
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024 11773

GAP-LSTM: Graph-Based Autocorrelation
Preserving Networks for Geo-Distributed

Forecasting
Massimiliano Altieri , Roberto Corizzo , Member, IEEE, and Michelangelo Ceci

Abstract— Forecasting methods are important decision support
tools in geo-distributed sensor networks. However, challenges
such as the multivariate nature of data, the existence of mul-
tiple nodes, and the presence of spatio-temporal autocorrelation
increase the complexity of the task. Existing forecasting meth-
ods are unable to address these challenges in a combined
manner, resulting in a suboptimal model accuracy. In this
article, we propose GAP-LSTM, a novel geo-distributed fore-
casting method that leverages the synergic interaction of graph
convolution, attention-based long short-term memory (LSTM),
2-D-convolution, and latent memory states to effectively exploit
spatio-temporal autocorrelation in multivariate data generated
by multiple nodes, resulting in improved modeling capabili-
ties. Our extensive evaluation, involving real-world datasets on
traffic, energy, and pollution domains, showcases the ability of
our method to outperform state-of-the-art forecasting methods.
An ablation study confirms that all method components provide
a positive contribution to the accuracy of the extracted forecasts.
The method also provides an interpretable visualization that com-
plements forecasts with additional insights for domain experts.

Index Terms— Forecasting, graph convolution, neural net-
works, sensor networks, spatio-temporal autocorrelation.

I. INTRODUCTION

T IME series forecasting represents a crucial task in many
real-world domains, including renewable energy, traffic,

and pollution. Indeed, highly accurate forecasting models
can be a powerful decision support tool to domain experts,
providing the required knowledge to define new policies,
foster operational safety, improve resource planning, and
increase revenues. In the energy domain, accurate forecasting
tools can lead to efficient integration of renewable energy
with fossil sources, aiming at a balanced power grid load

Manuscript received 30 June 2023; revised 27 December 2023 and
22 February 2024; accepted 2 May 2024. Date of publication 17 May 2024;
date of current version 4 September 2024. This work was supported in part by
the project FAIR—Future AI Research, Spoke 6—Symbiotic AI funded by the
NextGenerationEU under Grant PE00000013 and in part by the EU Project
“IMPETUS - Intelligent Management of Processes, Ethics and Technology for
Urban Safety” under Grant 883286. (Corresponding author: Roberto Corizzo.)

Massimiliano Altieri is with the Department of Computer Science,
University of Bari Aldo Moro, 70125 Bari, Italy.

Roberto Corizzo is with the Department of Computer Science, American
University, Washington, DC 20016 USA, and also with the Department of
Computer Science, University of Bari Aldo Moro, 70125 Bari, Italy (e-mail:
rcorizzo@american.edu).

Michelangelo Ceci is with the Department of Computer Science, University
of Bari Aldo Moro, 70125 Bari, Italy, also with the Big Data Laboratory, CINI,
00185 Rome, Italy, and also with the Jožef Stefan Institute, 1000 Ljubljana,
Slovenia.

Digital Object Identifier 10.1109/TNNLS.2024.3398441

Fig. 1. Overview of the geo-distributed forecasting task addressed by
GAP-LSTM. Multiple locations (graph nodes) generate multivariate data
(node features) at a fixed time granularity. The model leverages historical data
x1, x2, . . . , xT to extract forecasts for p timesteps. Modeling temporal, spatial,
and graph-based interactions is crucial to capture complex and dynamic
correlation patterns resulting in accurate multistep-ahead forecasts.

distribution, as well as effective energy trading strategies.
In the traffic domain, forecasting tools can support traffic
redirection policies to effectively distribute traffic across roads.
In the pollution domain, they can help improving air quality
in areas where high pollution is expected, by restricting traffic
on certain roads or resorting to other preventive measures.

A major source of complexity of this task in sensor net-
works is represented by the geo-distribution of data across
multiple locations (as shown in Fig. 1), which violates the
typical assumption of independent and identically distributed
observations made by machine learning models. The main
challenges in this context are the analysis of multivariate
data, the necessity to combine information from multiple
geo-distributed nodes, and the presence of spatio-temporal
autocorrelation described by complex patterns and interactions
between sensors. This complexity requires new and sophis-
ticated models that are able to address the aforementioned
challenges simultaneously.

While autoregressive models capture temporal autocorrela-
tion, they are typically unable to analyze multivariate data and
effectively exploit spatial patterns [1], [2], [3], [4], [5], [6],
[7]. Vector autoregression (VAR)-based approaches are able
to model spatial dependencies, albeit in a very basic form,
by means of coefficients learned solely for a target feature of
interest [8], [9].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7226-8036
https://orcid.org/0000-0001-8366-6059
https://orcid.org/0000-0002-6690-7583

11774 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Neural network approaches, including gated recurrent unit
(GRU) [10], [11], long short-term memory (LSTM)-based
models [12], [13], [14], and other encoder–decoder archi-
tectures [15], [16], [17], are able to effectively analyze
multivariate data while capturing temporal dependencies,
but they only partially address the challenge of combining
information from multiple nodes by modeling spatial auto-
correlation. In fact, all nodes and features are treated as
independent features, therefore ignoring the spatial informa-
tion in the sensor network. Recently, this issue has been
partially addressed by neural network models with custom
loss functions [18], methods involving spatio-temporal feature
extraction [19], [20], and variants of LSTM such as support
vector decomposition (SVD)-LSTM [21] and convolutional
neural network (CNN)-LSTM [22], [23], [24], [25], [26], [27],
which model local spatial dependencies in data. Another alter-
native is that of LSTM models with spatial attention [28], [29],
[30]. However, these methods do not take into account the
geographical structure of nodes, and only have a limited view
of neighboring data, bounded by the kernel size, due to the
locality characteristic of the convolution operator [31], [32].

A more sophisticated alternative is provided by graph-based
recurrent neural networks (RNNs) such as graph convolu-
tional network (GCN)-LSTM [33], [34], [35], [36], [37],
[38], which explicitly capture relationships among neighboring
nodes. However, one common issue is that spatial patterns
are only extracted on low-level features, i.e., the input data
representation, before LSTM-based modeling. This aspect may
result in a limited ability for deeper layers to exploit more
complex spatial correlations, therefore putting more emphasis
on temporal information [39], [40], [41], [42], [43].

This article proposes GAP-LSTM, a graph-based
autocorrelation-preserving neural network method for
geo-distributed forecasting, which addresses all the above-
mentioned challenges. Specifically, our method involves a
novel GCN-LSTM cell that performs graph convolutions at
each timestep, to propagate spatial information throughout the
whole time series modeling process, synergically integrating
GCN within the LSTM cell. Our cell presents a dual
structure. The first part is an LSTM with the addition
of GCN layers before the computation of each gate. The
second part is a simplified version of the first part that
also contains an additional latent memory state: the output
gate of the first part of the cell goes directly into the
second part, together with the latent memory state of the
previous timestep. This novel model architecture allows us
to extract and preserve complex spatio-temporal patterns
that were hidden in raw data. Moreover, it overcomes the
limitation of the commonly adopted GCN-LSTM workflow,
where the spatial information is initially extracted by
means of a GCN, and an LSTM carries out the forecasting
task on the resulting representation. The proposed model
architecture is particularly suitable to tackle predictive tasks
in many real-world domains, including renewable energy, air
pollution, and traffic. These domains are characterized by
geo-distributed sensor data with spatio-temporal dependencies
that can be exploited to yield more accurate forecasting
models.

Another important challenge addressed by our method is
that of model interpretability. Indeed, a high model complexity
exacerbates the difficulty of gathering insights and explana-
tions about model predictions. This challenge, which is often
overlooked by state-of-the-art forecasting methods, is crucial
for their adoption as decision support tools in real-world
domains such as smart grids. In our method, we leverage
the multinode capabilities of our model to generate inter-
pretable attention maps that reveal the most significant nodes
and timesteps for the forecasting process, and their relative
importance compared to the others in the same sequence and
across the whole observation period.

In summary, the main contributions of this work are as
follows.

1) A novel model architecture integrating a custom recur-
rent cell with graph convolution and latent memory
states, coupled with attention-based LSTM and 2-D
convolution to exploit and preserve spatio-temporal
autocorrelation in multivariate and geo-distributed data.

2) An interpretable output visualization that highlights
relevant factors that have an impact on predictions,
as well as interactions between nodes, supporting
domain experts in their decision making.

3) An extensive evaluation with five real-world datasets
which shows that GAP-LSTM outperforms state-of-the-
art forecasting methods on energy, traffic, and pollution
domains. The code to reproduce the experiments
is publicly available at https://github.com/m-altieri/
GAP-LSTM/.

This article is structured as follows. Section II summarizes
related works. Section III describes our proposed method.
Section IV describes the experimental settings, and provides
a discussion on the results obtained in our experiments.
Section V wraps up this article with a summary of the results
obtained and outlines relevant directions for future work.

II. BACKGROUND

A. Autoregressive Models

Autoregressive models for time series forecasting extract
future values for a property of interest based on recent
values observed for the same property. Popular models
include autoregressive integrated moving average (ARIMA)
[1], [2] and Prophet [3]. Other works combine autoregres-
sive approaches and evolutionary algorithms to better explore
model variants in the search space and select better performing
models [4], or combine them with fuzzy or other types of
statistical modeling [5], [6], [7]. Among their benefits, it is
worthwhile mentioning their ease of use and their determin-
ism, given their statistical nature. On the other hand, their
main drawback is that, since they only analyze univariate
data, they do not consider exogenous variables. Moreover,
they only model temporal autocorrelation, without benefiting
from the spatial autocorrelation in data generated by multiple
nodes. VAR models [8], [9] partially overcome this limitation,
allowing to analyze data from multiple sources.

