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Probabilistic Modeling for Image Registration
Using Radial Basis Functions: Application to

Cardiac Motion Estimation
Ziyu Gan , Wei Sun , Kaimin Liao, and Xuan Yang

Abstract— Cardiovascular diseases (CVDs) are the leading
cause of death, affecting the cardiac dynamics over the car-
diac cycle. Estimation of cardiac motion plays an essential
role in many medical clinical tasks. This article proposes a
probabilistic framework for image registration using compact
support radial basis functions (CSRBFs) to estimate cardiac
motion. A variational inference-based generative model with
convolutional neural networks (CNNs) is proposed to learn the
probabilistic coefficients of CSRBFs used in image deformation.
We designed two networks to estimate the deformation coeffi-
cients of CSRBFs: the first one solves the spatial transformation
using given control points, and the second one models the
transformation using drifting control points. The given-point-
based network estimates the probabilistic coefficients of control
points. In contrast, the drifting-point-based model predicts the
probabilistic coefficients and spatial distribution of control points
simultaneously. To regularize these coefficients, we derive the
bending energy (BE) in the variational bound by defining the
covariance of coefficients. The proposed framework has been
evaluated on the cardiac motion estimation and the calculation
of the myocardial strain. In the experiments, 1409 slice pairs of
end-diastolic (ED) and end-systolic (ES) phase in 4-D cardiac
magnetic resonance (MR) images selected from three public
datasets are employed to evaluate our networks. The experimen-
tal results show that our framework outperforms the state-of-the-
art registration methods concerning the deformation smoothness
and registration accuracy.

Index Terms— Cardiac motion estimation, compact support
radial basis function (CSRBF), deep learning (DL), deformable
registration, probabilistic learning.

I. INTRODUCTION

CARDIOVASCULAR diseases (CVDs), such as ischemic
heart disease, lead to abnormal motion of the left ven-

tricular myocardium over the cardiac cycle. Cardiac motion
estimation, especially left ventricle (LV) motion estimation,
is essential for understanding cardiac mechanics and diagnos-
ing and treating CVDs.
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Existing works aiming at estimating cardiac motion fall into
two categories: feature-tracking-based methods [1], [2] and
deformation-based methods [3], [4]. Two critical disadvan-
tages of feature-tracking-based methods are that the accuracy
of feature tracking-based methods highly depends on the
accuracy of feature extraction, and inadequate local features
may lead to the failure of feature tracking [5]. Although
deformation-based methods do not rely on feature extrac-
tion, their optimization procedures are usually coupled with
high computational complexity. The optimization is ill-posed,
which may cause many local minima during the optimization.

With the upsurge of deep learning (DL) techniques,
DL-based deformable registration methods are proposed.
These methods employ well-trained neural networks to
estimate the correspondence and deformation between the
image pair. Compared with conventional registration methods,
DL-based methods obtain registration results rapidly with the
trained network.

According to the training strategy of DL, the DL-based
registration methods can be classified as supervised learning
and unsupervised learning. Supervised learning methods train
the network by minimizing a loss function, which measures
the difference between the predicted parameters of the defor-
mation model and the given ground truth. However, due to
few ground truths of medical datasets provided by experts, the
supervised learning methods are limited by inadequate training
samples. On the contrary, unsupervised learning methods train
the network without ground truth [6]–[8]. Compared with
supervised learning methods, unsupervised learning methods
have more potential applications because no annotated data
are required, which has gradually become the commonly used
DL-based registration method.

However, most existing DL-based algorithms estimated
dense displacement vector fields (DVFs) in a nonparametric
registration way. Thus, the number of predicted parameters
is the number of elements in a dense DVF. Therefore, the
number of predicted parameters to estimate DVFs is massive.
Furthermore, it is challenging to control the spatial relationship
between these parameters, which easily results in nonsmooth
or nontopology-preserving DVFs.

In this article, we employ compact support radial basis
functions (CSRBFs) to perform a parametric deformation and
estimate the coefficients of CSRBFs using networks to tackle
the issue in DVFs. CSRBF-based transformation functions
interpolate the coefficients of control points to the internal
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points via the CSRBFs. The advantages of CSRBF-based
deformation include the following: 1) only a limited number
of parameters are needed to be predicted because the num-
ber of unknown parameters of CSRBF-based transformation
only depends on the relatively sparse control points; 2) the
deformation can be controlled by control points, which implies
the deformation field can be adjusted finely by distributing
control points wisely; 3) the BE can be computed in a closed
form [9], which can be used to regularize the DVF effectively;
and 4) CSRBFs can deform images locally, which is preferred
in the deformation of cardiac cine magnetic resonance (MR)
images.

Because of the benefits of CSRBFs, this article proposes a
DL-based method using CSRBFs for deformable registration
to estimate cardiac motion in an unsupervised fashion. Several
DL-based methods also use radial basis functions (RBFs) to
perform registration. Most of them use B-splines interpola-
tion [10]–[12] and thin plate splines (TPSs) [13]–[16]. Besides,
most of these works are either supervised methods or patch-
wised registration. To the best of our knowledge, this article is
the first work to perform DL-based unsupervised deformable
registration combining variational inference and CSRBF-based
transformations. We propose a probabilistic framework to
estimate the coefficients of CSRBFs by conducting variational
inference and use it to estimate cardiac motion. Variational
inference is a method for approximating the intractable pos-
terior distribution of latent variables in a generative process.
Inspired by variational inference methods [17], [18] and their
registration applications [7], [19], we construct a probabilistic
generative model for CSRBF-based transformations using an
unsupervised learning network.

First, we construct a variational inference framework to
estimate the coefficients of CSRBFs. Next, we propose two
networks to solve the framework for the given control points
scenario and drifting control points scenario, respectively.
In general, the spatial transformation using RBFs is usually
based on given control points [20], [21]. These given control
points are fixed during the registration process. Our first
network is proposed for this scenario. To improve registration
accuracy further, the regions with large deformation must be
covered by control points well. Therefore, our second network
is proposed to shift initial control points to proper locations
and estimate the corresponding coefficients simultaneously.
Moreover, to regularize the coefficients, we derive the BE form
in the variational bound using the covariance of latent vari-
ables. Finally, our framework is evaluated in cardiac motion
estimation using public datasets.

The contributions of our work are summarized in the
following.

1) We propose a probabilistic learning model for image
registration using CSRBF-based transformations by con-
ducting variational inference. To the best of our knowl-
edge, this is the first work that models CSRBF-based
image registration using variational inference. The coef-
ficients of CSRBFs are the latent variables in our model,
and their distribution is estimated using a variational
autoencoder (VAE). The prior of these latent variables is
designed for representing the locations of control points,

which enables a closed-form derivation of the BE of
the DVF in the evidence lower bound (ELBO) of the
variational inference, forcing the DVFs to be smooth.
Because of introducing CSRBF-based transformations,
our model outperforms the state-of-the-art works regard-
ing deformation smoothness and registration accuracy.

