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Abstract— Federated distillation (FD) is a popular novel
algorithmic paradigm for Federated learning (FL), which
achieves training performance competitive to prior parameter
averaging-based methods, while additionally allowing the clients
to train different model architectures, by distilling the client
predictions on an unlabeled auxiliary set of data into a student
model. In this work, we propose FEDAUX, an extension to FD,
which, under the same set of assumptions, drastically improves
the performance by deriving maximum utility from the unlabeled
auxiliary data. FEDAUX modifies the FD training procedure
in two ways: First, unsupervised pre-training on the auxiliary
data is performed to find a suitable model initialization for the
distributed training. Second, (ε, δ)-differentially private certainty
scoring is used to weight the ensemble predictions on the auxiliary
data according to the certainty of each client model. Exper-
iments on large-scale convolutional neural networks (CNNs)
and transformer models demonstrate that our proposed method
achieves remarkable performance improvements over state-of-
the-art FL methods, without adding appreciable computation,
communication, or privacy cost. For instance, when train-
ing ResNet8 on non-independent identically distributed (i.i.d.)
subsets of CIFAR10, FEDAUX raises the maximum achieved
validation accuracy from 30.4% to 78.1%, further closing the
gap to centralized training performance. Code is available at
https://github.com/fedl-repo/fedaux.

Index Terms— Certainty-weighted aggregation, differential
privacy (DP), federated distillation (FD), federated
learning (FL), unsupervised pre-training.

I. INTRODUCTION

FEDERATED learning (FL) allows distributed entities
(“clients”) to jointly train (deep) machine learning models

on their combined local data, without having to transfer this
data to a centralized location [1]. The Federated training
process is conducted over multiple communication rounds,
where, in each round, a central server aggregates the training
state of the participating learners, for instance, via a para-
meter averaging operation. Since local training data never
leaves the participating devices, FL can drastically improve
privacy [2]–[4], ownership rights [5], and security [6] for
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the participants. As the number of mobile and IoT devices
and their capacities to collect and process large amounts of
high-quality and privacy-sensitive data steadily grows, Feder-
ated training procedures become increasingly relevant.

While the client data in FL is typically assumed to be pri-
vate, in many real-world applications, the server additionally
has access to unlabeled auxiliary data, which roughly matches
the distribution of the client data. For instance, for many
Federated computer vision and natural language processing
problems, such auxiliary data can be given in the form of
public databases such as ImageNet [7] or WikiText [8]. These
databases contain millions to billions of data samples but are
typically lacking the necessary label information to be useful
for training task-specific models.

Recently, Federated distillation (FD), a novel algorithmic
paradigm for FL problems where such auxiliary data is avail-
able, was proposed. In contrast to classic parameter averaging-
based FL algorithms [1], [9]–[12], which require all client’s
models to have the same size and structure, FD allows the
clients to train heterogeneous model architectures, by distilling
the client predictions on the auxiliary set of data into a student
model. This can be particularly beneficial in situations where
clients are running on heterogeneous hardware and recent
studies show that FD-based training also has favorable com-
munication properties [13], [14] and can outperform parameter
averaging-based FL algorithms [15].

However, just like for their parameter-averaging-based
counterparts, the performance of FD-based learning algorithms
falls short of centralized training and deteriorates quickly
if the training data is distributed in a heterogeneous [“non-
independent identically distributed (i.i.d.”)] way among the
clients.

In this work, we aim to further close this perfor-
mance gap, by exploring the core assumption of FD-based
training and deriving maximum utility from the available
unlabeled auxiliary data. Our main contributions are as
follows.

1) We show that a wide range of (out-of-distribution)
auxiliary datasets are suitable for self-supervised pre-
training and can drastically improve FL performance
across all levels of data heterogeneity.

2) We propose a novel certainty-weighted FD technique,
which improves the performance of FD on non-i.i.d. data
substantially, by exploiting the available auxiliary data,
addressing a long-standing problem in FL research.

3) We derive an (ε, δ)-differentially private mechanism to
constrain the privacy loss associated with transmitting
certainty scores.
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Fig. 1. FL procedure of FEDAUX is organized in a preparation and a training phase: Preparation phase: P1) The unlabeled auxiliary data is used to pre-train
a feature extractor (e.g., using contrastive representation learning). P2) The feature-extractor is sent to the clients, where it is used to initialize the client
models. Based on the extracted features, a logistic scoring head is trained to distinguish local client data from a subset of the auxiliary data. P3) The trained
scoring head is sanitized using a (ε, δ)-differentially private mechanism and then used to compute (differentially private) certainty scores on the distillation
data. Training phase: T1) In each communication round, a subset of the client population is selected for training. Each selected client downloads a model
initialization from the server and then updates the full model fi (feature extractor and scoring head) using their private local data. T2) The locally trained
classifier and scoring models fi and si are sent to the server, where they are combined into a weighted ensemble. T3) Using the unlabeled auxiliary data and
the weighted ensemble as a teacher, the server distills a student model which is used as the initialization point for the next round of Federated training. Note
that, in practice, it is more practical to perform computation of soft labels and scores at the server to save client resources.

4) We extensively evaluate our new method on a wide vari-
ety of Federated image and text classification problems,
using large-scale convolutional neural networks (CNNs)
and transformer models.

Notably, as we will see, the observed significant performance
improvements achieved by FEDAUX are possible: 1) under
the same assumptions made in the FD literature; 2) with only
negligible additional computational overhead for the resource-
constrained clients; and 3) with small quantifiable excess
privacy loss.

The remainder of this manuscript is organized as follows:
In Section II, we give an introduction to FD and clearly state
our assumptions on the FL setting. In Section III, we describe
the components of our proposed FEDAUX algorithm, namely
unsupervised pre-training and weighted ensemble distillation
and derive an (ε, δ)-differentially private mechanism to obfus-
cate the ensemble weights. In Section IV, we provide the
detailed algorithm for the general FL setting where clients
may locally train different model architectures. In Section V,
we give an overview over the current state of research in FD as
well as FL in the presence of unlabeled auxiliary data, in gen-
eral. In Section VI, we perform extensive numerical studies
evaluating the performance, privacy properties, and sensitivity
to auxiliary data of FEDAUX against several important base-
line methods in a variety of different FL scenarios, including
resource constrained settings. In Section VII, we complement
these quantitative results with a qualitative analysis of our
method, before concluding in Section VIII.

