
11346 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

ES-dRNN: A Hybrid Exponential Smoothing and
Dilated Recurrent Neural Network Model for

Short-Term Load Forecasting
Slawek Smyl , Grzegorz Dudek , and Paweł Pełka

Abstract— Short-term load forecasting (STLF) is challenging
due to complex time series (TS) which express three seasonal
patterns and a nonlinear trend. This article proposes a novel
hybrid hierarchical deep-learning (DL) model that deals with
multiple seasonality and produces both point forecasts and
predictive intervals (PIs). It combines exponential smoothing (ES)
and a recurrent neural network (RNN). ES extracts dynamically
the main components of each individual TS and enables on-the-
fly deseasonalization, which is particularly useful when operating
on a relatively small dataset. A multilayer RNN is equipped
with a new type of dilated recurrent cell designed to efficiently
model both short and long-term dependencies in TS. To improve
the internal TS representation and thus the model’s perfor-
mance, RNN learns simultaneously both the ES parameters and
the main mapping function transforming inputs into forecasts.
We compare our approach against several baseline methods,
including classical statistical methods and machine learning (ML)
approaches, on STLF problems for 35 European countries. The
empirical study clearly shows that the proposed model has
high expressive power to solve nonlinear stochastic forecasting
problems with TS including multiple seasonality and significant
random fluctuations. In fact, it outperforms both statistical and
state-of-the-art ML models in terms of accuracy.

Index Terms— Deep learning (DL), exponential smoothing
(ES), hybrid forecasting models, recurrent neural networks
(RNNs), short-term load forecasting (STLF), time series (TS)
forecasting.

I. INTRODUCTION

ELECTRICITY demand forecasting for different horizons
and granularity is an integral part of power system con-

trol, scheduling, and planning. Thus, it is extremely important
for energy suppliers, system operators, financial institutions,
and other participants in electric energy generation, transmis-
sion, distribution, and markets. At a short-term level, i.e., with
a horizon from 1 h to seven days ahead and hourly granularity
or less, electricity demand forecasting is the basis of power
system operation including unit commitment, generation dis-
patch, hydro scheduling, hydrothermal coordination, spin-
ning reserve allocation, interchange and low flow evaluation,

Manuscript received 29 November 2021; revised 24 November 2022;
accepted 13 March 2023. Date of publication 31 August 2023; date of current
version 6 August 2024. (Corresponding author: Grzegorz Dudek.)

Slawek Smyl is with Facebook, Menlo Park, CA 94025 USA (e-mail:
slawek.smyl@gmail.com).

Grzegorz Dudek and Paweł Pełka are with the Department of Electrical
Engineering, Częstochowa University of Technology, 42-200 Częstochowa,
Poland (e-mail: grzegorz.dudek@pcz.pl; pawel.pelka@pcz.pl).

Digital Object Identifier 10.1109/TNNLS.2023.3259149

security assessment, and network diagnosis [1]. Modern power
systems pose new challenges for the forecasting models due
to issues connected with volatile distributed energy resources,
integration of intermittent renewable energy resources, and
deployment of demand-side management. As electricity
demand is the primary driver of electricity prices, short-term
load forecasting (STLF) plays a key role in competitive energy
markets. The accuracy of forecasts translates directly into the
financial performance of energy market participants. A related
study revealed that a 1% reduction in forecasting error for
a 10 GW utility can save up to $1.6 million annually [2].

A. Related Work

The importance of STLF for the safe, reliable, and efficient
operation of power systems as well as the complexity of
the problem translates into great interest from researchers in
this field. Nonlinear trends, multiple seasonality, variable vari-
ance and daily profile, and random fluctuations, make STLF
challenging and place high demands on forecasting models.
STLF approaches can be divided into three categories: sta-
tistical or econometric models, ML models, and hybrid ones.
The first category includes auto-regressive integrated moving
average (ARIMA) [3], exponential smoothing (ES) [4], linear
regression [5], and Kalman filtering [6].

The main problem with many statistical STLF methods
is their linear nature, which limits the implementation of
nonlinear system dynamics. To extend the model’s capabilities
to approximate nonlinear relationships, local modeling is used.
For example, in [7], the linear state-space model is learned
progressively from the data using a Kalman filter. The method
works by assuming temporally local linearity, which can
be seen as an approximation of an underlying nonlinearity,
generalizing the standard linear-Gaussian model with static
parameters. In [8], the target nonlinear function was modeled
locally in the neighborhood around the query pattern using
linear regression. Due to initial data normalization, which
simplified relationships between input and output data, linear
models, such as partial least-squares regression, were able to
compete with more sophisticated ML models.

Another problem with statistical methods is their limited
ability to model complicated seasonal patterns. Standard
ARIMA and Holt-Winters models can be extended to
multiple seasonality [9] but they assume that the cycle
shapes are all the same. In practice, the seasonal patterns

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2548-6695
https://orcid.org/0000-0002-2285-0327
https://orcid.org/0000-0002-2609-811X

SMYL et al.: ES-dRNN: A HYBRID ES AND DILATED RNN MODEL FOR STLF 11347

can greatly differ from each other (in STLF, daily cycles
for workdays are usually significantly different from those
for weekends). Considering the changing seasonal pattern
requires a significant extension of the model. For example,
in [10], an ES state space model was combined with Fourier
terms, a Box-Cox transformation, and ARMA error correction.
Extending the regression model with Fourier terms (harmonic
regression) is a popular method of introducing seasonal
components into statistical models [11]. Another approach
to deal with seasonality is time series (TS) decomposition.
Products of decomposition are less complex than the original
TS and can be modeled using simpler models [8], [12], [13].

Other drawbacks statistical methods suffer from are limited
adaptability, a shortage of expressive power, problems with
capturing long-term dependencies, and introducing exogenous
variables into the model. ML methods offer many more
possibilities than statistical ones. They provide forecasting
models with the ability to learn historical patterns and anoma-
lies and successively improve prediction accuracy. The most
researched ML models in the field of forecasting are neu-
ral networks (NNs) [14]. They can flexibly model complex
nonlinear relationships between variables and reflect process
variability in uncertain dynamic environments due to their
universal approximation property. At the same time, NNs have
their limitations such as disruptive and unstable training, the
need for careful feature engineering, local optimality, weak
interpretability, difficulty in matching the network architecture
to the problem solved, tendency to overfitting, weak extrapo-
lation ability and many parameters to estimate. These issues
as well as problems with modeling complex seasonal patterns
are addressed in STLF literature in various ways. For example,
in [15], TS with multiple seasonality were represented by
patterns of the daily profiles, which simplified greatly the
forecasting problem. As a result, it was possible to use simpler,
resistant-to-overfitting neural models with a small number of
parameters. Among the NN architectures compared in [15] are
multilayer perceptron (MLP), radial basis function (RBF) NN,
generalized regression NN (GRNN), fuzzy counterpropagation
NN, and self-organizing maps. Within the group, GRNN and
MLP turned out to be the most accurate. A Bayesian approach
was used in [16] to control MLP complexity and to select
input variables. The Bayesian framework offered ways to
avoid overfitting by regularization, to decide on the number
of neurons by comparing the model evidence, and to deal
with the inputs by soft-pruning. Many NN solutions for STLF
combine the neural model, optimization method for hyperpa-
rameter selection and learning, and TS decomposition or a
feature engineering method. An example can be found in [17]
where TS is decomposed using wavelet transform to extract
relevant information from the load curve, and MLP weights are
adjusted using a particle swarm optimization algorithm. The
most popular and universal NN, MLP, was recently replaced
by randomized NN in STLF [18]. When a pattern-based
representation is used, randomized NN can produce more
accurate forecasts than MLP while having many advantages
over MLP. These include extremely fast and easy training,
simple architecture, a small number of hyperparameters and
parameters to estimate, and ease of implementation.

NN architectures proposed for STLF in recent years are
dominated by deep learning (DL) and recurrent NNs (RNN).
The success of DL can be largely attributed to increased
model complexity and the ability to cross-learn on massive
datasets. This strengthens expressive power and the ability to
extract patterns across multiple examples. DL architectures are
composed of combinations of basic structures, such as MLPs,
convolutional NNs (CNNs), and RNNs. New ideas in the
field of DL have been successfully applied to STLF. Some
examples are: [19], where deep residual NNs were proposed
and applied to probabilistic load forecasting using Monte
Carlo dropout; [20], where a multivariate fuzzy TS was
converted into multichannel images and processed by CNN to
produce load forecasts; [21], where an improved deep belief
network for STLF considering demand-side management was
proposed; and [22], where an STLF problem for individual
residential households was addressed using long–short term
memory (LSTM) RNN. Among NN forecasting models, mod-
ern RNNs such as LSTM and gated recurrent unit (GRU)
are distinguished by their ability to model both short and
long-term dependencies in TS. Therefore, they are readily used
for STLF [23].