2) Two novel networks, NetGI and NetDC, are proposed to
solve the variational inference model. Especially, NetDC
is designed to estimate the probabilistic coefficients of
CSRBFs and the locations of control points simultane-
ously. It can be used to shift control points adaptively
in CSRBF-based deformations to implement the local
deformation via distributing control points unevenly.
To the best of our knowledge, this is the first work to
position control points adaptively using neural networks.
Moreover, this new technique shows its advantage of
improving the registration accuracy in the experiments.

3) Registration uncertainties can be predicted using the
variance estimated by our networks. The uncertainty
measures can be used in various applications, such as
qualitative analyses and pathological areas’ detection.

4) Our framework is evaluated in a cardiac motion estima-
tion task and outperforms the state-of-the-art methods
concerning registration accuracy and smooth DVFs.

We summarize the related works in Section II and provide
an overview of our model in Section III-A. Section III-B
introduces the spatial transformation function based on
CSRBFs. The variational inference model based on CSRBFs
is proposed in Section III-C. Two networks to solve our
variational inference model are designed in Sections III-D1
and III-D2. In Section IV, the proposed framework is
evaluated in cardiac motion estimation. Finally, conclusions
are provided in Section V.

II. RELATED WORKS

A. Conventional Cardiac Motion Estimation

Feature-tracking-based methods commonly contain two
steps: detecting features and then tracking feature points,
such as the sampled points on the contours [2] and corner
points from images [22]. Feature-tracking-based methods aim
to search correspondences between point sets or graphs, such
as point set matching [1], [23] and graph matching [2].

Deformation-based methods establish a dense nonlinear
DVF between the moving image and the fixed image by
optimizing an objective function that measures the image-
intensity-based similarity between the image pair and impos-
ing smoothness constraints [24] on DVF. For cardiac motion
estimation, deformable registration employs a deformation
model with parameters to warp the moving image to the fixed
image and estimate the displacements of the points of the
ventricular wall. The commonly used deformation models in
LV motion estimation are free-form deformation model [25],
polyaffine model [3], [26], elastic body model [4], and so on.

B. DL-Based Deformable Registration

DL-based deformable registration methods employ well-
trained neural networks to estimate the correspondence and
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deformation between the image pair. Compared with conven-
tional registration methods, DL-based methods obtain registra-
tion results rapidly with an already-trained network. According
to the training strategy used in DL, the DL-based methods fall
into supervised learning and unsupervised learning.

Supervised learning methods train the network via mini-
mizing an objective function, which calculates the difference
between the predicted parameters of the deformation model
and the ground truth. Rohé et al. [27] established ground-truth
deformations between image pairs using segmented shapes and
trained a fully convolutional neural network (CNN) for 3-D
registration. Sokooti et al. [28] trained a CNN using a large
set of artificially generated DVFs and did not explicitly define
a dissimilarity metric. Eppenhof and Pluim [29] trained a 3-D
CNN using synthetic random transformations, and the network
was applied to a small set of representative images for the
desired application to register inhale–exhale lung CT image
pairs.

However, due to the limited ground truth of medical datasets
provided by experts, the supervised learning methods are
limited by inadequate training samples. A compromised solu-
tion is to use transformations computed by state-of-the-art
algorithms or synthetic transformations [14], [16], [30]. The
drawbacks of supervised learning methods are that registration
quality depends on the ground truth quality, and the synthetic
transformations are infeasible to simulate the actual deforma-
tion, especially for LV motion deformation.

On the contrary, unsupervised learning methods train the
network without ground truth [6]–[8]. Due to the spatial
transformer network (STN) proposed by Jaderberg et al. [31],
the moving image can be deformed according to the estimated
deformation field. Then, a loss function can be constructed as
the similarity between the deformed moving image and the
fixed image. Furthermore, additional constraints, such as the
smoothness of deformation fields, can be introduced to the loss
function. Because the STN is differentiable, the backpropa-
gation algorithm can be performed to train the unsupervised
learning network. De Vos et al. [11] proposed the DIRnet
that combined a CNN regressor and an STN to estimate
the local deformation parameters of cubic B-splines [32] by
analyzing corresponding image patches from the moving and
fixed images. Li and Fan [33] employed the FCN to directly
estimate spatial transformations between pairs of images by
maximizing an imagewise similarity metric between fixed and
deformed moving images in a multi-resolution image registra-
tion framework. Sloan et al. [34] registered images of neurons
using the mean squared error (MSE) between the warped and
fixed volumes as the loss function to train a CNN. Balakrish-
nan et al. [35] and [36] proposed the VoxelMorph, a U-net [37]
style network, to perform imagewised registration on brain
MR images. Qin et al. [38] built an unsupervised Siamese
style recurrent STN and performed the weakly supervised
segmentation by taking advantage of unsupervised features
learned in the motion estimation network from a large amount
of unannotated cardiac data.

In the unsupervised registration method, generative models
have shown unique advantages [6], [7], [39]–[41]. GANs are
popular generative models. Unlike unsupervised works based

on manually crafted similarity metrics, GAN-based approaches
use a generator network to generate the deformed moving
image and apply a discriminator network to decide whether
the deformed image is similar to the target image [39], [40].
GANs can recover a more complex range of deformations,
and the similarity metric is learned automatically based on
the discrimination network.

Another kind of generative model in unsupervised image
registration is VAE. A VAE aims to avoid overfitting and
ensure that the latent space has good properties to generate
new data. In image registration, latent variables, such as a set
of parameters of deformations or a low-dimensional vector,
are defined, and new images can be generated using the sam-
pling of latent variables. Krebs et al. [6] and Dalca et al. [7]
employed VAE to implement image registration.

Unsupervised learning methods show more potential appli-
cations than supervised learning methods because no annotated
data are required in the training process. However, this kind
of approach relies heavily on modeling image similarity.
More sophisticated similarity metrics and regularization are
needed to improve the performance of unsupervised learning
approaches.

Ma et al. [42] and Cao et al. [43] reviewed a lot of feature-
based image matching works and learning-based deformation
registration algorithms that include a lot of DL-based methods
using RBFs. Most of DL-based methods using RBFs to
perform registration employed B-splines [10]–[12] or TPSs
[13]–[16] as the interpolation functions. Krebs et al. [10] used
an artificial agent by choosing from a set of actions to optimize
the parameters of cubic B-splines deformation in DL-based
ROI-specific deformable registration. De Vos et al. [11]
and [12] employed a cubic B-splines transformer to generate
a DVF in the DIRNet. Wu et al. [13] used a convolutional
stacked autoencoder to discover deep feature representations
and identified their anatomical correspondences by match-
ing the representations to each key point. Then, TPSs were
employed to interpolate the dense DVF. Cao et al. [14] pro-
posed a CNN regressor to directly learn the parameters of TPS
with the equalized active-point guided sampling strategy and
an auxiliary contextual cue. Later, this work was extended
by proposing a cue-aware deep regression network [15].
Though these works achieved comparable performance to the
conventional methods, most of these existed works are either
supervised methods or patchwised registration.