II. FEDERATED DISTILLATION

We assume the conventional FL setting, where a population
of n clients is holding potentially non-i.i.d. subsets of private
labeled data D1, . . . , Dn , from a training data distribution(⋃

i≤n

Di

)
∼ ϕ(X ,Y). (1)

The goal in FL is to train a single model f on the combined
private data of all local clients. This is generally achieved by
performing multiple communication rounds, where each round
consists of the following steps.

1) A subset St ⊆ {1, . . . , n} of the client population is
selected for training and downloads a model initializa-
tion from the server.

2) Starting from this model initialization, each client then
proceeds to train a model fi on its local private data Di

by taking multiple steps of stochastic gradient descent
over the model parameters θi .

3) Finally, the updated models fi , i ∈ St , are sent back
to the server, where they are aggregated to form a new
server model f , which is used as the initialization point
for the next round of FL.

The goal of FL is to obtain a server model f , which optimally
generalizes to new samples from the training data distribution
ϕ, within a minimum number of communication rounds t ≤ T .

FD offers a new way of performing the last step of the
FL protocol, namely the aggregation of the contributions of
FL clients into a single-server model [13], [15]–[17]. Instead
of aggregating the client model parameters θi directly (for
instance, via an averaging operation), the server leverages
distillation [18] to train a model on the combined predictions
of the client models fi on some public auxiliary set of
unlabeled data

Daux ∼ ψ(X ). (2)

The distribution of the unlabeled auxiliary data ψ(X )
hereby is generally assumed to deviate from the unknown
private data distribution ϕ(X ).

Let x ∈ Daux be a batch of data from the auxiliary
distillation dataset. Then one iteration of distillation over the
parameters of the server model θ t in communication round t
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Fig. 2. Weighted ensemble distillation illustrated in a toy example on the Iris dataset (data points are projected to their two principal components). Three
FL clients hold disjoint non-i.i.d. subsets of the training data. Panels 1–3: Predictions made by linear classifiers trained on the data of each client. Labels and
predictions are color-coded, client certainty (measured via Gaussian KDE) is visualized via the alpha-channel. The mean of client predictions (panel 4) only
poorly captures the distribution of training data. In contrast, the certainty-weighted mean of client predictions (panel 5) achieves much higher accuracy.

is performed as

θ t ← θ t − η∂DKL
(A({ fi (x)|i ∈ St }), σ

(
f
(
x, θ t

)))
∂θ t

. (3)

Hereby, DKL denotes the Kullback–Leibler divergence,
η > 0 is the learning rate, σ is the softmax function, and A is
a mechanism to aggregate the soft labels. Existing work [15]
aggregates the client predictions by taking the mean according
to

Amean({ fi (x)|i ∈ St }) = σ
(∑

i∈St
fi (x)

|St |
)
. (4)

FD is shown to yield better model fusion than parameter
averaging-based techniques, like FEDAVG, resulting in bet-
ter generalization performance within fewer communication
rounds [15]. However, like for all other FL methods, perfor-
mance of models trained via FD still lacks behind centralized
training and convergence speed suffers considerably if training
data is distributed in a non-i.i.d. way among the clients.

To address these issues, in this work, we will present
two improvements to FD-based training, which, as we will
demonstrate, drastically improve training performance in FL
scenarios with both homogeneous and heterogeneous client
data, leading to greater model performance within fewer
communication rounds T .

III. IMPROVING FD VIA THE FEDAUX FRAMEWORK

In this section, we describe how FD-based training can
be improved by deriving maximum utility from the available
unlabeled auxiliary data. An illustration of our proposed
FEDAUX training framework is given in Fig. 1. We first
describe FEDAUX for the homogeneous setting where all
clients locally train the same model architecture. This setting
can readily be generalized to heterogeneous client model
architectures as we will describe in Section IV, where also the
detailed training procedure is given. An exhaustive qualitative
comparison between FEDAUX and baseline methods is given
in Section VII.

A. Self-Supervised Pre-Training

As the first component of the FEDAUX training procedure,
we will exploit the fact that all FD methods require access to
unlabeled auxiliary data Daux. Self-supervised representation
learning can leverage such large records of unlabeled data to

create models which extract meaningful features. For the two
types of data considered in this study—image and sequence
data—strong self-supervised training algorithms are known in
the form of contrastive representation learning [19], [20] and
next-token prediction [21], [22].

Let

fi = gi ◦ hi (5)

denote a decomposition of the local client models fi , i =
1, . . . , n into a feature extractor hi and a classification head
gi . Such a decomposition can trivially be given, for instance,
for CNNs and transformer models, where the feature extractor
g contains all but the final layer of the network, while the
classification head is just a single fully connected layer,
followed by a sigmoid activation. As part of the FEDAUX
preparation phase (cf. Fig. 1, P1) we propose to pre-train the
feature extractor models hi at the server using self-supervised
training on the auxiliary data Daux. We emphasize that this
step is only performed once at the beginning of training and
makes no assumptions on the similarity between the local
training data and the auxiliary data. The pre-training operation
results in a parameterization for the feature extractor h0. Since
the training is performed at the server, using only publicly
available data, this step inflicts neither computational overhead
nor privacy loss on the resource-constrained clients.

B. Weighted Ensemble Distillation

Different studies have shown that the training speed, sta-
bility, and maximum achievable accuracy in existing FL
algorithms deteriorate if the training data is distributed in
a heterogeneous “non-i.i.d.” way among the clients [12],
[23], [24]. Federated Ensemble Distillation (FedDF) makes no
exception to this rule [15].