To improve further forecasting model performance, ensem-
ble, and hybrid solutions have been developed. Ensembling
is a reliable approach to increasing the forecast accuracy and
robustness of both statistical and ML models. It combines,
in some way, multiple models to produce a common response,
controlling a bias-variance-covariance tradeoff [24]. Ensemble
strategies for STLF take many forms. For example, in [25],
an ensemble of NNs is proposed, which are trained on the
products of wavelet decomposition; in [26], an empirical
mode decomposition is applied to decompose the original
interval-valued STLF data, and an ensemble of LSTMs is
utilized to synchronously forecast and combine the compo-
nents; and in [27], a data-driven multiobjective evolutionary
ensemble learning is proposed with random vector functional
link NNs as base learners. Hybrid approaches combine two or
more methods in a common model, taking advantage of their
strengths and avoiding their drawbacks. For example, statis-
tical methods can help in data preprocessing and reduce the
overfitting of ML models. Examples of model hybridization
for STLF can be found in [28] where a temporal CNN is
utilized to extract hidden information and long-term temporal
relationships in the input data and a boosted tree model
(LightGBM) is used to predict future loads based on the
extracted features, and in [29], where both LSTM and wavelet
decomposition extract TS features, on which an ensemble of
RBF NNs is trained. The produced forecasts are aggregated
by a localized generalization error model, which optimizes the
ensemble member weights.

B. Motivation and Contribution

The motivation behind this work is threefold. First, STLF is
extremely important for power system operation and energy
market functioning. Forecast accuracy directly translates
into the safe, reliable, and efficient operation of power
systems as well as improved financial performance of energy

11348 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

market participants. Second, STLF is a challenging problem
due to complex three-component seasonality, nonlinear trend,
significant stochastic component, and changing seasonal
patterns. It requires a flexible forecasting model capable
of capturing long-term and short-term dependencies in TS.
Third, new advances in ML and DL, especially in sequential
data processing, encourage their application in complex
forecasting problems such as STLF. Modern RNNs can
deal with multiple seasonality and long-term dependencies
in TS. Hybrid solutions utilizing both statistical and DL
methods improve representation learning and the exploration
of hidden patterns. In this study, we extend our recent
works [30] and [31], where we used a combined ES and
LSTM model for forecasting TS with single and double
seasonality. It is worth noting that the hybrid model proposed
in [30] won the renowned M4 forecasting competition in
2018, outperforming a wide variety of state-of-the-art models.
The winning model produced both the most accurate forecasts
and the most precise PIs for 100 000 real-life TS. It was close
to 10% more accurate than the benchmark ensemble model,
which is a huge improvement [32]. This means the model
has been reliably and rigorously verified on a wide range of
forecasting problems. In this study, based on the main concept
of the winning solution, we develop a new model specifically
for an STLF problem with three seasonal patterns.

Our research contributions can be summarized as follows.
1) We propose a new dilated recurrent cell, dRNNCell, as a

building block of dilated RNNs designed especially for
STLF to deal with both short and long-term dependen-
cies in TS.

2) We develop a new hybrid forecasting model for STLF
combining ES and RNN. The model produces point
and probabilistic forecasts in the form of PIs. It does
not require initial TS decomposition and, due to its
internal mechanisms such as adaptive TS preprocessing,
cross-learning, and multiple dilations, can deal with
complex TS expressing nonlinear trends, varying vari-
ance, and multiple seasonality. Our model is available
as open-source code in the GitHub repository [33].

3) We propose a new mechanism for dynamically adjusting
the smoothing coefficients used by ES. These coeffi-
cients are learned by RNN simultaneously with the main
mapping function transforming inputs into forecasts to
ensure optimal internal representation of TS and finally
maximize the accuracy of the model.

4) We introduce a new three-component loss function based
on pinball loss to optimize both the point forecasts
and PIs.

5) We empirically demonstrate on real-world data
for 35 European countries that the proposed hybrid
model outperforms in STLF well-established statistical
and state-of-the-art ML approaches.

The rest of the work is organized as follows. Section II
describes the STLF data and defines the STLF problem.
Section III presents the proposed forecasting model: its
architecture, components, and features. The experimental
framework used to evaluate the proposed model is described
in Section IV. Finally, Section V concludes the work.

Fig. 1. Hourly electricity demand TS for Poland.

Fig. 2. Coefficients of daily, weekly, and yearly variations of electricity
demand.

II. STLF PROBLEM AND DATA

In this study, we consider a univariate STLF problem
where the task is to forecast future values of the hourly
electricity demand TS for the next day, {zτ }

M+24
τ=M+1, given

a sequence of past observations, {zτ }
M
τ=1. The problem is

challenging because the electricity demand TS exhibits a trend,
three types of variability: the daily, weekly, and yearly ones,
and random fluctuations—see Fig. 1, where hourly electricity
demand for the Polish power system is shown. The level
of electricity demand and its long-term trend depend on a
country’s economic development and growth rate. One of the
most important factors that can upset electricity demand in the
short-term perspective are extreme weather conditions.

A very important issue from the point of view of power
system control and planning is electricity demand variability
observed in daily, weekly, and yearly periods. Fig. 2 shows
variation coefficients for 35 European countries defined as
v = 100s/z̄. For daily electricity demand variations, vd ,
z̄, and s express the daily mean and standard deviation,
for weekly variations, vw, express the weekly mean and
standard deviation of daily means, and for yearly variations,
vy , express the yearly mean and standard deviation of weekly
means. Greater demand variability requires greater flexibility
in generating units and the entire power system. As can be seen
from Fig. 2, the lowest demand variations are for Iceland. The
strongest daily variations (vd > 17%) are for Albania, Italy,
Latvia, and Great Britain, while the strongest yearly variations
(vy > 18%) are for Norway, France, Sweden, and Macedonia.
The weekly variations are usually weaker than the daily and
yearly ones, vw < 13%. Countries with the strongest weekly
variations are Italy, Germany, Austria, and Poland. It is worth
noting that the electricity demand variation changes over time,
which is an additional challenge for forecasting models.

The electricity demand seasonalities are related to local
climate, weather variability, and the types of consumers.
Intensities of the seasonal fluctuations can be identified using
harmonic analysis. Based on Parseval’s theorem, the variance
of a TS can be expressed by the sum of squares of its harmonic
amplitudes. The contribution of the i th harmonic to the vari-

SMYL et al.: ES-dRNN: A HYBRID ES AND DILATED RNN MODEL FOR STLF 11349

Fig. 3. Contribution of the most important harmonics in the TS variance.

ance can be expressed by the ratio hi = 100A2
i /(2Var(zt)),

where Ai is the i th harmonic amplitude and Var(zt) is the
TS variance. Fig. 3 shows ratio hi for the most important
harmonics for 35 European countries. Note that for some
countries the yearly seasonality strongly dominates compared
to others (h > 60%). These countries include Finland, France,
Norway, and Sweden. Another extremely important season-
ality is the daily one. The countries with the strongest daily
seasonality (h > 50) are Bosnia and Herzegovina, Ireland,
and Lithuania. In contrast, the weekly seasonality is less
distinct with h below 10% for all countries. The highest
weekly fluctuations (h > 7%) are shown by Germany, Italy,
Austria, and Poland. Some countries demonstrate stronger
half-yearly seasonality than yearly ones. They include southern
European countries such as Spain, Greece, Croatia, Italy,
Montenegro, and Turkey. The half-yearly seasonality is related
to the tourism industry, which increases energy demand in the
summer season.

As can be seen from Fig. 1, the daily patterns for Tuesday
through Friday from the same period of the year are similar,
while those for Monday, Saturday, and Sunday are distinct.
The daily shapes are dependent on the period of the year and
can vary over the years. High similarity in daily shapes makes
forecasting easier. Fig. 4 shows boxplots for distances between
daily patterns representing the same days of the neighboring
weeks, dt = ∥ẑt − ẑt+7∥2. The daily pattern is defined as
the centered and normalized daily vector: ẑt = (zt − z̄t)/

∥(zt − z̄t)∥2, where zt = [zt,1, . . . , zt,24] is the vector of
hourly demands for the t th day and z̄t is the mean demand for
that day. Vectors ẑt have mean zero, the same variance and
unity length. The daily profiles expressed by ẑt differ only
in shape. From Fig. 4, we can observe that the most similar
profiles are for Lithuania, Poland, Germany, and Ireland
(0.0030 < d < 0.0033), while the most dissimilar ones are for
Iceland, Luxembourg, and Switzerland (0.015 < d < 0.018).