C. Probabilistic Learning for Image Registration

Variational inference is a method for approximating the
intractable posterior distribution of latent variables in the gen-
erative process. Kingma and Welling [17] proposed the VAE to
approximate the posterior distribution of latent variables by
combining the variational inference and the deep autoen-
coder. VAE typically consists of a probabilistic encoder and
a probabilistic decoder. The encoder approximates the poste-
rior distribution of the latent variable to the prior, and the
decoder produces the reconstructed data with the sampled
representation. VAE is a generative model and is suitable
for a large dataset. The conditional variational autoencoder
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(CVAE) [18] extends VAE by introducing conditioned labels,
which can be used in semisupervised learning. In theory,
image registration can be regarded as a generative process
that warps the moving image to match the fixed image statis-
tically using transformation parameters. When the distribution
of transformation parameters is estimated, the parameters
for the new data can be predicted using the probability
distribution.

So far, very few researchers have explored the feasibil-
ity of the variational inference to perform medical image
registration. Dalca et al. [7] made the posterior of the sta-
tionary velocity field a multivariate normal distribution and
leveraged a CNN with diffeomorphic integration and spatial
transform layers. Krebs et al. [6] and [19] regularized a
low dimensional encoding to approximate multivariate normal
distribution of DVFs. However, all these works are based on
dense DVFs.

III. METHODS

A. Image Registration Based on Generative Model

A generative model aims to learn data distribution from
training samples using unsupervised learning to generate new
data with some variability. Compared with discriminative mod-
els, generative models often perform better on smaller datasets
because they learn the underlying data structure and place
some structure assumptions on models to prevent over-fitting.
When the test data are generated by different underlying
distributions instead of the training data, it is easier to adjust
the generative model to fit this change in an unsupervised
learning way. An additional benefit of the generative model is
that it can predict the uncertainty of a decision.

In image registration, the training data are usually limited
due to the expensive annotation process. Generative models
have the potential to learn probabilistic deformation models in
image registration using the small training dataset. In addition,
the generative model can explain the uncertainty of registration
results.

Image registration can be represented as a generative model
in the sense of probability. The fixed image F can be regarded
as the one generated from the moving image M deformed
by a spatial transformation φ z , where z is the parameter of
the spatial transformation. z can also be the latent variable
in the generative model. The fixed image F can be regarded
as a sample from a random distribution generated from the
latent variable z with the condition of the moving image M .
The generative procedure consists of two steps [17]: 1) a
value of the latent variable z is generated from its prior
distribution p(z) and 2) the fixed image F is generated from
the distribution pθ (F |z, M) with generative parameters θ .
In general, the prior distribution p(z) is assumed given as
a Gaussian distribution.

The variational inference technique can be employed to
solve the image registration problem based on the generative
model. Since pθ (F |M) = �

pθ(F |z, M)p(z)dz is intractable
in computation, which also makes the posterior pθ (z|F, M) =
((pθ (F |z, M)p(z))/(pθ (F |M))) intractable, variational infer-
ence transforms the marginal likelihood of the fixed image F

into

log pθ(F |M)

= Eqβ (z|F,M)[log pθ (F |M)]
= Eqβ (z|F,M)[log pθ (F, z|M)− log pθ (z|F, M)

− log qβ(z|F, M)+ log qβ(z|F, M)] (1)

= ELBO+ KL[qβ(z|F, M)�pθ (z|F, M)]
ELBO

= Eqβ (z|F,M)[log pθ (F, z|M)− log qβ(z|F, M)]
KL[qβ(z|F, M)�pθ (z|F, M)]
= Eqβ (z|F,M)

�
log

qβ(z|F, M)

pθ (z|F, M)

�
. (2)

In (1), pθ (F, z|M) represents the distribution of generated
image and the latent variable z given the moving image M .
The posterior pθ (z|F, M) represents the distribution of the
latent variable z given the fixed image F and the moving image
M . Variational inference introduces the variational posterior
qβ(z|F, M) parametrized by β to approximate the posterior
pθ(z|F, M). Therefore, the variational inference aims to max-
imize pθ (F |M) and minimize the KL divergence between
qβ(z|F, M) and pθ(z|F, M). It transforms the maximization
of marginal likelihood and minimization of the KL divergence
into maximizing ELBO [44]. ELBO is denoted as the evidence
lower bound.

Contrary to the mean-field variational inference, no facto-
rial variational distribution is assumed, and no closed-form
expectation is needed in this article. Instead, we employ an
autoencoder proposed by Kingma and Welling [17] to estimate
the optimal parameter of the variational distribution.

B. Spatial Transformation Based on CSRBFs

In this article, we employ the CSRBF-based transformation
function to deform images. Given the coefficients of control
points, the CSRBF-based transformation interpolates the DVF
using CSRBFs. Let φ z : R2 → R

2 be the spatial transforma-
tion between the moving image M and the fixed image F .
The transformation function φ z is composed of φ z,x and φ z,y ,
which are transformation functions in x- and y-directions,
respectively. Taking the x-direction as an example, given a
point set of n control points P = {pi}ni=1, the transformation
function along the x-direction is defined as

φ z,x(o) = ox +
n�

i=1

zi,xψ

��o− pi�
r

�
(3)

where o = (ox , oy) ∈ R
2 is the pixel; zi,x is the coef-

ficient corresponding to the control point pi along the
x-direction. For the y-direction, the transformation function
φ z,y is the same to that of x-direction, only different in oy

and the coefficient zi,y . � o − pi � is the Euclidean distance
between o and pi ; ψ(·) is the CSRBF with support r . The
CSRBF-based transformation uses the proper coefficients to
interpolate a dense DVF and controls the deformation locally.
We employ the Wendland function ψ(ξ) = (1− ξ)4+(4ξ + 1)
in (3), where (x)+ = max(0, x). The support r is set as
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Fig. 1. Distributions of control points. From left to right: evenly distributed
control points containing 64 and 256 control points, respectively; the given
nonevenly distributed control points; the drifting control points, where the
red and blue ones are initial and shifted control points, respectively; and
the arrows mark the shifting of each control point. The bottom line marks the
corresponding network.

r = 2 maxpi∈P minp j∈P−{pi } �pi− p j� to make r adaptive with
respective to the distribution of control points.