The underlying problem of combining hypotheses derived
from different source domains has been explored in multiple-
source domain adaptation theory [25], [26], which shows
that standard convex combinations of the hypotheses of the
clients as done in [15] may perform poorly on the target
domain. Instead, a distribution-weighted combination of the
local hypotheses fi , obtained on data distributions Di , accord-
ing to

f̄ (x) =
∑

i

Di (x)∑
j D j (x)

fi (x) (6)
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Fig. 3. Left: Toy example with three clients holding data sampled from
multivariate Gaussian distributions D1, D2, and D3. All clients solve opti-
mization problem J by contrasting their local data with the public negative
data, to obtain scoring models s1, s2, s3, respectively. As can be seen in
the plots to the right, our proposed scoring method approximates the robust
weights proposed in [25] as it holds si (x)/

∑
j s j (x) ≈ Di (x)/

∑
j D j (x) on

the support of the data distributions.

is shown to be robust [25], [26] (in slight abuse of notation
Di (x) hereby refers to the probability density of the local
data Di ). A simple toy example, displayed in Fig. 2, further
illustrates this point: Displayed as scatter points are elements
of the Iris dataset, projected to their two main PCA compo-
nents. The training data is distributed among three clients in
a non-i.i.d. fashion, with the label of each data point being
indicated by the marker color in the plot. Overlayed in the
background are the predictions of linear classifier models that
were trained on the local data of each client. As we can see,
the models which were trained on the data of clients 1 and 3,
uniformly predict that all inputs belong to the “red” and “blue”
class, respectively. The predictive power of these models and
consequently their value as teachers for model distillation is
thus very limited. This is also visualized in panel 4, where the
mean prediction of the teacher models is displayed. We can,
however, improve the teacher ensemble quite significantly,
if we weight each teacher’s predictions at every location x by
its certainty s(x) (approximated via Gaussian KDE), illustrated
via the alpha channel in panels 1–3. As we can see in panel 5,
weighing the ensemble predictions raises the accuracy from
33% to 88% in this particular toy example.

Based on these insights, we propose to modify the aggre-
gation rule of FD (4) to a certainty-weighted average

As({( fi (x), si (x))|i ∈ St}) = σ
(∑

i∈St
si(x) fi (x)∑

j∈St
s j (x)

)
. (7)

The question remains, how to calculate the certainty scores
si (x) in a privacy preserving way and for arbitrary high-
dimensional data, where simple methods, such as Gaussian
KDE used in our toy example, fall victim to the curse
of dimensionality. To this end, we propose the following
methodology.

We split the available auxiliary data randomly into two
disjoint subsets

D− ∪ Ddistill = Daux (8)

the “negative” data and the “distillation” data. Using the pre-
trained model h0 (→ Section III-A) as a feature extractor,
on each client, we then train a logistic regression classi-
fier to separate the local data Di from the negatives D−,

Fig. 4. Comparison of validation performance for FD of ResNet-8 on the
CIFAR-10 dataset (left) and DistillBert on the Amazon dataset (right) when
different scoring techniques are used to obtain the certainty weights si (x) used
during ensemble distillation. Certainty scores obtained via two-class logistic
regression achieve the best performance and can readily be augmented with
a differentially private mechanism.

by optimizing the following regularized empirical risk min-
imization (ERM) problem:

w∗i = arg min
w

J
(
w, h0, Di , D−

)
(9)

with

J
(
w, h0, Di , D−

) = a
∑

x∈Di∪D−
l
(
tx �w, h̃0(x)

)+ λR(w).

(10)

Hereby, tx = 2(�x∈Di ) − 1 ∈ [−1, 1] defines the binary
labels of the separation task, a = (|Di | + |D−|)−1 is a
normalizing factor and h̃0(x) = h0(x)(maxx∈Di∪D− �h0(x)�)−1

are the normalized features. We choose l(z) = log(1+exp(z))
to be the logistic loss and R(w) = (1/2)�w�2

2 to be the
�2-regularizer. Since J is λ-strongly convex in w, problem
(9) is uniquely solvable. This step is performed only once
on every client, during the preparation phase (cf. Fig. 1, P2)
and the computational overhead for the clients of solving (9)
is negligible in comparison to the cost of multiple rounds of
training the (deep) model fi .

Given the solution of the regularized ERM problem w∗i , the
certainty scores on the distillation data Ddistill can be obtained
via the logistic scoring head

si (x) =
(
1+ exp

(−�w∗i , h̃0(x)
))−1 + ξ. (11)

A small additive ξ > 0 ensures numerical stability when
taking the weighted mean in (7). We always set ξ = 1e− 8.

While the scores si (x) can be estimated using a number
of different techniques like density estimation, uncertainty
quantification [27], or outlier detection [28], [29], we will
now present three distinct motivations for using the logistic
regression-based approach described above.

First of all, as illustrated using the toy example given in
Fig. 3, the scores obtained via our proposed logistic regression-
based approach (11) give a good approximation to the distri-
bution weights suggested by domain adaptation theory [25].
As we can see in the panels to the right, it approximately holds

si (x)∑
j s j (x)

≈ Di (x)∑
j D j (x)

∀ x ∈ X , i = 1, . . . , n (12)

on the support of the data distributions pi ∼ Di .
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Second, scores obtained via logistic regression yield strong
empirical performance on highly complex image data. Fig. 4
shows the maximum accuracy achieved after ten communi-
cation rounds, by different weighted FedDF methods in an
FL scenario with ten clients and highly heterogeneous data
(α = 0.01, further details on the data splitting strategy are
given in Section VI). As we can see, the contrastive logistic
scoring approach described above distinctively outperforms
the uniform scoring approach used in [15] and also yields
better results than other generative and discriminative scoring
methods, like Gaussian KDE, Isolation Forests, or One- and
Two-Class SVMs. Details on the implementation of these
scoring methods are given in Supplementary Materials C.

Finally, as we will see in Section III-C, the logistic scoring
mechanism can readily be augmented with differential pri-
vacy (DP) and provides high utility even under strong formal
privacy constraints.