However, they take into account spatio-temporal autocor-
relation only considering the target property subject to the

ALTIERI et al.: GAP-LSTM: GRAPH-BASED AUTOCORRELATION PRESERVING NETWORKS 11775

forecasting task, and attributing equal importance to all nodes.
Moreover, similar to ARIMA, they are unable to model
complex nonlinear correlations among different values. As a
result, vector autoregressive models, only partially address the
exploitation of spatial autocorrelation, and do not consider
graph-based relationships among nodes.

B. Neural Networks for Temporal and Spatial Data

RNN models, such as LSTM and GRU, overcome some of
these limitations by analyzing multivariate data while lever-
aging nonlinear activation functions, which allow to model
and learn more complex correlations among features [10],
[11]. LSTM-based modeling has been adopted in a number
of applications, including the classification of thermal images
of electric motors processed through feature extraction.

Alternative approaches combine a series of multiseasonal
decomposition techniques to better capture seasonal patterns
in LSTM-based forecasting models [12]. A similar approach
is followed in [13], where the forecasting task is carried out
using an LSTM model with skip connections complemented
with exponential smoothing and ensembling. Other approaches
are proposed in [14], [15], [16], and [17], which combine an
encoder–decoder model architecture with progressive decom-
position capacities for complex time series. However, these
methods can only model temporal correlations.

Methods that involve custom spatio-temporal loss func-
tions [18] and feature extraction approaches [19], [20] partially
overcome this problem by jointly extracting spatial and tem-
poral dependencies. One popular approach is SVD-LSTM,
which performs singular value decomposition and carries out
the forecasting task through LSTM networks [21].

A hybrid method of CNN and bi-directional LSTM
(Bi-LSTM) models is proposed in [22]. The method learns
shared representation features from multivariate time series
for air quality data and it is applied to pollution forecast-
ing. CNN-LSTM merges CNN and LSTM models to jointly
capture short and long-term spatio-temporal dependencies,
as explored in [23], [25], [26], and [27]. A more recent
approach in [24] extracts images from sliding windows of
time series, and uses saliency as a mixup strategy for data
augmentation to train deep models.

The study in [28] proposes a multistep ahead flood fore-
casting model that features a spatio-temporal attention LSTM,
applying attention weights to the hidden layer state of each
timestep, while in [29] they use spatio-temporal attention in the
encoder, and multiple convolutions in the decoder to extract
spatio-temporal features at different resolutions. In [30] spatio-
temporal attention is used to predict chlorophyll for the early
detection of red tide. More recently, the triangular, variable-
specific attentions for long sequence multivariate time series
forecasting (Triformer) method [44] proposed a more sophis-
ticated triangular and variable-specific attention mechanism
with distinct model parameters for different variables and
linear complexity.

Even if these methods support the analysis of multivariate
data generated at multiple nodes, an important limitation is that
they extract temporal correlations from low-level features in
adjacent nodes through an initial modeling step. By doing so,
the subsequent operations, which act on top of the extracted

high-level features, do not take into account spatial correla-
tions in low-level layers, which are partially unexploited or
entirely lost, resulting in a performance degradation on the
subsequent downstream task [39], [40], [42], [43]. Some effort
has been devoted to mitigate this issue with the introduction
of skip connections that propagate spatial information [39],
[43] as well as spatial memory cells [40]. Other limitations
include the lack of exploitation of graph-based relationships
among nodes, and the lack of model interpretability.

C. Graph Neural Networks

A recent and promising thread of research is that of GCNs,
which take into account the network structure and combine
the contribution of data from multiple sources, by means of a
graph convolutional operator [33], [34]. When used in synergy
with recurrent networks, GCN can be used to perform time
series forecasting tasks.

Some works have focused on the analysis of traffic data.
An interesting approach leveraging complete convolutional
structures with a limited number of parameters is proposed
in [35]. A spatio-temporal graph convolution framework for
traffic prediction is proposed in [36], in which multiple graphs
are built to explicitly model dynamic correlations among road
segments, while RNNs capture temporal correlations for each
road segment.

The work in [37] proposes a collaborative graph neural
network prediction method involving multiple agents and
exploiting dynamic interactions in the system. Interactions
are represented as a graph, where edge weights reflect the
importance of each predictor. The method has shown suc-
cessful results on trajectory prediction, online human motion
prediction, and online traffic speed prediction.

A different approach is followed in TraverseNet [38], where
spatial and temporal dependencies are unified in a non-
Euclidean space, and a spatial–temporal graph neural network
mines spatial–temporal graphs while exploiting the evolving
spatial–temporal dependencies for each node via message
traverse mechanisms.

A recent and popular method is graph wavenet (GWN)
[45], which exploits an adjacency matrix learned with node
embeddings, and a stacked dilated 1-D-convolution component
with increasingly growing receptive fields. Another powerful
method is regularized graph structure learning (RGSL) [46],
which extracts a dense similarity matrix through node embed-
dings, and learns a sparse graph structure using the regularized
graph generation (RGG) method.

Other graph-based approaches were proposed to forecast
air quality and electricity data. The method in [47] builds
graph models to represent contextual information of nodes
and aggregates them via a multigraph fusion module while
retaining the importance of each node in the different graphs.
A graph neural network with attention as a transfer learning
mechanism is proposed in [48], where knowledge from mul-
tiple sources is used to improve the learning process in new
sources.

The method proposed in [49] addresses the behind-
the-meter load and photovoltaic forecasting, modeling the
residential units as a spatio-temporal graph where the nodes
represent the net load measurements and edges reflect their

11776 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

TABLE I
COMPARISON OF SOTA METHODS (ROWS) CONSIDERING KEY FEATURES

IN GEO-DISTRIBUTED FORECASTING (COLUMNS). FIRST GROUP:
GENERAL CLASSES OF APPROACHES. SECOND GROUP:

SPECIFIC AND RECENTLY PROPOSED METHODS1

mutual correlation. A graph autoencoder with graph dictionary
learning and a deep recurrent structure are used to forecast
future generated values at each unit.

The evolutionary multiscale graph (ESG) method [50] lever-
ages a hierarchical graph structure with dilated convolution
and updates adjacency matrices to capture scale-specific cor-
relations among time series.

Although all these methods are able to analyze multivariate
data from multiple nodes, and both spatial and temporal
information is exploited in the learning task, a common
pitfall is that they extract spatial and temporal autocorrelation
separately. Most frequently, the GCN embeds the spatial
component into an encoded vector and the LSTM performs
forecasting on top of this representation, which results in the
inability to further extract spatial autocorrelation in successive
modeling steps. Another common issue of forecasting models
is their lack of interpretability, due to the complexity and
time-variant nature of the analyzed data. The work in [24]
is an interesting attempt in this direction.

A summarized comparison of state-of-the-art forecasting
methods is provided in Table I. The comparison emphasizes
the novelty of GAP-LSTM with respect to relevant features
for geo-distributed forecasting.

III. METHOD

This section is divided into three parts. We first define the
problem we tackle in this study. Subsequently, we describe
our proposed method in detail, focusing on the contribution
provided by each component. Finally, we illustrate the inter-
pretability aspects of the method.

A. Problem Definition

This article addresses the scenario where N geo-distributed
nodes generate multivariate observations. Each node is identi-

1For SA, a gray tick indicates that a method extracts it without preserving
it throughout all the modeling steps. For Int, a gray tick indicates that,
even if some aspects of the model could support the interpretation of results
(e.g., attention weights), they are not exploited to complement predictions.

2This method is not strictly a forecasting method, but it rather provides a
general explainability framework for time series analysis.

fied by a pair of latitude and longitude coordinates. A graphical
overview of the addressed task is shown in Fig. 1. Together,
all nodes generate an observation xt ∈ RN×F for each discrete
time point t , F being the number of features. We note that
F is the cardinality of the entire feature space consisting
of both descriptive (independent) features and target features.
In our work, the discrete timeline is split into non-overlapping
sequences of length T , each corresponding to a desired unit
of analysis, e.g., a single day described by 24 hourly obser-
vations. The kth sequence can be defined as follows:

sk = [x(k,1), x(k,2), . . . , x(k,T)] ∈ RT×N×F . (1)

Based on this formulation, it is possible to model data into
two data structures:

1) a sequence tensor S ∈ RS×T×N×F , containing con-
tiguous sequences: S = [s0, s1, . . . , sS−1], where each
sequence sk contains T chronologically ordered obser-
vations;

2) a graph matrix A ∈ RN×N , where Ai j is some measure
of relationship, or closeness, or correlation, or similarity
between nodes i and j .

Given a sequence sk and a forecasting horizon P , the
forecasting task consists in approximating the function f :
[x(k,1), . . . , x(k,T)] 7→ [y(k,T+1), . . . , y(k,T+P)], which returns
the next P observations for the target feature of interest,
denoted by y.

Without loss of generality, this formalization of the forecast-
ing task also applies to the context of multitarget forecasting,
where the goal is to correctly predict a set of target features
F ′ ≤ F , approximating the ground truth y ∈ RP×N×F ′ .