Fig. 1 shows the various distribution of control points used
in our model. The first two schemes show 64 and 256 evenly
spaced control points, respectively. The third one is the non-
evenly distributed control points. CSRBF-based transforma-
tions with nonevenly spaced control points are flexible when
control points are positioned densely in the regions with large
deformation. They can achieve more accurate results than the
transformations with evenly spaced control points. However,
how to place control points properly is an issue to be handled.
The last one in Fig. 1 demonstrates the drifting control points,
where the red ones are initial control points, and the arrows
mark the shifting of each control point. The shifted positions
marked by blue are drifting control points used in CSRBF-
based transformations. We propose an approach to drift control
points to proper positions adaptively using a neural network;
details can be referred to in Section III-D.

C. Probabilistic Model

The registration process can be treated as a generative
process to find the distribution of zi = {zi,x , zi,y} for each
control point pi . Especially for drifting control points, finding
the location and coefficient distribution for each control point
simultaneously is required.

We consider the coefficient vector z = {z1,x , z2,x , . . . ,
zn,x , z1,y, z2,y, . . . , zn,y} as the latent variable in the genera-
tive process and approximate its posterior p(z|F, M) using
variational inference. We assume that the prior p(z) is
a multivariate normal distribution with zero mean and a
covariance �P

p(z) = N (z; 0,�P) (4)

where �P is defined as follows in (5) and (6), as shown at
the bottom of the page, where 0 is the zero matrix. The prior
p(z) is different for different control point sets.

VAE is a variational Bayesian method with a multivariate
distribution as prior and a posterior approximated by an artifi-
cial neural network. A typical VAE has an encoder qβ(z|F, M)
with variational parameters β and a decoder pθ(F |z, M) with
generative parameters θ . The encoder produces a distribution
over the latent variable z from which the fixed image F
is likely to be generated with the condition of the moving
image M . The decoder produces a distribution over the possi-
ble fixed image F corresponding to the latent variable z and
the condition M . To generate z corresponding to F and M ,
the posterior pθ(z|F, M) needs to be calculate. Following the
variational method [17], we introduce a variational distribution
qβ(z|F, M) with parameters β to approximate the intractable
posterior p(z|F, M). Let the approximation of qβ(z|F, M) be
a multivariate normal distribution

qβ(z|F, M) = N (z;μ(F, M),�(F, M)) (7)

where the mean μ(F, M) and the covariance �(F, M) are
related to the moving image M and the fixed image F .
To simplify the analysis and avoid massive computation, the
covariance �(F, M) is assumed as a diagonal matrix.

The encoder using a CNN with parameters β esti-
mates the mean μ(F, M) and the diagonal covariance
�(F, M) of qβ(z|F, M). Our model aims to find the opti-
mal parameters β∗. To make the process of sampling
differentiable, the latent variable z is sampled using the
reparameterization trick as z = μ(F, M)+�(F, M)∗�, where
� ∼ N (0, I). Furthermore, when the distribution of latent
variable z is known, the distribution pθ(F |z, M) is referred
as the pseudo-decoder to warp the moving image M . Note
that additional network layers with parameters θ in the
decoder are not needed in our framework because the spa-
tial transformation is known when the latent variable z
is given. Therefore, pθ (F |z, M), pθ (F |M), pθ (z|F, M) are
denoted as p(F |z, M), p(F |M), p(z|F, M), and p(F |M) =�

p(F |z, M)p(z)dz is a constant with respect to qβ(z|F, M).
Correspondingly, maximizing ELBO is equivalent to mini-
mizing KL[qβ(z|F, M)�p(z|F, M)]. It is an essential feature
of our framework because no additional network layers in
the decoder imply no training for the decoder parameters.
It simplifies the training network and makes the network
lightweight.

�−1
P =

�
B 0
0 B

�
(5)

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ

��p1 − p1�
r

�
ψ

��p1 − p2�
r

�
· · · ψ

��p1 − pn�
r

�

ψ

��p2 − p1�
r

�
ψ

��p2 − p2�
r

�
· · · ψ

��p2 − pn�
r

�
...

...
. . .

...

ψ

��pn − p1�
r

�
ψ

��pn − p2�
r

�
· · · ψ

��pn − pn�
r

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)
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We maximize the ELBO to derive the loss function

max Eqβ (z|F,M)[log p(F, z|M)− log qβ(z|F, M)]
⇒ min Eqβ (z|F,M)[log qβ(z|F, M) − log p(F, z|M)]
⇒ min Eqβ (z|F,M)[log qβ(z|F, M) − log p(F |z, M)

− log p(z|M)]
⇒ min Eqβ (z|F,M)[log qβ(z|F, M) − log p(F |z, M)

− log p(z)]
⇒ min KL[qβ(z|F, M)�p(z)] − Eqβ (z|F,M)[log p(F |z, M)].

(8)

Here, we assume that z and M are independent of each other.
The first term KL[qβ(z|F, M)�p(z)] forces the variational
distribution qβ(z|F, M) to approximate to the prior p(z),
which is computed in closed form as follows:

KL[qβ(z|F, M)�p(z)]
= 1

2

�− log |�(F, M)| + log |�P | + tr
�
�−1

P �(F, M)
�

+μ(F, M)T�−1
P μ(F, M) − n

�
. (9)

Since all diagonal elements of �−1
P are 1, and �(F, M) is a

diagonal matrix, tr(�−1
P �(F, M)) = tr(�(F, M)). Then, (9)

can be simplified as

KL[qβ(z|F, M)�p(z)]
= 1

2

�− log|�(F, M)| − log
���−1

P

��+ tr(�(F, M))

+μ(F, M)T�−1
P μ(F, M)

� + const. (10)

Note that μ(F, M) is the mean of z, which can be
regarded as the value of z during registration procedure;
μ(F, M)T�−1

P μ(F, M) is similar to the BE defined on trans-
formation functions based on CSRBF, which can be used
as the BE constraint imposing on DVFs [9]. It is an essen-
tial constraint of the loss function that can make the DVF
smooth and topology-preserving. Furthermore, it also shows
the advantage of introducing CSRBF-based transformations
in the probabilistic model. That is, the BE of DVFs can be
constrained in a close-formed way.

The distribution p(F |z, M) in the second term in (8)
describes the probability of the moving image M deformed
to be similar to the fixed image F using latent parameter z.
It can be represented by the similarity between the warped
moving image and the fixed image. When the similarity
is high, p(F |z, M) is high; otherwise, it is low. Simi-
lar to Krebs et al. [19], we employ a local cross correla-
tion (LCC) Boltzmann distribution to be p(F |z, M) with a
balance factor λ: p(F |z, M) ∼ exp(−λ(1−LCC(F, M(φ z)))).
LCC(F, M(φ z)) is defined as follows:

1

N

�
o∈�

��
ok∈Lo

F(ok)M(φ z(ok))
�2��

ok∈Lo
F(ok)2

���
ok∈Lo

M(φ z(ok))2
� (11)

where N is the number of pixels, � is the image field, and
F(ok) and M(φ z(ok)) are intensities subtracted by average
intensities over the local region Lo centered at the pixel o.