C. Differentially Private Weighted Ensemble Distillation

Sharing the certainty scores {si (x)|x ∈ Ddistill} with the
central server intuitively causes privacy loss for the clients.
After all, a high score si (x) indicates that the public data point
x ∈ Ddistill is similar to the private data Di of client i (in the
sense of (9)). To protect the privacy of the clients as well as
quantify and limit the privacy loss, we propose to use data-
level DP (cf. Fig. 1, P3). Following the classic definition of
[30], a randomized mechanism is called differentially private,
if its output on any input database d is indistinguishable from
output on any neighboring database d � which differs from d
in one element.

Definition 1: A randomized mechanism M : D → R
satisfies (ε, δ)-DP if for any two adjacent inputs d and d �
that differ in only one element and for any subset of outputs
S ⊆ R, it holds that

P[M(d) ∈ S] ≤ exp(ε)P
[M(

d �
) ∈ S

]+ δ. (13)

DP of a mechanism M can be achieved, by limiting its
sensitivity

�(M) = max
d1,d2∈D

�M(d1)−M(d2)� (14)

and then applying a randomized noise mechanism. We adapt
a theorem from [31] to establish the sensitivity of (9).

Theorem 1: If R(·) is differentiable and one-strongly con-
vex and l is differentiable with |l �(z)| ≤ 1 ∀z, then the �2-
sensitivity �2(M) of the mechanism

M : Di �→ arg min
w

J
(

f, h0, Di , D−
)

(15)

is at most 2(λ(|Di | + |D−|))−1.
The proof can be found in Supplementary Materials G.

As we can see the sensitivity scales inversely with the size of
the total data |Di |+|D−|. From Theorem 1 and application of
the Gaussian mechanism [30], it follows that the randomized
mechanism:

Msan : Di �→ arg min
f

J
(

f, h0, Di , D−
)+ N (16)

with N ∼ N (0, Iσ 2), and σ 2 = (8 ln(1.25δ−1))/(ε2λ2(|Di | +
|D−|)2) is (ε, δ)-differentially private.

The post-processing property of DP ensures that the release
of any number of scores computed using the output of mech-
anism Msan is still (ε, δ)-private. Note that in this work we
restrict ourselves to the privacy analysis of the scoring mech-
anism. The differentially private training of deep classifiers fi

is a challenge in its own right and has been addressed, for
example, in [32]. Following the basic composition theorem
[30], the total privacy cost of running FEDAUX is the sum
of the privacy loss of the scoring mechanism Msan and the
privacy loss of communicating the updated models fi (the
latter is the same for all FL algorithms).

IV. DETAILED ALGORITHM FOR THE GENERAL MODEL

HETEROGENEOUS SETTING

Like many other FD methods, FEDAUX can natively be
applied to FL scenarios where the clients locally train different
model architectures. To perform model fusion in such hetero-
geneous scenarios, FEDAUX constructs several prototypical
models on the server, where each prototype represents all
clients with identical architecture.

Let us denote by P the set of all such model prototypes.
Then we can define a HashMap R that maps each client i to
its corresponding model prototype P as well as the inverse
HashMap R̃ that maps each model prototype P to the set of
corresponding clients (s.t. i ∈ R̃[R[i ]] ∀i ).

The training procedure of FEDAUX can be divided into a
preparation phase, which is given in Algorithm 1 and a training
phase, which is given in Algorithm 2.

A. Preparation Phase

In the preparation phase, the server uses the unlabeled
auxiliary data Daux, to pre-train the feature extractor h P

for each model prototype P using self-supervised training.
Suitable methods for self-supervised pre-training are con-
trastive representation learning [19], or self-supervised lan-
guage modeling/next-token prediction [21]. The pre-trained
feature extractors h P

0 are then communicated to the clients and
used to initialize part of the local classifier f = g ◦ h. The
server also communicates the negative data D− to the clients
(in practice, we can instead communicate the extracted features
{|h P

0 (x)|x ∈ D−} of the raw data D− to save communication).
Each client then optimizes the logistic similarity objective J
(9) and sanitizes the output by adding properly scaled Gaussian
noise. Finally, the sanitized scoring modelw∗i is communicated
to the server, where it is used to compute certainty scores
si on the distillation data (the certainty scores can also be
computed on the clients, however this results in additional
communication of distillation data and scores).

B. Training Phase

The training phase is carried out in T communication
rounds. In every round t ≤ T , the server randomly selects
a subset St of the overall client population and transmits to
them the latest server models θR[i], which match their model
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Algorithm 1 FEDAUX Preparation Phase (With Different
Model Prototypes P)

init: Split D− ∪ Ddistill ← Daux

init: HashMap R that maps client i to model prototype P
Server does:
for each model prototype P ∈ P do

h P
0 ← train_self_supervised(h P , Daux )

end for
for each client i ∈ {1, . . . , n} in parallel do

Client i does:
P ← R[i ]
σ 2 ← 8 ln(1.25δ−1)

ε2λ2(|Di |+|D−|)2
w∗i ← arg minw J (w, h P

0 , Di , D−)+N (0, Iσ 2)
γi ← maxx∈Di∪D− �h P

0 (x)�
end for
Server does:
for i = 1, . . . , n do

create HashMap
si ← {x �→ (1 + exp(−�w∗i , γ−1

i h P
0 (x)))−1 + ξ for x ∈

Ddistill }
end for

Fig. 5. Illustration of the Dirichlet data splitting strategy we use throughout
the article, exemplary for an FL setting with 20 clients and ten different
classes. Marker size indicates the number of samples held by one client
for each particular class. Lower values of α lead to more heterogeneous
distributions of client data. Figure adapted from [15].

prototype P (in round t = 1 only the pre-trained feature
extractor h P

0 is transmitted). Each selected client updates its
local model by performing multiple steps of stochastic gradient
descent (or its variants) on its local training data. This results
in an updated parameterization θi on every client, which is
communicated to the server. After all clients have finished their
local training, the server gathers the updated parameters θi .