In both cases, the aim is to learn a forecasting
model 9 that accurately approximates f . The optimal
model 9∗ is the one that minimizes a generic loss func-
tion: 9∗ = arg min9 ||9(S) − f (S)||1, where 9(S) extracts
forecasts given the learned model and historical data
[ŷ(k,T+1), . . . , ŷ(k,T+P)], and f (S) is the ground truth
on historical data for the target variable of interest
[y(k,T+1), . . . , y(k,T+P)], ∀k ∈ {0, 1, . . . , S − 1}.

In addition to the extraction of accurate predictions, our aim
is to preserve spatio-temporal autocorrelation throughout the
entire learning workflow. Temporal autocorrelation accounts
for temporal dependencies between observations at differ-
ent timesteps [1]. The analysis of temporal autocorrelation
allows us to identify and exploit repeating patterns in data
characterized by periodic behavior, as commonly observed
in time series data on geophysical phenomena (e.g., weather,
renewable energy, pollution, traffic). Considering a sequence
sk;n collected from a single node n and a desired lag h,
temporal autocorrelation can be defined as

TA(sk;n, h) =

∑T−h
t=1 (x(k;n,t) − x̄ (n))(x(k;n,t+h) − x̄ (n))∑

t (x(k;n,t) − x̄ (n))2
(2)

where x̄ (n) is the average value observed for node n. For
all sequences, all nodes, and all possible lags, the average
temporal autocorrelation can be computed as the average

(1/(S · N · (T − 1)))

S∑
k=1

N∑
n=1

T−1∑
h=1

TA(sk;n, h).

ALTIERI et al.: GAP-LSTM: GRAPH-BASED AUTOCORRELATION PRESERVING NETWORKS 11777

Fig. 2. GAP-LSTM architecture for geo-distributed forecasting. The method leverages graph convolution, attention-based LSTM, 2-D-convolution, and latent
memory states to effectively preserve spatio-temporal autocorrelation in the modeling task.

Spatial autocorrelation can be defined as a correlation in
a signal among nearby locations in space. A widely adopted
way to formalize it is resorting to Moran’s I global autocorre-
lation statistic [52]. Considering a sequence sk collected from
multiple nodes, and the closeness relationships between nodes
defined in A, spatial autocorrelation for a single timestep x(k,t)

can be defined as

SA(x(k,t)) =

∑
i
∑

j Ai j (x(k;i,t) − x̄ (k,t))(x(k; j,t) − x̄ (k,t))∑
i (x(k;i,t) − x̄ (k,t))2

(3)

where x̄ (k,t) is the average observed value considering
all nodes at timestep t . For all sequences, the average
spatial autocorrelation can be computed as the average
(1/S · T)

∑S
k=1

∑T
t=1 SA(x(k,t)).

B. Proposed Model: GAP-LSTM

The forecasting model proposed in this work involves
several deep-learning components. A schematic representation
of the method is shown in Fig. 2. In order to simplify the
discussion, we first give a general description of the method,
based on the sequential information flow, and then we present
each component in detail.

1) Method Workflow: The input of the model consists of
two tensors: the sequence tensor S and the graph matrix
A, as defined in Section III-A. The model leverages a cus-
tomized encoder–decoder architecture. The rationale is to use
an encoder module e to encode an input sequence sk to an
embedding representation that captures the most relevant infor-
mation for the task at hand, mitigating possible collinearity
and noise in the original data. All encoder and decoder steps
are a modified version of the LSTM cell, which includes

a graph convolutional layer before each gate,3 considering
the adjacency matrix A as input, which is used for graph
convolution.

Given a sequence sk and T input steps, we denote with et

the encoder step t , which processes the observation x(k,t). Each
encoder step et is a function that takes as input the observation
at the current timestep and the outputs of the previous encoder
cell, and yields ht , m t , ct ∈ RN×F

et : (x(k,t), ht−1, m t−1, ct−1) 7→ (ht , m t , ct) (4)

where ht , m t , and ct denote, respectively, hidden state, latent
memory state, and cell state for timestep t . Intermediate
encoder hidden states are reused in the attention mechanism.
While ht and ct are standard in LSTM-based cell architectures
to capture temporal dependencies, the introduction of the latent
memory state m t is a novel contribution that allows our model
to preserve spatio-temporal autocorrelation more effectively
than existing LSTM-based models, as discussed later in this
section.

The goal of the decoder is to reconstruct the encoded
representations into a series of P steps, which will then lead
to the prediction. The decoder has the same output shape as
the encoder, but may have a different number of steps (in
case T ̸= P). The input of each decoder cell dp consists of
the previous decoder latent memory state m̂ p−1 and cell state
ĉp−1 (for d1, we use the last encoder step’s latent memory state
mT and cell state cT), as well as the weighted sum of encoder
hidden states, as determined by the attention mechanism.

3The cell architecture is described in detail later in this section.

11778 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 3. Graphical workflow of the geo-distributed forecasting task. Historical
time series and the graph structure defined by geographical coordinates of
the nodes (latitude, longitude) are provided as input to train the GAP-LSTM
model, which extracts forecasts for the next p time points.

For a single timestep p, the decoder cell is a mapping

dp : ({α
(t)ht }

T
t=1, m̂ p−1, ĉp−1) 7→ (ĥ p, m̂ p, ĉp) (5)

where {α(t)ht } are the attention weights of the previous
timestep. The output of the encoder component hT is also
provided as input to a 2-D-convolutional layer, and then it is
added to the decoder hidden states [ĥ1, . . . , ĥ P].

To extract the final prediction, this tensor then goes through
a fully connected layer that reduces the last dimension from F
to 1, so that the final output of the model 9(sk) ∈ RP×N

contains the value of the relevant target feature for each node
at each prediction timestep. A graphical overview of this
workflow is shown in Fig. 3 and its high-level pseudo-code
is described in Algorithm 1.

Algorithm 1 GAP-LSTM Method Workflow
Input:
S = [s0, s1, . . . , sS−1] /* seq. tensor (all nodes, hist.
data) */
A /* graph matrix */
sk = [x(k,1), . . . , x(k,T)] /* seq. in S for all nodes,
k < S */
9 /* previously trained or randomly initialized
model */
Result: Trained model 9∗ and forecasts ŷk

for i ∈ [0, . . . , k − 1] do
Li ← training loss, defined as ||9(si ,A)− yi ||1
9∗← optimize 9 based on Li

ŷk ← 9∗(sk,A) /* ŷk = [ŷ(k,T+1), . . . , ŷ(k,T+P)] */
return 9∗, ŷk

2) Graph-Based Data Representation: Before introducing
the GCN-LSTM cell, we start with describing the graph-based
representation for the geo-distributed time series data analyzed
in this study. Each node n ∈ {1, 2, . . . , N } has its own time
series describing the features of interest, including the target
feature over time.

The nodes and these relationships between nodes can be
represented as a graph G = (V, E), where V is the set of
all nodes (|V | = N), and E = V × V is the set of edges,
or relationships, between nodes. Since the task of interest is to
forecast all nodes simultaneously, we can exploit the structural
graph information of the data generated at multiple locations

to get a better understanding of the whole context, which
results in additional spatio-temporal information to support the
forecasting task.

An adjacency matrix A ∈ RN×N is a way to represent
relationships between nodes in a compact form. To prop-
erly model the intensity of relationships between nodes, in
our work, we define entries in the adjacency matrix ai j by
exploiting the continuous range of closeness values between
all pairs of nodes i, j , i.e., ai j ∈ [0, 1] represents the closeness
relationship between nodes according to their distance. It is
calculated as ai j = 1 − (d(i, j)/ maxi ′, j ′ d(i ′, j ′)), where
d(i, j) is the geographical distance between nodes i and j .
Using this similarity measure, the edges of the graph are
undirected, making the adjacency matrix symmetric. In this
way, ai j represents how close nodes i and j are relative to the
distance between other nodes. If the distance between i and j
is 0, their closeness will be 1. In the following, we describe in
detail the proposed GCN-LSTM cell occurring in each encoder
and decoder step.

3) GCN-LSTM Cell: Our cell is a modified type of the
LSTM cell that incorporates graph convolution (GCN), which
allows the model to learn spatio-temporal correlations of
historical timesteps. The cell has four inputs: the input
observation at the current timestep xt , the previous hidden
state ht−1, the previous cell state ct−1, and the previous latent
memory state m t−1. The cell also requires the adjacency matrix
A for the GCN computation.

Our method supports the adoption of different forms of
graph convolution. Within the scope of this article, we eval-
uated two graph convolution alternatives, giving place to two
variants of our method. The first variant is denoted as GAP-
LSTM-Default and adopts the standard GCN implementation
in [33], where a graph convolutional layer is defined as:
(X, A) = ReLU(ÂX W), with Â = D̃−(1/2) ÃD̃−(1/2) for
the degree matrix D̃i i =

∑
j Ãi j , Ã = A + IN adjacency

matrix with added self-loops and W ∈ RF×F ′ weight matrix.
The second variant is denoted as GAP-LSTM-Weighted and
employs a slightly different graph convolution implementation,
which applies a componentwise weighting process to highlight
salient features

f (X, A) = ÂX W:,[1, F] ⊙ σ(ÂX W:,[F+1, 2F])

where W ∈ RF×2F , σ denotes the sigmoid activation, and ⊙
denotes the point-wise (or Hadamard) product.

