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Abstract— Artificial intelligence (AI) is changing the way
computing is performed to cope with real-world, ill-defined tasks
for which traditional algorithms fail. AI requires significant
memory access, thus running into the von Neumann bottleneck
when implemented in standard computing platforms. In this
respect, low-latency energy-efficient in-memory computing can
be achieved by exploiting emerging memristive devices, given
their ability to emulate synaptic plasticity, which provides a
path to design large-scale brain-inspired spiking neural networks
(SNNs). Several plasticity rules have been described in the brain
and their coexistence in the same network largely expands
the computational capabilities of a given circuit. In this work,
starting from the electrical characterization and modeling of the
memristor device, we propose a neuro-synaptic architecture that
co-integrates in a unique platform with a single type of synaptic
device to implement two distinct learning rules, namely, the
spike-timing-dependent plasticity (STDP) and the Bienenstock–
Cooper–Munro (BCM). This architecture, by exploiting the afore-
mentioned learning rules, successfully addressed two different
tasks of unsupervised learning.

Index Terms— Bienenstock–Cooper–Munro (BCM), memris-
tor, resistive memory, spiking neural network (SNN), spike-
timing-dependent plasticity (STDP).

I. INTRODUCTION

THE demand for ubiquitous edge computing, e.g., due
to the deployment of Internet-of-Things devices, calls

for energy-efficient computing solutions. In this respect, the
need for constantly moving data between the CPU and
the memory in the von Neumann architecture has been
identified as the main limitation of traditional systems,
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known as von Neumann bottleneck [1]. A three-order-of-
magnitude gap in delay and energy consumption between
the actual computation and the complete von Neumann
pipeline has been estimated [2]. This limitation becomes
of primary importance if artificial intelligence (AI) algo-
rithms are asked to be solved locally in low-power systems
(so-called edge intelligence) since AI algorithms are typically
energy-hungry [3].

Recently, a large variety of approaches have been proposed
to reduce power consumption while maintaining (or even
increasing) performances for AI applications [4]. Hardware-
based neuromorphic spiking neural networks (SNNs), i.e.,
ad hoc non-von Neumann solid-state circuits emulating some
neurobiological functionalities, seem among the most promis-
ing. The advantages brought to the fore by SNNs are,
in fact, related to their intrinsic functionality that mimics the
processes involved in biological neural computation. The latter
is indeed very efficient and leverages on a distributed network
of elements in which computation and memory functions
are co-located, i.e., synapses take an active part in both
information processing and storage [5], [6], [7]. In recent
years, novel memristive devices emerged as key enablers for
fabricating very large-scale SNNs [8], [9] since they can
serve as local computational and storage units, emulating
specific properties found in the biological realm such as
homo-synaptic plasticity [8]. In an SNN, when a presynaptic
neuron (i) (hereafter called pre) fires a spike, an excitation
(or inhibition in the case of inhibitory neuron) is observed
on the postsynaptic neuron ( j) (hereafter called post). The
amplitude of the response at the post side is mediated by the
synaptic efficacy or weight wi j . In fact, wi j is not constant,
and its change is referred to as synaptic plasticity. Memristive
devices are employed to mimic synaptic weights. When the
pre neuron fires a spike, the spike voltage is applied to the
memristive device, and the resulting current is integrated by
the post neuron. Since, in a first approximation, a single
spike provides an all-or-none type of information, the role
of the synaptic weight is to introduce analog modulation in
the information transferred to the post neuron. In memristor-
based SNNs, this task is performed by the conductance of the
memristive element. In neurobiology, the change of synaptic
weights is called learning and the conditions leading to express
plasticity are the learning rules [5]. The implementation of
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learning rules in SNNs leads to optimizing networks’ ability to
perform a given task. Several learning rules have been derived
and encoded, and here, we focus on those involved in biolog-
ically plausible mechanisms characterized by the absence of
supervision or input labeling. Unsupervised learning is indeed
the most intriguing feature pertaining to human cognition and
perception by virtue of its independence from teaching signals
at each learning event [10]. The learning rules instantiating the
unsupervised learning can be classified as being timing or rate
based. In timing-based rules, synaptic plasticity is expressed
in terms of the time at which individual spikes at the pre
and/or post are produced, whereas in rate-based, the relation
is expressed in terms of the spiking rates at the pre and/or
post. The functional properties emerging from the activity of
plastic networks are related to specific learning rules. Two of
the most studied are categorized into spike-timing-dependent
plasticity (STDP) [10] and the Bienenstock–Cooper–Munro
(BCM) [11], [12], [13]. STDP is known to develop an asym-
metric weight connectivity when repetitive exposure to inputs
with consistent temporal structure is presented to the network
[14], [15]. BCM, on the other hand, has been shown to subtend
the emergence of neuronal selectivity [11], [12], [13]. While
STDP is sometimes used for pattern classification tasks, both
using mathematical models of neurons (e.g., leaky integrate-
and-fire) and synapses [16] and memristive devices [8], [17],
[18], [19], we limit our discussion on STDP to its timing
properties. This choice is based on the idea that BCM can pro-
vide a better implementation of pattern classification due to its
intrinsic development of selectivity. While the developmental
equation for weights under the STDP rule predicts Hebbian-
like weights dynamics [5], STDP does not entail competition
between input synapses associated with different patterns.
When using STDP, this type of competition is typically added
through several mechanisms at neuron and/or network level,
and some examples of these mechanisms are adaptive firing
threshold, lateral inhibition [16], and synaptic normalization.
On the other hand, BCM has competition between synapses
intrinsically built-in (discussed briefly in Section III-B), mak-
ing it better suited for pattern separation and classification.

The coexistence of multiple learning rules is of primary
importance to provide neuromorphic hardware with the ability
of the brain to adapt to complex scenarios. Several works have
shown the possibility to implement STDP with either analog
[8], [18], [19], [20] or binary [21] memristive devices and
few others tackled the problem of other long-term plasticity
rules [22], [23], [24], [25], [26], [27]. At the first glance,
mimicking several plasticity rules would require the use of
different classes of synaptic elements integrated in the same
chip by means of different synaptic devices. Nonetheless, this
poses serious challenges to process engineers, dramatically
increasing the technological complexity and the overall cost
of the circuit.