III. FORECASTING MODEL

A block diagram of the proposed forecasting model is
shown in Fig. 5. The model is trained in a cross-learning
mode [30], i.e., simultaneously on L hourly electricity load TS.
Input Z represents a set of L TS: {{zl

τ }
Ml
τ=1}

L
l=1, where Ml

is an lth TS length. Output Ẑ is a set of L forecasts of the
daily sequences {{ẑl

τ }
Ml+24
τ=Ml+1}

L
l=1. An ES component expresses

each TS from Z by two smoothing equations, i.e., for level
and seasonality. The seasonal components, S, are used by
the preprocessing component to deseasonalize the TS. This
component also normalizes and squashes the TS and prepares

Fig. 4. Boxplots of distances between daily patterns of electricity demand.

Fig. 5. Block diagram of the proposed forecasting system.

training sets 9 for RNN learning. It feeds the processing
parameters, i.e., seasonal components S and average values
of TS sequences Z̄ , to the postprocessing component. RNN
produces forecasts for the deseasonalized, normalized, and
squashed daily sequences and their PIs for each TS (X̂).
These forecasts are postprocessed to obtain forecasts in real
values, Ẑ . RNN also produces corrections of the ES smoothing
parameters, 1α and 1β, to tune them properly. In the ensem-
ble version, the model is trained E times and the forecasts are
averaged. The diversity of ensemble learners, which decides
about ensemble learning success [24], is achieved by random
initial parameters.

Details of the model are described below.

A. ES Component

As shown in Section II, the hourly electricity load TS,
{zτ }

M
τ=1, exhibits complex phenomena with three seasonalities.

To deal with the challenging STLF problem, the TS is desea-
sonalized, normalized, and squashed. Then, it is predicted by
RNN. Deseasonalization is performed using a seasonal com-
ponent produced by a simplified Holt-Winters multiplicative
seasonal model in the form

lτ = α
zτ

sτ

+ (1 − α)lτ−1

sτ+168 = β
zτ

lτ
+ (1 − β)sτ (1)

where lτ is a level component, sτ is a weekly seasonal
component, and α, β ∈ [0, 1] are smoothing coefficients.

The series are hourly and exhibit daily, weekly, and
yearly seasonalities. The (1) includes only weekly seasonality.
However, the daily seasonality (24 h values) is part of the
weekly seasonality (168 h values). In addition, the series are
processed in 24-h steps, so the daily seasonality is to some
extend “escaped”—the RNN always learns to forecast a whole
day starting from midnight. The yearly seasonality impact is
dealt with partly by normalization and partly by using date-
related regressors, month, and week of the year.

A unique feature of the model is that the smoothing
coefficients are learned by RNN. In addition to predicting

11350 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

Fig. 6. Moving windows used for preprocessing TS zτ .

the TS sequence and its PI, RNN also predicts corrections
for smoothing coefficients, 1αt and 1βt . The smoothing
coefficients are adapted in each recursive step t using the
following corrections:

αt+1 = σ(Iα + 1αt)

βt+1 = σ(Iβ + 1βt) (2)

where Iα and Iβ are initial values of the smoothing coeffi-
cients (hyperparameters), and σ is a sigmoid function, which
maintains the coefficients within a range from 0 to 1.

The smoothing coefficients have a dynamic character. This
is because the corrections produced by RNN in each recursive
step depend on current and past TS characteristics (shape,
level, and seasonal pattern) and time variables that indicate
in what phase of the weekly, monthly, and yearly cycles the
predicted daily sequence is (see RNN input pattern (6)). The
dynamic Holt-Winters equations take the form

lt,τ = αt
zτ

st,τ
+ (1 − αt)lt,τ−1

st,τ+168 = βt
zτ

lt,τ
+ (1 − βt)st,τ . (3)

B. Preprocessing and Postprocessing Components

To prepare input and output data for RNN we use two
adjacent moving windows: input window 1in of size 168 h and
output window 1out of size 24 h. The input window covers a
weekly period to expose the RNN to the specific features of
the series in this period directly. The output window covers
the forecast daily sequence.

The windows are shifted by 24 h to obtain subsequent input
and output patterns (see Fig. 6), which are defined as

xin
1 = [x1, . . . , x168], xout

1 = [x169, . . . , x192]

xin
2 = [x25, . . . , x192], xout

2 = [x193, . . . , x216]

. . . (4)

where the t th pair of patterns represent deseasonalized, nor-
malized, and squashed TS sequences covered by the t th pair
of windows

xτ = log
zτ

z̄t ŝt,τ
(5)

where τ ∈ 1in
t ∪1out

t , i.e., τ ∈ [24(t −1)+1, 24(t −1)+192],
z̄t is the average TS value in the t th input window,
i.e., z̄t = 1/168

∑24(t−1)+168
24(t−1)+1 zτ , and ŝt,τ is the seasonal

component determined using (3) for recursive step t (in this
step t th pair of patterns (4) are used for RNN training).

Fig. 7. Proposed dRNNCell.

TS sequences are squashed using a log function to prevent
outliers from upsetting the learning process. Note that in (5),
seasonal component st,τ is adapted for each t th pattern in each
training epoch. Thus, the training set has a dynamic character.
It is updated on-the-fly during learning. This process can be
seen as the search for the optimal representation for RNN.

To introduce more input information related to the forecast
sequence, the input patterns are extended as follows:

xin′

t =
[
xin

t , ŝt , log10(z̄t), dw
t , dm

t , dy
t
]

(6)

where ŝt is a vector of 24 seasonal components predicted by
ES for the output period t reduced by 1, i.e., ŝt = [ŝt,τ −

1]
24(t−1)+192
τ=24(t−1)+169, dw

t ∈ {0, 1}
7, dm

t ∈ {0, 1}
31, and dy

t ∈ {0, 1}
52

are binary one-hot vectors encoding day of the week, day
of the month, and week of the year for the forecast day,
respectively.

Vectors dw
t and dy

t inform about the location of the forecast
sequence in the weekly and yearly cycles, dm

t helps to deal
with fixed-date public holidays, log10(z̄t) informs about the
level of the TS (squashing function matches the level range
with the range of the other components of xin′

t), and ŝt intro-
duces additional information about the daily variability.

RNN is trained on training samples (xin′

t , xout
t) (updated in

each recursive step t), and produces forecasts of the output
patterns x̂out

t = [x̂τ]τ∈1out
t

and their quantiles defining PIs.
The postprocessing component converts these forecasts to real
value forecasts using transformed (5)

ẑτ = exp(x̂τ)z̄t ŝt,τ . (7)

C. RNN Component

RNN employs a new type of gated recurrent cell, dilated
RNN cell (dRNNCell), which is shown in Fig. 7. It is derived
from the LSTM [34] and GRU [35] cells. It is designed to
operate as part of a multilayer dilated RNN [36] and as in [37]
its output is split into “real output” yt , which goes to the next
layer, and a controlling output ht , which is an input to the
gating mechanism in the following time steps.

The cell uses two states, c-state (also called a cell state),
which is close to the standard LSTM or GRU state, and
h-state, which is the controlling state (also called a hidden
state). At each time step t , the whole dRNNCell input is a
concatenation of xt , ht−1, and ht−d , where xt is a standard

SMYL et al.: ES-dRNN: A HYBRID ES AND DILATED RNN MODEL FOR STLF 11351

input at time t (either from a previous layer or an input to the
RNN), ht−1 is the most recent h-state, and ht−d is the delayed
state (d > 1). Both c- and h-states are saved in a list, to be
used as delayed states. The size of the c-state is equal to the
summed sizes of h-state and y-output, i.e., sc = sh + sy .