The second term Eqβ (z|F,M)[logp(F |z, M)] in (8) can be
approximated using the Monte Carlo method

Eqβ (z|F,M)[log p(F |z, M)]
= Eqβ (z|F,M)[−λ(1− LCC(F, M(φ z)))]

� λ

K

K�
k=1

LCC(F, M(φ zk ))+ const (12)

where zk is the kth sampled value of z using reparameteriza-
tion trick, and K is the total number of samples, which is set
to 1 in our experiments. By eliminating the constant, the total
loss function LLCC(F, M, P) is defined as

1

2

�− log|�(F, M)| + tr(�(F, M)) − log
���−1

P

��
+μ(F, M)T�−1

P μ(F, M)
� − λ

K
LCC(F, M(φ zk )). (13)

Besides, for comparison, we also try to use a MSE Boltz-
mann distribution to be p(F |z, M) with a balance factor
λ: p(F |z, M) ∼ exp(−λMSE(F, M(φ z))). The total loss
function LMSE(F, M, P) can be derived as

1

2

�− log|�(F, M)| + tr(�(F, M)) − log
���−1

P

��
+μ(F, M)T�−1

P μ(F, M)
� + λ

K
MSE(F, M(φ zk )). (14)

Note that this loss function is used for comparison with the
loss function LLCC(F, M, P). Our models are trained with
LLCC(F, M, P) in default unless specified.

D. Networks for Estimating Probabilistic Coefficients and
Drifting Control Points

Considering that the latent variables correspond to the
coefficients of CSRBFs, we construct a pseudoautoencoder
architecture network to estimate the probabilistic parameters
μ(F, M) and �(F, M) of coefficients. The encoder is a CNN
to predict the distribution parameters of coefficients, and the
decoder consists of a CSRBF-based transformation layer that
interpolates the DVFs and an STN to warp the moving image
M using the interpolated DVFs. We design two networks
for the scenario of fixed control points and drifting control
points, respectively. For comparison, we also develop two
other networks for the cases with evenly spaced control points.

1) Networks With Fixed Control Points: For the scenario
of fixed control points, as shown in Fig. 1, 64 evenly spaced
control points are placed globally, and 100 densely spaced
control points are placed in the central region used to deform
the local area imaging the cardiac structure delicately. To esti-
mate the probabilistic parameters μ(F, M) = {μg,μc} and
�(F, M) = {�g,�c}, where μg and �g are parameters for
global control points, and μc and �c are parameters for control
points located in the central region, a network named NetGI is
constructed. NetGI consists of Module A and Module B that
aim to predict the parameters of 64 global control points and
100 local control points, respectively.

As shown in Fig. 2, Module A takes the image pair of
the moving image M and the fixed image F as the inputs
and contains two convolutions with 16 kernels, followed by
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Fig. 2. Architecture of network NetGI. The encoder consists of Module A and Module B. Module A and Module B are used to predict the probabilistic
parameters of global control points and central control points, respectively. The decoder consists of an RBF-based transformation layer and a spatial transform
layer STN. M and F are the inputs of Module A. Mc and Fc are the cropped image pair, which is the inputs of Module B.

four blocks consisting of a downsampling convolution with
32 kernels and a stride of 2, and two convolutions with
32 kernels. A convolution with eight kernels follows them,
and two convolutions output the mean μg and the covariance
�g of the global control points, respectively.

Module B learns the probabilistic parameters μc and �c

corresponding to the control points located in the central
region. We crop the central parts of the image pair in 64×64 to
be the inputs of Module B. Similar to Module A, Module
B also contains five blocks. The first block starts with the
convolution of input, concatenated by Module A’s cropped
and resized feature map output, followed by two convolutions.
The other blocks are similar to the first block except in
feature map dimensions. The convolutions without padding
are used in the second block, and no padding is performed in
the downsampling in the last two blocks. The dimensions of
convolutions in the first blocks and other blocks are 16 and 32,
respectively. Module B ends with a convolution with 8 kernels
and predicts the mean μc and the covariance �c of the central
control points. A leaky ReLu layer follows all convolutions
except the last one.

All the predicted parameters μg,μc and �g,�c are con-
catenated as the distribution parameters of latent variable z.
After sampling z using the reparameterization trick, we use
a CSRBF-based transformation layer to generate φ z and then
use an STN to warp the moving image M using φ z , which is
the decoder network.

The training procedure of NetGI is presented in
Algorithm 1. In addition, for comparison, we use Module A to
perform registration using 64 and 256 evenly spaced control
points, denoted as NetGE-64 and NetGE-256, respectively.
Noted that the last block in Module A is removed to be
NetGE-256.

2) Network With Drifting Control Points: For the case
of drifting control points, the distribution parameters
μ(F, M),�(F, M), and locations of control points are esti-
mated simultaneously. We assume that the number of control
points is fixed, and the initial control points are evenly spaced
on grids. A CNN named NetDC is designed with two branches

Algorithm 1 Training NetGI for Image Registration
β ← Initialize parameters
repeat

F, M ← Random minibatch of pairs of the fixed image
and the moving image

μ(F, M),�(F, M)← Encoder of NetGI Eβ(F, M)
z← μ(F, M) +�(F, M) ∗ �, � ∼ N (0, I )
φ z, M(φ z)← Decoder of NetGI
g← ∇βL(β; F, M, �)
β ← Update parameters using gradients g

until convergence
return β

to estimate the displacements of initial control points and
corresponding probabilistic parameters simultaneously. The
critical part of NetDC is how to obtain the probabilistic
parameters corresponding to these drifting control points.
We employ a spatial transformer layer to warp the probabilistic
parameter feature maps to match drifting control points. The
architecture of NetDC is illustrated in Fig. 3, which is also
composed of an encoder and a decoder. The encoder of NetDC
has two kinds of modules: 1) Module F outputs features
of the probabilistic parameters and the features of drifting
control points and 2) Module O outputs displacements of
initial control points and the probabilistic parameters of these
control points.