On the contrary of the typical GCN-LSTM workflow, which
first extracts spatial information by means of GCN and then
uses LSTM to perform the forecasting task on the resulting
representation, we aim to propagate spatio-temporal patterns
throughout the entire workflow, synergically integrating GCN
within the LSTM cell. This process takes place by means of
T graph convolutions, corresponding to T hops in the graph
data structure.

The cell is composed of two parts: the first part is similar
to a conventional LSTM cell, but with the addition of GCN
layers before the computation of each gate. The second part is
a simplified version of the LSTM cell, still with the addition of
GCN layers before each gate, but also containing an additional
latent memory state: the output gate of the first part of the

ALTIERI et al.: GAP-LSTM: GRAPH-BASED AUTOCORRELATION PRESERVING NETWORKS 11779

cell goes directly into the second part, together with the latent
memory state. The latent memory state consists of three gates.
Conceptually, the first gate acts similar to a forget gate in an
LSTM architecture. It filters the information contained in the
previous latent memory state by selecting how much latent
information from m t−1 should be preserved in the current
state m t . The second gate can be seen as an input/update gate
that combines old information (m t−1) with new information
(output of the left side of the GCN-LSTM cell) by updating
the memory state and propagating the information extracted
from the first gate. The outputs of the first and second gates
are summed and this output is further propagated and filtered
through the third gate, which acts as an output gate of the
cell, and is in charge of the final output hidden state ht for the
current timestep t . Both hidden states and latent memory states
have a size equal to the number of input features F . They are
initialized with ones and are updated at each timestep of a
given sequence during the inference stage.

An intuitive visual representation of the proposed
GCN-LSTM cell is depicted in Fig. 2. Conceptually, the
goal of the first part of the cell is to propagate ht−1 with
the current spatial (GCN) and temporal (LSTM) information.
The second part of the cell acquires the output of the first
part as well as the latent memory state m t−1, and directs it
through GCN and LSTM operations, which further extract
spatio-temporal patterns from the latent memory representa-
tion. This dual process in our proposed cell has the potential
to further emphasize useful spatio-temporal information that
was hidden in raw data, and it has been extracted by the
first part of the cell. Overall, the GCN-LSTM cell allows our
method to extract global spatio-temporal patterns by iteratively
combining information in local neighborhoods, based on the
closeness relationship among nodes. An illustration of the
spatial autocorrelation SA(x(k,t)) measured across the encoder
hidden states for different models is shown in Fig. 4. The visu-
alization emphasizes that the proposed GAP-LSTM method
presents a better ability to model spatial autocorrelation than
other methods due to its cell’s ability to jointly propagate
temporal and spatial information during all encoding steps.

4) Attention Mechanism: The attention mechanism is used
to determine the importance of any encoder step et when
computing the decoding step dp, i.e., how much dp “attends
to” et , for a prediction step p. Following the attention frame-
work described in [53], we denote with query Q the decoder
thought vector. The keys K = {k1, k2, . . . , kT } are aligned
with the query, to determine how closely related they are
to each other. This comparison is performed with a function
a : (k, Q) 7→ score, which is usually defined by a trainable
neural network, so that each kt is associated with its own
network at that learns to properly weigh the corresponding
history step t . The outputs of functions {ai }

T
1 are normalized

with a softmax to get the attention weights {αi }
T
1 . The values

V = v1, v2, . . . , vT are used to compute the decoder input∑T
t=1 αtvt .
In our method, global multihead attention, also known as

soft attention, is adopted [54]. In our formulation, the key
and the value are the set of encoder hidden states K = V =
{h1, h2, . . . , hT } ∈ RT×N×F .

Fig. 4. Spatial autocorrelation according to the global Moran’s I statis-
tic for different models. (a) CNN-LSTM, (b) GCN-LSTM, (c) ESG, and
(d) GAP-LSTM. The plot shows one line for each training sequence sk , where
the first value is calculated on the original raw input data at timestep 0,
and the following values are obtained at each model’s encoder hidden states
for timesteps 1, 2, . . . , 19, corresponding to observations from 2:00 A.M. to
8:00 P.M. in the PV Italy dataset. For ESG, the x-axis labels differ from the
other methods and denote intervals rather than timesteps due to the temporal
dilation performed by the method.

We denote with Kn ∈ RT×F the key for node n, with K (t)
∈

RN×F the key for history step t , and with K (t)
n ∈ RF the key

for node n and history step t . The same notation is used to
select specific nodes and history steps from V . We also denote
with Q ∈ RN×F the query for the current decoding step dp−1,
and with Qn ∈ RF the query for node n.

The whole attention can be defined as

att(Q, K , V) = Concat
[
headn(Qn, Kn, Vn)

]
n∈[1,N]

. (6)

Each tensor Qn , K (t)
n , V (t)

n , is associated with a learnable
weight matrix: WQ;n , W (t)

K ;n , and W (t)
V ;n , respectively. Overall,

headn is calculated as

headn(Qn, Kn, Vn) = softmax
(

Qn WQ;n
(
Kn WK ;n

)⊤)Vn WV ;n

(7)

where WK ;n = [W
(t)
K ;n]t∈[1,T], WV ;n = [W

(t)
V ;n]t∈[1,T], and

WQ;n, W (t)
K ;n, W (t)

V ;n ∈ RF×F .
Therefore, the model learns N weight matrices for Q, and

T · N weight matrices for K and V , respectively. Keeping the
node n fixed, the T matrices for the key and the value can be
defined explicitly: for T history steps, we have

Kn WK ;n =

[
K (1)

n W (1)

K ;n, K (2)
n W (2)

K ;n, . . . , K (T)
n W (T)

K ;n

]
(8)

Vn WV ;n =

[
V (1)

n W (1)

V ;n, V (2)
n W (2)

V ;n, . . . , V (T)
n W (T)

V ;n

]
. (9)

The embedded key at each step is a vector K (t)
n W (t)

K ;n ∈ RF .
Overall, it is a matrix of size Kn WK ;n ∈ RT×F , its transpose is
(Kn WK ;n)

⊤
∈ RF×T , and the attention scores are represented

as a vector Qn WQ;n(Kn WK ;n)
⊤
∈ RT , containing a value for

each history step.

11780 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

Fig. 5. Global multihead attention mechanism in GAP-LSTM. This diagram
represents the computations for a single attention head headn .

On this vector, a softmax is performed to obtain the attention
weights α, which in turn is multiplied by the embedded
value Vn WV ;n , which, like the weighted key, has size T × F .
Finally, headn(Qn, Kn, Vn) ∈ RF is a context vector and
constitutes the input for the decoder.

Typically, attention mechanisms perform a dot product or
extract the embedding of the sole query vector. Instead, in our
method, we leverage the embedding of both the query and the
key. The advantage is to decouple the encoder information
in two parts: the first part ht , which is used to extract
spatio-temporal information from historical timesteps, and the
second part K (t)W (t)

K , which is useful to model the alignment
of each encoder timestep with respect to each decoder state,
used to extract predictions. Moreover, in our method, the
attention mechanism focuses on each node n individually,
in a multihead fashion, learning a different and independent
headn(Qn, Kn, Vn), which outputs F features for the given
node n.

A graphical representation of our attention mechanism is
shown in Fig. 5.

5) 2-D Convolution: A 2-D-convolutional layer is used to
modify decoder hidden states ĥ p with a number of filters that
extract additional information from the last encoder state hT .
In particular, the convolution computes P filters, one for each
prediction timestep, with a kernel of size (2, 2) which is
applied to hT . Different values for kernel size have been tested
with preliminary experiments on a variety of domains, and
highlighted (2, 2) as the best configuration. However, it can
be easily customized to satisfy specific domain characteristics.

The kernel allows us to look at groups of features learned
in adjacent nodes and extract useful localized spatial patterns.
Specifically, the model will extract, for each timestep p, useful
cross-correlations between different features of adjacent nodes
to predict that particular timestep. A zero-padding is added
and the stride is set to 1, to guarantee that the convolution
output keeps the same shape as the input. The resulting P
feature maps are stacked together to form a P × N × F
tensor, which is then added to the decoder hidden states
[ĥ1, ĥ2, . . . , ĥ P] to properly fuse relevant spatial information
extracted from the convolution with decoder states.

C. Model Interpretability

This step enhances the GAP-LSTM method with inter-
pretable predictive capabilities. Specifically, our method

Fig. 6. Interpretable output generated by GAP-LSTM for a given prediction
horizon P . The figure illustrates the relevance of encoder hidden states during
the decoding stage (prediction) in the attention mechanism by means of p
heatmaps. Each heatmap (N × T) shows which nodes (1, . . . , N , 5 in each
heatmap) and timesteps (1, . . . , T , 24 in each heatmap) are more relevant
(light color) and less relevant (dark color) for the sequence time point subject
to prediction. Technically, the figure shows (a) difference between attention
weights for each decoding step and the average attention weights for the
whole sequence, (b) difference between attention weights for a decoding step
and the average attention weights computed for all prediction sequences, and
(c) raw attention weights for each decoding step for this sequence. Each row
of heatmaps is associated with a single forecasting timestep ŷ(k,T+p).

leverages the attention weights α generated at each prediction
step p to support the interpretation of the extracted predictions.
The rationale is that, for each prediction step, the model
generates a different decoding state, which in turn results in
different weights α. Combining this information allows us to
identify the most relevant encoder hidden states at timesteps
t = 1, 2, . . . , T for the current prediction step p. To accom-
plish this goal, the attention weights matrix α ∈ RN×T is
exploited to generate an insightful visualization that consists
of three heatmaps for each p. Let us consider a sequence sk̂
and let us denote with α(k) the attention weights for a generic
sequence sk . In Fig. 6, each row r = 1, . . . , 12 shows attention
maps computed for decoding step d2r−1 during the forecasting
of a given sequence. Fig. 6(a) shows the difference between
attention weights for each decoding step p̂ and average

attention weights for this sequence α
(k̂)

:, p̂ − (1/P)
∑P

p=1 α
(k̂)
:,p .