The dRNNCell uses the following gates: fusion (f),
update (u), and output (o) gates. All the gates transform
nonlinearly input vectors xt , ht−1, and ht−d using sigmoid
function (σ). A candidate c-state, c̃t , is produced by trans-
forming input vectors using tanh nonlinearity. All nonlinear
transformations of the input vectors are as follows:

ft = σ(W f xt + V f ht−1 + U f ht−d + b f) (8)
ut = σ(Wuxt + Vuht−1 + Uuht−d + bu) (9)
ot = σ(Woxt + Voht−1 + Uoht−d + bo) (10)
c̃t = tanh(Wcxt + Vcht−1 + Ucht−d + bc) (11)

where W, V, and U are weight matrices, and b are bias vectors.
The c-state is a weighted combination of past c-states and

new candidate state c̃t computed in the current step

ct = ut ⊗ (ft ⊗ ct−1 + (1 − ft) ⊗ ct−d) + (1 − ut) ⊗ c̃t (12)

where ⊗ denotes the Hadamard product (element-wise
product).

Update vector ut decides in what proportion the old and new
information are mixed in the c-state, while fusion vector ft
decides about the contribution of recent and delayed c-states
in the new state.

The controlling state and the output of the cell are calculated
based on the new c-state and output gate as follows:

h′
t = ot ⊗ ct (13)

yt =

[
h′

t,1, . . . , h′
t,sy

]
(14)

ht =

[
h′

t,sy+1, . . . , h′
t,sy+sh

]
. (15)

The new features of dRNNCell can be summarized as follows.
1) dRNNCells are fed by both recent states, ct−1, ht−1,

and delayed states, ct−d , ht−d , d > 1. Delayed states
introduce the lagged information from d steps back to
facilitate seasonal and long-term modeling.

2) The cell includes two internal weighting mechanisms
for c-states, which are controlled by f - and u-gates,
respectively. The first weights recent and delayed states,
while the second weights the past and candidate states.
The purpose of this mechanism is to improve the intro-
duction of new information into the c-state and eliminate
old information from the c-state.

3) Instead of the typical one output, the cell has two
outputs: yt , which passes the forecast information to
the next layer, and ht , which contains information for
controlling the gates in the next step. This split allows
these outputs to be better adapted to their distinct
functions.

The dRNNCell is part of a multilayer dilated RNN, which
is composed of a number of blocks, each composed of one
or more cells. In Fig. 8, there are two blocks, the first with
two layers dilated 2 and 7, respectively, and the second,
just with a single layer dilated 4. Dilated RNN architecture

Fig. 8. Proposed RNN architecture. The circles represent dRNNCells.

was introduced in [36] to tackle the three major challenges
presented by RNN when learning on long sequences, i.e.,
complex dependencies, vanishing and exploding gradients,
and efficient parallelization. Note that our new dRNNCell
is fed by both recent (t − 1) and delayed (t − d) states.
Thanks to this, the cell uses direct information from both the
previous step and a step distant in time. This can be useful
for seasonal TS, where the relationships between the series
elements have a cyclical character. These relationships can
be modeled more accurately using dilated connections related
to seasonality. To enable RNNs to learn the temporal depen-
dencies of different scales, we use multiple dilated recurrent
layers stacked with hierarchical dilations. The proposed RNN
uses ResNet-style shortcuts between blocks [38] to improve
the learning process by preventing vanishing or exploding
gradients.

As can be seen from Fig. 8, binary vectors encoding calen-
dar data, dw

t , dm
t , and dy

t , are embedded using a linear layer
into d-dimensional continuous vectors dt . This reduces input
dimensionality and meaningfully represents sparse binary vec-
tors in the embedding space. The embedding is learned along
with the model itself.

The output layer in Fig. 8 is a linear one. It produces vec-
tor x̂out′

t which is a concatenation of the forecast output pattern,
x̂out

t = [x̂τ]τ∈1out
t

, lower bounds of PI, x̂out
t = [x̂τ]τ∈1out

t
, upper

bounds of PI, ˆ̄xout
t = [ˆ̄xτ]τ∈1out

t
, and corrections for smoothing

coefficients, 1αt and 1βt

x̂out′
t =

[
x̂out

t , x̂out
t , ˆ̄xout

t , 1αt , 1βt

]
. (16)

D. Loss Function

To define the loss function we employ a pinball loss

ρ(z, ẑq) =

{
(z − ẑq)q, if z ≥ ẑq

(z − ẑq)(q − 1), if z < ẑq
(17)

11352 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

where z is an actual value, ẑq is a forecast value of qth
quantile, and q ∈ (0, 1) is a quantile order.

The pinball loss is commonly used in quantile regression
and probabilistic forecasting [39]. It helps us to determine the
point forecasts and PIs, whose lower and upper bounds are
expressed by quantiles of orders q and q , respectively (e.g.,
q = 0.05 and q = 0.95).

Our loss function has the following three components:

Lτ = ρ
(
z′
τ , ẑ′

q∗,τ

)
+ γ

(
ρ
(
z′
τ , ẑ′

q,τ

)
+ ρ

(
z′
τ , ẑ′

q,τ

))
(18)

where q∗
= 0.5 corresponds to the median, z′

τ = zτ /z̄t is
a normalized actual TS value from the output window 1out

t ,
ẑ′

q∗,τ = exp(x̂τ)ŝt,τ is a forecast value of z′
τ , q, q are the

quantile orders for the lower and upper bounds of PI, respec-
tively, ẑ′

q,τ = exp(x̂τ)ŝt,τ is a forecast value of q-quantile

of z′
τ , ẑ′

q,τ = exp(ˆ̄xτ)ŝt,τ is a forecast value of q-quantile
of z′

τ , and γ ≥ 0 is a parameter controlling the impact of
the components related to PI on the loss function, typically
between 0.1 and 0.5.

Note that loss function (18) operates on the normalized TS
values z′

τ . This is because different TS can have different levels
and normalization allows us to bring their errors expressed
by (17) to the same level, which is crucial in cross-learning.
The forecasts of z′

τ in (18) are calculated from (7) excluding
z̄t to obtain normalized forecasts. These forecasts are based
on the RNN outputs, x̂out

t , x̂out
t and ˆ̄xout

t , and ES outputs
{ŝt,τ }τ∈1out

t
.

The first component in (18), ρ(z′
τ , ẑ′

q∗,τ), represents a
symmetrical loss for the forecast value (normalized) while
the second and third components, ρ(z′

τ , ẑ′
q,τ) and ρ(z′

τ , ẑ′

q,τ),
represent asymmetrical losses for the quantiles. The asym-
metry level, which determines PI, results from the quantile
orders. Hyperparameter γ determines the share of the three
components in the loss function. For γ = 1, all the compo-
nents have the same impact on the loss function. To increase
the importance of the first component over the other two,
we decrease the γ value. Note that due to the three-component
parametrized loss function, we have the ability to optimize
both the point forecasts and their PI. Moreover, the pinball loss
allows us to reduce the forecast bias by penalizing positive and
negative deviations differently. When the model tends to have a
positive or negative bias, we can reduce the bias by introducing
q∗ smaller or larger than 0.5, respectively (see [30], [31]).

E. Mechanisms and Solutions for Performance Improvement

The proposed model has the following mechanisms and
solutions for improved performance.

1) dRNNCell With Expanded States (Recent and Dilated
Ones): dRNNCell is able to model both short-term and
long-term dependencies in TS. This feature is useful,
especially for STLF where TS expresses multiple sea-
sonality. Temporal dependencies in this case have a
cyclical character and can be modeled hierarchically
using different dilations in different RNN layers.

2) Hybrid Architecture Combining ES and RNN: ES
extracts dynamically the main components of each indi-
vidual TS and enables appropriate TS representation

for RNN. A multiple dilated stacked RNN architecture
is able to deal with complex TS expressing multi-
ple seasonality. The two components, ES and RNN,
are optimized simultaneously by the same optimization
algorithm. This fine-tunes RNN weights as well as
ES smoothing coefficients. So the resulting forecasting
model, including dynamic data preprocessing, is opti-
mized as a whole.

3) Cross-Learning: The model is global. Learning across
many TS enables it to capture the shared features and
components of the TS. Cross-learning is a type of
multitask learning [40] which is known to be an effective
method of improving generalization by using the domain
information contained in the training samples of related
tasks as an inductive bias. Moreover, cross-learning
greatly speeds up the learning of deep architectures.

4) A Dynamic Training Set for RNN: The training samples
are updated on-the-fly during learning. The optimal
representation of TS is searched for to ensure the best
predictive performance of the model.

5) Delaying the Moment of Over-training: To delay the
onset of the over-training, the starting point of training
is sampled, so the same TS is likely to look slightly
different each time a batch is formed.

6) Three-Component, Parametrized Pinball Loss Function:
This enables the model to optimize both the point
forecasts and their PIs. Moreover, it enables the forecast
bias to be reduced.