Following the recommendations from [15], each prototypi-
cal student model is initialized with the average of the parame-
ters from all client models which share the same architecture,
according to

θ P ←
∑

i∈St∩R̃[P]

|Di |∑
l∈St∩R̃[P] |Dl |θi . (17)

Using these model averages as a starting point, for each
prototype, the server then distills a new model, based on the
client’s certainty-weighted predictions.

V. RELATED WORK

A. Ensemble Distillation in FL

FD is a new area of research, which has attracted tremen-
dous attention in the past couple of years. FD techniques

Algorithm 2 FEDAUX Training Phase (With Different Model
Prototypes P). Training Requires Feature Extractors h P

0 and
Scores si From Alg. 1. The Same D− ∪ Ddistill ← Daux as in
Alg. 1 Is Used. Choose Learning Rate η and Set ξ = 10−8

init: HashMap R that maps client i to model prototype P
init: Inverse HashMap R̃ that maps model prototype P to
set of clients (s.t. i ∈ R̃[R[i ]] ∀i )
init: Initialize model prototype weights θ P with feature
extractor weights h P from Alg. 1
for communication round t = 1, . . . , T do

select subset of clients St ⊆ {1, . . . , n}
for selected clients i ∈ St in parallel do

Client i does:
θi ← train(θ0 ← θR[i], Di ) # Local Training

end for
Server does:
for each model prototype P ∈ P do
θ P ←∑

i∈St∩R̃[P]
|Di |∑

l∈St ∩R̃[P] |Dl |θi # Parameter
# Averaging

for mini-batch x ∈ Ddistill do
ỹ ← σ(

∑
i∈St

si [x] fi (x,θi )∑
i∈St

si [x] ) # Can be arbitrary

θ P ← θ P − η ∂DK L ( ỹ,σ ( f (x,θ P )))
∂θ P # Optimizer

end for
end for

end for

have at least three distinct advantages over prior, parameter
averaging-based methods and related work can be organized
according to which of these aspects it primarily focuses on.

First, FD enables aggregation of client knowledge indepen-
dent of the model architecture and thus allows clients to train
models of different architecture, which gives additional flex-
ibility, especially in hardware-constrained settings. FEDMD
[33], Cronus [34], and FEDH2L [35] are methods which
focus on this aspect. While the main focus of FEDAUX is to
improve performance, our proposed approach is still flexible
enough to handle heterogeneous client models as shown in
Section IV.

A second line of FD research explores the advantageous
communication properties of the framework. As models are
aggregated by means of distillation instead of parameter
averaging, it is no longer necessary to communicate the
raw parameters. Instead, it is sufficient for the clients to
only send their soft-label predictions on the distillation data.
Consequently, the communication in FD scales with the size
of the distillation dataset and not with the size of the jointly
trained model as in the classical parameter averaging-based
FL. This leads to communication savings, especially if the
local models are large and the distillation dataset is small.
Jeong et al. and subsequent work [13], [14], [16], [36] focus
on this aspect. These methods, however, are computationally
more expensive for the resource constrained clients, as distil-
lation needs to be performed locally and perform worse than
parameter averaging-based training after the same number of
communication rounds. We want to highlight that improving
communication efficiency is not a goal of our proposed
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Fig. 6. Evaluation on different neural networks and client population sizes n. Accuracy achieved after T = 100 communication rounds by different FD
methods at different levels of data heterogeneity α. STL-10 is used as auxiliary dataset. In the “Mixed” setting, one-third of the client population each trains
on ResNet8, MobileNetv2, and Shufflenet, respectively. Black dashed line indicates centralized training performance.

Fig. 7. Evaluating FEDAUX on NLP benchmarks. Performance of FEDAUX for different combinations of local datasets and heterogeneity levels α. Ten
clients training TinyBERT at α = 0.01 and C = 100%. Bookcorpus is used as auxiliary dataset. Black dashed line indicates centralized training performance.

method, which relies on communication of full models and
thus requires communication at the order of conventional
parameter averaging-based methods.

Third, when combined with parameter averaging, it has been
observed that FD methods achieve better performance than
purely parameter averaging-based techniques. Lin et al. [15]
and Chen and Chao [17] propose FL protocols, which are
based on classical FEDAVG and perform ensemble distillation
after averaging the received client updates at the server to
improve performance. FEDBE, proposed by [17], additionally
combines client predictions by means of a Bayesian model
ensemble to further improve robustness of the aggregation.
Our work primarily focuses on this latter aspect. Building
upon the work of [15], we additionally leverage the auxiliary
distillation data for unsupervised pre-training and weigh the
client predictions in the distillation step according to their
certainty scores to better cope with settings where the client’s
data generating distributions are statistically heterogeneous.

We also mention the related work by Guha et al. [37], which
proposes a one-shot distillation method for convex models,
where the server distills the locally optimized client models
in a single round as well as the work of [38] which addresses
privacy issues in FD. Federated one-shot distillation is also
addressed in [39]. FD for edge-learning was proposed in [40].

B. Weighted Ensembles

FEDAUX leverages a weighted ensemble of client models
to distill the locally acquired knowledge into a central server
model. The ensemble weights are determined at an instance
level, based on the certainty of each local model’s predic-
tion. The study of weighted ensembles started around the
1990s with the work by Hashem and Schmeiser [41], Perrone
and Cooper [42], and Sollich and Krogh [43]. A weighted

ensemble of models combines the output of the individual
models by means of a weighted average in order to improve
the overall generalization performance. The weights allow us
to indicate the percentage of trust or expected performance
for each individual model. See [44], [45] for an overview of
ensemble methods. Instead of giving each client a static weight
in the aggregation step of distillation, we weight the clients on
an instance base as in [46], that is, each client’s prediction is
weighted using a data-dependent certainty score. We note that
weighted combinations of weak classifiers are also commonly
leveraged in centralized settings in the context of mixture of
experts and boosting methods [47]–[49].