The architecture of Module F is illustrated in Fig. 3(a),
which consists of two branches. Both branches take the image
pair of M and F as inputs. The bottom branch extracts features
of the probabilistic parameters. It contains two convolutions
with di kernels and a downsampling convolution with a stride
of 2. The top branch analyses features of the displacements
of initial control points. Two convolutions with di kernels
and convolutions with two kernels follow the input. Note that
the convolution with two kernels generates the DVF. Next,
a spatial transformer layer warps the feature generated in the
bottom branch using the DVF. Finally, the warped feature
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Fig. 3. Network for RBF mesh deformation with a drifting distribution of control points (NetDC). NetDC takes the image pair of M and F as the inputs.
The encoder of NetDC is composed of four Module F’s and one Module O. Module F analyzes the features of correspondence between the image pair and
the features of the offsets of control points. Module O outputs the offsets of control points and the coefficients of control points concerning the control points.
(a) Module F. (b) Module O. (c) Architecture of NetDC.

and the original feature in the top branch are concatenated.
A downsampling convolution with di+1 follows to output the
features of the displacements of initial control points, which
also is the input of the next module.

Module O is illustrated in Fig. 3(b). Similar to Module F,
there are also two branches. The top branch includes two
convolutions with di kernels and convolution with two kernels
to output the displacements of initial control points. By adding
the displacements and positions of initial control points, the
drifting control points are obtained. In the bottom branch, two
convolutions with di kernels analyze the features of the proba-
bilistic parameters. Next, a spatial transformer layer, followed
by two convolutions, maps the displacements of initial control
points to align them with features of drifting control points.
Finally, a convolution layer is used to predict probabilistic
parameters concerning these drifting control points.

The whole network architecture is illustrated in Fig. 3(c),
which contains four successive Module F, one Module O,
and a decoder. Here, the decoder is similar to that in NetGI.
In our implementation, the number of the drifting control
points is 64, and di ∈ {16, 32, 32, 32, 32}, i = 0, 1, 2, 3, 4.
A leaky ReLu layer follows all the convolutions except the
convolution layer generating the displacements or probabilistic
parameters. The training procedure of NetDC is described
in Algorithm 2.

Algorithm 2 Training NetDC for Image Registration
β ← Initialize parameters
P0 ← Initialize control points
repeat

F, M ← Random minibatch of pairs of the fixed image
and the moving image

μ(F, M),�(F, M), u← Encoder of NetDC Eβ(F, M)
z← μ(F, M) + �(F, M) ∗ �, � ∼ N (0, I )
P ← P0 + d(P0) (offsets of control points)
φ z, M(φ z)← Decoder of NetDC
g← ∇βL(β; F, M, �, P0)
β ← Update parameters using gradients g

until convergence
return β

IV. EXPERIMENTS

A. Implementation

1) Data: Three public datasets were employed in the
experiments to evaluate the proposed methods, including the
MICCAI2009 challenge dataset provided by the Sunnybrook
Health Sciences Center [45], the York dataset provided by
the Department of Diagnostic Imaging of the Hospital for
Sick Children in Toronto (York) [46], and the dataset from
automatic cardiac diagnosis challenge (ACDC) at STACOM
2017 [47]. There are in total 228 cardiac short-axis cine-MR
image cases in three datasets. Table I lists the details of three
datasets.

2) Implementation Details: In our experiments, two image
slices at the end-systolic (ES) phase and the end-diastolic (ED)
phase in one cardiac cycle were registered to each other. The
image at ED was the moving image, and the image at ES
was the fixed image. 1257 image pairs from 136 randomly
selected cases were the training samples, 130 image pairs
from 16 randomly selected cases were the evaluation samples,
and 698 image pairs from the remaining 76 cases were
the testing samples. The image slices were cropped as the
size of 128 × 128 covering the cardiac structure well. Data
augmentation was performed by rotation, scaling, flipping, and
shifting with random parameters. The size of the local area in
LCC was 9 × 9. The output of our networks μ(F, M) was
used as the coefficients to estimate DVFs.

The proposed four networks, NetGE-64, NetGE-256, NetGI,
and NetDC, were trained using training samples. The control
points for four networks were 64, 256, 164, and 64, respec-
tively. Our networks were trained using PyTorch [48] on a
computer equipped with a Xeon(R) W-2123 CPU and Nvidia
GTX 1080Ti GPU. The Adam optimizer [49] with a learning
rate of 1e−4 was employed.

3) Evaluation Metrics: To evaluate the proposed method,
the contours at the ED phase provided by experts were mapped
to the contours at the ES phase using estimated DVFs, and
the mapped contours were compared with the ground-truth
contours at ES using various metrics. Since the ground truths
of different datasets are different from each other, the eval-
uation contours included the blood pool of LV (LV-BP), the
myocardium of LV (LV-Myo), the epicardium of LV (LV-Epi),
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TABLE I

DETAILS OF MICCAI2009, YORK, AND ACDC

Fig. 4. Evaluation results for different networks with different values of λ.

and the epicardium of the right ventricle (RV-Epi). Details of
evaluation contours for three datasets are also listed in Table I.

The mapped contours were evaluated by three measures,
including the Dice score [50], the average perpendicular dis-
tance (APD, in mm), and 95%-tile Hausdorff Distance (HD,
in mm). The Dice score measures the overlap between two
areas enclosed by two contours; APD and HD measure the
distance between two contours.

Moreover, the number of nonpositive Jacobian determinants
(|Jφz
| ≤ 0) was counted to validate the topology-preserving

deformation fields. The Jacobian matrix at pixel o ∈ R
2 is

defined as follows:

Jφz
(o) =

⎡
⎢⎢⎣

∂φ z,x

∂x
,
∂φ z,y

∂x
∂φ z,x

∂y
,
∂φ z,y

∂y

⎤
⎥⎥⎦. (15)

The Jacobian determinant at a position in a DVF describes
how a small local region changes after deformation [7], [51].
When the nonlinear transformation function φ z : R2 → R

2

deforms a small square to a parallelogram, the Jacobian matrix
can describe the parallelogram, and the Jacobian determinant
provides the ratio of the area of the parallelogram to that of
the original square. A negative determinant of the Jacobian
matrix around a pixel implies that the mapping may not be
one-to-one and noninvertible, which means that the mapping
is not topology-preserving. For cardiac motion, a region with
negative determinants means the deformation is abnormal
and not realistic. A small number of nonpositive Jacobian
determinants of a DVF are preferred.

Besides, the BE of DVFs was calculated to measure the
smoothness of deformation fields. Taking the x-direction for
example, the BE in the x-direction is calculated as follows:
1

N

� � ��
∂2φ z,x

∂x2

�2

+ 2

�
∂2φ z,x

∂x∂y

�2

+
�

∂2φ z,x

∂y2

�2
�

dxdy.

(16)

The bending energies in all directions are summed together to
be the BE of a DVF.

