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Abstract— Skeleton sequences are lightweight and compact
and thus are ideal candidates for action recognition on edge
devices. Recent skeleton-based action recognition methods extract
features from 3-D joint coordinates as spatial–temporal cues,
using these representations in a graph neural network for feature
fusion to boost recognition performance. The use of first- and
second-order features, that is, joint and bone representations, has
led to high accuracy. Nonetheless, many models are still confused
by actions that have similar motion trajectories. To address
these issues, we propose fusing higher-order features in the
form of angular encoding (AGE) into modern architectures to
robustly capture the relationships between joints and body parts.
This simple fusion with popular spatial–temporal graph neural
networks achieves new state-of-the-art accuracy in two large
benchmarks, including NTU60 and NTU120, while employing
fewer parameters and reduced run time. Our source code is
publicly available at: https://github.com/ZhenyueQin/Angular-
Skeleton-Encoding.

Index Terms— Feature extraction, graph neural network,
skeleton-based action recognition.

I. INTRODUCTION

SKELETON-BASED action recognition is more robust to
background information and easier to process, attracting

increasing attention [25] in the community. Recently, deep
graph neural networks fuel the recent surge of accuracy for
skeleton-based action recognition [39]. By leveraging graph
neural networks, action recognizers more thoroughly extract
the topological information within the skeleton sequences.

To make graph neural networks applicable for
skeleton-based action recognition, skeletons are treated
as graphs, with each vertex representing a body joint and
each edge a bone. Initially, only first-order features were
employed, representing the coordinates of the joints [39].
Subsequently, [26] introduced a second-order feature: each
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Fig. 1. Sample skeletons with similar motion trajectories: (left) taking off
glasses versus (right) taking off headphones. The angles formed by red dashed
lines (i.e., the fore- and upper arms) are distinctive, which are informative in
distinguishing these two similar motions.

bone is expressed as the vector difference between one
joint’s coordinate and that of its nearest neighbor in the
direction of the body center. Their experiments show that
these second-order features improve the recognition accuracy
of skeleton-based action recognizers.

However, existing methods suffer from the poor perfor-
mance of discriminating actions with similar motion trajec-
tories (see Fig. 1). Since the joint coordinates in each frame
are similar in these actions, it is challenging to identify the
cause of nuances between coordinates. It can be due to various
body sizes, motion speeds, or actually performing different
actions. To robustly capture the relative movements between
body parts while maintaining invariance for different body
sizes of human subjects, in this article, we propose the use of
higher-order representations in the form of angles. We refer to
the new proposed feature as angular encoding (AGE), which
can be applied to both static and velocity domains of human
body joints. Thus, the proposed encoding allows the model to
recognize actions more precisely. Experimental results reveal
that by fusing angular information into the existing mod-
ern action recognition architectures, such as spatio-temporal
graph convolutional network (STGCN) [39] and decoupling
GCN [4], confusing action sequences can be classified more
accurately, especially when the actions have very similar
motion trajectories.

It is worth considering whether it is possible to design a
neural network to implicitly learn angular features. However,
such a design would be challenging for current graph convolu-
tional networks (GCNs) [29], [35], mainly due to two reasons.
1) Conflicts between more layers and higher performance of
GCNs: GCNs are currently the best-performing models in
classifying skeleton-based actions. To model the relationships
among all the joints, a graph network requires many layers.
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TABLE I

COMPARISON OF RECOGNITION PERFORMANCE ON FOUR SETTINGS OF TWO BENCHMARK DATASETS. WE COMPARE NOT ONLY THE RECOGNITION
ACCURACY, BUT ALSO THE TOTAL NUMBER OF PARAMETERS (PARAMS) IN THE NETWORKS. ENS IS THE NUMBER OF MODELS USED IN

AN ENSEMBLE. BSL MEANS TO USE THE ORIGINAL FEATURE WITHOUT EMPLOYING ANGULAR ENCODING. AGE-S AND AGE-V
STAND FOR CONCATENATING THE ORIGINAL REPRESENTATION WITH ANGULAR ENCODING IN THE STATIC AND VELOCITY

DOMAINS, RESPECTIVELY. JOINT/J AND BONE/B DENOTE THE USE OF JOINT AND BONE FEATURES, RESPECTIVELY. THE
TOP ACCURACY IS HIGHLIGHTED IN RED BOLD, AND THE SECOND BEST PERFORMANCE IS HIGHLIGHTED IN BLUE.