C. Data Heterogeneity in FL

As we will demonstrate, FEDAUX excels, in particular,
in situations where data is distributed heterogeneously among
the clients. As the training data is generated independently on
the participation devices, this type of statistical heterogeneity
in the client data is very typical for FL problems [1]. It is
well known that conventional FL algorithms like FEDAVG
[1] perform best on statistically homogeneous data and suffer
severely in this (“non-i.i.d.”) setting [23], [24]. A number of
different studies [11], [12], [17], [23] have tried to address
this issue, but relevant performance improvements so far have
only been possible under strong assumptions. For instance,
[23] assume that the server has access to labeled public
data from the same distribution as the clients. In contrast,
we only assume that the server has access to unlabeled
public data from a potentially deviating distribution. Other
approaches [12] require high-frequent communication, with
up to thousands of communication rounds, between the server
and clients, which might be prohibitive in a majority of FL
applications where communication channels are intermittent
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and slow. In contrast, our proposed approach can drastically
improve FL performance on non-i.i.d. data even after just one
single communication round. For completeness, we note that
there also exists a different line of research, which aims to
address data heterogeneity in FL via meta- and multi-task
learning. Here, separate models are trained for each client [50],
[51] or clients are grouped into different clusters with similar
distributions [52], [53].

D. Unlabeled Data in FL

FEDAUX, like all FD methods, leverages unlabeled aux-
iliary data during Federated training. To the best of our
knowledge, there do not exist any prior studies on the use of
unlabeled auxiliary data in FL outside of FD methods. Feder-
ated semi-supervised learning techniques [54], [55] assume
that clients hold both labeled and unlabeled private data
from the local training distribution. In contrast, we assume
that the server has access to public unlabeled data that may
differ in distribution from the local client data. Federated
self-supervised representation learning [56] aims to train a
feature extractor on private unlabeled client data. In contrast,
we leverage self-supervised representation learning at the
server to find a suitable model initialization.

VI. EXPERIMENTS

A. Setup

1) Datasets and Models: We evaluate FEDAUX and SOTA
FL methods on both Federated image and text classifi-
cation problems with large-scale convolutional and trans-
former models, respectively. For our image classification
problems, we train ResNet- [57], MobileNet- [58], and
ShuffleNet- [59]-type models on CIFAR-10 and CIFAR-100
and use STL-10, CIFAR-100, and SVHN as well as different
subsets of ImageNet (Mammals, Birds, Dogs, Devices, Inver-
tebrates, Structures)1 as auxiliary data. In our experiments,
we always use 80% of the auxiliary data as distillation data
Ddistill and 20% as negative data D−. For our text classifi-
cation problems, we train Tiny-Bert [60] on the AG-NEWS
[61] and Multilingual Amazon Reviews Corpus [62] and use
BookCorpus [63] as auxiliary data.

2) FL Environment and Data Partitioning: We consider FL
problems with up to n = 100 participating clients. In all
experiments, we split the training data evenly among the
clients according to a Dirichlet distribution following the
procedure outlined in [64] and illustrated in Fig. 5. This allows
us to smoothly adapt the level of non-i.i.d.-ness in the client
data using the Dirichlet parameter α. We experiment with
values for α varying between 100.0 and 0.01. A value of
α = 100.0 results in an almost identical label distribution,
while setting α = 0.01 results in a split, where the vast
majority of data on every client stems from one single class.
See Supplementary Material A for a more detailed description
of our data splitting procedure. We vary the client participation
rate C in every round between 20% and 100%.

1The methodology for generating these subsets is described in Supplemen-
tary Materials D.

3) Pre-Training Strategy: For our image classification prob-
lems, we use contrastive representation learning as described
in [19] for pre-training. We use the default set of data
augmentations proposed in this article and train with the Adam
optimizer, learning rate set to 10−3, and a batch size of 512.
For our text classification problems, we pre-train using self-
supervised next-word prediction.

4) Training the Scoring Model and Privacy Setting: We set
the default privacy parameters to λ = 0.1, ε = 0.1, and
δ = 1e − 5, and solve (9) by running L-BFGS [65] until
convergence (≤1000 steps).

5) Baselines: We compare the performance of FEDAUX
to state-of-the-art FL methods: FEDAVG [1], FEDPROX [11],
FedDF [15], and FEDBE [17]. To clearly discern the perfor-
mance benefits of the two components of FEDAUX (unsuper-
vised pre-training and weighted ensemble distillation), we also
report performance metrics on versions of these methods
where the auxiliary data was used to pre-train the feature
extractor h (“FEDAVG + P,” “FEDPROX + P,” “FEDDF +
P,” respectively, “FEDBE + P”). For FEDBE, we set the
sample size to 10 as suggested in this article. For FEDPROX,
we always tune the proximal parameter μ.

6) Optimization: On all image classification task, we use the
very popular Adam optimizer [66], with a fixed learning rate of
η = 10−3 and a batch size of 32 for local training. Distillation
is performed for one epoch for all methods using Adam at
a batch size of 128 and fixed learning rate of 5e − 5. More
detailed hyperparameter analysis in Supplementary Material F
shows that this choice of optimization parameters is approxi-
mately optimal for all of the methods. If not stated otherwise,
the number of local epochs E is set to 1.

B. Evaluating FEDAUX on Common FL Benchmarks

We start out by evaluating the performance of FEDAUX on
classic benchmarks for Federated image classification. Fig. 6
shows the maximum accuracy achieved by different FD meth-
ods after T = 100 communication rounds at different levels
of data heterogeneity. As we can see, FEDAUX distinctively
outperforms FEDDF on the entire range of data heterogeneity
levels α on all benchmarks. For instance, when training
ResNet8 with n = 80 clients at α = 0.01, FEDAUX raises the
maximum achieved accuracy from 30.4% to 78.1% (under the
same set of assumptions). The two components of FEDAUX,
unsupervised pre-training and weighted ensemble distillation,
both contribute independently to the performance improve-
ment, as can be seen when comparing with FEDDF + P,
which only uses unsupervised pre-training. Weighted ensemble
distillation as done in FEDAUX leads to greater or equal
performance than equally weighted distillation (FEDDF + P)
across all levels of data heterogeneity. The same overall picture
can be observed in the “Mixed” setting where one-third of the
client population each trains on ResNet8, MobileNetv2, and
Shufflenet, respectively. (In this setting, parameter averaging
is not possible and thus FEDAVG cannot be applied.) Detailed
training curves are given in the Supplementary Material B.