For this reason, in this work, we address this challenge by
exploring the possibility to implement two different learning
rules, namely, STDP and BCM, in a single neuromorphic
platform using a unique type of synaptic device. Previous
works [24], [25], [26], [27] have shown the co-integration
of rate and temporal learning on memristive elements, but

with several limitations. He et al. [24] showed the integra-
tion of two learning rules (rate- and timing-based) on the
very same synaptic element, assuming cumulative effects of
presynaptic stimulation. In their implementation, depending
on the pre rate, either STDP or rate-based (SRDP) plasticity
is observed. However, no correlation between pre and post
neuron activities is considered for the rate-based plasticity,
as instead required by many learning rules such as BCM
[5], [28]. Ahmed et al. [25] implemented different plasticity
rules by using specialized writing circuits to program the
memristive elements and not directly exploiting the actual
properties of the spikes. A time-to-digital-to-voltage amplitude
circuit reads pre and post spike timings and subsequently
updates the memristor conductance using analog multiplexers,
allowing fine-tuning of the programming voltage in relation
to the pre and post timings. Wang et al. [26] were able to
reproduce both STDP and SRDP with a series connection
of volatile (diffusive) and nonvolatile (drift) memristors. The
use of the volatile memristor temporal dynamics achieves
STDP with nonoverlapping spikes as well as a rate rule with
a monotone relationship between pre stimulation rate and
potentiation. While it is an interesting approach, it suffers from
several drawbacks. To demonstrate STDP, they have exploited
the delay and relaxation time of the diffusive memristor. The
waveforms consist of a short high-voltage pulse followed by
a long low-voltage one. The former can induce plasticity in
the drift memristor (i.e., long-term plasticity), but due to the
delay time, it is unable to activate the diffusive memristor,
which, when OFF, effectively impedes plasticity. The latter
instead is unable to modify the drift memristor but switches
ON the diffusive memristor. Thus, a couple of spikes close to
each other are needed to induce long-term plasticity. A careful
design of the pre and post spikes allows achieving STDP.
In addition to the common STDP, however, this approach
includes a non-Hebbian plasticity term due to multiple pre
(or post) spikes close to each other. Furthermore, their imple-
mentation of SRDP does not consider correlation between
pre and post rates (i.e., it is a non-Hebbian plasticity), and
its monotonic relation between weight and stimulation rate
is different from the BCM rule. Milo et al. [27] integrated
STDP and SRDP with memristors using a one-transistor one-
resistor (1T1R) and 4T1R architecture, respectively. For the
SRDP, long-term potentiation (LTP) is obtained when the post
neuron is active and, at the same time, the pre stimulation rate
is sufficiently high. Long-term depression (LTD) is achieved
by using random post neuron depression back-spikes, which
are effective only when the pre neuron is also active. The
three main drawbacks of their implementation are: the non-
integration by the post neuron of low-frequency pre spikes,
the quadratic relation between the weight dynamics and the
presynaptic rate (rather than the postsynaptic rate as in BCM
rule [12]), and the lack of threshold adaptation to move from
LTD to LTP. As explained briefly in Section III-B, the last
two properties are important for the robust development of
selectivity in the post neuron. The novelty of this work is the
integration of different learning rules using the same 1T1R
synaptic circuit allowing different synapses to follow specific
learning rules. No specialized programming circuit is used,
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with the spikes produced by the proposed neuron design being
directly used as the programming voltages for the memristors.
To this end, each of the two learning rules is tied to a different
input of the proposed neuron. Different back-spikes at the two
inputs are used to program the memristor synapses to follow
different rules. While our implementation of the STDP is alike
other in [8], [9], [18], [19], [20], [29], and [30], we propose
a new architecture for a detailed implementation of the BCM
rule. The implemented learning rules are successfully tested
by circuit simulations of artificial SNNs and are verified to be
consistent with the detailed features of the plasticity models
employed. A thorough electrical characterization of commer-
cially available packaged memristive devices is performed, and
the results are used to calibrate the UniMORE resistive random
access memory (RRAM) compact model [31]. The calibrated
model is then used to 1) verify the conditions to be satisfied by
the chosen memristive device in order to exhibit the specific
type of plasticity; 2) design a full hybrid-CMOS memristive
circuit that can support simultaneously both learning rules; and
3) to perform comprehensive circuit simulations of two dif-
ferent tasks that leverage on the two different bio-inspired
learning rules. Results show that using the same components
(artificial neurons and synapses) and only changing the organi-
zation of the network, i.e., the connectivity and the plasticity
rules, we can optimize the architecture to perform different
tasks.

II. DEVICES, EXPERIMENTS, AND COMPACT MODELING

A. Devices and Experiments

The devices we used are the carbon-doped self-directed
channel (SDC) memristors fabricated and commercialized by
Knowm Inc. [32], [33]. In SDC memristors, Ag agglomerated
in a Ge2Se3 layer is used to modulate the conductance of the
device [32], [33]. The structure of the memristor is a multilayer
stack composed of W/Ge2Se3/Ag/Ge2Se3/SnSe/Ge2Se3:C/W,
where Ge2Se3:C is the active layer [32]. During fabrication,
the first three layers below the TE are mixed and form
the Ag source [33]. The role of the SnSe layer is twofold:
1) it acts as a barrier to avoid Ag saturation in the active
layer; and 2) the production of Sn ions and their migration
into the active layer during the device “forming” promote
Ag agglomeration in specific sites [32], [33]. The electrical
measurements were performed using the Keithley 4200-SCS
semiconductor parameter analyzer on dual in-line package
(DIP) devices. To verify the functionality and basic operation
of the memristors [34], [35], [36], we performed a sequence of
15 I–V measurements in dc sweep (quasi-static) mode. The
applied voltage ramp extended from −0.8 to 0.4 V, and the
parameter analyzer was set to enforce a 10-μA current compli-
ance. Results are shown in Fig. 1(a) (red traces): the switching
curves are characterized by an abrupt transition from the low-
resistive state (LRS) to the high-resistive state (HRS) with
a marked cycle-to-cycle variability on the transition voltage
and a more predictable and gradual transition from HRS to
LRS. Then, the synaptic functionality of the memristors was
experimentally verified by applying a suitable pulsed voltage
sequence to the device. In this experiment, a 10-k� resistor