Fig. 6(b) shows the difference between the attention weights
for decoding step p̂ and average attention weights com-
puted for all sequences subject to prediction. Let Sp ⊂

{0, 1, . . . , S − 1} be a set of indices referencing sequences
subject to prediction, the average attention weight is computed
as α

(k̂)

:, p̂ − (1/|Sp|)
∑

k∈Sp
(1/P)

∑P
p=1 α

(k)
:,p . Fig. 6(c) shows the

raw attention weights α(k̂) for each decoding step of this
sequence.

The difference operations allow us to visually highlight
changes in the attention maps corresponding to encoding

ALTIERI et al.: GAP-LSTM: GRAPH-BASED AUTOCORRELATION PRESERVING NETWORKS 11781

steps becoming relevant for a given decoding step in a given
sequence. From the visualization in Fig. 6, we can highlight
salient patterns in different timesteps where, in each heatmap,
rows denote nodes, columns denote encoding steps, and lighter
colors in a cell correspond to stronger activations. Let us focus
on the attention head for node 1, corresponding to the first
row in all heatmaps. Observing the first heatmap at the top in
Fig. 6(a) highlights that this attention head was highly aligned
to e11 for d1 (as evident from the white pixel), but then grad-
ually shifted its attention toward e5, e15, e17, and especially e4
[as evident in the subsequent heatmaps in Fig. 6(a), starting
from ŷ(k,T+7) to ŷ(k,T+23)]. This result emphasizes that hidden
states h4, h5, h15, h17 contained particularly useful information
for the forecasting of node 1.

IV. EXPERIMENTS

A. Research Questions

Our experiments are designed to answer the following
research questions.

1) RQ1: Does GAP-LSTM achieve a higher performance
than state-of-the-art methods in the multistep ahead
geo-distributed forecasting task?

2) RQ2: Is the combination of all components in GAP-
LSTM contributing to the achievement of an improved
forecasting performance compared to simplified variants
of the model?

3) RQ3: Can GAP-LSTM provide an effective way for
domain experts to interpret the extracted forecasts?

B. Datasets

We perform experiments with the following real-world
datasets.

1) Beijing Air Quality [55] includes pollutant levels
(PM2.5, PM10, SO2, NO2, CO, and O3) in addition
to weather features (temperature, pressure, dew point,
rain precipitation, and wind speed).

2) Lightsource [20] covers solar energy data for the year
2017 from seven plants located in the U.K. Spot values,
collected at a time granularity of 1 min, are aggregated
hourly.

3) PEMS SF Weather4 describes traffic information in
terms of lane occupation, which has been enriched with
weather features through the RapidAPI service.

4) PV Italy [19] contains hourly observations from 17 solar
plants located in Italy, collected from 2:00 A.M. to 8:00
P.M. The time period spans from January 1, 2012 to
May 4, 2014.

5) Wind-NREL [20] was modeled using the weather
research and forecasting (WRF) model. Each plant con-
sists of ten 3-MW turbines (for a total of 30 MW).
Hourly aggregated observations range from January 1,
2005 to December 31, 2006.

For all energy datasets (Lightsource, PV Italy, Wind NREL),
the following input features are represented: temperature, pres-
sure, wind speed, wind bearing, humidity, dew point, and cloud

4http://pems.dot.ca.gov

TABLE II
DATASETS ANALYZED IN OUR EXPERIMENTS

Fig. 7. Real photographs for the different datasets considered in our
experiments: solar plant arrays in the south of Italy (PV Italy), 3-MW wind
turbines (Wind NREL), traffic lanes in the San Francisco Bay Area (PEMS SF
Weather), and Beijing’s Municipal Environmental Monitoring Center (Beijing
Air Quality).

cover. Lightsource includes additional features for altitude,
azimuth, and irradiance. PV Italy includes all features in
Lightsource and adds an additional weather summary feature.
Lightsource and PV Italy observe a cutoff period between 9:00
P.M. and 2:00 A.M. due to the absence of irradiance at that
time, i.e., plants are not operational and no observations are
recorded during that time frame. For all datasets, the latitude
and longitude coordinates of nodes are used to extract the
graph matrix A.

A summary of our analyzed datasets is shown in Table II.
A set of representative photos for the considered datasets is
shown in Fig. 7.

C. Experimental Setup

We perform a data pre-processing phase consisting in the
selection of significant features, conversion of all features
to real values (including one-hot encoding of categorical
features), min-max normalization of all features in the [0, 1]
range, and computation of pair-wise node closeness according
to their geographical location [18]. Considering the sequential
nature of data analyzed in our study, the model receives the
sequences (each representing 24 h) one by one (every day)
in chronological order. Models are trained considering all
historical data sequences s0, s1, . . . , sS−1. Given the current
sequence sk , the model extracts predictions according to the
forecasting horizon P (see Table II). For all experiments,
models are optimized through Stochastic Gradient Descent
using the Adam optimizer for 50 epochs, and mean absolute
error (MAE) as the loss function. Fine-tuning takes place via
grid search using validation data (1% of available sequences
in each dataset) considering the following sets of hyperpa-
rameter values: batch size: {2i

}i∈{2,3,4}; learning rate (LR):
{10 j
} j∈{−3,−4,−5}.

Each method featured in our experiments is optimized sep-
arately for each dataset considering the aforementioned search
space for hyperparameters. Once the optimal configuration on
validation sequences for a given method is found, it is selected

11782 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

TABLE III
EXPERIMENTAL RESULTS FOR ALL THE METHODS AND DATASETS UNDER EVALUATION IN TERMS OF MAE, SMAPE,

AND RMSE, WITH THE RESPECTIVE VARIANCE IN PARENTHESIS. THE BEST-PERFORMING METHOD
FOR EACH DATASET ACCORDING TO THE RMSE METRIC IS MARKED IN BOLD

for the actual experiments carried out on prediction sequences
(testing set). In order to evaluate the models, 10% of the avail-
able 24-h sequences are randomly sampled from each dataset
for testing purposes. Once sampled, testing dates are fixed
and the same dates are used to fairly compare performance
across different methods. Moreover, to simulate the outcome of
multiple independent executions of the method while ensuring
that only historical data from previous timesteps is being used,
the evaluation (training on data prior to the prediction sequence
and extraction of forecasts for the prediction sequence) is
repeated for each prediction sequence.

For a given ground-truth sequence and its respective model
forecast, the evaluation of the forecasting accuracy of each
model is performed using the following metrics.

1) MAE:

MAE =
1
S

S−1∑
k=0

 1
P

∑
p=1,...,P

|ŷ(k,T+p) − y(k,T+p)|

.

2) Root-mean-square error (RMSE):

RMSE =
1
S

S−1∑
k=0

√√√√ 1
P

∑
p=1,...,P

(ŷ(k,T+p) − y(k,T+p))2

.

3) Symmetric mean absolute percentage error (SMAPE):

SMAPE =
1
S

S−1∑
k=0

100
P

P∑
p=1

|ŷ(k,T+p) − y(k,T+p)|

|ŷ(k,T+p)| + |y(k,T+p)|

.

D. Results

Experimental results for all methods with all datasets are
reported in Table III. Results are averaged over all test
executions (10% of sequences).5 The results highlight that
at least one variant of the method (GAP-LSTM-Weighted or
GAP-LSTM-Default) achieves the best forecasting accuracy
in terms of average RMSE, for all the analyzed datasets
with the exception of Beijing Air Quality, where our method
provides the second-best results. Particularly, GAP-LSTM-
Weighted performs better on the Lightsource and PEMS-SF
Weather datasets, possibly due to the presence of highly
correlated clusters of nodes operating similarly, as well as the
high similarity and regularity of solar energy prediction and
traffic curves in these datasets. For the other three datasets,
the basic weighting provided by the closeness relationship

5The materials to replicate our experiments are available at the following
repository: https://github.com/m-altieri/GAP-LSTM/.