SYMBOL & INDICATES ENSEMBLING MODELS TRAINED WITH DIFFERENT INPUT FEATURES GIVEN IN THE

PARENTHESIS. GFLOPS STANDS FOR THE FLOATING-POINT OPERATIONS PERFORMED BY A MODEL, WHICH
IS THE NUMBER OF MULTIPLY–ADD OPERATIONS THAT A MODEL PERFORMS

However, recent work implies that the performance of a
GCN can be compromised when it goes deeper due to over-
smoothing problems [21]. 2) Limitation of adjacency matrices:
Recent graph networks for action recognition learn the rela-
tionships among nodes via an adjacency matrix, which only
captures pairwise relevance, whereas angles are third-order
relationships involving three related joints.

We summarize our contributions as follows.

1) We propose a rich collection of higher-order represen-
tations in the form of the angular encoding defined
in both static and velocity domains. The encoding
captures relative motion between body parts while
maintaining invariance against different human body
sizes.

2) The angular features can be easily fused into existing
action recognition architectures to further boost perfor-
mance. Our experiments show that angular features are
complementary information relative to existing features,
that is, the joint and bone representations.

3) We are the first to incorporate multiple categories of
angular features into modern spatial–temporal GCNs and
achieve state-of-the-art results on several benchmarks,
including NTU60 and NTU120. Meanwhile, if a sim-
ple model (employing fewer training parameters and
requiring less inference time) has equipped with the
proposed angular encoding, it becomes powerful. Thus,
the proposed angular encoding supports real-time action
recognition on edge devices.
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TABLE II

EVALUATION RESULTS ON ENSEMBLING WITH ANGULAR FEATURES. ENS
IS THE ENSEMBLING. JNT AND BON REPRESENT THE JOINT AND BONE

FEATURES, RESPECTIVELY. THE RED BOLD NUMBER HIGHLIGHTS

THE HIGHEST PREDICTION ACCURACY. ACC↑ IS THE IMPROVE-
MENT IN ACCURACY

II. RELATED WORK

Many of the earliest attempts at skeleton-based action
recognition encoded all human body joint coordinates in
each frame into a feature vector for pattern learning [31],
[32]. These models rarely explored the internal dependencies
between body joints, resulting in missing rich information
about actions. Kernel-based methods have also been proposed
for action recognition [9], [10].

Later, as deep learning became a standard choice in video
processing [1], [17] and understanding [12], [13], RGB-based
videos started to tackle action recognition. However, they
suffer from problems in domain adaptation [7], [42], [44]
since they have varying backgrounds with different textures of
subjects. On the other hand, skeleton data have relatively fewer
issues with domain adaptation. Convolutional neural networks
(CNNs) were introduced to tackle skeleton-based action recog-
nition and achieved an improvement [33]. However, CNNs are
designed for grid-based data and are not suitable for graph data
since they cannot leverage the topology of a graph.

Recently, deep graph neural networks are accumulating
attention [15], [20], [34], [40]. Graph neural networks also
started to attract attention in skeleton recognition. In GCN-
based models, a skeleton is treated as a graph, with joints
as nodes and bones as edges. An early application was
ST-GCN [39], using graph convolution to aggregate joint
features spatially and convolving consecutive frames along
the temporal axis. Subsequently, actional-structural graph con-
volutional network (AS-GCN) [14] was proposed to further
improve the spatial feature aggregation via the learnable
adjacency matrix instead of using the skeleton as a fixed
graph. Attention enhanced graph convolutional LSTM network
(AGC-LSTM) [28] learned long-range temporal dependencies,
using long short-term memory (LSTM) as a backbone, and
changed every gate operation from the original fully connected
layer to a graph convolution layer, making better use of the
skeleton topological information. 2s-adaptive graph convolu-
tional network (AGCN) [26] made two major contributions:
1) applying a learnable residual mask to the adjacency matrix
of the graph convolution, making the skeleton’s topology
more flexible; and 2) proposing a second-order feature, the
difference between the coordinates of two adjacent joints,
to act as the bone information. An ensemble of two models,
trained with the joint and bone features, substantially improved

the classification accuracy. More graph convolution techniques
have been proposed in skeleton-based action recognition,
such as semantics-guided neural network (SGN) [41] and
Shift-GCN [5], employing self-attention and shift convolution,
respectively. Recently, multi-scale-graph 3D (MS-G3D) [18]
achieved high results by proposing graph 3-D convolutions
(G3Ds) to aggregate features within a window of consecutive
frames. However, 3-D convolutions demand a long running
time.