Fig. 1. (a) Experimental (red curves) and simulated (black lines) quasi-static
I–V characteristics of the memristive device. (b) Pulse waveforms used to
potentiate and depress the memristive device. (c) Experimental (symbols) and
simulated (solid line) pulsed response of the memristive device when subject
to sequences of potentiation (red circles) and depression (blue diamonds)
pulses, shown in (b). The device is initially driven in LRS by means of 20
“initial set” rectangular pulses, also shown in (b). The resistance read after
each pulse by means of a read pulse, also shown in (b), is computed as
(VREAD/I ) − Rs (Rs = 10 k� series resistance).

was connected in series with the device to prevent accidental
current overshoots (whit the role of the series resistor being
negligible in normal operating conditions). The device was
initially driven in LRS by means of 20 rectangular pulses
(V = 0.6 V and T = 100 μs). Then, depression and potentia-
tion were verified by means of trains of 20 identical rectangu-
lar depression pulses (V = −0.2 V and T = 10 μs) followed
by 20 identical rectangular potentiation pulses (V = 0.55 V
and T = 30 μs). Each potentiation or depression pulse is
followed by a small reading pulse (VREAD = 50 mV and
TREAD = 50 μs) that is used to retrieve the resistance value.
The pulses are shown in Fig. 1(b), while the synaptic response
of the device to the pulse sequence is reported in Fig. 1(c),
in which a gradual and reproducible resistance change caused
by the cumulative effect of identical pulses is evidenced.

B. Compact Model

The experimental data are used to calibrate the UniMORE
RRAM compact model [31]. The latter is a physics-based
compact model supported by the results of advanced multiscale
simulations [37] that has been shown to reproduce both the
quasi-static and the dynamic behavior of different memristors
technologies with a single set of parameters [38] and con-
siders the intrinsic device stochasticity and random telegraph
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TABLE I

VALUES OF THE PARAMETERS OF THE COMPACT MODEL AS LISTED AND DESCRIBED IN [31] CALIBRATED TO REPRODUCE THE DATA IN FIGS. 1 AND 2

noise [39], [40] providing a strong link to the device physics.
Coded in Verilog-A, the model can be seamlessly employed
in SPICE circuit simulations. The model includes the main
mechanisms governing the transition between HRS and LRS
by means of field- and temperature-assisted ions/defects drift
and recombination (LRS-to-HRS transition) and by means of
field- and temperature-driven bond breaking and related defect
generation/motion (HRS-to-LRS transition). The internal tem-
perature dynamics modeling includes the effect of thermal
capacitance. The details of the model are discussed in [31].

The model calibration, as well as all circuit simulations,
is carried out using the Cadence Virtuoso ADE tool. Initially,
the model parameters are adjusted to reproduce the results of
both quasi-static switching and pulsed response experiments
performed during the characterization stage, using the same
voltage waveforms used in the experiments. The results of both
experiments, as shown in Fig. 1(a)–(c), are correctly repro-
duced, confirming that the calibrated model can be effectively
used in circuit simulations for dependable results. Specifically,
the model properly accounts for the nonlinearity of charge
transport observed in both HRS and LRS, as well as for the
quite abrupt transition from LRS to HRS and the more gradual
transition from HRS to LRS in quasi-static operation, together
with the observed cycle-to-cycle variability. In addition, the
model well-reproduces the typical potentiation and depression
patterns in Fig. 1(c), which is essential for the simulation of
spike-driven local learning processes. The optimized values of
the model parameters (as given in [31]) are shown in Table I.

III. BIO-INSPIRED LEARNING RULES

In an SNN, action potentials propagate through the network
conveying information and potentially determining changes
in the weights of the encountered synapses, giving rise to
synaptic plasticity. The existence of various learning rules has
been reported in almost all brain areas according to their role
in brain computation. For instance, the cerebellar cortex, which
is primarily involved in motor learning, can express different
plasticity rules. In particular, in the same glomerulus, a small
and compact synaptic hub collecting axons and dendrites from
tens of neurons, Hebbian [41], non-Hebbian [42], STDP [43],
and BCM-like [44] synaptic rules can be simultaneously
expressed. This rich repertoire of mechanisms allows the
circuit to exploit complex spatiotemporal input computation.
Similar mechanisms have been observed in visual cortical
systems [45] and in hippocampal formations [46]. In a wider
perspective, timing-based learning models are typically associ-
ated with tasks in which the precise timing of events assumes

significant importance, such as velocity estimation or spatial
navigation [46]. Conversely, rate-based models have been
used to explain computational primitives such as statistical
learning and neural selectivity [5], [28], as in the case of
pattern discrimination of sensory stimuli operated by cortical
columns [47].

We focus on two well-known plasticity rules, the STDP and
the BCM, since they are typical examples of timing- and rate-
based rules. In a circuit simultaneously supporting both learn-
ing rules, an important objective is to achieve a design in which
information is conveyed through the network in a learning-rule
agnostic fashion. Indeed, being spikes stereotyped events, only
their timings and rates should, at least in first approximation,
carry the information. In fact, in theoretical neuroscience, it is
typical to model spikes using Dirac’s delta function, implying
that the shape of the spike carries no information [28]. Overall,
at the post neuron, the effect of a pre spike should only depend
on the synaptic efficacy and not on the learning rule used to
modify the weight. This constrains the (forward propagating)
spikes to be identical in synapses learning by different rules.

A. Spike-Timing-Dependent Plasticity Learning Rule

In STDP, the sign of plasticity depends on the relative timing
between the spikes at the pre and the post neurons. The focus
is on the causality: the synapses connected to pre neurons that
cause the post neuron to fire undergo LTP, while the synapses
that experience an anticausal relation undergo LTD. From a
neuromorphic device standpoint, STDP can be implemented
by exploiting the overlap of presynaptic and postsynaptic
spikes [9], [29]. Using overlapping waveforms from pre and
post neurons to obtain STDP is commonly employed [8], [9],
[18], [19], [29], [30], though other approaches are possible.
For example, Wang et al. [26] used nonoverlapping spikes
leveraging on the temporal dynamics of volatile memristors.
In [20] and [27], the waveforms applied across the memristor
are driven by the post neuron only, while the pre neuron just
drives the selector transistor.

To study the feasibility of overlap STDP with the calibrated
memristor model, the setup in Fig. 2(a) has been consid-
ered. The memristor device with its nMOS selector is placed
between two spike waveforms’ voltage sources that mimic the
effective behavior of the pre and post neurons, respectively,
labeled as forward spike (VFS) and backward spike (VBS),
see Fig. 2(b).

