-CCR and MC-RBO return the
best results from all four tested algorithms, with MC-RBO
coming close to GAN-based methods. This can be attributed
to their compound oversampling solutions, which analyze the
difficulty of instances and optimize the placement of new
instances, while cleaning overlapping areas. However, this
comes at the cost of very high computational complexity and
challenging parameter tuning. DeepSMOTE returns superior
balanced training sets compared to pixel-based approaches,
while providing an intuitive and easy to tune architecture and,
according to both nonparametric and Bayesian tests presented
in Table IV, outperforms all pixel-based approaches in a
statistically significant manner (RQ1 answered).

3) Comparison With GAN-Based Oversampling:
Tables II and III show that regardless of the metric used,
DeepSMOTE outperforms the baseline GAN-based models on
all but two cases. Both these situations are happening with F1
measure and for different models (BAGAN displays a slightly
higher F1 value on CelebA, while GAMO on CIFAR). It is
important to note that for the same benchmarks, DeepSMOTE
offers significantly higher ACSA and GM values than any
of these reference algorithms, allowing us to conclude
that F1 performance variation is not reflective on how
DeepSMOTE can handle minority classes. We hypothesize
that the success of DeepSMOTE can be attributed to better
placement of artificial instances and empowering uncertainty
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TABLE III

PERFORMANCE OF DEEPSMOTE AND REFERENCE METHODS ON BALANCED TEST SET (LONG-TAILED RECOGNITION SETUP)

TABLE IV

RESULTS OF SHAFFER POST-HOC TESTS AND BAYESIAN WILCOXON

SIGNED-RANK TESTS WITH RESPECT TO p-VALUES FOR PAIRWISE

COMPARISON BETWEEN DEEPSMOTE AND THE REFERENCE
OVERSAMPLING-BASED METHODS FOR THREE PERFORMANCE

METRICS. WHEN A p-VALUE LOWER THAN 0.05 IS

OBSERVED, WE MAY CONCLUDE THAT DEEPSMOTE
DISPLAYS A STATISTICALLY SIGNIFICANTLY BETTER

PERFORMANCE THAN THE REFERENCE RESAM-
PLING ALGORITHM. WE MERGED RESULTS

FROM IMBALANCED AND LONG-TAILED
RECOGNITION TEST SCENARIOS

areas because oversampling is driven by our penalized
loss function. DeepSMOTE has a potential to enhance
decision boundaries, effectively reducing the classifier bias
toward the majority classes. As DeepSMOTE is driven
by the SMOTE-based approach for selecting and placing
artificial instances, we ensure that the minority classes are
enriched with diverse training data of high discriminative
quality. Table IV shows that DeepSMOTE outperforms all
GAN-based approaches in a statistically significant manner
(RQ2 answered). This comes with an additional gain of
directly generating higher-quality artificial images (as will be
discussed in the following experiment).

We note that the CIFAR-10 dataset was the most challenging
benchmark for deep oversampling algorithms. We hypothesize
that the reason why the models did not exhibit high accuracy
on CIFAR-10 compared to the other datasets is because
the CIFAR-10 classes do not have similar attributes. For
example, in MNIST and SVHN, all classes are instances of
digits and in the case of CelebA, all classes represent faces;
whereas, in CIFAR-10, the classes are diverse (e.g., cat, dog,
airplane, frog). Therefore, the models are not able to leverage
information that they learn from the majority class (which has
more examples) to the minority class (which contains fewer
examples). In addition, we also noticed that, in some cases,
there appears to be a significant overlap of CIFAR-10 class
features.

4) Robustness to Mode Collapse: DeepSMOTE does not
share some of the limitations of GAN-based oversampling,
such as mode collapse. A widely used metric to determine the

quality of generated images and measure mode collapse is the
Frechet inception distance (FID) [107]. FID calculates a score
that assesses the distance between a distribution of real and
generated images based on feature activations in an Inception
network [108]. A lower score, or distance between real and
generated images, indicates more realistic images. Therefore,
on a sample basis, we selected training images (real) and
images generated by DeepSMOTE, BAGAN, and GAMO
for the minority class in the CelebA dataset (class = bald).
We calculated an FID score for each model and noted that
DeepSMOTE’s FID score (48.88) was substantially less than
GAMO (213.66) and BAGAN (256.88).