In more recent times, Qin et al. [22] proposed some
self-attention models that dynamically optimize the graph
structure. Xu et al. [37] designed a pure CNN architecture
that more effectively captures the topological information.
Memmesheimer et al. [19] study the one-shot problem of
skeleton-based action recognition. They apply the metric
learning setting and map the problem to a nearest-neighbor
search in a set of activity reference samples. Wang et al. [30]
studied the adversarial attack problem in skeleton-based action
recognition. They investigated a perceptual loss that ensures
the imperceptibility of the attack. Diao et al. [6] investigated
the black-box attack on skeleton-based action recognition.
They proposed an attack mechanism called black-box attack
on skeletal action recognition (BASKR) and showed that
the adversarial attack is a threat and on-manifold adversarial
samples are common for skeletal motions.

All the existing methods suffer from low accuracy in
discriminating actions sharing similar motion trajectories. This
motivates us to seek a new encoding to facilitate the model
differentiating two confusing actions. Some works show angle
features similar to the local feature presented in this article [8],
[38]. On the other hand, we propose a collection of angular
encoding forms. Each category consists of further subcate-
gories. Different categories of angular encoding are designed
to capture motion features of distinct kinematic body parts.

III. ANGULAR FEATURE REPRESENTATION

A. Angular Encoding

We propose using third-order features, which measure the
angle between three body joints to depict the relative move-
ments between body parts in skeleton-based action recogni-
tion. Given three joints u, w1, and w2, where u is the target
joint to calculate the angular features and w1 and w2 are
endpoints in the skeleton, �buwi denotes the vector from joint u
to wi (i = 1, 2), we have �buwi = (xwi − xu, ywi − yu, zwi − zu),
where (xk, yk, zk) represent the coordinates of joint k (k =
u, w1, w2). We define two kinds of angular features.

1) Static Angular Encoding: Suppose θ is the angle between
�buw1 and �buw2 , we define the static angular encoding da(u) for
joint u as

da(u)=

⎧⎪⎨
⎪⎩

1−cos θ =1 − �buw1 · �buw2

|�buw1 ||�buw2 |
, if u �= w1, u �= w2

0, if u = w1 or u =w2.

(1)

Note that w1 and w2 do not need to be adjacent nodes
of u. The feature value increases monotonically as θ goes
from 0 to π radians. In contrast to the first-order features,
representing the coordinate of a joint, and the second-order



4786 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 35, NO. 4, APRIL 2024

Fig. 2. Proposed four types of angular features. We extract angular features for the target joint (in red dots) which corresponds to the root of an angle. The
anchor joints (in yellow dots) are fixed endpoints of angles. Green dashed lines represent the two sides of an angle. (a) Local. (b) Center-oriented. (c) Pair-
and (d) Finger-based.

Fig. 3. Our backbone architecture is composed of three STBs, each consisting of a spatial multiscale graph convolution and a temporal multiscale convolution
unit. The spatial multiscale unit extracts structural skeleton information with parallel graph convolutional layers. The temporal multiscale unit draws correlations
with four functional groups. See Section III-B for more details. (a) Feature extraction. (b) STB. (c) SMGC. (d) TMC.

features, representing the lengths and directions of bones, these
third-order features focus more on motions and are invariant
to the scale of human subjects.

2) Velocity Angular Encoding: The temporal differences of
the angular features between consecutive frames, that is,

v(t+1)
a (u) = d(t+1)

a (u) − dt
a(u) (2)

where v(t+1)
a (u) is the angular velocity of joint u at frame

(t +1), describing the dynamic changes of angles. The angular
encoding is a third-order feature. Taking the velocity of these
third-order features further increases the order. Hence, these
velocity angular features enable an action recognizer to capture
fourth-order information of motion sequences.