The forward and backward spikes are designed to be dif-
ferent from each other to optimize the STDP relation. To be
noted that only the forward spike causes excitation on other
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Fig. 2. (a) Test circuit used to verify the correct implementation of STDP
rule. The two voltage waveform generators mimic the pre and post neurons.
(b) Forward spike (VFS) and backward spike (VBS) waveforms. (c) Relative
change of the synaptic weight (the memristor conductance) as a function of the
relative timing of pre and post spikes, showing similarity to the STDP relation
found in biological synapses. Simulations are repeated starting from different
initial resistance values (different symbols). Experimental results obtained on
an SDC memristor are reported as black hollow circles.

neurons (i.e., the actual output spike of a neuron), while the
backward spike, on the other hand, can solely travel backward
to implement plasticity. The memristor is placed with its
bottom electrode connected to VFS, with the top electrode
facing the selector, in turn connected to VBS. The SpikePRE
and SpikePOST signals in Fig. 2(a) are rectangular pulses
that control the voltage sources representing the pre and post
neurons, respectively. Specifically, SpikePRE is driven high
when the pre neuron fires a spike and is driven low at the end
of the spike. In addition, SpikePRE also drives the selector,
connecting the memristor between VFS and VBS. SpikePOST
is driven high when the post neuron fires a spike and is driven
low at the end of the spike. When SpikePRE and SpikePOST
are low, VFS and VBS are, respectively, zero. Two possible
conditions can occur depending on the relative spike delay.

1) The pre neuron spikes more than 10 ms before or more
than 10 ms after the post neuron spikes: in this case,
there is no time overlap between the two spikes. When
only SpikePRE is high, the memristor will experience
VFS and 0 V at its bottom and top electrodes, respec-
tively. In this case, no conductance modulation, i.e.,
plasticity, shall be caused by the forward spike, which

is therefore designed to be small enough. When only
SpikePOST is high, the selector is open and the mem-
ristor top electrode will be floating, naturally preventing
any conductance modification.

2) The time interval between firing events at the pre and
post neurons is in between −10 and 10 ms. The overall
time can be divided into three periods: only SpikePRE
is active, both SpikePRE and SpikePOST are active, and
only SpikePOST is active. Their sequence is dictated by
whether the pre neuron firing anticipates or follows the
post neuron firing activity. As outlined in the previous
point, no plasticity will occur when SpikePRE or only
SpikePOST is active. However, when both are active,
i.e., during the overlap, the total voltage across the
memristor is VBS − VFS, which must be designed to be
sufficiently high to cause conductance modulation. The
two voltage waveforms in Fig. 2(b) have been carefully
designed to yield an STDP-like relation between the
relative conductance variation and the relative delay
between pre and post spikes.

Fig. 2(c) shows the relative conductance (i.e., weight)
change in the synaptic element when subject to spikes with
different delay times, which shows the typical pattern of STDP
response [14]. These curves are obtained by simulating the
circuit in Fig. 2(a) with different delay times between pre
and post neuron spikes (with positive delay meaning that the
spike at the post neuron anticipates the one at the pre neuron)
and iterated for different initial resistance states. Experimental
data [black circles in Fig. 2(c)] are obtained using pulses
identical to those in Fig. 2(b) applied to the SDC memristor
using the Keithley 4200-SCS. Simulations and experimental
results are in good agreement with each other, increasing the
dependability of the memristor model and the simulations in
this work. Simulation results also show the saturating effect
on plasticity caused by the bounded resistance dynamics. Such
a saturating effect on the weights is sometimes regarded as
weight-dependent plasticity rate [5]. The curves in Fig. 2(c)
indeed show how the more a device is potentiated (depressed),
which corresponds to low (high) R0, the harder is to potentiate
(depress) it further, which has been reported as the optimal
choice for synaptic behavior to maximize memory capacity in
recursive networks [48]. However, the dynamic range that we
show in Fig. 1(c) is not representative of the one that can be
obtained in general, as it results from the choice of the voltage
pulse amplitude, pulsewidth, and the number of consecutive
potentiation or depression pulses [that was set to 20 in the
example of Fig. 1(c)]. However, if more pulses are delivered,
potentiation and depression can continue (although eventually
saturating) and a much larger dynamic range (about 9× in the
networks simulated in this study) is achieved.

B. BCM Learning Rule

Unlike STDP which relates individual spike timing with
change in synaptic efficacy, BCM is a rate-based learning
rule, relating plasticity to the average firing activity measured
over time. The typical function used to describe BCM is
ẇi j = η ·�(ν j , θ) · νi , where ẇi j is the time derivative of the
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Fig. 3. (a) Test circuit used to verify the correct implementation of the
t-STDP rule. The two voltage waveform generators mimic the pre and post
neurons. A limiter circuit limits the maximum voltage of the backward spike.
The maximum voltage allowed by the limiter, Vsat , is set on its control port.
(b) Relative change of the synaptic weight (the memristor conductance) as
a function of the relative timing of pre and post spikes, showing similarity
with the t-STDP curves reported in theoretical works to implement the BCM
rule [50], where only the potentiation window of the t-STDP (negative delays)
is affected by the triplet term.

synaptic weight connecting pre neuron i to post neuron j , η is
the learning rate, νi is the pre firing rate, ν j is the post firing
rate, and θ is the post firing rate threshold separating LTD
from LTP (i.e., for ν j < θ , LTD will occur, LTP otherwise).
In many theoretical works, �(ν j , θ) is typically written as
�(ν j , θ) = ν j (ν j − θ), which provides the characteristic
nonmonotonic relation between postsynaptic firing rate and
plasticity [5], [12], [28]. The distinctive trait of the BCM rule
is its ability to provide selectivity. It can be proven that, under
certain conditions, the only stable point in the dynamics of
the weights leads to post neurons responding selectively to
the input patterns used during training [12].