5) Effects of Test Set Distribution: The final part of the first
experiment focused on evaluating the role of class distributions
in the test set. In the domain of learning from imbalanced
data, the test set follows the distribution of the training set,
in order to reflect the actual class disproportions [1]. This
also impacts the calculation of several cost-sensitive measures
that more severely penalize the errors on minority classes [2].
However, the recently emerging field of long-tailed recognition
follows a different testing protocol [78]. In this scenario of
extreme MC imbalance, the training set is skewed, but test
sets for most benchmarks are balanced. As DeepSMOTE aims
to be a universal approach for imbalanced data preprocessing
and resampling, we evaluated its performance in both sce-
narios. Table II reports results for the traditional imbalanced
setup, while Table III reflects the long-tailed recognition
setup. We can see that DeepSMOTE excels in both scenarios,
confirming our previous observations on its benefits over
pixel-based and GAN-based approaches. It is interesting to
see that for the long-tailed setup, DeepSMOTE returns slightly
better F1 performance on the CIFAR10 and CelebA datasets.
This can be explained by the way the F1 measure is calculated,
as it gives equal importance to precision and recall. When
dealing with a balanced test set, DeepSMOTE was able to
return even better performance on these two metrics. For all
other metrics and datasets, DeepSMOTE showcases similar
trends for imbalanced and balanced test sets. This allows us to
conclude that DeepSMOTE is a suitable and effective solution
for both imbalanced and long-tailed recognition scenarios
(RQ3 answered).

C. Experiment 2: Quality of Artificially Generated Images

1) Quality of Images Generated by DeepSMOTE: Figs. 3–7
present the artificially generated images for all five bench-
mark datasets by BAGAN, GAMO, and the DeepSMOTE.
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Fig. 3. MNIST minority class images, with rows corresponding to digit classes. (a) Originals. (b) BAGAN. (c) GAMO. (d) DeepSMOTE.

Fig. 4. FMNIST minority class images: trouser/pullover/dress/coat/sandal/shirt/sneaker/bag/ankle boot. (a) Originals. (b) BAGAN. (c) GAMO.
(d) DeepSMOTE.

Fig. 5. CIFAR-10 minority class images: automobile/bird/cat/deer/dog/frog/horse/ship/truck. (a) Originals. (b) BAGAN. (c) GAMO. (d) DeepSMOTE.

We can see the quality of DeepSMOTE-generated images.
This can be attributed to DeepSMOTE using an efficient
encoding/decoding architecture with an enhanced loss func-
tion, as well as preserving class topology via metric-based
instance imputation. We note that in the case of GAMO,
we present images that were used for classification purposes
and not images generated by the GAMO2PIX method, so as
to provide a direct comparison of GAMO training images to
training images generated by BAGAN and DeepSMOTE. The
outcomes of both experiments demonstrate that DeepSMOTE

generates artificial images that are both information-rich (i.e.,
they improve the discriminative ability of deep classifiers and
they counter majority bias) and are of high visual quality (RQ4
answered).

2) Insights Into DeepSMOTE Image Generation: Fig. 8
depicts the process of generating new artificial images by
combining the base image with one of its nearest neighbors.
The ratio of which each image influences the combination
procedure is randomly established by the scaling factor of the
SMOTE algorithm (which draws values 0–1 for how close
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Fig. 6. SVHN minority class images, with rows corresponding to digit classes. (a) Originals. (b) BAGAN. (c) GAMO. (d) DeepSMOTE.

Fig. 7. CELEBA minority class images: brown hair/blond hair/gray hair/bald. (a) Originals. (b) BAGAN. (c) GAMO. (d) DeepSMOTE.

the new artificial image should resemble base and neighbor
images). As DeepSMOTE operates on an encoded domain of
images, the new artificial images are being generated by a
convex combination of target image and its nearest neighbor.
In Fig. 8, we can see how different values of the scaling factor
lead to diverse types of output images—some more similar to
base image, some more similar to nearest neighbor, and some
bearing distinctive features of both images. We hypothesize
that this diversity of generated images may be responsible for
excellent performance of DeepSMOTE. It seems worthwhile
to investigate in the future a directed way of controlling the
scaling factor in order to obtain best artificially enriched and
diversified datasets.

D. Experiment 3: Robustness and Stability Under Varied
Imbalance Ratios

1) Robustness to Varying Imbalance Ratios: One of the
most challenging aspects of learning from imbalanced data lies
in creating robust algorithms that can manage various data-
level difficulties. Many existing resampling methods return
very good results only under specific conditions or under
a narrow range of imbalance ratios. Therefore, in order to
obtain a complete picture of the performance of DeepSMOTE,
we analyze its robustness to varying imbalance ratios in the
range of [20, 400]. Fig. 9 depicts the relationship between
the three performance metrics and increasing imbalance ratio
on five used benchmarks. This experiment allows us not only
to evaluate DeepSMOTE and the reference methods under
various skewed scenarios, but also offers a bird-eye view
on the characteristics of the performance curves displayed
by each examined resampling method. An ideal resampling
algorithm should be characterized by a high robustness to

increasing imbalance ratios, display stable, or small, perfor-
mance degradation with increased class disproportions. Sharp
and significant performance declines indicate breaking points
for resampling methods and show when a given algorithm
stops being capable of generating useful instances and coun-
tering class imbalance.