7) Ensembling: Which is a powerful regularization tech-
nique. This exploits the beneficial effects of combining
forecasts [41], improves accuracy and stability compared
to a single learner, and enhances the robustness, thus
mitigating model and parameter uncertainty [42].

IV. EXPERIMENTAL STUDY

In this section, we apply the proposed ES-dRNN model
to STLF and compare its performance with that of other
models including statistical and ML ones. We test the mod-
els on real-world data comprising hourly electricity demand
TS for 35 European countries from the period 2016–2018
(source—ENTSO-E repository www.entsoe.eu/data/power-
stats/; we share this data with the ES-dRNN code in our
GitHub repository [33]). The TS was described and analyzed
in Section II. They differ substantially in levels, trends, dis-
persion, and daily shapes. Thus, the data provides a variety
of TS with different properties, which translates into a more
reliable test for the forecasting models.

A one-day-ahead forecasting problem is considered.
We optimize ES-dRNN using the data from 2016 and 2017
(data for 2016 for Albania is unavailable). The model forecasts
the daily load profile for each day of 2018 for each of the
35 countries with the exception of Estonia and Italy for which
data for the last month of 2018 is unavailable, and Latvia for
which data for the last two months of 2018 is unavailable.

The model was implemented in Python using PyTorch.
It was run on an eight-core CPU (AMD Ryzen 7 1700,
3.0 GHz, 32 GB RAM).

SMYL et al.: ES-dRNN: A HYBRID ES AND DILATED RNN MODEL FOR STLF 11353

A. Optimization and Training Procedures

During each epoch a number of updates are executed,
guided by the average error accumulated by executing lo
(e.g., 50) forward steps, moving by one day, on a batch. The
starting point is chosen randomly; the batches include random
b series. The model is trained using Adam optimizer.

The d-dilated dRNNCell operates as described above only
after d steps, because only after d steps are the delayed states
available. In addition, the Holt-Winters formulas require at
least twice the seasonality steps to stabilize, so the system uses
several weeks (wo) at the beginning of each batch as a warm-
up period, during which all the ES and RNN calculations take
place, with the exception of the training errors, which are not
calculated. Similarly, an even longer warm-up period ws is
applied when producing the test results.

An epoch is usually defined as using all the training data
once. Our definition here is based on the number of updates
or processed batches, as during training we step lo times on
a batch (with random assignment of series) and for each
batch execute a single update based on the average error.
We aim to define the epoch as the number of updates that
bring in a meaningful change in the learning process, and
because the dataset contains a small number of series, a single
epoch is actually composed of no number “subepochs,” defined
in the traditional fashion as one scan of all available data.
An additional factor is the batch size: when it grows, the
number of updates per subepoch diminishes, so the number
of subepochs needs to grow. However, in our experience, the
linear growth is too fast, and risks overfitting within a single
epoch, so finally we use the following formula:

no = min
(

1,

(
Nb
L

)p)
(19)

where N is the maximum number of updates per epoch,
b is the current batch size, L is the number of TS in the
dataset, and p is a hyperparameter, between 0 and 1, which
by experimentation is set to 0.7.

The pseudo-code for the ES-dRNN training algorithm is
shown in Algorithm 1.

The model hyperparameters were selected as follows.
1) Number of Epochs: In early testing we established that

9 epochs is usually sufficient to reach a plateau of
accuracy.

2) Number of TS in the Batch: We use the schedule of
increasing batch sizes and decreasing learning rates
proposed in [43]. We start with a small batch size of 2,
and increase it, although only once, due to the small
number of series, to 5 at epoch 4.

3) Learning Rates: Decreasing learning rates has a similar,
if not the same, effect as increasing the batch size:
it allows the validation error to be further reduced.
We use the following schedule: 3 · 10−3 (epochs
1–4), 10−3 (epoch 5), 3 · 10−4 (epoch 6), and 10−4

(epochs 7–9).
4) Size of the c-State, h-State, and y-Output: sc = 100,

sh = 40, sy = 60. Increasing the size of cells causes a
quadratic increase in the number of parameters. Larger
models may be beneficial for larger datasets. The values

Algorithm 1 Pseudo-Code for the Training Algorithm
for i Epoch in range(Num_of _Epochs) do

if Scheduled then
Update learning rate and/or batch size

end if
Calculate number of sub-epochs
for i SubEpoch in range(Num_of _SubEpochs) do

Shuffle series and create batches
for batch in batches do

– Reset state of the RNN
– Step through first I nput_Window number of
steps and update levels and seasonality, using the
per-series αt and βt (RNN not used)
– Step through the remaining warm-up steps and
training steps and update levels and seasonality,
using the per-series αt and βt adjusted by the RNN;
if warm-up finished calculate the loss, average across
all batch members, add the loss to per-batch list
– Calculate average loss, update

end for
end for

end for

above were obtained by experimentation starting with
sc = 50, sh = 20, and doubling it three times.

5) RNN Architecture and Dilations: We use three layers:
two dilated by 2 and 7 in the first block, and a single
layer dilated by 4 in the second block (see Fig. 8).
We arrived at this layout partly by heuristics and partly
by experimentation. We started with two layers, the first
with a minimum dilation of 2 (because the previous val-
ues, dilated by 1, are always used by the cells), and the
second layer dilated by 7, to match them with the main
weekly seasonality. Then, we tried to add a third layer,
and to avoid the vanishing gradient problem it had to be
in a new block. We chose dilation 4 because together
with 2 and 7, this makes an almost perfect geometric
series, as advocated by [36]. But of course, we also
experimented with larger dilation 11 and 14 in the third
layer, but the results were worse, which is as expected
because our horizon is just 1 day. Among the alternative
arrangements for the three layers, three blocks of a single
layer each dilated 2, 4, and 7 works equally well.

6) Loss Function Parameters: As described in
Section III-D, the pinball loss function was utilized, with
three different quantile values q , to achieve quantile
regression for 0.5, 0.05, and 0.95. The actual values
for q∗, q , and q were slightly different: 0.49, 0.035,
0.96. These values were arrived at by experimentation,
reducing the bias of the center value, and fine-tuning
the percentage of exceedance for PIs. The γ parameter
was 0.3, set, without experimentation, following a rule
of thumb that states that the sum of PIs losses should
be around 10%–20% of the center value loss, reflecting
the usual higher importance applied to the center loss.
However, it is not a sensitive parameter, and leaving it
at 1 would not make much difference.

11354 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

7) Initial Smoothing Coefficients: Iα = −3.5, Iβ = 0.3.
These were arrived at by observing, during early
runs of the training, the direction and size of average
adjustments to both smoothing coefficients, by the NN.
As expected, the level is quite stable, so the smoothing
coefficient tends to be close to zero, and therefore the
Iα is a relatively large negative number. Seasonality,
on the other hand, is likely to change more, and this
is confirmed by larger, typically above 0.5, smoothing
coefficients, starting from Iβ = 0.3.

8) Lengths of TS Sequences in the Optimization Mode:
lo = 50. The longer the sequence, the more smooth
the gradient should be, but at the same time the system
may “see” the same parts of a series too often and can
overtrain quickly. In addition, experimentation suggested
that smaller values of 20 and 30 brought worse results.

9) Lengths of Training wo and Testing ws Warm-Up
Periods: Three and 13 weeks, respectively. The training
warm-up period wo needs to be just slightly longer than
two weeks, twice the seasonality size, for ES to stabilize.
The number of warming-up steps should also be larger
than the smallest dilation, but this is just two steps
(days), so this second condition is not important here.
The length of the testing warm-up period was chosen
mostly due to prior experience that stepping through
two to three months of typical business TS is enough
for the system to fully “zero-in” on a particular series.

10) Embedding Size of the Calendar Variables: This value
was arrived at first by the expectation that the one-hot
encoded input of size 7 + 31 + 52 should be able to
be converted to an order of magnitude smaller floating
point vector, and then by experimentation.

11) Ensemble size: E = 100, although a size as small as
5 is often sufficient.