Given the features of the BCM rule outlined above, it fol-
lows that its implementation on a memristors-based SNN
requires specialized circuitry to monitor the firing rates of
both pre and post neurons and then update the conductance
value of the memristor. It has been shown that the BCM
rule can be obtained with a triplet-STDP (t-STDP) protocol
[23], [49], [50]. The principle behind emulating BCM with
t-STDP can be summarized as follows. In the framework of
the STDP rule, if the delay between pre and post neurons firing
activity is uniformly distributed over time, then the average
effect on the synaptic weight will be either potentiation
or depression depending on the area underneath the STDP
curve [5]. Therefore, if a viable strategy to modulate the area
beneath the STDP curve depending on the spiking activities of
the neurons can be found, then a rate-based plasticity rule can
be effectively implemented. In our implementation, the STDP

curve is varied by tuning the maximum positive voltage of
the back-spike, affecting only the LTP region of the curve,
by means of a limiter circuit [additional block at the post
neuron side in Fig. 3(a)] controlled by an ad hoc control
voltage generated by a dedicated circuitry (described later
in this section). An important feature of this implementation
is that only the post back-spike is modified, whereas the
forward spike is unchanged compared to the STDP case,
making information propagation independent of the learning
rule. To test this approach, a setup like the one used to show
STDP in Section III-A is used, with the addition of a limiter
block with external control that limits the maximum voltage
of the back-spike, as shown in Fig. 3(a). The results of the
simulations are shown in Fig. 3(b), which demonstrates that
the total area beneath the STDP curve can be effectively
modulated by tuning the maximum positive voltage of the
back-spike. The obtained results are in accordance with the
theoretical predictions reported in [50].

In this implementation of the t-STDP protocol, the area
beneath the LTP region should be modulated by the temporal
distance between successive postsynaptic spikes. The circuit
in Fig. 4(a) has been designed to drive the limiter circuit
to implement BCM through the t-STDP protocol. Starting
from the part of the circuit labeled as Fast, each time the
postsynaptic neuron fires a spike, the signal Spike POST is set
high and the capacitor Cfast is charged through the pMOS Mp3.
The capacitor Cfast is discharged through the nMOS Mn3 with
a rate that depends on the voltage applied to its gate, Vp. The
capacitor voltage is buffered (Vsat), and it is used to drive the
limiter circuit. The capacitor Cfast is chosen such that it is fully
charged after just one spike, i.e., during normal conditions,
at the end of a spike, the voltage Vsat is at its maximum voltage,
Vmax2. During the interspike interval, Vsat decreases, and at
the successive spiking event, its value will set the maximum
amplitude of the back-spike through the limiter circuit.

To test the ability of the t-STDP implementation described
above in emulating the BCM rule, the setup reported in
Fig. 4(b) is simulated. Two independent random spiking trains
are generated and applied at the presynaptic and postsynaptic
side. Spike trains are generated by dividing the time into
discrete 1-ms temporal bins, and to each bin, a random binary
value is assigned signaling if a spike is generated in that
time interval, bin = “1” or, not, bin = “0.” Since spikes
are 10 ms long while bins are 1 ms long, a nine-bin long
absolute refractoriness is inserted preventing a spike being
generated, while the previous is not completed. The firing rate
of a train can be modulated by changing the probability of
a bin to be “1.” The simulation consists in applying 10-s
samples of presynaptic and postsynaptic spike trains, with
rate νi and ν j , respectively, to the circuit and extracts the
relative conductance variation due to the presentation of the
two trains. The postsynaptic rate ν j is then varied to obtain
the relation between plasticity and postsynaptic spiking rate.
Due to the intrinsic stochasticity introduced by the t-STDP
protocol, the above process is iterated 15 times for each
postsynaptic rate, with each simulation employing different
realization of presynaptic and postsynaptic trains. Fig. 4(c)
shows the results of such simulations where the characteristic
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Fig. 4. (a) Schematic of the circuit used to generate the limiting voltage, Vsat , for the limiter circuit used to implement the BCM rule. The two parts of
the circuit, namely, the slow and the fast part, are evidenced. The fast part is used to convert the temporal distance between two post spikes, �Tpost , into
the limiting voltage, Vsat . The slow part monitors the average firing rate of the post neuron and adjusts, through the Vp voltage, the gain function relating
�Tpost to Vsat in the fast part of the circuit, therefore implementing the adaptive threshold mechanism. (b) Schematic of the circuit used to verify that the
implemented t-STDP protocol gives rise to BCM-like synaptic plasticity when pre and post neuron fire stochastically in time (as Poisson spike trains). These
results are obtained by removing the slow part of the Vsat generator circuit in (a) and controlling Vp manually to resolve its contribution in the threshold
adaptation mechanism. (c) Relative change of the synaptic weight (memristor conductance) as a function of the post spikes rate obtained with different values
of Vp (different symbols). Symbols identify the average value obtained across many simulations, and the error bars report the ±1 σ extension. (d) Simulated
output of the slow circuit, Vp , as a function of the post neuron rate. (e) Relation between LTD-LTP modification threshold [i.e., the post rate at which the
curves in (b) cross the x-axis] and post neuron firing rate.

nonmonotonic relation between postsynaptic firing rate and
plasticity is visible. Specifically, the symbols in Fig. 4(c)
represent the average relative conductance variation computed
over different realizations with the error bars placed at ± one
standard deviation. Fig. 4(c) also shows the effect of the gate
voltage Vp, of the discharge nMOS Mn3, in shaping the BCM
curve.

This design allows obtaining, on average, a BCM-like
relative conductance response embodied by a nonmonotonic
function of the post firing rate but lacks another important
feature of BCM, namely, the long-term threshold adaptation
[11], [12]. The use of a fixed post firing rate threshold
(i.e., θ = const.) does not allow for the robust emergence
of pattern selectivity. For instance, in a feedforward network
with a single post neuron that is excited by two input patterns
(each delivered through an arbitrary number of synapses),
the two input patterns will cause two distinct responses in
terms of post neuron rate, ν j1 and ν j2. However, selectivity
to the two patterns emerges only if ν j1 and ν j2 are not
both above or both below the threshold. In such a case,
the synapses related to the pattern evoking high rate at the
post neuron will experience LTP that, over time, increases
further the post rate, whereas the response to the other pattern

will get silenced due to LTD. If the above relation between
ν j1 and ν j2 and the threshold is not satisfied, i.e., if ν j1