Table I compares the performance of FEDAUX and baseline
methods at different client participation rates C . We can see
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Fig. 8. Privacy analysis. Performance of FEDAUX for different combinations of the privacy parameters ε, δ, and λ. Forty clients training Resnet-8 for
T = 10 rounds on CIFAR-10 at α = 0.01 and C = 40%. STL-10 is used as auxiliary dataset.

Fig. 9. Linear evaluation. Training curves for different FL methods at different levels of data heterogeneity α when only the classification head g is updated
in the training phase. A total of n = 80 clients training ResNet8 on CIFAR-10 at C = 40%, using STL-10 as auxiliary dataset.

that FEDAUX benefits from higher participation rates. In all
scenarios, methods which are initialized using the pre-trained
feature-extractor h0 distinctively outperform their randomly
initialized counterparts. In the i.i.d. setting at α = 100.0,
FEDAUX is mostly on par with the (improved) parameter
averaging-based methods FEDAVG + P and FEDPROX + P,
with a maximum performance gap of 0.8%. At α = 0.01,
on the other hand, FEDAUX outperforms all other methods
with a margin of up to 29%.

C. Evaluating FEDAUX on NLP Benchmarks

Fig. 7 shows learning curves for Federated training of
TinyBERT on the Amazon and AG-News datasets at two
different levels of data heterogeneity α. We observe that
FEDAUX significantly outperforms FEDDF + P as well as
FEDAVG + P in the heterogeneous setting (α = 0.01) and
reaches 95% of its final accuracy after one communication
round on both datasets, indicating suitability for one-shot
learning. On more homogeneous data (α = 1.0), FEDAUX
performs mostly on par with pre-trained versions of FEDAVG
and FEDDF, with a maximal performance gap of 1.1 % accu-
racy on the test set. We note that effects of data heterogeneity
are less severe as in this setting as both the AG News and the
Amazon dataset only have four and five labels, respectively,
and an α of 1.0 already leads to a distribution where each client
owns a subset of the private dataset containing all possible
labels. Further details on our implementation can be found
the Supplementary Material E.

D. Privacy Analysis of FEDAUX

Fig. 8 examines the dependence of FEDAUX’ training
performance of the privacy parameters ε, δ, and the regular-
ization parameter λ. As we can see, performance comparable

to non-private scoring is achievable at conservative privacy
parameters ε and δ. For instance, at λ = 0.01 setting ε =
0.04 and δ = 10−6 reduces the accuracy from 74.6% to
70.8%. At higher values of λ, better privacy guarantees have
an even less harmful effect, at the cost however of an overall
degradation in performance. Throughout this empirical study,
we have set the default privacy parameters to λ = 0.1,
ε = 0.1, and δ = 1e − 5. We also perform an empirical
privacy analysis in the Supplementary Material H, which
provides additional intuitive understanding and confidence in
the privacy properties of our method.

E. Evaluating the Dependence on Auxiliary Data

Next, we investigate the influence of the auxiliary dataset
Daux on unsupervised pretraining, distillation, and weighted
distillation, respectively. We use CIFAR-10 as training dataset
and consider 8 different auxiliary datasets, which differ w.r.t.
their similarity to this client training data—from more simi-
lar (STL-10, CIFAR-100) to less similar (Devices, SVHN).2

Table II shows the maximum achieved accuracy after T =
100 rounds when each of these datasets is used as auxiliary
data. As we can see, performance always improves when
auxiliary data is used for unsupervised pre-training. Even for
the highly dissimilar SVHN dataset (which contains images
of house numbers) performance of FEDDF + P improves by
1% over FEDDF in both the i.i.d. and non-i.i.d. regime. For
other datasets like Dogs, Birds, or Invertebrates, performance
improves by up to 14%, although they overlap with only one
single class of the CIFAR-10 dataset. The outperformance of
FEDAUX on such a wide variety of highly dissimilar datasets
suggest that beneficial auxiliary data should be available in

2The CIFAR-10 dataset contains images from the classes airplane, automo-
bile, bird, cat, deer, dog, frog, horse, ship and truc.
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TABLE I

MAXIMUM ACCURACY ACHIEVED BY FEDAUX AND OTHER BASELINE FL METHODS AFTER T = 100 COMMUNICATION ROUNDS, AT DIFFERENT
PARTICIPATION RATES C AND LEVELS OF DATA HETEROGENEITY α . TWENTY CLIENTS TRAINING RESNET-8 ON CIFAR-10. AUXILIARY DATA

USED IS STL10. ∗METHODS ASSUME AVAILABILITY OF AUXILIARY DATA. †IMPROVED BASELINES

TABLE II

MAXIMUM ACCURACY ACHIEVED BY FEDAUX AND OTHER BASELINE FL METHODS AFTER 100 COMMUNICATION ROUNDS, WHEN DIFFERENT SETS
OF UNLABELED AUXILIARY DATA ARE USED FOR PRE-TRAINING AND/OR DISTILLATION. FORTY CLIENTS TRAINING RESNET-8 ON CIFAR-10

AT C = 40%

TABLE III

ONE-SHOT PERFORMANCE OF DIFFERENT FL METHODS. MAXIMUM ACCURACY ACHIEVED AFTER T = 1 COMMUNICATION ROUNDS AT

PARTICIPATION-RATE C = 100%. EACH CLIENT TRAINS FOR E = 40 LOCAL EPOCHS

the majority of practical FL problems and also has positive
implications from the perspective of privacy. Interestingly, the
performance of FEDDF seems to only weakly correlate with
the performance of FEDDF+ P and FEDAUX as a function of
the auxiliary dataset. This suggests that the properties, which
make a dataset useful for distillation, are not the same ones
that make it useful for pre-training and weighted distillation.
Investigating this relationship further is an interesting direction
of future research.