B. Baseline Models

We compare our ES-dRNN in terms of accuracy with the
baseline models outlined below:

1) Naive—Naive model in the form: the forecast demand
profile for day i is the same as the profile for day i − 7;

2) ARIMA—Autoregressive integrated moving average
model [44];

3) ES—Exponential smoothing model [44];
4) Prophet—Modular additive regression model with

nonlinear trend and seasonal components [11];
5) N-WE—Nadaraya–Watson estimator [44];
6) GRNN—General regression NN [15];
7) MLP—Perceptron with a single hidden layer and sig-

moid nonlinearities [15];
8) SVM—Linear epsilon insensitive support vector

machine (ϵ-SVM) [45];
9) LSTM—Long–short-term memory [46];

10) ANFIS—Adaptive neuro-fuzzy inference system [47];
11) MTGNN—Graph NN for multivariate TS forecast-

ing [48];
12) DeepAR—Autoregressive RNN model for probabilistic

forecasting [49];

TABLE I
FORECAST RESULTS

13) WaveNet—Autoregressive deep-NN model combining
causal filters with dilated convolutions [50];

14) N-BEATS—Deep NN with hierarchical doubly residual
topology [51];

15) LGBM—Light gradient-boosting machine based on
decision trees [52];

16) XGB—eXtreme gradient boosting algorithm based on
decision trees [53]; and

17) ES-RNNe—Hybrid residual dilated LSTM and ES
model [31].

The baseline models include classical statistical models
(ARIMA and ES), new statistical models (Prophet), non-
parametric pattern-based ML models (N-WE), classical ML
models (MLP, GRNN, SVM, and ANFIS), new recurrent and
deep-NN architectures (LSTM, MTGNN, DeepAR, WaveNet,
and N-BEATS), boosted trees-based models (XGB and
LGBM) and a predecessor of the proposed model (ES-RNNe).

C. Results

In this section, we report the results for our proposed model
in two variants: as an individual model, denoted by ES-dRNN,
and as an ensemble of E ES-dRNNs, denoted by ES-dRNNe.

Table I shows the results of forecasting averaged over all
35 countries, i.e., mean absolute percentage error (MAPE),
median of APE (MdAPE), interquartile range of APE
(IqrAPE), root mean square error (RMSE), mean PE (MPE),
and standard deviation of PE (StdPE). MdAPE measures the
average error without the influence of outliers, while RMSE
is especially sensitive to outliers as a square error. MPE
measures the forecast bias. Note the lowest values for MAPE,
MdAPE, and RMSE for ES-dRNNe and the second lowest
for ES-dRNN. Our models also produce the least dispersed
predictions compared to the baseline models (IqrAPE ≤ 2.25).
The models that produce the least biased forecasts are XGB,
ES, ARIMA, and LSTM. Our model is equipped with a
bias reduction mechanism. However, excessive MPE reduction
leads to an increase in the remaining error measures.

SMYL et al.: ES-dRNN: A HYBRID ES AND DILATED RNN MODEL FOR STLF 11355

Fig. 9. Results of the GW tests.

Fig. 10. Boxplots for daily MAPE.

The winning performance of ES-dRNNe and ES-dRNN was
confirmed using a pairwise one-sided Giacomini-White test
(GW test) for conditional predictive ability [54]. We used
an implementation of the GW test in the multivariate variant
from https://github.com/jeslago/epftoolbox [55]. Fig. 9 shows
the results of the GW test, i.e., a heat map representing the
obtained p-values. The closer they are to zero the significantly
more accurate the forecasts produced by the model on the
x-axis are than the forecasts produced by the model on the
y-axis. The black is for p-values larger than 0.10 indicating
rejection of the hypothesis that the model on the x-axis is
more accurate than the model on the y-axis. Note that both
ES-dRNNe and ES-dRNN performed significantly better in
terms of accuracy than all the other comparative models.

More detailed results are shown in Figs. 10–12. From
Fig. 10, we can assess the distribution of the daily MAPE.
Note the smallest medians and the most compact distributions
for our model, which is ahead of the group of nonparametric
ML models designed specifically for STLF. Fig. 11 shows
MAPE for individual countries. Our model was the most
accurate for most of the countries apart from Estonia and
Iceland, where it was beaten by N-BEATS, France, where it
was beaten by SVM, Montenegro, where it was beaten by
GRNN, and Czechia, where it was beaten by ES-RNNe. The
model success rates based on the mean errors for the individual
countries are shown in Table I (SuccRate).

Fig. 12 shows the average errors for each hour of the day,
each day of the week, and each month of the test period (2018).
It gives an overview of the accuracy of modeling individ-
ual seasonal components. Note that in each case errors for
ES-dRNNe and ES-dRNN are among the lowest. The annual
component is modeled most accurately in September and
August, while the greatest errors occur in the spring months
of March, April, and May. Note that our model is not very

Fig. 11. MAPE of the models for each country.

Fig. 12. MAPE for each hour of the day, each day of the week, and each
month.

Fig. 13. Examples of the forecast daily profiles. 90% PIs for ES-dRNNe are
shown as gray-shaded areas.

sensitive to the day of the week. The errors for individual days
of the week are at a similar level, MAPE ≈ 2%−2.2%, except
for Mondays where the errors reach 2.8%. Daily seasonality
is modeled most accurately in the first hours of the day
(MAPE ≈ 0.9% − 1.3%), and least accurately in the period
from 1 to 3 P.M., in which MAPE reaches 3%.

Fig. 13 shows some examples of the daily profile forecasts
produced by our models and baseline models. From Fig. 13,
we can assess the fitting of the models to the real data.
In Fig. 13, the PIs predicted by ES-dRNNe are also shown.
To assess the PIs, we calculate for each country the number of
observed values in PIs, below PIs and above PIs. We achieved:
90.14% ± 2.43%, 4.88% ± 1.29%, and 4.98% ± 1.41%,

11356 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

TABLE II
TRAINING TIME OF THE FORECASTING MODELS

respectively. These values correspond to our assumed 90%
PIs with lower and upper bounds q = 0.05 and q = 0.95,
respectively.

Table II compares the computation time of the forecasting
models for producing forecasts for each day of the test period
for 35 countries. This is the total training time and query
response time for each individual model. It does not include
ensembling (training of many models) and optimization of the
models except for ARIMA, ES, and Prophet whose imple-
mentations include automatic optimization. As can be seen
from Table II, N-WE and GRNN models, which are lazy
learners and do not require training, are the fastest. They are
able to produce forecasts in seconds. The next fastest models
are LGBM, SVM, and N-BEATS. The computation time for
them was from 10 to 32 min. Our proposed model with a
computation time of 46 min belongs to the third fastest group,
which includes XGB and DeepAR. The computation time for
the remaining models was over an hour.

D. Ablation Study

The proposed ES-dRNN has several components and mech-
anisms to increase its predictive power for STLF. In the
ablation study, we test the performance of the reduced model.
We reduce the model as follows.
Ab1 ES component is removed. dRNN learns on the nor-

malized, but not deseasonalized TS. Seasonality vector
ŝt is excluded from input pattern (6).

Ab2 ResNet-style shortcut between blocks 1 and 2 is
removed. ES-dRNN learns without residual connection.
The linear output layer is fed directly with the output
vector of block 2, y(3)

t [see Fig. (8)].
Ab3 dRNNCell without fusion gate is used. The delayed

c-state is used, if available, otherwise recent, t − 1, the
state is used.

Ab4 dRNNCell without dilated states is used. It is fed with
only t − 1 states.

Ab5 dRNNCell without recent states is used. It is fed with
only t − d states.

Ab6 LSTM cell is used instead of dRNNCell. The cell is
simplified, without delayed connections.

Ab7 Level input log10(z̄t) is excluded from input pattern (6).
Ab8 Inputs log10(z̄t), dw

t , dm
t , and dy

t are excluded from
input pattern (6). No input information about the TS
level and current location in the weekly, monthly, and
yearly cycles is introduced to dRNN.

Ab9 Inputs log10(z̄t), dw
t , dm

t , dy
t , and ŝt are excluded

from input pattern (6). dRNN is fed with only input

TABLE III
ERRORS FOR FULL AND REDUCED MODEL

pattern xin
t . Additional input information such as TS

level, current seasonality, and calendar data is removed.
Ab10 Embedding is excluded. Extended input vector (6)

is directly introduced on block 1. Input linear layer
transforming calendar one-hot vectors into a continuous
embedding vector is removed.

As can be seen from Table III, the lowest errors were
achieved by the full model. Any reduction in the model leads
to an increase in the forecast error. The most beneficial way
of improving the accuracy of the model was extending the
input pattern with daily variability, TS level, and calendar
variables (Ab9). A model without this extension produced
5.3% worse forecasts in terms of MAPE. The second most
beneficial procedure was embedding the calendar variables
using a linear layer (Ab10). This resulted in a reduction
in MAPE of 2.8%. Excluding the ES component from the
model (Ab1) resulted in an increase in MAPE of 1.8% while
excluding the recent states from dRNNCell (Ab5) resulted
in an increase in MAPE of 1.7%. Ab2, Ab3, Ab4, and Ab6
resulted in a MAPE reduction of less than 1%. Among them,
excluding dilated states from dRNNCell (Ab4) reduced the
error the least, by 0.18%.