and ν j2 are both above or both below the threshold, all the
synapses related to both input patterns will experience LTP
(LTD) until saturation, i.e., driving the post neuron to fire
at the maximum (minimum) rate, irrespective of the pattern
applied. This problem is addressed by letting the threshold
be a function of the average post rate [i.e., θ = θ( ¯ν j(t)]. The
threshold adaptation mechanism is typically assumed to have a
sufficiently long time constant to average the post rate response
over all the input patterns [28]. If this condition is satisfied,
the threshold function θ( ¯ν j (t)) can be designed to robustly
separate the highest post rate response from the other, i.e.,
adaptively setting the threshold such that ν j1 and ν j2 are not
both above or both below it. If so, after a learning period, the
post neuron will respond selectively to only one of the patterns
used during learning, irrespective of the post neuron rates they
initially evoked. The adaptive threshold mechanism effectively
implements competition between input synapses. In fact, the
potentiation of a subset of synapses (e.g., associated with an
input pattern) makes the post neuron to be more active, which
leads to a higher BCM threshold, which hinders other synapses
(i.e., associated with different input patterns with respect to the
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initial one) to potentiate further [28]. In addition, according to
the theoretical foundation of the BCM learning rule, if the
function that relates the threshold to the average post neuron
firing rate is super-linear, a feedback effect that stabilizes the
average post neuron firing rate emerges. More details on the
advantages and the requirements for an adaptive threshold can
be found in [11] and [12]. The adaptive threshold can be
easily added to the proposed circuit design modulating the
discharging current through Mn3. The circuit used to estimate
a long-term firing rate of the post neuron, labeled as slow in
Fig. 4(a), is similar to the one used to measure the temporal
distance between two spikes [i.e., fast in Fig. 4(a)], with
the main difference being a longer time constant in charging
and discharging the capacitor Cslow. This circuit is used to
automatically modulate the gate voltage Vp, of the discharging
nMOS Mn3, which effectively provides a sliding threshold,
as shown in Fig. 4(c). Fig. 4(d) shows the steady-state Vp

voltage generated by the circuit at different post spiking rates,
while in Fig. 4(e), the threshold–frequency relation as obtained
from the set of simulations of Fig. 4(b) is shown. Notably,
the proposed circuit, capacitors included, can be seamlessly
integrated within each neuron design, slightly increasing its
footprint (estimated for transistor-level simulations in about
100 μm2 when implementing Rslow with switched capacitors),
without affecting the advantageous simplicity of the compact
1T1R synaptic architecture that is agnostic of the specific
learning rule adopted. This is important as the synapse to
neuron ratio can be in the order of 104 [5], [9]. Thus, extra
circuit area can be tolerated in the neuron circuit but not on
the synaptic element.

IV. FROM RULES TO SPIKING NETWORKS

A. Neuron Architecture

The implementation of an artificial neural network that
can simultaneously support both BCM and STDP synapses
requires designing a suitable neuron architecture. For this
purpose, a neuron circuit is proposed based on a leaky integrate
and fire neuron model with two inputs, where all the BCM and
STDP synapses from pre neurons converge. The circuit has
one output line for the spike waveform along with a digital
signal, driving an arbitrary number of both BCM and STDP
1T1R synapses connected to its output. In general, a neuron
is embedded into a network, asynchronously receiving and
providing inputs from and to other neurons. For example, in a
layered structure as that in Fig. 5(a), a neuron in Layer 1 is
a post neuron for some of the neurons in Layer 0 and a pre
neuron for some neurons in Layer 2.

The internal neuron architecture is shown in Fig. 5(b). The
neuron can be in two states, namely, the integration state
and the firing state, depending on the value of the logic
signal “Spike” generated by the SR latch. During integration
(i.e., “Spike” at logic zero), both the inputs are connected
to the leaky current integrator that locally provides virtual
ground. At the same time, the neuron output is grounded.
When the integrator voltage reaches the threshold, the “Spike”
signal is raised, and the neuron is set in the firing state.
The inputs are then disconnected from the integrator and
connected to dedicated spike generators that are triggered by
the same “Spike” signal, providing the back-spikes to the input

Fig. 5. (a) Framework of an SNN that supports both learning rules. A neuron
in layer n behaves as either a pre or a post for other neurons in layer n−1 and
n + 1, respectively. Pre neurons drive the 1T1R synaptic element through
two signals, the forward spike waveform [neuron out in (b)] that carries the
information to the post (next layer), and a logic signal [spike in (b)] that
enables the selector transistor. Two inputs are used to connect the synapses
following different learning rules since, as described in Section III, they
require different backward spikes to be implemented. (b) Leaky integrate-
and-fire neuron architecture simultaneously supporting BCM and STDP rules
on different synapses. (c) Simulated time diagrams of critical nodes of a
neuron in an SNN architecture. While the neuron is in the integration state
(Spike = “0”), both inputs are tied to 0 V by the integrator virtual ground,
so incoming spikes are not seen in the voltage traces of panels 3 and 4. When
the integrator voltage reaches the threshold (first panel), the “Spike” signal
is raised (second panel), disconnecting the inputs from the integrator and
triggering all the waveform generators (at the inputs and output) to provide
backward and forward spikes (panels 3–5). In panel 4, the saturating effect
of the limiter circuit involved in the implementation of the BCM is shown.
The temporal distance between two spikes modulates the maximum voltage
of the BCM backward spike. The negative slope of Vsat is modulated on a
longer time scale by the Vp voltage (not shown) to implement BCM adaptive
threshold, see Section III-B.

synapses. At the output, the “Spike” signal triggers the spike
generator that transmits the forward spike. The “Spike” signal
is also used to drive the Vsat generator circuit of Fig. 4(a)
(in which the control signal is labeled “Spike POST”) that
controls the voltage limiter that in turn tunes the maximum
positive voltage of the BCM back-spike, as described in
Section III-B. As all the generated spikes share the same time
duration, TSpike = 10 ms, it is sufficient to introduce a delay
circuit that resets the SR latch after TSpike, which discharges
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the integrator and brings the neuron back into the integration
phase. Fig. 5(c) shows the above process in terms of the
time evolution of the voltage at specific nodes of the internal
neuron architecture. Except for the subcircuit in Fig. 4 that
was simulated at the transistor level, the components of the
neuron were simulated with Verilog-A behavioral models.
As such, no detailed figures of merit, such as silicon footprint,
power consumption, and circuit complexity, can be provided.
However, we suggest possible low-power implementations of
the most critical constituent blocks. Spike generators can be
implemented using a digital pulsewidth modulation circuit
using a simple free-run digital counter and a few simple
parallel registers accessed sequentially. The counter and the
memory output can be wired together in an n-bit AND gate
that would drive a toggle flip-flop to produce a square wave
with controlled duty cycle. A passive low-pass filter would
complete the circuit producing the spike waveform. The clock
driving the counter can run at low frequency given the low
bandwidth of the output pulse, limited in the kilohertz range.
Another possibility, with less control on the spike shape
(i.e., more distorted STDP window), entails analog multiplex-
ing of different voltage sources [20], [30]. In a transistor-
level implementation of the neuron circuit that we propose,
we expect that the largest fraction of the area would be
contributed by the three op-amps needed to implement the
leaky integrator, the comparator, and the buffer in the satura-
tion voltage generator circuit for the BCM. In our network,
all the signals are limited in bandwidth to a few kilohertz,
as can be intuitively seen from Fig. 5(c). Therefore, this
allows using ultralow power (10–100 nW) op-amp with sub-
threshold transistors that have notoriously limited bandwidth
[51], [52], [53]. The overall neuron power consumption would
be dominated by the saturation voltage generation circuit
(simulated to be around 1.6 μW) and by the power needed
to effectively potentiate and depress the synapses (simulated
to be, on average, in the 10–100 nW per synaptic connection).