ALTIERI et al.: GAP-LSTM: GRAPH-BASED AUTOCORRELATION PRESERVING NETWORKS 11783

TABLE IV
STATISTICAL ANALYSIS WITH WILCOXON SIGNED RANK TESTS
COMPARING ALL PAIRWISE COMBINATIONS OF METHODS WITH
GAP-LSTM-DEFAULT. THE +(−) SIGN DENOTES THAT GAP-

LSTM OUTPERFORMS (DOES NOT OUTPERFORM) THE
COMPETITOR BASED ON ITS AVERAGE SINGLE-DATASET

PERFORMANCE (RMSE). BOLD TEXT DENOTES
COMPARISONS THAT ARE STATISTICALLY

SIGNIFICANT (p-VALUE < 5.0E-02)

among nodes is apparently enough to model the actual spatial
dependencies. Finally, we observe that the GAT variant or
our method, GAP-LSTM-GAT, is not able to achieve the
same performance of the other two variants. In summary,
results show that GAP-LSTM generally achieves the highest
forecasting performance across all methods and all datasets
in terms of RMSE. To validate the statistical significance of
our results, we perform Wilcoxon Signed Rank tests to all
pairwise combinations of methods across multiple executions
with all datasets. The results in Table IV highlight that GAP-
LSTM-Default is the most robust variant of our method,
outperforming competitors in 50 out of 65 configurations,
28 of which are statistically significant. GAP-LSTM-Weighted
outperforms other approaches 44 times, 20 of which are
statistically significant. Among all competitors, we observe
that ESG performs similar to GAP-LSTM-Default. However,
it is noteworthy that ESG is not able to exploit the possibility
of fully catching spatio-temporal autocorrelation (as evident in
Fig. 4) and, in addition, does not generate interpretable results.
Moreover, it generally shows a worse performance with large
prediction horizons (e.g., Wind NREL, PV Italy), with the
exception of Lightsource, where ESG achieves a slightly worse
performance than GAP-LSTM-Weighted (RQ1).

A different view of results is obtained considering model
calibration by analyzing the number of times each model’s
predictions overestimate or underestimate target values. This
analysis reveals interesting border cases of imbalanced pre-
dictions for specific models and datasets. We observe that
Attention-LSTM overestimates target values in the 68.36% of
the cases with the Beijing Air Quality dataset. CNN-LSTM
overestimates 65.75% with the Lightsource dataset. On PV
Italy, GRU underestimates target values in 65.55% of the
cases, whereas CNN-LSTM overestimates them in 67.59%.
Finally, we observe that GWN underestimates target values in
62.89% of the cases with Wind NREL.

Among the competitors considered in our study, auto-
regressive models (ARIMA) present an unsatisfactory perfor-
mance, since they do not fully exploit the multivariate nature
of data, and do not combine the spatial information resid-
ing in the multinode graph structure. We note that ARIMA
was not evaluated on PEMS-SF Weather due to the unfea-
sible computational cost observed with this dataset. As for
neural network-based methods, they significantly outperform
ARIMA, but generally present a substandard performance.
This result is justified by the fact that temporal-focused meth-
ods (LSTM, GRU, Bi-LSTM, Attention-LSTM) do not exploit
spatial dependencies, whereas spatio-temporal methods (CNN-
LSTM and GCN-LSTM) partially exploit them, as discussed
in Section II. Shifting the focus to more recent baselines
(GWN, multivariate time series forecasting with graph neural
network (MTGNN), Triformer, ESG, RGSL), we can observe
that they generally achieve very competitive results, signifi-
cantly outperforming the aforementioned competitor methods,
but appear suboptimal when compared to GAP-LSTM, with
the exception of Beijing Air Quality dataset, where ESG
outperforms all other approaches. A possible reason is that
pollution predictions are more accurate with multiscale tem-
poral modeling rather than spatio-temporal autocorrelation
preserving modeling. However, with the exception of ESG,
GAP-LSTM outperforms all other methods with this dataset.
The superiority of GAP-LSTM on all other datasets is due
to its competitors’ inability to model spatial dependencies
(Triformer), or their inability to preserve them throughout all
modeling steps (MTGNN, ESG). The other methods (GWN,
RGSL) effectively model and preserve spatial dependencies,
but their scope is likely limited to one or few types of
spatial interactions without considering, for instance, cross-
correlations in the embedding space, and appear penalized
when such characteristics are naturally present in the data.

We conducted an ablation study to verify that all com-
ponents of GAP-LSTM contribute to achieving a higher
forecasting performance, and report its results in Table V.
In this analysis, we run experiments with different variants
of the model where the 2-D-convolutional layer, the atten-
tion mechanism, and the second part of the GCN-LSTM
cell are mutually excluded. When one of the compo-
nents is deactivated, the variant GAP-LSTM-NoMemoryState
yields the second-best performance, followed by GAP-LSTM-
NoAttention and GAP-LSTM-NoConv. We can also observe
that deactivating any of the components always leads to a
performance degradation ranging from 2.0% to 38.7% with
respect to the best variant of GAP-LSTM in terms of RMSE.

The experimental results obtained for all variants of the
model are reported at the bottom of Table III, and high-
light that all components provide a positive contribution in
terms of model accuracy. As a result, model variants where
all components are active (GAP-LSTM-Weighted and GAP-
LSTM-Default) achieve the best overall performance. From a
qualitative viewpoint, Fig. 8 shows multinode prediction (red)
and measured (blue) curves (one curve per node) for the target
variable of each dataset and for a selected day.6

6We do not report PEMS SF Weather curves due to the very large number
of nodes which results in a cluttered visualization.

11784 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

TABLE V
ABLATION STUDY. THE COMPLETE MODEL IS COMPARED WITH THREE

VARIANTS WHERE THE 2-D CONVOLUTION, THE ATTENTION
MECHANISM, AND THE SECOND PART OF THE GCN-LSTM
CELL ARE MUTUALLY EXCLUDED. THE BEST-PERFORMING

METHOD FOR EACH DATASET ACCORDING TO THE
RMSE METRIC IS MARKED IN BOLD. THE

DEGRADATION COLUMN MEASURES ERROR
INCREASE AFTER DEACTIVATING

EACH COMPONENT

Overall, GAP-LSTM outperforms state-of-the-art methods,
highlighting that the synergic work of all components con-
tributes to the extraction of the most accurate predictions in
the final model (RQ2). Specifically, the 2-D-convolutional
layer fruitfully extracts spatial patterns from the last step
of the encoder output using information from all nodes that
are useful for the decoder. In addition, the attention mech-
anism determines the importance of previous timesteps in
the input sequence during the generation of each prediction
step performed by the decoder. Finally, the latent memory
state component in the GCN-LSTM cell enhances spatio-
temporal patterns residing in the embedded representation of
each timestep of the sequence with a latent representation of
the previous timestep.

Fig. 8. Predicted (red) versus actual (blue) curves for different nodes on one
selected test day in different datasets. (a) PV Italy. (b) Lightsource. (c) Beijing
Air Quality. (d) Wind NREL. Each line is the time series for a single node.
The bolded line represents the average across all nodes.

Focusing on model interpretability, we leverage the attention
weights α generated at each prediction step p to support the
interpretation of the extracted predictions. The rationale is
that, for each prediction step, the model generates a different
decoding state, which in turn results in different weights
α. Combining this information allows to identify the most
relevant encoder hidden states at timesteps t = 1, 2, . . . , T
for the current prediction step p. Visualizations in Fig. 6
provide domain experts with this information, supporting them
in visually understanding the most relevant factors influenc-
ing model predictions. This visualization demonstrates our
method’s ability to extract a succinct and qualitative inter-
pretation of the forecast values, providing an effective way
for domain experts to understand the extracted forecasts and
support their decision-making process (RQ3).

Another way to gather insights about model’s predictions
is to demonstrate the effective exploitation of spatio-temporal
autocorrelation provided by the different components
of GAP-LSTM.

To gain deeper insights into the decoder representations,
we adopt t-distributed stochastic neighbor embedding (t-
SNE), which effectively extracts 2-D visualizations from the
N × F decoder hidden states for a given prediction hour.
In Fig. 9(a)–(e), we show four visualizations corresponding to
four equally spaced hours. Points correspond to nodes of the
Lightsource dataset, whereas the X - and Y -axes correspond to
the compressed representation space extracted by t-SNE.

The results highlight that the embedding representation
learned by our model preserves spatio-temporal correlations
among different nodes, which are evident at different timesteps
[see Fig. 9(a)–(d)] during the predictive stage. Similar nodes
appear naturally clustered by the method based on their
behavior, and resemble the closeness relationship defined by
their physical location in the sensor network, as depicted in

ALTIERI et al.: GAP-LSTM: GRAPH-BASED AUTOCORRELATION PRESERVING NETWORKS 11785

Fig. 9. Visualization of the decoder hidden states extracted with t-SNE for a randomly sampled predicted sequence of the Lightsource dataset at different
hours. (a) 4 A.M., (b) 9 A.M., (c) 2 P.M., and (d) 7 P.M., and (e) corresponding closeness heatmap for all nodes. Distances between nodes in (a)–(d) resemble
physical closeness relationships among nodes in (e).

TABLE VI
EXECUTION TIMES FOR THE WHOLE TRAINING PROCESS FOR

ALL THE METHODS AND DATASETS. BAQ DENOTES
THE BEIJING AIR QUALITY DATASET

Fig. 9(e): lighter colors correspond to pairs of nodes with
higher values of closeness. For instance, nodes 2 and 3
present a value close to 0.8 in Fig. 9(e), and appear
systematically close to each other (red and green points)
in Fig. 9(a)–(d) (RQ3).

E. Time Complexity
To evaluate the computational cost of all methods, we com-

puted their execution time as the ratio between the total
training time of each method and the number of prediction
sequences for each dataset (number of executions). The result
is then averaged across all datasets. In the following, we dis-
cuss the results for a subset of representative methods from
different categories, which yield an accurate performance.