E. Discussion

The experimental study proves that both variants of
ES-dRNN clearly outperform all other models in terms of
accuracy. The wide range of STLF problems on which we
have tested the algorithms increases our confidence in this
conclusion. The distinguishing feature of our model from other
ML baseline models is that it produces both point forecasts and
PIs with a specified probability coverage. Thus, the user gains
additional information about the uncertainty of the prediction.

The proposed model is equipped with several
mechanisms and solutions for performance improvement
(see Section III-E). Many of them were tested and proved their
effectiveness in forecasting problems from diverse domains
(see the winning submission to the M4 competition [30] and
the model for monthly electricity demand forecasting [31]).
Other components and mechanisms were designed in this
study especially for STLF to deal with complex seasonality
and short and long-term dependencies. As the ablation study
has shown, the most important of them turned out to be:
extended input information including daily variability, TS level
and the calendar variables (Ab9), embedding of the calendar
data (Ab10), and ES component (Ab1). Removing these
components and mechanisms worsens the results the most.

We confirmed the beneficial effect of ensembling on increas-
ing the accuracy of the forecasting model. The errors for the
ensemble version were lower than those for the individual
version by 5.51% for MAPE, 6.05% for MdAPE, and 5.86%

SMYL et al.: ES-dRNN: A HYBRID ES AND DILATED RNN MODEL FOR STLF 11357

for RMSE. In our approach, ensembling does not require
additional effort related to the selection of additional hyperpa-
rameters, e.g., controlling the diversity of individual learners.
The diversity of learners is provided by the random initializa-
tion of the model parameters. However, controlling diversity
could be an additional way of improving performance. The
individual ensemble members produced forecasts with MAPE
ranging from 2.30% to 2.36%. MAPE standard deviation was
0.0145% and its ratio to mean error was 0.62%.

The proposed ES-dRNN is more complex than the baseline
statistical and ML models. It has a larger number of parameters
(around 229 K) and hyperparameters to tune. However, the
development of the model did not require long processing
times nor any special hardware—it was done on a desktop-
class computer, without GPU. A single training takes less
than 1 h and can be done in parallel using a number of
workers, allowing the results of the ensemble to be calculated
immediately. Our experience with similar models allowed us
to limit the number of hyperparameter combinations and code
modifications. It is also worth noting that, once this kind of
model is trained, the NN weights can be saved, and a serving
program that uses them can be built. Such a serving program
can forecast automatically and rapidly (in a matter of seconds)
all the TS when fed with new data. We worked with a relatively
small dataset covering two to three years. Considering strong
yearly seasonality, extensive tuning of the model, e.g., in order
to completely remove bias, would likely have led to overfitting,
so we purposefully avoided it.

V. CONCLUSION

In this article, we proposed and empirically validated a new
hybrid hierarchical architecture for STLF—ES-dRNN. The
empirical study of STLF for 35 European countries showed
that our ES-dRNN had a significantly better performance
than statistical and ML methods. It clearly outperformed its
competitors in terms of accuracy. Its success is due to its
unique hybrid architecture which combines ES and RNN.
To deal with multiple seasonalities and short and long-term
dependencies in TS we designed a new dilated recurrent cell
and multiple dilated stacked RNN architecture. ES extracts
dynamically the main components of each individual TS and
enables appropriate TS representation for RNN. Due to the
simultaneous learning of both ES and dRNN components, the
model is optimized as a whole. Cross-learning, i.e., learning on
multiple TS, enables ES-dRNN to capture the shared features
and components of each individual TS.

The model produces point forecasts and PIs to express
the forecast uncertainty. To optimize both, we introduced a
new three-component, parametrized loss function. This also
allows the forecast bias to be controlled. A major advantage
of ES-dRNN is its ability to deal with raw TS without any kind
of preprocessing such as decomposition or rationalization. All
necessary data processing takes place inside the model.

The high expressive power of the proposed model to solve
nonlinear stochastic forecasting problems with complex sea-
sonalities and significant random fluctuations has encouraged
us to apply it to solve other complicated forecasting problems.
This will be the focus of our future work.

REFERENCES

[1] G. Dudek, “Multilayer perceptron for short-term load forecasting: From
global to local approach,” Neural Comput. Appl., vol. 32, no. 8,
pp. 3695–3707, Apr. 2020.

[2] B. F. Hobbs, S. Jitprapaikulsarn, S. Konda, V. Chankong, K. A. Loparo,
and D. J. Maratukulam, “Analysis of the value for unit commitment
of improved load forecasts,” IEEE Trans. Power Syst., vol. 14, no. 4,
pp. 1342–1348, Mar. 1999.

[3] S. Arora and J. W. Taylor, “Rule-based autoregressive moving average
models for forecasting load on special days: A case study for France,”
Eur. J. Oper. Res., vol. 266, pp. 259–268, Jan. 2018.

[4] J. W. Taylor, “Short-term load forecasting with exponentially weighted
methods,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 458–464,
Feb. 2012.

[5] N. Charlton and C. Singleton, “A refined parametric model for short
term load forecasting,” Int. J. Forecasting, vol. 30, no. 2, pp. 364–368,
Apr. 2014.

[6] H. Takeda, Y. Tamura, and S. Sato, “Using the ensemble Kalman
filter for electricity load forecasting and analysis,” Energy, vol. 104,
pp. 184–198, May 2016.

[7] S. Sharma, A. Majumdar, V. Elvira, and É. Chouzenoux, “Blind Kalman
filtering for short-term load forecasting,” IEEE Trans. Power Syst.,
vol. 35, no. 6, pp. 4916–4919, Nov. 2020.

[8] G. Dudek, “Pattern-based local linear regression models for short-
term load forecasting,” Electr. Power Syst. Res., vol. 130, pp. 139–147,
Jan. 2016.

[9] J. W. Taylor, “Triple seasonal methods for short-term load forecasting,”
Eur. J. Oper. Res., vol. 204, pp. 139–152, Jan. 2010.

[10] A. M. De Livera, R. J. Hyndman, and R. D. Snyder, “Forecasting time
series with complex seasonal patterns using exponential smoothing,”
J. Amer. Stat. Assoc., vol. 106, no. 496, pp. 1513–1527, Dec. 2011.

[11] S. J. Taylor and B. Letham, “Forecasting at scale,” Amer. Statistician,
vol. 72, no. 1, pp. 37–45, 2018.

[12] S. Fan and R. J. Hyndman, “Short-term load forecasting based on a
semi-parametric additive model,” IEEE Trans. Power Syst., vol. 27, no. 1,
pp. 134–141, Feb. 2012.

[13] B. A. Høverstad, A. Tidemann, H. Langseth, and P. Öztürk, “Short-term
load forecasting with seasonal decomposition using evolution for param-
eter tuning,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1904–1913,
May 2015.

[14] K. Benidis et al., “Deep learning for time series forecasting: Tutorial
and literature survey,” 2020, arXiv:2004.10240.

[15] G. Dudek, “Neural networks for pattern-based short-term load fore-
casting: A comparative study,” Neurocomputing, vol. 205, pp. 64–74,
Sep. 2016.

[16] H. S. Hippert and J. W. Taylor, “An evaluation of Bayesian techniques
for controlling model complexity and selecting inputs in a neural
network for short-term load forecasting,” Neural Netw., vol. 23, no. 3,
pp. 386–395, Apr. 2010.

[17] Z. A. Bashir and M. E. El-Hawary, “Applying wavelets to short-term
load forecasting using PSO-based neural networks,” IEEE Trans. Power
Syst., vol. 24, no. 1, pp. 20–27, Feb. 2009.

[18] G. Dudek, “Randomized neural networks for forecasting time series with
multiple seasonality,” in Proc. 16th Int. Work-Conf. Artif. Neural Netw.
Cham, Switzerland: Springer, 2021, pp. 196–207.

[19] K. Chen, K. Chen, Q. Wang, Z. He, J. Hu, and J. He, “Short-term
load forecasting with deep residual networks,” IEEE Trans. Smart Grid,
vol. 10, no. 4, pp. 3943–3952, Jul. 2019.

[20] H. J. Sadaei, P. C. de Lima e Silva, F. G. Guimarães, and M. H. Lee,
“Short-term load forecasting by using a combined method of con-
volutional neural networks and fuzzy time series,” Energy, vol. 175,
pp. 365–377, May 2019.