However, we face a computational challenge when we
attempt to exploit these angular features: if we use all pos-
sible angles, that is, all possible combinations of u, w1, and
w2, the computational complexity is O(N3 T ), where N and
T , respectively, represent the number of joints and frames.
Instead, we manually define sets of angles that seem likely to
facilitate distinguishing actions without drastically increasing
computational cost. In the rest of Section III, we present the
four categories of angles considered in this work.

a) Locally defined angles: As illustrated in Fig. 2(a),
a locally defined angle is measured between a joint and its two
adjacent neighbors. If the target joint has only one adjacent
joint, we set its angular feature to zero. When a joint has more
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TABLE III

INDEPENDENT EVALUATION OF ANGULAR ENCODING FOR EACH CATE-
GORY. XSUB AND XVIEW REPRESENT CROSS-SUBJECT AND CROSS-

VIEW. XSET MEANS CROSS-SETUP

than two adjacent joints, we choose the most active two. For
example, we use the two shoulders instead of the head and
belly for the neck joint since the latter rarely move. These
angles can capture relative motions between two bones.

b) Center-oriented angles: A center-oriented angle mea-
sures the angular distance between a target joint and two
body center joints representing the neck and pelvis. As in
Fig. 2(b), given a target joint, we use two center-oriented
angles: 1) neck–target–pelvis, dubbed as unfixed-axis; and
2) neck–pelvis–target, dubbed as fixed-axis. For the joints
representing the neck and pelvis, we set their angular features
to zero. Center-oriented angles measure the relative position
between a target joint and the body center joints. For example,
given an elbow as a target joint moving away horizontally
from the body center, the unfixed-axis angle decreases while
the fixed-axis angle increases.

c) Pair-based angles: Pair-based angles measure the
angle between a target joint and four pairs of endpoints:
1) hands; 2) elbows; 3) knees; and 4) feet, as illustrated in
Fig. 2(c). If the target joint is one of the endpoints, we set the
feature value to zero. We select these four pairs due to their
importance in performing actions. The pair-based angles are
beneficial for recognizing object-related actions. For example,
when a person is holding a box, the angle between a target
joint and hands can indicate the box’s size.

d) Finger-based angles: Fingers are actively involved in
human actions. When the skeleton of each hand has finger
joints, we include more detailed finger-based angles to incor-
porate them. As demonstrated in Fig. 2(d), the two joints
corresponding to fingers are selected as the anchor endpoints
of an angle. The finger-based angles can indirectly depict
gestures. For instance, an angle with a wrist as the root and a
hand tip as well as a thumb as two endpoints can reflect the
degree of hand opening.

B. Our Backbone Architecture

The overall network architecture is illustrated in Fig. 3.
Three different features are extracted from the skeleton and
input into the stack of three spatial–temporal blocks (STBs).
Then, the output passes sequentially to a global average pool-
ing, a fully connected layer, and then a softmax layer for action
classification. We use a simplified version of MS-G3D [18] as
the backbone of our model. For simplification, we remove their
heavy G3D modules, weighing the performance gain against
the computational cost. We call the resulting system MSGCN.

TABLE IV

COMPARISON OF RECOGNITION PERFORMANCE BETWEEN MSGCN AND
MSG3D. MSG3D HAS HIGHER ACCURACY, MORE PARAMETERS,

AND A LONGER RUNNING TIME. GFLOPS STANDS FOR THE

FLOATING-POINT OPERATIONS PERFORMED BY A MODEL,
WHICH IS THE NUMBER OF MULTIPLY–ADD OPERATIONS

THAT A MODEL PERFORMS

Note that our proposed angular features are independent of the
choice of the backbone.

We extract the joint, bone, and angular features from every
action video. For the bone feature, if a joint has more than one
adjacent node, we choose the joint closer to the body’s center.
So, given an elbow joint, we use the vector from the elbow
to the shoulder rather than the vector from the elbow to the
wrist. For the angle, we extract seven or nine angular features
(without/with finger-based angles) for every joint, constituting
seven or nine channels of features. Eventually, for each action,
we construct a feature tensor X ∈ R

C×T ×V ×M , where C , T ,
V , and M , respectively, correspond to the numbers of chan-
nels, frames, joints, and participants (the persons conducting
actions). We test various combinations of the joint, bone, and
angular features in the experiments.