B. Results and Analysis

1) Hyperparameter: The hyperparameter λ was used to
control the smoothness of the deformation field. Thus, the
lower λ is, the stronger enforcement to the smoothness is.
However, the lower λ may degenerate results in registration
accuracy. To show the influence of λ and explore the relation-
ship between λ and registration accuracies, an experiment was
performed by setting different values of λ to train the networks.
The evaluation dataset was tested using four evaluation met-
rics: Dice, APD, HD, and BE. Fig. 4 shows evaluation results
of NetDC, NetGI, NetGE-64, and NetGE-256. It can be seen
that, with the increase in the hyperparameter λ, the registration
accuracy tended to improve. However, the smoothness of
deformation fields became progressively worse. When λ is
large to a certain extent, the registration accuracy cannot be
improved significantly.

Furthermore, it can be observed that higher registration
accuracy can be achieved using more control points by
comparing the performance of NetGE-256 and NetGE-64.
Although the control points’ numbers for NetGE-64 and
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NetDC were the same, the registration accuracy of NetDC
was much higher than that of NetGE-64. It implies that
proper locations of control points greatly influence registration
performance, which validates our motivation to shift control
points adaptively. NetGE-256 outperformed NetGI in the Dice
score and APD because more control points were used for
NetGE-256, but NetGI achieved lower HD and generated
smoother DVFs. Although the above conclusion is drawn on
the evaluation dataset, it is consistent with the conclusion
of test samples. The optimal λ was 147 000 for NetGI and
130 000 for NetDC based on the best registration accuracy of
the evaluation dataset.

2) Registration: To compare the performance of our meth-
ods with state-of-the-art DL methods, three unsupervised
registration networks, KrebsDiff [19], DalcaDiff [7], and Vox-
elMorph [36], were implemented. KrebsDiff and DalcaDiff
are two networks of probabilistic diffeomorphic registration
by conducting variational inference, and VoxelMorph is a
registration network using unsupervised learning to perform
imagewise registration.

We compared our networks, NetGI and NetDC, with Kreb-
sDiff, DalcaDiff, and VoxelMorph. The optimal parameters
were used for these networks, such as λ = 60 000, and the
size of latent variable was 64 for KrebsDiff, λ = 50 and
σ = 0.03 for DalcaDiff, and λ = 1 for VoxelMorph. The
mean and standard deviations of all metrics for registration
results using different networks for datasets, MICCAI2009,
York, and ACDC, are listed in Table II. On the MICCAI
and York, NetDC was the best in registration performances,
and NetGI was second only to NetDC. Although DalcaDiff
obtained the best Dice score on the ACDC dataset, NetDC
was better on HD and APD. In terms of BE and the number of
nonpositive Jacobian determinants, NetGI and NetDC showed
better performances on all three datasets. To compare the
performance of networks, the mean and standard deviations
of all metrics were averaged for all three datasets, as listed
in Table II. It is observed that our NetDC achieved the best
registration accuracy and generated smooth DVFs, which were
nearly one-to-one mappings. Moreover, NetGI and KrebsDiff
achieved better HD and APD and generated more regu-
lar DVFs than VoxelMorph. However, VoxelMorph received
higher Dice scores compared with KrebsDiff.

To summarize the registration results in detail, the boxplots
of all metrics are shown in Figs. 5–7. It can be seen that our
NetDC and NetGI outperformed other methods significantly
in respect of DVF smoothness, which shows the advantages
of introducing the smoothing constraint of the CSRBF-based
transformation function. From the results of ACDC, we also
found that all methods performed better on the registration of
LV than on RV because RV is more flexible in shape.

The BE of the deformation field is related to the support
radius of CSRBFs, the distribution of control points, and
the displacements of control points. The number of control
points for NetGI was 164, where dense control points were
placed in the central area with large deformation. For a fair
comparison, we increased the number of control points for
NetDC as 13× 13, denoted as NetDC-169. Correspondingly,
the average support radius of NetDC-169 is provided in

Fig. 5. Boxplots of Dice scores and HDs of registration results using different
networks on MICCAI and York datasets.

Fig. 6. Boxplots of Dice scores and HDs of registration results using different
networks on the ACDC dataset.

Fig. 7. Boxplots of BEs of registration results using different networks on
the ACDC dataset.

Table III. Moreover, to compare the BE of the deformation
field using different support radius, experimental results of
NetGI with r = 18 and r = 32 are listed in Table III.
It can be seen that, although the numbers of control points
and support radius of NetGI and NetDC-169 were similar to
each other (r = 18), NetGI produced smoother deformation
fields because of the evenly distributed control points. Besides,
generally, larger r improved the smoothness of the deformation
field. Based on the results of Table III, it can be concluded that
NetGI with 164 control points generated a smooth deformation
field because of the evenly distributed control points and larger
support radius.

To demonstrate registration results, the deformed images
and DVFs for a registration case in ACDC are shown in
Fig. 8. The DVFs are visualized using grids and color,
respectively. The colored DVFs were drawn using the coding
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TABLE II

MEANS AND STANDARD DEVIATIONS OF DICE SCORES, HDS, APDS, BES (×10−4), AND THE NUMBER

OF NONPOSITIVE JACOBIAN DETERMINANTS FOR ALL METHODS

TABLE III

MEANS AND STANDARD DEVIATIONS OF DICE SCORES, HDS, APDS, BES (×10−4 ), AND THE NUMBER OF NONPOSITIVE
JACOBIAN DETERMINANTS USING NETDC AND NETGI WITH DIFFERENT SUPPORTS r

TABLE IV

MEANS AND STANDARD DEVIATIONS OF DICE SCORES, HDS, APDS, BES (×10−4 ), AND THE NUMBER OF NONPOSITIVE

JACOBIAN DETERMINANTS FOR DALCADIFF, KREBSDIFF, AND NETDCS TRAINED WITH LCC AND L2 LOSS, RESPECTIVELY

provided by Butler et al. [52]. Different colors illustrate dif-
ferent displacements; for example, the green color represents
the displacement of the lower left direction. It is observed
that our networks produced smoother DVFs compared to that
of KrebsDiff, DalcaDiff, and VoxelMorph. This demonstration
and comparison of BE in Table II implies that our networks
outperformed other networks in terms of the smoothness of
DVFs. It validates the advantage of introducing CSRBF-
based transformation in the network. That is, the close-formed
formulation of BE can be precisely embedded in the cost
function.

3) Loss Comparison: We applied the MSE loss function
to train the network NetDC with different σ ’s. Experimental
results showed that, when σ = 3 × 106, the registration
accuracy on the validation dataset was the best. For a detailed
comparison, we summarize the results of NetDCs trained with
LCC and MSE, respectively, in Table IV. Moreover, results of
DalcaDiff [7] and KrebsDiff [19] are also provided, where
DalcaDiff was trained with the MSE loss, and KrebsDiff
was trained with the LCC loss. It can be seen that the

networks trained with LCC loss generated smooth deformation
fields and robust registration results (low standard deviations),
compared with results obtained by networks trained with
MSE loss. Moreover, although DalcaDiff and NetDC used the
MSE loss function, NetDC generated smoother and topology-
preserving deformation fields, which means that our model has
the advantage in deformation smoothness.