Analyzing Fig. 9 allows us to draw several interesting
conclusions. First, Experiment 1 shows that pixel-based solu-
tions are inferior to their GAN-based counterparts. However,
we can see that this observation does not hold for extreme
values of imbalance ratios. When the disproportion among
classes increases, pixels-based methods (especially MC-CCR
and MC-RBO) start displaying increased robustness. On the
contrary, the two GAN-based methods are more sensitive to
an increased imbalance ratio and we can observe a more rapid
decline in their predictive power. This can be explained by
two factors: the method by which resampling approaches use
the original instances and the issue of small sample size. The
former factor shows the limitations of GAN-based methods.
While they focus on instance generation and creating high-
quality images, they do not possess more sophisticated mech-
anisms on where to precisely inject new artificial instances.
With higher imbalance ratios, this placement starts playing
a crucial role, as the classifier needs to handle more and
more difficult bias. Current GAN-based models use relatively
simplistic mechanisms for this issue. On the contrary, pixel-
based methods rely on more sophisticated mechanisms (e.g.,
MC-CCR uses an energy-based function, while MC-RBO uses
local optimization for positioning their artificial instances).
With increasing imbalance ratios, such mechanisms start to
dominate simpler GAN-based solutions, making pixel-based
approaches more robust to extreme imbalance ratios. The latter
factor of small sample size also strongly affects GAN-based
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Fig. 8. Illustration of DeepSMOTE artificial image generation by convex combination of two images on five examined datasets. Shown in the illustration
are five classes with three examples each. From left to right, the examples are: 1) base image; 2) nearest neighbor selected; and 3) combined image. The
combined image is based on a scaling factor between the base and nearest neighbor given by the SMOTE algorithm. (a) MNIST. (b) FMNIST. (c) CIFAR-10.
(d) SVHN. (e) CELEBA.

Fig. 9. Robustness to increasing imbalance ratios for DeepSMOTE and reference resampling methods.

algorithms. With extreme imbalance, we have less and less
minority instances at our disposal, making it more difficult to
train effective GANs.

Compared to both pixel-based and GAN-based approaches,
DeepSMOTE displays an excellent robustness even to the
highest imbalance ratios. We can see that DeepSMOTE is able
to effectively handle such a challenging scenario, displaying
the lowest decline of performance on all evaluated metrics.
This can be attributed to the fact that SMOTE generates
artificial instances following class geometry, while using only
nearest neighbors for instance generation. This allows us to
conclude that DeepSMOTE is not affected as strongly as
GAN-based approaches by a small sample size and the need
for smart placement of artificial instances, leading to excellent
robustness (RQ5 answered).

2) Model Stability Under Varying Imbalance Ratios:
Another important aspect of evaluating modern resampling
algorithms is their stability. We need to evaluate how a given

model reacts to small perturbations in data, as we want to
evaluate its generalization capabilities. Models that display
high variance under such small changes cannot be treated as
stable and thus should not be preferred. It is especially crucial
in the learning from imbalanced data area, as we want to select
a resampling algorithm that will generate information-rich
artificial instances under any data permutations.

In order to evaluate this, we have measured the spread of
performance metrics for DeepSMOTE and GAN-based algo-
rithms under 20 repetitions of fivefold cross validation. During
each CV repetition, minority classes were created randomly
from the original balanced benchmarks. This ensured that we
not only measure the stability to training data permutation
within a single dataset instance, but we also measure the
possibility of creating minority classes with instances of
varying difficulties. Fig. 10 shows the plots of three resampling
methods with shaded regions denoting the standard deviation
of results. GAN-based approaches display increasing variance
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Fig. 10. Relationship between imbalance ratio and model stability (expressed as std. deviation) for DeepSMOTE and GAN-based models obtained from
20 repetitions of fivefold CV.

under higher imbalance ratios, showing that those approaches
cannot be considered as stable models for challenging imbal-
anced data problems. DeepSMOTE returned the lowest vari-
ance within those metrics, showcasing the high stability of
our resampling algorithm. This information enriches our pre-
vious observation regarding the robustness of DeepSMOTE.
Joint analysis of Figs. 9 and 10 allows us to conclude that
DeepSMOTE can handle extreme imbalance among classes,
while generating stable models under challenging conditions
(RQ6 answered).