Each STB, as exhibited in Fig. 3(b), comprises a spatial
multiscale graph convolution (SMGC) unit and three temporal
multiscale convolution (TMC) units. The details of these
components are illustrated as follows.

The SMGC unit, as shown in Fig. 3(c), consists of a parallel
combination of graph convolutional layers. The adjacency
matrix of graph convolutions results from the summation of
a powered adjacency matrix Ak and a learnable mask Ak

mask .
1) Powered adjacency matrices: To prevent over-smoothing,
we avoid sequentially stacking multiple graph convolutional
layers to make the network deep. Following [18], to create
graph convolutional layers with different sizes of receptive
fields, we directly use the powers of the adjacency matrix
Ak instead of A itself to aggregate the multihop neighbor
information. Thus, Ak

i, j = 1 indicates the existence of a
path between joint i and j within k-hops. We feed the input
into K graph convolution branches with different receptive
fields. K is no more than the longest path within the skeleton
graph. 2) Learnable masks: Using the skeleton as a fixed
graph cannot capture the nonphysical dependencies among
joints. For example, two hands may always perform actions
in conjunction, whereas they are not physically connected in
a skeleton. To infer the latent dependencies among joints,
following [26], we apply learnable masks to the adjacency
matrices.

The TMC unit, shown in Fig. 3(d), consists of seven parallel
temporal convolutional branches. Each branch starts with a
1 × 1 convolution to aggregate features between different
channels. The functions of different branches diverge as the
input passes forward, which can be divided into four groups.
In detail.
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TABLE V

COMPARISON OF WITH/WITHOUT ANGULAR FEATURES ON THE MOST CONFUSING ACTIONS THAT MAY SHARE SIMILAR MOTION TRAJECTORIES.
THE “ACTION” COLUMN SHOWS THE GROUND-TRUTH LABELS, AND THE “SIMILAR ACTION” COLUMN SHOWS THE PREDICTIONS FROM

THE MODEL (WITH/WITHOUT ANGULAR FEATURES). THE SIMILAR ACTIONS HIGHLIGHTED IN ORANGE DEMONSTRATE THE CHANGE

OF PREDICTIONS AFTER EMPLOYING ANGULAR FEATURES. THE ACCURACY IMPROVEMENTS HIGHLIGHTED IN RED ARE THE

SUBSTANTIALLY INCREASED ONES (ACC↑ ≥ 10%) DUE TO USING OUR ANGULAR FEATURES

1) Extracting multiscale temporal features: The group con-
tains four 3×1 temporal convolutions, applying four dif-
ferent dilations to obtain multiscale temporal receptive
fields.

2) Processing features within the current frame: This group
only has one 1×1 to concentrate features within a single
frame.

3) Emphasizing the most salient information within the
consecutive frames: The group ends with a 3 × 1 max-
pooling layer to draw the most important features.

4) Preserving gradient: The final group incorporates
a residual path to preserve gradients during back-
propagation [2].

IV. EXPERIMENTS

A. Datasets

1) NTU60 [24]: NTU60 is a widely used benchmark
dataset for skeleton-based action recognition, incorporating
56 000 videos. The action videos were collected in a labora-
tory environment, resulting in accurately extracted skeletons.
Nonetheless, recognizing actions from these skeletons is still
challenging due to five aspects: 1) the skeletons are captured
from different viewpoints; 2) the skeleton sizes of subjects
vary; 3) so do their speeds of action; 4) different actions can
have similar motion trajectories; and 5) there are limited joints
to portray hand actions in detail.

2) NTU120 [16]: NTU120 is an extension of NTU60.
It uses more camera positions and angles, as well as a larger
number of performing subjects, leading to 1 13 945 videos.

B. Experimental Setups

We train deep learning models on four NVIDIA 2080-Ti
graphics processing units (GPUs) and use PyTorch as our

deep learning framework to compute the angular encoding.
Furthermore, we apply stochastic gradient descent (SGD) with
momentum 0.9 as the optimizer. The training epochs for
NTU60 and NTU120 are set to 55 and 60, respectively, with
learning rates decaying to 0.1 of the original value at epochs
35, 45, and 55. We follow [25] in normalizing, translating each
skeleton, and padding all clips to 300 frames via repeating
the action sequences. The training loss function is cross-
entropy [23].