4) Runtime: We list the runtime of different meth-
ods for registering an image pair using GPU and CPU,
respectively, in Table V. We implemented KrebsDiff [19],
VoxelMorph [36], DalcaDiff [7], and our method using
PyTorch [48]. From Table V, we can see that the computation
times of KrebsDiff [19], VoxelMorph [36], NetGI, and NetDC
all were around 0.01 s on GPU. This means that our model
can perform image registration at a time comparable to other
methods on the GPU platform. Although our network NetDC
spent more computation resources and time on the CPU
platform than other methods, the computation time was still
less than 6 s, which is acceptable for registration applications.
Moreover, this computation time was far less than several
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Fig. 8. Demonstration of registration results using different networks. The
first row lists the moving image and the fixed image. From left to right:
deformed moving images overlapped by the myocardium of the fixed image
and the warped myocardium, and visualized DVFs. The myocardium of the
fixed image is marked by green, and the warped myocardium of the moving
image is marked by blue. The overlap of the myocardium is marked by red.

hours spent by conventional methods. It also shows that the
advantage of DL-based approaches was that the registration
process is very efficient.

5) Drifting Control Points: Since our NetDC can adaptively
shift control points, we illustrate the positions of control points
after shifting in Fig. 9. NetDC estimated these drifting control
points for three cases selected from MICCAI2009, York, and
ACDC, respectively. Slices from the base to the apex are
shown from top to bottom for each case, and yellow crosses
mark the drifting control points. Note that the evenly spaced
initial control points moved from their initial positions to the
central area containing the heart. This implies that the control
points tended to shift to the regions with large deformation,
indicating that the drifting control points estimated by NetDC
might be used as a feature point at some computer vision tasks.

6) Uncertainty Estimation: One advantage of generative
models is that they can explain the uncertainty of predictions.
Hub et al. [53] measured the uncertainty of an elastic registra-
tion method based on B-splines transformation by introducing
noise to the B-splines coefficients. This uncertainty is based on
the stochastic variation of control points, whereas our method
explicitly provides the variance of each transformation para-
meter corresponding to each control point. Simpson et al. [54]

Fig. 9. Control points estimated by NetDC.

TABLE V

COMPARISON OF THE RUNTIME OF REGISTERING AN IMAGE PAIR
USING KREBSDIFF, VOXELMORPH, NETGI, AND NETDC

estimated the uncertainties of the transformation parameters
in the form of a covariance matrix. However, complicated
closed-form derivation based on mean-field approximation is
employed in their method. In our method, CNNs are employed
to estimate the probabilistic parameter of transformation
coefficients, making the parameters’ estimation easy and
direct.

In this experiment, we computed the uncertainties of
the displacement vectors in the DVFs. The square root
of the sum of the variances in x- and y-directions is
the uncertainty of a displacement vector. To estimate the
uncertainties of DVFs, random coefficients were sampled
500 times from qβ(z|F, M), and corresponding displace-
ment vectors were obtained using (3). The uncertainties
of the DVFs were computed and visualized in Fig. 10.
It is observed that the displacement uncertainties of control
points were more significant than that of their surround-
ing points. Here, we provided a simple analysis to explain
the above phenomenon. For a given point o, its displace-
ment d(o) along the x-direction is

�n
i=1 zi,xψ((�pi − o�)/r),

where zi,x ∼ N(μi ,�i ). ψ((�pi − o�)/r) can be regarded
as the weight of Gaussian distribution. Then, the distribu-
tion of d(o) is the Gaussian N (

�n
i=1 ψ((�pi − o�)/r)μi,�n

i=1 ψ
2((�pi − o�)/r)�i). Considering that r = 2 maxpi∈P
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Fig. 10. Uncertainties of DVFs (left) and transformation coefficients (right).

Fig. 11. Motion (left), the circumferential strain (middle), and the radial strain (right) of LV myocardium from the ES phase to the ED phase. The values
of strain outside the display range are drawn in the color corresponding to the limit value.

minp j∈P−{pi } �pi − p j�, for the local region �o− pi� < (r/2),
only the control point pi is placed in this local region.
When o = pi , ψ

2((�pi − o�)/r) is maximum, which implies
that the uncertainty of the control point pi is larger than
that of its surrounding points. On the contrary, when o
locates in the middle of two adjacent control points p j

and pk,
�n

i=1 ψ
2((�pi − o�)/r) ≈ ψ2((�p j − o�)/r) +

ψ2((�pk − o�)/r), and its value is relatively small compared
with that of pi and p j . Correspondingly, the uncertainties of

these points are minor compared with that of adjacent control
points. The same conclusion also applies to the y-direction.

Moreover, Fig. 10 shows that higher uncertainties mainly
occurred near the region of the cardiac structure, where large
deformations existed. Similarly, Yang et al. [30] also found
that high uncertainty occurs for areas with large deformation
or appearance changes. The higher uncertainty also appeared
in the homogeneous areas, such as the inner area of RV and LV,
consistent with the conclusion given by Simpson et al. [54],
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who measured the spatial uncertainty of each voxel in brain
registration. Our uncertainty measure of networks can be used
for uncertainty-based smoothing registration [55], surgical
treatment planning, visualization for qualitative analyses, and
pathological areas’ detection [30].

7) Motion Estimation and Strain Assessment: For LV
motion estimation, the displacements of the left myocardium
are the motion fields, which can be used to calculate
myocardium strain. To illustrate the LV motion, Fig. 11
shows the displacements of myocardium from ES to ED
for two cases selected, the York dataset and ACDC dataset,
respectively. No instances of MICCAI2009 are demonstrated
because no annotations of epicardium are provided. Further-
more, the circumferential strain and the radial strain of LV
myocardium [22] are also illustrated in Fig. 11.

V. CONCLUSION

In this article, we design two unsupervised learning net-
works based on CSRBF-based transformations to estimate
LV motion. Our proposed networks learn the probabilis-
tic coefficients of control points. The network NetDC can
simultaneously estimate the drifting control points and cor-
responding coefficients, and the NetGI can estimate transfor-
mation coefficients for given control points. In the evaluation,
we also design two networks, NetGE-64 and NetGE-256, for
registration with 64 and 256 evenly spaced control points.
Experiments show that our networks outperform state-of-the-
art networks and generate smooth DVFs. NetDC can estimate
the proper locations of control points, and these control points
may be used as feature points in some computer vision tasks.
One potential drawback of NetDC is that the number of control
points is fixed. In the future, we will work on the adaptive
number of control points and explore the potential use of
NetDC.
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