B. Unsupervised Motion Detection Task With STDP

The effectiveness of the proposed STDP implementation is
verified by simulating a circuit inspired by the one in [14],
in which Dan and Poo present a simple visual cortical net-
work model with two groups of direction-selective neurons
connected through two STDP synaptic layers to a readout
neuron. Each neuron is placed in a specific spatial position,
i.e., has a distinct receptive field that is the region of space
in which a stimulus must occur for the neuron to respond
with a spike. Therefore, a stimulus (e.g., an object) that moves
across the receptive fields of the different neurons will cause a
time- and space-dependent neuron activity. According to [14],
the interaction of motion stimuli and STDP leads, after several
presentations of a moving object, to an asymmetry in weights
connecting input and output neurons. This asymmetry causes
the output neuron to receive strengthened excitation from input
neurons that early respond to the moving object, making the
output neuron progressively anticipate its spiking activity over
time [14], [15], [28].

In this study, we reproduced the circuit, limiting the number
of neurons per group to 32. This is schematically shown
in Fig. 6(a), in which two groups of 32 direction-selective

Fig. 6. (a) Network used to perform the STDP-based unsupervised motion
detection task, inspired by the example in [14]. Two sets of 32 direction-
selective neurons labeled as→ (red neurons) and← (blue neurons) enclosed
by circles (red preferring L-to-R motion and blue R-to-L) excite a single
post neuron. All the inputs converge at the STDP input of the post neuron.
(b) Spatiotemporal stimulation provided by the two sets of input neurons
(red circles for L-to-R neurons and blue crosses for R-to-L) caused by the
passage of an object (black dot), from L to R (0–40 ms) and from R to L
(from 90 to 130 ms). (c) and (d) Similar to (b) for L-to-R (c) and R-to-L
(d) neurons only, when several stimulations are repeated. (e) Asymmetric
weight development caused by the repetition of the spatiotemporal patterns
in (b)–(d). The transition between the set of weights that gets potentiated
(�G/G > 0) and depressed (�G/G < 0) shifts over time in the opposite
direction of the one identified by the selectivity of the neurons, which causes
the anticipated output response.

neurons, 32 left to right and 32 right to left, respectively,
labeled as → (red neurons) and ← (blue neurons) enclosed
by circles, provide the excitatory inputs through two STDP
synaptic layers to a readout neuron. Input neurons with the
same indices (e.g., in LR1 and in RL1) have the same spatial
receptive field, while the preferred direction (LR or RL)
specifies the motion direction to which the neuron evokes its
maximum firing rate, i.e., when an object is at the maximum
of the spatial receptive field moving in the preferred direction
the neuron spikes at its maximum rate. In general, direction
selectivity in neurons can be obtained by exploiting delayed
inhibitions and STDP [54], [55]. We considered inputs neurons
described by the following rule:

fi = k ·
[

f0 + α + sign(v)

α + 1
· K (x − x0i )+ η

]
+

where fi is the firing rate of the i th neuron, f0 is the base firing
rate, k is a gain factor, α modulates the direction selectiveness,
K is a Gaussian kernel for the spatial receptive field centered
at x0i , x and v are the position and the velocity of the object,
respectively, and η represents noise in the firing rate. The [ ]+
operator describes the rectified linear unit (ReLU) function,
which returns its argument when the latter is positive and zero
otherwise. This is used to generate a Poisson spike train for
the input neurons.
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Initially, all the synaptic weights are randomly assigned
with values drawn from the same distribution. The simulation
consists in the presentation to the input neurons of an object
moving left to right and back several times, i.e., scanning
across the receptive fields of all input neurons. Fig. 6(b) shows
the spiking wave of the→ (red circles) and← (blue crosses)
neurons as the object is moved one time from left to right
(from 0 to 40 ms) and then from right to left (from 90 to
130 ms), reflecting the direction selectivity of the input
neurons. In Fig. 6(c) and (d), the spiking activities recorded
across several presentations of the object are superimposed to
show the input variability. These spikes are then applied to
the corresponding STDP synaptic layers. The output neuron
integration time constant is set to generate a single spike per
presentation with the initial values of the synaptic weights.
As reported in [14], with this setup, STDP is expected to
break the initial weight symmetry and develop an asymmetric
weight distribution such that the synapses that connect to input
neurons that fire before the post neuron are potentiated, while
the one firing later is depressed. As shown in Fig. 6(e), this
is effectively achieved with our implementation of the STDP
protocol. Initially, the integration of a relatively high number
of input spikes is needed for the output neuron to reach the
threshold, which means that the output neuron will spike
when the moving object has already passed by a relatively
large number of input neurons. The asymmetric plasticity
provided by the STDP potentiates synaptic connections related
to inputs that spiked shortly before the output and depresses
those related to inputs that spiked shortly after the output.
Accordingly, when the moving object is presented again, the
output neuron will require less input spikes to reach threshold,
and therefore fire, anticipating its response. The depression of
synaptic weights related to inputs that spiked shortly after the
post limits the excitation of the post due to these inputs, which
hinders the possibility for the output neuron to fire multiple
spikes per object presentation. As predicted, in the sequence
of Fig. 6(e), the transition between the set of weights that are
potentiated and depressed, which is dictated by the post spike,
recedes over time for the weights connected to → neurons
(advances for weights connected to ← neurons) consistently
with the anticipated response of the output neuron. In fact,
at T = 1 s, around 20 input spikes from the → neurons
are necessary for the output to reach the threshold, while at
T = 50 s, around 14 input spikes are sufficient.