C. Ablation Studies

There are two possible approaches for using angular fea-
tures: 1) simply concatenate our proposed angular features
with the existing joint, bone, or both features, and then train
the model; and 2) feed the angular features into our model
and ensemble it with other models that are trained using joint,
bone or both features to predict the action label. We study the
differences between these approaches. We report the results
in Table I, including using different settings of both Nanyang
Technological University (NTU) and NTU120. To reduce clut-
ter, we use the results of the cross-subject setting of NTU120
for ablation studies. We denote the accuracy without angular
encoding with baseline (BSL). AGE means to concatenate the
original feature with angular encoding. The suffix -S (in BSL-S
and AGE-S) and -V (in BSL-V and AGE-V) represent feeding
the static and velocity feature, respectively.

1) Concatenating With Angular Features: Here, we study
the effects of concatenating angular features with others.
We first obtain the accuracy of three models trained with three
feature types, that is, the joint, bone, and a concatenation of
both, respectively, as our BSLs. Then, we concatenate angular
features to each of these three to compare the performance.
We evaluate the accuracy with two data streams, that is, angu-
lar static and velocity. We observe that all the feature types
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TABLE VI

COMPARISON OF THE EFFECT FOR IMPROVING ACTION RECOGNITION BY CONCATENATING CERTAIN ANGULAR FEATURES TO THE JOINT REPRESENTA-
TION. EACH SUBTABLE IS SORTED BY THE INCREASE IN ACCURACY. THE “ACTION” COLUMN SHOWS THE GROUND-TRUTH LABELS, AND THE

“SIMILAR ACTION” COLUMN SHOWS THE PREDICTIONS FROM THE MODEL (WITH/WITHOUT ANGULAR ENCODING)
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TABLE VII

STATIC: FIRST HALF

in both data streams receive accuracy boosting in response
to incorporating angular features. For the static stream, con-
catenating angular features with the concatenation of joint and
bone features leads to the most significant enhancement. As to
the velocity stream, although the accuracy is lower than that of
the static one, the improvement resulting from angular features
is more substantial. In sum, concatenating all three features
using the static data stream results in the highest accuracy.

2) Training Solely With Angular Encoding: We are inter-
ested in the performance of the network when only feeding
the angular encoding, that is, no joint and bone features are
used. The outcome is shown as the first row of Table II,
denoted as Ang. We see training merely with angular encoding
even outperforms that of utilizing the joint feature, indicating

the completeness of angular encoding for depicting human
skeleton motion trajectories.

3) Ensembling With Angular Encoding: We also study the
change in accuracy when ensembling a network trained solely
with angular features Ang with networks trained with joint
and bone features, respectively, as well as their ensemble. The
results are reported in Table II. We obtain the accuracy of the
above three models as the BSL results for each stream and
compare them against the precision of ensembling the BSL
models with Ang. We note that ensembling Ang consistently
leads to an increase in accuracy. As with the concatenation
studies, angular features are more beneficial for the velocity
stream. However, unlike the case with concatenation, the
accuracy of the two streams is similar. We also observe that
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TABLE VIII

STATIC: SECOND HALF

ensembling with Bon achieves considerable accuracy gain.
An ensemble of Jnt, Bon, and Ang results in the highest
accuracy in the static stream.

4) Evaluating Angular Encoding of Each Category: We
independently evaluate the boost of the angular encoding of
the four categories, that is, local, center-oriented, pair-based,
and finger-based. The utilized model is the BSL architecture.
We discover that all these four categories can individually
boost the recognition accuracy, as shown in Table III. Fur-
thermore, the proposed angular encoding has been leveraged
in an open challenge and revealed to be effective.1

1In ICCV 2021, the winning team of a skeleton-based action recognition
challenge leveraged the angular encoding proposed in this article, achieving
the first-place accuracy among 70+ teams. The utilized dataset was a
newly collected skeleton dataset with drones. The winning team specifically
evaluated the boost of accuracy from using our proposed angular encoding
on the newly recorded dataset, showing the effectiveness of angular encoding.
See their presentation (clickable) at 8:30.