F. FEDAUX in Hardware-Constrained Settings

1) Linear Evaluation: In settings where the FL clients are
hardware-constrained mobile or IoT devices, local training of

entire deep neural networks like ResNet8 might be infeasible.
We therefore also consider the evaluation of different FL
methods, when only the linear classification head g is updated
during the training phase. Fig. 9 shows the training curves in
this setting when clients hold data from the CIFAR-10 dataset.
We see that in this setting, performance of FEDAUX is high,
independent of the data heterogeneity levels α, suggesting that
in the absence of non-convex training dynamics, our proposed
scoring method actually yields robust weighted ensembles in
the sense of [25]. We note that FEDAUX also trains much
more smoothly, than all other baseline methods.

2) One-Shot Evaluation: In many FL applications, the num-
ber of times a client can participate in the Federated training
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TABLE IV

QUALITATIVE COMPARISON: COMPLEXITY, COMMUNICATION OVERHEAD, AND PRIVACY LOSS AFTER T COMMUNICATION ROUNDS AS WELL AS
IMPLICIT ASSUMPTIONS MADE BY DIFFERENT FL METHODS

is restricted by communication, energy, and/or privacy con-
straints [37], [67]. To study these types of settings, we inves-
tigate the performance of FEDAUX and other FL methods
in Federated one-shot learning where we set T = 1 and
C = 100%. Table III compares performance in this setting
for n = 100 clients training MobileNetv2 (resp. ShuffleNet).
FEDAUX outperforms the baseline methods in this setting at
all levels of data heterogeneity α.

VII. DISCUSSION AND QUALITATIVE COMPARISON WITH

BASELINE METHODS

The experiments performed in the previous section demon-
strate that FEDAUX outperforms state-of-the-art FL methods
by wide margins, in particular, if the training data is distributed
in a heterogeneous way among the clients. In Table IV,
we additionally provide a qualitative comparison between
FEDAUX and the baseline methods FEDAVG and FEDDF.
We can note the following.

A. Client Workload

Compared with FEDAVG and FEDDF, FEDAUX addition-
ally requires the clients to once solve the λ-strongly convex
ERM (9). For this problem, linearly convergent algorithms are
known [65] and thus the computational overhead (and energy
consumption) is negligible compared with the complexity of
multiple rounds of locally training deep neural networks.

B. Server Workload

FEDAUX also adds computational load to the server for
self-supervised pre-training and computation of the certainty
scores si . As the server is typically assumed to have massively
stronger computational resources than the clients, this can be
neglected.

C. Communication Client → Server

Once, in the preparation phase of FEDAUX, the scoring
models w∗i need to be communicated from the clients to the
server. The overhead of communicating these H -dimensional
vectors, where H is the feature dimension, is negligible
compared to the communication of the full models fi .

D. Communication Server → Clients

FEDAUX also requires the communication of the negative
data D− and the feature extractor h0 from the server to the
clients. The overhead of sending h0 is lower than sending
the full model f , and thus the total downstream commu-
nication is increased by less than a factor of (T + 1)/T .
The overhead of sending D− is small (in our experiments
|D−| = 0.2|Daux|) and can be further reduced by sending
extracted features {|h P

0 (x)|x ∈ D−} instead of the full data. For
instance, in our experiments with ResNet-8 and CIFAR-100,
we have |D−| = 12 000 and h P

0 (x) ∈ �512, resulting in a total
communication overhead of 12 000× 512× 4B = 24.58 MB
for D−. For comparison, the total communication overhead of
once sending the parameters of ResNet-8 (needs to be done
T times) is 19.79 MB.

E. Privacy Loss

Communicating the scoring models w∗i incurs additional
privacy loss for the clients. Using our proposed sanitation
mechanism, this process is made (ε, δ)-differentially private.
Our experiments in Section VI-D demonstrate that FEDAUX
can achieve drastic performance improvements, even under
conservative privacy constraints. All empirical results reported
are obtained with (ε, δ) DP at ε = 0.1 and δ = 10−5.

F. Assumptions

Finally, FEDAUX makes the additional assumption that
unlabeled auxiliary data is available to the server. This assump-
tion is made by all FD methods including FEDDF.

In conclusion, FEDAUX requires comparable resources as
state-of-the-art FD methods and has similar privacy proper-
ties, while at the same time achieving significantly better
performance.

VIII. CONCLUSION AND FUTURE WORK

In this work, we have explored FL in the presence of
unlabeled auxiliary data, an assumption made in the quickly
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growing area of FD. By leveraging auxiliary data for unsuper-
vised pre-training and certainty weighted ensemble distillation,
we were able to demonstrate that this assumption is rather
strong and can lead to drastically improved performance of FL
algorithms. As we have seen, these performance improvements
can be obtained even if the distribution of the auxiliary data
is highly divergent from the client data distribution and are
maintained when the certainty scores are obfuscated using a
strong DP mechanism. Additionally, our detailed qualitative
comparison with baseline methods revealed that FEDAUX
incurs only marginal excess computation and communication
overhead.

On a more fundamental note, the dramatic performance
improvements observed in FEDAUX call into question the
common practice of comparing FD-based methods (which
assume auxiliary data) with parameter averaging-based meth-
ods (which do not make this assumption) [15], [17] and thus
have implications for the future evaluation of FD methods in
general.

An interesting direction of future research would be to
explore how well FD methods and FEDAUX, in particular,
fare if only synthetically generated auxiliary data is available
for distillation and/or pre-training. First studies already show
promising results in this direction [68]. Another interesting
direction to explore would be the extension of our proposed
privacy mechanism from Section III-C to the training phase to
fully quantify the privacy loss of the FEDAUX method. Fur-
thermore, certainty estimates of client predictions as provided
by FEDAUX could also be used to detect anomalous client
behavior and thus increase adversarial robustness [69], [70].
Finally, certainty estimates could also be used to group the
client population into clusters in the spirit of [53] for improved
performance under structured heterogeneity of the client data.
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