Experiments are run on a workstation equipped with an
Intel Xeon W-2145 (3.7 GHz) CPU, 64 GB of RAM (DDR4-
2666), 512-GB SSD drive, and an NVIDIA RTX 4090 GPU.
Execution times for all methods and datasets are reported
in Table VI. We observe that GAP-LSTM trades a linear
increase in computational cost over a simpler neural network
approach such as SVD-LSTM and Attention-LSTM, and a
slight increase over state-of-the-art approaches such as GWN,
MTGNN, Triformer, and ESG in exchange for higher fore-
casting performance. The RGSL method presents a higher

TABLE VII
EMPIRICAL ANALYSIS ON GAP-LSTM SPACE AND TIME COMPLEXITY,
INCLUDING THE AMOUNT OF MEMORY, TIME, RELATIVE TIME (WITH

RESPECT TO THE SMALLEST EXPERIMENT WITH FIVE NODES),
AND TIME-PER-NODE (TPN) WITH AN INCREASING

NUMBER OF NODES IN THE GRAPH

execution time due to its layer complexity. Autoregressive
models like ARIMA are unable to exploit information from
all nodes simultaneously, resulting in a suboptimal forecasting
performance and a considerably higher computational cost.

As an additional analysis, we report the GAP-LSTM space
and time complexity with an increasing number of nodes in the
sensor network. Results in Table VII show the amount of mem-
ory and time (absolute, relative, and per-node) required for
model training, considering the Wind NREL dataset (originally
including five nodes) and a progressively increasing number
of synthetically added nodes in the network. We observe that
the absolute time (expressed in seconds per epoch) increases
sublinearly with the number of nodes. This result is also
more intuitively represented by relative times. For instance,
increasing the sensor network by a factor of 10 (from 5 to
50 nodes) results in a time increase of 6.83×. As for memory
consumption, results for absolute memory (expressed in MBs)
show a negligible increase as the number of nodes grows.
In relative terms, increasing the sensor network size by a
factor of 2 (from 5 to 10 nodes) only results in a 1%
memory increase. In the largest case, where the network size
is increased by factor of 10 (from 5 to 50 nodes) the memory
increase observed is just 31%. This result is expected, since
the core components and the number of model parameters
remain constant with the addition of new nodes, with the
exception of the adjacency matrix and attention heads, which
are extended, leading to a logarithmic increase in space.
These results show that GAP-LSTM makes an efficient use
of computational resources, resulting in a minimal overhead
with the increase of network size, which is a typical scenario in

11786 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 9, SEPTEMBER 2024

TABLE VIII
NUMBER OF TRAINABLE PARAMETERS FOR EACH MODEL, MEASURED

ON LIGHTSOURCE WITH A BATCH SIZE OF 16 FOR ALL MODELS.
THE NUMBER OF PARAMETERS PRESENTS MINIMAL

VARIATIONS ACROSS DATASETS

real-world sensor networks. Additional information pertaining
to model complexity is shown by the number of trainable
parameters, as shown in Table VIII. Results highlight that
GAP-LSTM is competitive in terms of model complexity (in
terms of the number of parameters) when compared to its
direct competitors.

V. CONCLUSION

This article proposes GAP-LSTM, a novel method
for geo-distributed forecasting that focuses on exploiting
spatio-temporal autocorrelation in multivariate data generated
by multiple nodes. Existing approaches for this challenging
task either do not simultaneously take into account the spatial
and the temporal dimensions of data, or do not preserve the
learned spatio-temporal patterns throughout the entire down-
stream forecasting task. Our method leverages the synergic
interaction of graph convolution, attention-based LSTM, 2-D
convolution, and latent memory states to overcome these
limitations.

An extensive evaluation involving real-world datasets on
traffic, energy, and pollution domains shows that GAP-LSTM
outperforms state-of-the-art methods. An ablation study shows
that all components bring a positive contribution to this
outcome. The method also provides a visualization that allows
domain experts to gather additional insights about predictions
and supports them in their decisions. In future work, we aim
to explore the adaptability of our method in applications
with multiple correlated nodes and without an explicit geo-
distributed network. Moreover, we will investigate the explicit
treatment of specific forms of spatio-temporal autocorrelation
in the loss function of the model. Finally, we aim to assess
our model’s accuracy in other domains where very short-term
and long-term forecasting horizons are required.

REFERENCES

[1] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis, Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.

[2] S. Makridakis and M. Hibon, “ARMA models and the box–Jenkins
methodology,” J. Forecasting, vol. 16, no. 3, pp. 147–163, 1997.

[3] S. J. Taylor and B. Letham, “Forecasting at scale,” Amer. Statistician,
vol. 72, no. 1, pp. 37–45, 2018.

[4] C. Bergmeir, I. Triguero, D. Molina, J. L. Aznarte, and J. M. Benitez,
“Time series modeling and forecasting using memetic algorithms for
regime-switching models,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 23, no. 11, pp. 1841–1847, Nov. 2012.

[5] M. Favereau, Á. Lorca, M. Negrete-Pincetic, and S. Vicuña, “Robust
streamflow forecasting: A student’s T-mixture vector autoregressive
model,” Stochastic Environ. Res. Risk Assessment, vol. 36, no. 11,
pp. 3979–3995, Nov. 2022.

[6] M. Eren, “Fuzzy autoregressive distributed lag model-based forecasting,”
Fuzzy Sets Syst., vol. 459, pp. 82–94, May 2023.

[7] E. Lazar and X. Xue, “Forecasting risk measures using intraday data
in a generalized autoregressive score framework,” Int. J. Forecasting,
vol. 36, no. 3, pp. 1057–1072, Jul. 2020.

[8] Y. Zhao, L. Ye, P. Pinson, Y. Tang, and P. Lu, “Correlation-constrained
and sparsity-controlled vector autoregressive model for spatio-temporal
wind power forecasting,” IEEE Trans. Power Syst., vol. 33, no. 5,
pp. 5029–5040, Sep. 2018.

[9] J. W. Messner and P. Pinson, “Online adaptive lasso estimation in vector
autoregressive models for high dimensional wind power forecasting,” Int.
J. Forecasting, vol. 35, no. 4, pp. 1485–1498, Oct. 2019.

[10] X. Liu, Z. Lin, and Z. Feng, “Short-term offshore wind speed forecast
by seasonal ARIMA—A comparison against GRU and LSTM,” Energy,
vol. 227, Jul. 2021, Art. no. 120492.

[11] M. Yurtsever, “Unemployment rate forecasting: LSTM-GRU hybrid
approach,” J. Labour Market Res., vol. 57, no. 1, pp. 1–9, Jun. 2023.

[12] K. Bandara, C. Bergmeir, and H. Hewamalage, “LSTM-MSNet: Lever-
aging forecasts on sets of related time series with multiple seasonal
patterns,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 4,
pp. 1586–1599, Apr. 2021.

[13] G. Dudek, P. Pelka, and S. Smyl, “A hybrid residual dilated LSTM
and exponential smoothing model for midterm electric load forecasting,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 7, pp. 2879–2891,
Jul. 2022.

[14] A. Glowacz, “Thermographic fault diagnosis of electrical faults of
commutator and induction motors,” Eng. Appl. Artif. Intell., vol. 121,
May 2023, Art. no. 105962.

[15] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting,” in
Proc. NIPS, vol. 34, Dec. 2021, pp. 22419–22430.

[16] K. Zhu, Y. Li, W. Mao, F. Li, and J. Yan, “LSTM enhanced by
dual-attention-based encoder–decoder for daily peak load forecasting,”
Electric Power Syst. Res., vol. 208, Jul. 2022, Art. no. 107860.

[17] S. Du, T. Li, Y. Yang, and S. J. Horng, “Multivariate time series forecast-
ing via attention-based encoder–decoder framework,” Neurocomputing,
vol. 388, pp. 269–279, May 2020.

[18] M. Ceci, R. Corizzo, D. Malerba, and A. Rashkovska, “Spatial auto-
correlation and entropy for renewable energy forecasting,” Data Mining
Knowl. Discovery, vol. 33, no. 3, pp. 698–729, May 2019.

[19] M. Ceci, R. Corizzo, F. Fumarola, D. Malerba, and A. Rashkovska,
“Predictive modeling of PV energy production: How to set up the
learning task for a better prediction?” IEEE Trans. Ind. Informat.,
vol. 13, no. 3, pp. 956–966, Jun. 2017.

[20] R. Corizzo, M. Ceci, H. Fanaee-T, and J. Gama, “Multi-aspect renewable
energy forecasting,” Inf. Sci., vol. 546, pp. 701–722, Feb. 2021.

[21] J. Li, S. Wei, and W. Dai, “Combination of manifold learning and
deep learning algorithms for mid-term electrical load forecasting,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 34, no. 5, pp. 2584–2593,
May 2023.

[22] S. Du, T. Li, Y. Yang, and S.-J. Horng, “Deep air quality forecasting
using hybrid deep learning framework,” IEEE Trans. Knowl. Data Eng.,
vol. 33, no. 6, pp. 2412–2424, Jun. 2021.

[23] J. Qu, Z. Qian, and Y. Pei, “Day-ahead hourly photovoltaic power
forecasting using attention-based CNN-LSTM neural network embedded
with multiple relevant and target variables prediction pattern,” Energy,
vol. 232, Oct. 2021, Art. no. 120996.

[24] Q. Pan, W. Hu, and N. Chen, “Two birds with one stone: Series saliency
for accurate and interpretable multivariate time series forecasting,” in
Proc. 13th Int. Joint Conf. Artif. Intell., Aug. 2021, pp. 2884–2891.

[25] R. Yan, J. Liao, J. Yang, W. Sun, M. Nong, and F. Li, “Multi-hour and
multi-site air quality index forecasting in Beijing using CNN, LSTM,
CNN-LSTM, and spatiotemporal clustering,” Exp. Syst. Appl., vol. 169,
May 2021, Art. no. 114513.