D. Comparison With State-of-the-Art Models

The ablation studies indicate fusing angular features in
both concatenating and ensembling forms can boost accuracy.
Hence, we include the results of both approaches as well as
their combination in Table I. In practice, the storage and the
run time may become bottlenecks. Thus, we consider not only
the recognition accuracy, but also the number of parameters
(in millions) and the inference time (in gigaFLOPs). The
unavailable results are marked with a dash.

We achieve new state-of-the-art accuracies for recognizing
skeleton actions on both datasets, that is, NTU60 and NTU120.
For NTU120, MSGCN outperforms the existing state-of-the-
art model by a wide margin.

Apart from the higher accuracy, MSGCN requires fewer
parameters and a shorter inference time. We evaluate the
inference time of processing a single NTU120 action video
for all the methods. Compared with the existing most accurate
model, MSGCN requires fewer than 70% of the parameters
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TABLE IX

VELOCITY: FIRST HALF

and less than 70% of the run time while achieving higher
skeleton-based recognition results.

Of note, the proposed angular features are compatible
with the listed competing models. If one seeks even higher
accuracy, the employed simple GCN can be replaced with a
more sophisticated model, such as MS-G3D [18], although
this change can lead to more parameters and longer inference
time. For example, if we employ a more complicated MS-
G3D [18] instead of our MSGCN, the accuracy can be further
improved as Table IV shows. Nonetheless, both the num-
ber of parameters and the GFlops will also correspondingly
increase.

V. ANALYSIS OF ANGULAR ENCODING

We want to provide an intuitive understanding of how
angular features help in differentiating actions. To this end,

we compare the results from two models trained with the joint
features and the concatenation of joint and angular features.

A. Utilizing of All Types of Angular Encoding

First, we concatenate all kinds of angular encoding with
joint features and train the BSL network. The results are
illustrated in Table V. We observe two phenomena.

1) The majority of the action categories receiving a sub-
stantial accuracy boost from angular features are hand-
related, such as making a victory sign vs thumbs up.
We hypothesize that the enhancement may result from
our explicit design of angles for hands and fingers,
so that the gestures can be portrayed more comprehen-
sively.

2) For some actions, after the angular features have
been introduced, the most similar actions change. This
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TABLE X

VELOCITY: SECOND HALF

suggests that the angles are providing complemen-
tary information to the coordinate-based representations.
For the new actions that still confuse the network
after using the angular encoding, they are also chal-
lenging for humans to differentiate them from their
corresponding ground-truth actions by just observing
skeletons.

For better understanding, we provide some visual examples
displaying the confusing actions whose mostly confused coun-
terparts get altered after using angular encoding in Fig. 4.
Among them, folding paper and counting money are easily
confused, and reading and writing are also likely to be mixed
up. We see that these confusing pairs of skeletons are visually
similar to those of humans.

B. Contributions From Different Angle Types

Next, we conduct ablation studies on different types of
the proposed angular encoding for improving the accuracy
of recognizing skeleton-based actions. The BSL accuracy is
obtained merely using the joint feature. Then, we concatenate
different types of angular encoding with the joint feature to

evaluate the effectiveness of each encoding type. We study the
effects of different types of angular features on improving the
accuracy of recognizing actions.

The results are depicted in Fig. 5. We observe the following.

1) The center-oriented angular encoding boosts the accu-
racy with the largest margin for both static and velocity
input features; the increases are 1.01% and 2.02%,
respectively. Since the center-oriented encoding reflects
the distance from the joint to the body center, the results
imply knowing such a distance is greatly beneficial to
recognizing skeleton-based actions. This is consistent
with our daily experience. To illustrate, people normally
pose the hand farther away from the body center for the
victory sign than for the ok sign.

2) Angular encoding improves more accuracy for the
velocity input features than the static joint coordi-
nates. The average improvements are 0.58% and 1.42%,
respectively. This difference indicates angular encoding
provides more additional information in capturing the
dynamic motion trajectories of actions than depicting
the spatial structural information.
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Fig. 4. Visualization examples of confusing actions. The action that the network gets most confused about has changed after employing angular encoding
as a part of input features. (a) Folding paper. (b) Counting money. (c) Reading. (d) Writing.

Fig. 5. Accuracy of recognizing skeleton-based actions using the multiscale
GCN with different types of angular encoding. Both static and velocity
domains are considered. The best accuracy of each domain is highlighted
in red.