C. Unsupervised Multipattern Recognition Task With BCM
The effectiveness of the proposed implementation of the

BCM rule is verified by simulating a feedforward network
composed of 32 pre and 4 post neurons. Four orthogonal
input patterns defined in terms of input spiking rates were
designed to stimulate the network. Each pattern consists of
32 independent Poisson spike trains with high (for 8 specific
neurons) and low (for the remaining 24) frequency rates. The
pre neurons are divided into four groups of eight neurons
(here selected to be adjacent to one another for simplicity
and without loss of generality): when the i th pattern is to be
presented to the network, the i th group will generate the high
rate trains, with the remaining groups generating the low rate
trains, as shown in Fig. 7(a). This stimulation protocol has

been chosen to achieve the fastest convergence of the network
and easier interpretation of the results. Partially overlapping
patterns, continuous input firing rate between high and low,
as well as pattern presented randomly over time are also
viable stimulations. If the overlap of the input pattern is not
too extreme, the effectiveness of the rule is not significantly
affected (not shown for brevity). The patterns are presented
sequentially in time, with a pattern duration of 0.5 s, with an
epoch being one presentation of the four patterns (2 s). The
four output neurons are connected to each other through fixed
weight inhibition. To this end, an inhibitory input is added to
the neuron design in Fig. 5(b), whose input current, instead
of being summed by the integrator, is subtracted, effectively
reducing the neuron excitation. The overall architecture with
the feedforward excitation and the lateral inhibition is shown in
Fig. 7(a). All the 128 excitatory weights are initiated at random
initial values, all drawn from the same distribution. Synaptic
modification via BCM naturally starts with a transitory period
where the combined effect of plasticity and BCM threshold
adaptation spontaneously brings the firing rates of all the
postsynaptic neurons and the BCM threshold close to each
other. At the end of this initial transitory period, all the
input patterns evoke similar responses to all neurons. This
quasi-symmetric condition with respect to the input patterns
is broken as soon as one output neuron starts to respond
systematically with higher rates for a particular pattern. In that
case, lateral inhibition lowers the net excitation on the other
output neurons that in turn lower their spiking rates. Since they
are all close to the threshold, when that happens, the winner
output neuron tends to potentiate the synaptic inputs related
to that input pattern, whereas the other output neurons tend
to depress the same relative synaptic inputs due to the lower
spiking rate. This process consolidates over time until each
output neuron spontaneously develops univocal input pattern
selectivity, as shown in Fig. 7(b). Fig. 7(c) highlights the effect
of pattern learning and selectivity in terms of post neuron
rates. At the first epoch, all the input patterns evoke a similar
spiking activity in all the output neurons, whereas at the final
epoch, each input pattern evokes high activity in only one
output neuron and that neuron responds with high activity
for only that input pattern. Fig. 7(d) shows the firing rates of
output neuron 1 for the four input patterns at different epochs.
From about the 12th epoch on, the response to pattern 2
intensifies, while the others abate. The same happens for all
the output neurons. Defining selectivity of a generic output
neuron as [11]

Selectivity = 1− mean(rate wrt input patterns)

max(rate wrt input patterns)

in Fig. 7(e), a marked increase in selectivity over time for all
the neurons is shown. The classification accuracy is 95.75%.
It was evaluated as the number of spikes from the specialized
neurons for each specific input pattern (i.e., successful clas-
sification) over the total number of output spikes in the last
25 epochs when the network reached the maximum selectivity
[i.e., after learning, Fig. 7(e)]. A guard interval of 50 ms
is used to mitigate the spikes of neurons excited during the
presentation of the previous input pattern.
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Fig. 7. (a) Schematic illustration of the 32 pre by 4 postsynaptic neurons feedforward network with lateral inhibition among the postsynaptic neurons, used
to implement the BCM-based unsupervised multipattern recognition task. Each input pattern excites eight pre neurons at high rate, while the other neuron
fires at a low rate. (b) Time sequence of the patterns applied to the network and spiking activity of the four output neurons. Initially, all the synaptic weights
are randomly assigned and no relation between the applied pattern and the output neurons activity is present (see 0–4 s zoomed inset). After learning through
BCM, a one-to-one relation between input patterns and output neurons is achieved (see 96–100 s zoomed inset). (c) Color maps of the initial and final
spiking rates of the output neurons for the different input patterns. (d) Evolution over the learning epochs of output neuron 1 firing rate for the different
input patterns. (e) Evolution of the output neurons selectivity. At around 20 epochs, selectivity reaches its maximum at 0.75 for a four-input environment:
max (1− (

∑
pi fi )/(max( fi ))) = 1− pi = 1− (1/4) = 0.75.

Simulations employing memristors as synapses in SNN
for pattern classification were already shown [8], [17], [18].
In [17], a 64 × 4 memristive network was used to perform
recognition on four different characters. STDP was used with
a winner-take-all paradigm for the output neurons, achieving
96% accuracy. Though sharing similarities with our work,
directly comparing the performance would be misleading since
we employed: 1) a single pattern per class and 2) differ-
ent accuracy evaluation methods. However, we expect our
implementation to be less prone to runaway dynamics due to
self-stabilization of BCM and less dependent on lateral inhi-
bition. As selectivity is emergent in BCM, in our network,
lateral inhibition is mainly used to nudge different neurons to
learn different patterns and not to make them selective to a
single pattern. Similar arguments hold true for other works
where pair-based STDP is used for classification [8], [18].

V. CONCLUSION

In this work, we proposed a new hybrid CMOS-memristor
SNN architecture simultaneously supporting two learning
rules. For this purpose, a memristor was electrically char-
acterized in terms of its I–V and pulsed response, as well
as to the spike waveforms of the proposed neuron. In sim-
ulation, a neuron architecture supporting the two learning

rules was designed after both STDP and BCM had been
verified independently. Then, the proposed architecture was
verified to successfully solve different classes of unsupervised
learning tasks. A motion detection task exploiting the tim-
ing nature of STDP was shown: the shift of the receptive
field of the output neuron was observed when subjecting
the network to repeated motion stimuli. Then, a multipattern
recognition task exploiting the properties of the BCM rule with
adaptive threshold was performed. In particular, the experi-
ment showed good performances in terms of selectivity, with
a classification accuracy of 95.75%. Due to the simultaneous
support of multiple learning rules, the proposed architecture
is an important step toward the implementation of complex
biologically plausible SNN able to adapt to complex scenarios.
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