ALTIERI et al.: GAP-LSTM: GRAPH-BASED AUTOCORRELATION PRESERVING NETWORKS 11787

[26] C. Ren, L. Jia, and Z. Wang, “A CNN-LSTM hybrid model based short-
term power load forecasting,” in Proc. Power Syst. Green Energy Conf.
(PSGEC), Aug. 2021, pp. 182–186.

[27] X. Shao, C. Pu, Y. Zhang, and C. S. Kim, “Domain fusion CNN-LSTM
for short-term power consumption forecasting,” IEEE Access, vol. 8,
pp. 188352–188362, 2020.

[28] Y. Ding, Y. Zhu, J. Feng, P. Zhang, and Z. Cheng, “Interpretable spatio-
temporal attention LSTM model for flood forecasting,” Neurocomputing,
vol. 403, pp. 348–359, Aug. 2020.

[29] Z. Li, Q. Ren, L. Chen, J. Li, and X. Li, “Multi-scale convolutional
networks for traffic forecasting with spatial–temporal attention,” Pattern
Recognit. Lett., vol. 164, pp. 53–59, Dec. 2022.

[30] X. He, S. Shi, X. Geng, L. Xu, and X. Zhang, “Spatial–temporal
attention network for multistep-ahead forecasting of chlorophyll,” Appl.
Intell., vol. 51, pp. 4381–4393, 2021.

[31] T. Misiakiewicz and S. Mei, “Learning with convolution and pooling
operations in kernel methods,” in Proc. Adv. Neural Inf. Process. Syst.,
vol. 35, 2022, pp. 29014–29025.

[32] C. Sun, Y. Ning, D. Shen, and T. Nie, “Graph neural network-based
short-term load forecasting with temporal convolution,” Data Sci. Eng.,
pp. 1–20, Nov. 2023, doi: 10.1007/s41019-023-00233-8.

[33] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” 2016, arXiv:1609.02907.

[34] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 32, no. 1, pp. 4–24, Mar. 2020.

[35] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional
networks: A deep learning framework for traffic forecasting,” in Proc.
27th Int. Joint Conf. Artif. Intell., (IJCAI), 2018, pp. 3634–3640.

[36] W. Zhong, Q. Suo, X. Jia, A. Zhang, and L. Su, “Heterogeneous spatio-
temporal graph convolution network for traffic forecasting with missing
values,” in Proc. IEEE 41st Int. Conf. Distrib. Comput. Syst. (ICDCS),
Jul. 2021, pp. 707–717.

[37] M. Li, S. Chen, Y. Shen, G. Liu, I. W. Tsang, and Y. Zhang, “Online
multi-agent forecasting with interpretable collaborative graph neural
networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 4,
pp. 4768–4782, Apr. 2024.

[38] Z. Wu, D. Zheng, S. Pan, Q. Gan, G. Long, and G. Karypis, “Tra-
verseNet: Unifying space and time in message passing for traffic
forecasting,” IEEE Trans. Neural Netw. Learn. Syst., vol. 35, no. 2,
pp. 2003–2013, Feb. 2024.

[39] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks
for citywide crowd flows prediction,” in Proc. AAAI Conf. Artif. Intell.,
2017, vol. 31, no. 1, pp. 1–12.

[40] C. Luo, X. Li, and Y. Ye, “PFST-LSTM: A SpatioTemporal LSTM model
with pseudoflow prediction for precipitation nowcasting,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 14, pp. 843–857, 2021.

[41] X. Ren and S. Yuan, “GCN-LSTM combined model for urban link
mean speed prediction in the regional traffic network,” in Proc. IEEE
Intl Conf Dependable, Autonomic Secure Comput., Intl Conf Pervasive
Intell. Comput., Intl Conf Cloud Big Data Comput., Intl Conf Cyber
Sci. Technol. Congr. (DASC/PiCom/CBDCom/CyberSciTech), Sep. 2022,
pp. 1–7.

[42] Y. Shi, Y. Wang, Y. Qu, and Z. Chen, “Integrated GCN-LSTM stock
prices movement prediction based on knowledge-incorporated graphs
construction,” Int. J. Mach. Learn. Cybern., vol. 15, no. 1, pp. 161–176,
Jan. 2024.

[43] X. Li et al., “A shortcut enhanced LSTM-GCN network for multi-sensor
based human motion tracking,” IEEE Trans. Autom. Sci. Eng., early
access, pp. 1–10, 2004, doi: 10.1109/TASE.2023.3307890.

[44] R.-G. Cirstea, C. Guo, B. Yang, T. Kieu, X. Dong, and S. Pan,
“Triformer: Triangular, variable-specific attentions for long sequence
multivariate time series forecasting,” in Proc. Thirty-First Int. Joint Conf.
Artif. Intell., Jul. 2022, pp. 1994–2001.

[45] Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph WaveNet for
deep spatial–temporal graph modeling,” in Proc. 28th Int. Joint Conf.
Artif. Intell., 2019, pp. 1907–1913.

[46] H. Yu et al., “Regularized graph structure learning with semantic
knowledge for multi-variates time-series forecasting,” in Proc. Thirty-
First Int. Joint Conf. Artif. Intell., Jul. 2022, pp. 2362–2368.

[47] W. Shao et al., “Long-term spatio-temporal forecasting via dynamic
multiple-graph attention,” in Proc. Thirty-First Int. Joint Conf. Artif.
Intell., Jul. 2022, pp. 2225–2232.

[48] D. Wu and W. Lin, “Efficient residential electric load forecasting via
transfer learning and graph neural networks,” IEEE Trans. Smart Grid,
vol. 14, no. 3, pp. 2423–2431, May 2023.

[49] M. Khodayar, G. Liu, J. Wang, O. Kaynak, and M. E. Khodayar,
“Spatiotemporal Behind-the-Meter load and PV power forecasting via
deep graph dictionary learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 32, no. 10, pp. 4713–4727, Oct. 2021.

[50] J. Ye et al., “Learning the evolutionary and multi-scale graph structure
for multivariate time series forecasting,” in Proc. 28th ACM SIGKDD
Conf. Knowl. Discovery Data Mining, Aug. 2022, pp. 2296–2306.

[51] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Con-
necting the dots: Multivariate time series forecasting with graph neural
networks,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2020, pp. 753–763.

[52] H. Li, C. A. Calder, and N. Cressie, “Beyond Moran’s I: Testing
for spatial dependence based on the spatial autoregressive model,”
Geographical Anal., vol. 39, no. 4, pp. 357–375, Oct. 2007.

[53] A. Vaswani et al., “Attention is all you need,” in Proc. Adv. Neural Inf.
Process. Syst., vol. 30, 2017, pp. 1–12.

[54] D. Bahdanau, K. H. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in Proc. 3rd Int. Conf. Learn.
Represent. (ICLR), 2015.

[55] S. Zhang, B. Guo, A. Dong, J. He, Z. Xu, and S. X. Chen, “Cautionary
tales on air-quality improvement in Beijing,” Proc. Roy. Soc. A: Math.,
Phys. Eng. Sci., vol. 473, no. 2205, Sep. 2017, Art. no. 20170457.

Massimiliano Altieri is currently pursuing the Ph.D.
degree with the Department of Computer Science,
University of Bari, Bari, Italy.

His research interests and activity mainly focuses
on the design of novel deep learning methods for
time series forecasting involving graph convolutional
neural networks.

Mr. Altieri also served as a reviewer for a wide
range of known conferences in the field of machine
learning and data mining.

Roberto Corizzo (Member, IEEE) received the
Ph.D. degree in computer science from the Univer-
sity of Bari Aldo Moro, Bari, Italy, in 2018.

He was a Research Fellow with the Department of
Computer Science, University of Bari, Bari. He is
currently an Assistant Professor with the Depart-
ment of Computer Science, American University,
Washington, DC, USA. He has coauthored 50 arti-
cles, including 13 publications in journals, such
as IEEE TRANSACTIONS ON INDUSTRIAL INFOR-
MATICS, Neural Networks, and Machine Learning.

Dr. Corizzo participated in the scientific committee of international confer-
ences and served as a reviewer for several international journals.

Michelangelo Ceci received the Ph.D. degree in
computer science from the University of Bari Aldo
Moro, Bari, Italy, in 2005.

He is currently a Full Professor of computer
science with the University of Bari, Bari. He has
authored more than 170 papers in journals and
conferences on machine learning and data mining.
He has been the unit coordinator of EU and national
projects.

Dr. Ceci has been in the PC of many conferences,
e.g., IEEE International Conference on Data Mining

(ICDM), SIAM International Conference on Data Mining (SDM), Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), and Association for
the Advancement of Artificial Intelligence (AAAI). He was the PC Co-Chair
for SEBD2007, Discovery Science 2016, ISMIS 2018, and ISMIS 2022 and
the General Chair for ECML-PKDD 2017. He is an Associate Editor of
Data Mining and Knowledge Discovery (DMKD) and Machine Learning
Journal (MLJ), and an Editorial Board (EB) Member of Journal of Intelligent
Information Systems (JIIS).

Open Access funding provided by ‘Università degli Studi di Bari "Aldo Moro"’ within the CRUI CARE Agreement

http://dx.doi.org/10.1007/s41019-023-00233-8
http://dx.doi.org/10.1109/TASE.2023.3307890