VI. DISCUSSION

1) Simple design is effective: DeepSMOTE is an effective
approach for countering class imbalance and training
skew-insensitive deep learning classifiers. It outperforms
state-of-the-art solutions and is able to work on raw
image representations. DeepSMOTE is composed of
three components: an encoder/decoder is combined with
a dedicated loss function and SMOTE-based resampling.
This simplicity makes it an easy to understand, trans-
parent, yet very powerful method for handling class
imbalance in deep learning.

2) Dedicated data encoding for artificial instance gener-
ation: DeepSMOTE uses a two-phase approach that
first trains a dedicated encoder/decoder architecture and
then uses it to obtain a high-quality embedding for the
oversampling procedure. This allows us to find the best
possible data representations for oversampling, allowing
SMOTE-based generation to enrich the training set of
minority classes.

3) Effective placement of artificial instances: DeepSMOTE
follows the geometric properties of minority classes,
creating artificial instances on borders among classes.
We hypothesize that this leads to improved training

of discriminative models on datasets balanced with
DeepSMOTE, which in turn leads to improved clas-
sification accuracy and reduced bias toward majority
classes.

4) Superiority over pixel-based and GAN-based
algorithms: DeepSMOTE outperforms state-of-the-
art resampling approaches. By being able to work
on raw images and extracting features from them,
DeepSMOTE can generate more meaningful artificial
instances than pixel-based approaches, even while
using relatively simpler rules for instance generation.
By using efficient and dedicated data embeddings,
DeepSMOTE can better enrich minority classes under
varying imbalance ratios than GAN-based solutions.

5) Easy to use: One of the reasons behind the tremen-
dous success of the original SMOTE algorithm was its
easy and intuitive usage. DeepSMOTE follows these
steps, as it is not only accurate, but also an attractive
off-the-shelf solution. Our method is easy to tune and
use on any data, both as a black-box solution and as
a steppingstone for developing novel and robust deep
learning architectures. As deep learning is being used
by a wider and wider interdisciplinary audience, such a
characteristic is highly sought after.

6) High quality of generated images: DeepSMOTE can
return high-quality artificial images that under visual
inspection do not differ from real ones. This makes
DeepSMOTE an all-around approach, since the gener-
ated images are both sharp and information-rich.

7) Excellent robustness and stability: DeepSMOTE can
handle extreme imbalance ratios, while being robust
to small sample size and within-data variance.
DeepSMOTE is less prone to variations in train-
ing data than any of the reference methods. It is
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a stable oversampling approach that is suitable for
enhancing deep learning models deployed in real-world
applications.

VII. CONCLUSION

Summary: We proposed DeepSMOTE, a novel and trans-
formative model for imbalanced data, that fuses the highly
popular SMOTE algorithm with deep learning methods.
DeepSMOTE is an efficient oversampling solution for training
deep architectures on imbalanced data distributions. It can
be seen as a data-level solution to class imbalance, as it
creates artificial instances that balance the training set, which
can then be used to train any deep classifier without suffer-
ing from bias. DeepSMOTE uniquely satisfies three crucial
characteristics of a successful resampling algorithm in the
domain of learning from images: ability to operate on raw
images, creation of efficient low-dimensional embeddings,
and generation of high-quality artificial images. This was
made possible by a novel architecture that combined an
encoder/decoder framework with SMOTE-based oversampling
and an enhanced loss function. Extensive experimental studies
show that DeepSMOTE not only outperforms state-of-the-
art pixel-based and GAN-based oversampling algorithms, but
also offers unparalleled robustness to varying imbalance ratios
with high model stability, while generating artificial images of
excellent quality.

Future work: Our next efforts will focus on enhanc-
ing DeepSMOTE with information regarding class-level and
instance-level difficulties, which will allow it to better tackle
challenging regions of the feature space. We plan to enhance
our dedicated loss function with instance-level penalties for
focusing the encoder/decoder training on instances that display
borderline/overlapping characteristics, while discarding out-
liers and noisy instances. Such a compound skew-insensitive
loss function will bridge the worlds between data-level and
algorithm-level approaches to learning from imbalanced data.
Furthermore, we want to make DeepSMOTE suitable for
continual and lifelong learning scenarios, where there is a need
for handling dynamic class ratios and generating new artificial
instances. We envision that DeepSMOTE may not only help
to counter online class imbalance, but also help increase
the robustness of lifelong learning models to catastrophic
forgetting. Finally, we plan to extend DeepSMOTE to
incorporate other data modalities, such as graphs and text
data.
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