[21] X. Kong, C. Li, F. Zheng, and C. Wang, “Improved deep belief network
for short-term load forecasting considering demand-side management,”
IEEE Trans. Power Syst., vol. 35, no. 2, pp. 1531–1538, Mar. 2020.

[22] W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu, and Y. Zhang, “Short-term
residential load forecasting based on LSTM recurrent neural network,”
IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 841–851, Jan. 2019.

[23] S. Wang, X. Wang, S. Wang, and D. Wang, “Bi-directional long short-
term memory method based on attention mechanism and rolling update
for short-term load forecasting,” Int. J. Electr. Power Energy Syst.,
vol. 109, pp. 470–479, Jul. 2019.

[24] G. Brown, J. L. Wyatt, and P. Tiňo, “Managing diversity in regression
ensembles,” J. Mach. Learn. Res., vol. 6, pp. 1621–1650, Dec. 2005.

11358 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 8, AUGUST 2024

[25] M. El-Hendawi and Z. Wang, “An ensemble method of full wavelet
packet transform and neural network for short term electrical load fore-
casting,” Electr. Power Syst. Res., vol. 182, May 2020, Art. no. 106265.

[26] D. Yang, J.-E. Guo, S. Sun, J. Han, and S. Wang, “An interval
decomposition-ensemble approach with data-characteristic-driven recon-
struction for short-term load forecasting,” Appl. Energy, vol. 306,
Jan. 2022, Art. no. 117992.

[27] Y. Hu et al., “Short-term load forecasting using multimodal evolutionary
algorithm and random vector functional link network based ensemble
learning,” Appl. Energy, vol. 285, Mar. 2021, Art. no. 116415.

[28] Y. Wang et al., “Short-term load forecasting for industrial customers
based on TCN-LightGBM,” IEEE Trans. Power Syst., vol. 36, no. 3,
pp. 1984–1997, May 2021.

[29] C. S. Lai et al., “Multi-view neural network ensemble for short and
mid-term load forecasting,” IEEE Trans. Power Syst., vol. 36, no. 4,
pp. 2992–3003, Jul. 2021.

[30] S. Smyl, “A hybrid method of exponential smoothing and recurrent
neural networks for time series forecasting,” Int. J. Forecasting, vol. 36,
no. 1, pp. 75–85, Jan. 2020.

[31] G. Dudek, P. Pelka, and S. Smyl, “A hybrid residual dilated LSTM
and exponential smoothing model for midterm electric load forecasting,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 7, pp. 2879–2891,
Jul. 2022.

[32] S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “The M4 competi-
tion: Results, findings, conclusion and way forward,” Int. J. Forecasting,
vol. 34, no. 4, pp. 802–808, Oct. 2018.

[33] ES-dRNN Code and Data. [Online]. Available: https://github.com/
slaweks17/ES-dRNN

[34] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[35] K. Cho et al., “Learning phrase representations using RNN
encoder–decoder for statistical machine translation,” 2014,
arXiv:1406.1078.

[36] S. Chang et al., “Dilated recurrent neural networks,” in Proc. NIPS,
2017, pp. 1–15.

[37] I. Ben-Ari and R. Shwartz-Ziv, “Sequence modeling using a memory
controller extension for LSTM,” in Proc. NIPS, 2017, pp. 1–12.

[38] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770–778.

[39] I. Takeuchi, Q. V. Le, T. D. Sears, and A. J. Smola, “Nonparametric
quantile estimation,” J. Mach. Learn. Res., vol. 7, pp. 1231–1264,
Jul. 2006.

[40] R. Caruana, “Multitask learning,” Mach. Learn., vol. 28, no. 1,
pp. 41–75, Jul. 1997.

[41] F. Chan and L. L. Pauwels, “Some theoretical results on forecast
combinations,” Int. J. Forecasting, vol. 34, no. 1, pp. 64–74, Jan. 2018.

[42] F. Petropoulos, R. J. Hyndman, and C. Bergmeir, “Exploring the sources
of uncertainty: Why does bagging for time series forecasting work?” Eur.
J. Oper. Res., vol. 268, no. 2, pp. 545–554, Jul. 2018.

[43] S. L. Smith, P. J. Kindermans, C. Ying, and Q. V. Le, “Don’t decay the
learning rate, increase the batch size,” in Proc. ICLR, 2018, pp. 1–10.

[44] G. Dudek, “Pattern similarity-based methods for short-term load
forecasting—Part 2: Models,” Appl. Soft Comput., vol. 36, pp. 422–441,
Nov. 2015.

[45] P. Pelka, “Pattern-based forecasting of monthly electricity demand using
support vector machine,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2021, pp. 1–8, doi: 10.1109/IJCNN52387.2021.9534134.

[46] P. Pelka and G. Dudek, “Pattern-based long short-term memory for mid-
term electrical load forecasting,” in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), Jul. 2020, pp. 1–8.

[47] P. Pełka and G. Dudek, “Neuro-fuzzy system for medium-term electric
energy demand forecasting,” in Proc. 38th Int. Conf. Inf. Syst. Archit.
Technol. (ISAT). Cham, Switzerland: Springer, 2018, pp. 38–47.

[48] Z. Wu, S. Pan, G. Long, J. Jiang, X. Chang, and C. Zhang, “Con-
necting the dots: Multivariate time series forecasting with graph neural
networks,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining, Aug. 2020, pp. 1–6.

[49] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “DeepAR:
Probabilistic forecasting with autoregressive recurrent networks,” Int.
J. Forecasting, vol. 36, no. 3, pp. 1181–1191, Jul. 2020.

[50] A. van den Oord et al., “WaveNet: A generative model for raw audio,”
2016, arXiv:1609.03499.

[51] B. N. Oreshkin, D. Carpov, N. Chapados, and Y. Bengio, “N-BEATS:
Neural basis expansion analysis for interpretable time series forecasting,”
in Proc. Int. Conf. Learn. Represent. (ICLR), 2020, pp. 1–17.

[52] G. Ke et al., “LightGBM: A highly efficient gradient boosting decision
tree,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 1–5.

[53] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
Aug. 2016, pp. 1–10.

[54] R. Giacomini and H. White, “Tests of conditional predictive ability,”
Econometrica, vol. 74, no. 6, pp. 1545–1578, 2006.

[55] J. Lago, G. Marcjasz, B. De Schutter, and R. Weron, “Forecasting
day-ahead electricity prices: A review of state-of-the-art algorithms,
best practices and an open-access benchmark,” Appl. Energy, vol. 293,
Jul. 2021, Art. no. 116983.

Slawek Smyl received the M.Sc. degree in physics
from Jagiellonian University, Kraków, Poland, in
1988, the M.Eng. degree in information technology
from RMIT, Melbourne, VIC, Australia, in 1997,
and the Grad.D. degree in legal studies from UNSW,
Sydney, NSW, Australia, in 2004.

He is currently a Quantitative Engineer at Face-
book, Menlo Park, CA, USA, working in the area
of time series forecasting.

Mr. Smyl has ranked highly in forecasting com-
petitions: he won the Computational Intelligence

in Forecasting International Time Series Competition in 2016, got third
place in the Global Energy Forecasting Competition in 2017, and won the
M4 Forecasting Competition in 2018.

Grzegorz Dudek received the Ph.D. degree in
electrical engineering from the Częstochowa Uni-
versity of Technology (CUT), Częstochowa, Poland,
in 2003, and the Habilitation degree in computer
science from the Lodz University of Technology,
Lodz, Poland, in 2013.

Currently, he is an Associate Professor at the
Department of Electrical Engineering, CUT. He is
the author of two books concerning machine learn-
ing methods for load forecasting and evolutionary
algorithms for unit commitment and over 100 sci-

entific articles. His research interests include pattern recognition, machine
learning, artificial intelligence, and their application to practical classification,
regression, forecasting, and optimization problems.

Dr. Dudek came third at the Global Energy Forecasting Competition in 2014
(price forecasting track).

Paweł Pełka received the Ph.D. degree in informat-
ics from the Częstochowa University of Technology,
Częstochowa, Poland, in 2021. His Ph.D. thesis was
focused on pattern-based mid-term load forecasting
issues.

He is currently an Assistant Professor at the
Department of Electrical Engineering, Częstochowa
University of Technology. He is the author of sev-
eral scientific articles. His research interests cover
data analysis, machine learning, pattern recognition,
artificial intelligence, and their usage in time series
forecasting problems.

http://dx.doi.org/10.1109/IJCNN52387.2021.9534134