3) The part-based angular encoding only marginally height-
ens the accuracy of using the static features, only 0.22%,
whereas the increase improves substantially enlarges
to 1.47% for the velocity input. We conjecture this
is because the actions performed by arms and legs
involve a lot of dynamics. Thus, when using the veloc-
ity input, angular encoding provides complementary
dynamic information to these actions.

We investigate how each kind of angular encoding improves
accuracy. To this end, we collect the top seven actions whose

accuracy is improved by the angular encoding the most. The
results are exhibited in Table VI. We see the following.

1) Equipping the velocity features with angular encoding
boosts substantial accuracy for long-lasting actions, such
as “staple book.” In contrast, for the static input, most
actions whose accuracy is significantly improved are
those that last for a short time, such as “thumb up.”

2) The majority of actions whose accuracy is improved by
a type of angular encoding are those performed by the
anchor joints corresponding to the angular encoding.
To illustrate, finger-based encoding increases accuracy
for hand-related actions, while part-based encoding ben-
efits the actions heavily using arms and legs.

VI. GENERALIZABILITY OF ANGULAR ENCODING

A possible concern is the generalizability of the pro-
posed angular encoding. That is, will fusing angular encoding
improve the accuracy of other backbone architectures? To
answer this, we conduct experiments fusing angular encoding
with the joint feature and feed the concatenated input to
three recently proposed backbone networks: 1) ShiftGCN [5];
2) DecoupleGCN [4]; and 3) MSG3D [18]. The utilized
dataset is the cross-subject setting of NTU120.

We display the results in Fig. 6. We not only demonstrate
the accuracy of fusing all kinds of proposed angular encoding,
but we also separately concatenate every type of encoding with
the joint feature and report the corresponding accuracy. We see
fusing angular encoding with the original features consistently
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Fig. 6. Accuracy of recognizing skeleton-based actions using DecoupleGCN (left) and ShiftGCN (right) with different types of angular encoding. Both static
and velocity domains are considered. The column All represents concatenating all types of angular encoding.

improves the accuracy of all three backbones. On the other
hand, the effectiveness of different angular encoding varies
in boosting accuracy. We observe the center-oriented angu-
lar encoding increases accuracy with the largest magnitude.
Furthermore, angular encoding improves accuracy more when
deployed in the velocity domain than in the static domain.
These two observations are consistent with those on our
simple backbone network. For DecoupleGCN, the part- and
finger-based angular encoding more substantially improve
accuracy than they do for our simple backbone. Specifically,
although feeding the velocity input to DecoupleGCN initially
leads to lower accuracy than using the static feature, the
situation is reversed after fusing with these two types of
angular encoding. These scenarios imply that using features
in the velocity domain surpasses using the static joints.

VII. DISCUSSION

As we have described in Section I, current GCNs are
designed to extract features between two adjacent nodes.
On the other hand, the angular features are higher-order ones
beyond two adjacent vertices. We can theoretically view every
angle as a hyperedge e(v1, v2, v3), where v1, v2, and v3 are
the constitutional joints of an angle. The angular encoding
is their associated feature. The angular encoding extends the
capability of existing GNNs to capture features of hyperedges.

From the perspective of treating a skeleton as a hypergraph,
we have proposed four categories of hyperedges. In contrast,
existing work that also makes use of angle features only
contains one type of hyperedges.

VIII. CONCLUSION

To extend the capacity of GCNs in extracting body struc-
tural information, we propose higher-order representations in
the form of angular features, the proposed angular features
comprehensively capture the relative motion between different
body parts while maintaining robustness against variations
of subjects. Hence, they are able to discriminate between
challenging actions having similar motion trajectories, which
causes problems for existing models. Our experimental results
show that the angular features are complementary to existing

features, that is, the joint and bone representations. By incor-
porating our angular features into a simple action recognition
GCN, we achieve new state-of-the-art accuracy on several
benchmarks while maintaining lower computational cost, thus
supporting real-time action recognition on edge devices.

APPENDIX

We provide the improvement of accuracy by angular encod-
ing for each class. The results for the static domain are in
Tables VII and VIII. The ones for the velocity domain are in
Tables IX and X.
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